文档库 最新最全的文档下载
当前位置:文档库 › 等离子

等离子

等离子
等离子

等离子

如果温度不断升高,气体将会发生怎样的变化呢?科学家告诉我们,这时构成分子的原子发生分离,形成为独立的原子,如氮分子会分裂成两个氮原子,我们称这种过程为气体中分子的离解。如果再进一步升高温度,原子中的电子就会从原子中剥离出来,成为带正电荷的原子核和带负电荷的电子,这个过程称为原子的电离。

当电离过程频繁发生,使电子和离子的浓度达到一定的数值时,物质的状态也就起了根本的变化,它的性质也变得与气体完全不同。为区别于固体、液体和气体这三种状态,我们称物质的这种状态为物质的第四态,又起名叫等离子态。

等离子态下的物质具有类似于气态的性质,比如良好的流动性和扩散性。但是,由于等离子体的基本组成粒子是离子和电子,因此它也具有许多区别于气态的性质,比如良好的导电性、导热性。特别的,根据科学计算,等离子体的比热容与温度成正比,高温下等离子体的比热容往往是气体的数百倍。

红色光剑(单刃)

等离子剑(英语:lightsaber)又译光剑,在《星球大战》的世界观中是一种占有举足轻重地位的武器,无论是有关星战的电影、小说或是游戏中都经常可以见到。在星战的世界观中,光剑的概念即是传统的金属剑身被某种以纯粹能量形式存在的物质所代替,而这种能量可以被凝聚成长度一米左右的剑刃形状,并发出特定颜色的光芒。关于这种能量到底是什么,或许是由于有些媒体的错误宣传,有时人们会不正确地把这种构成剑身的物质简单理解为激光或其他什么光束,从而引起一些光剑是否违反物理定律之类的疑问,但事实是星战中任何地方都找不到支持剑身由光构成这一说法的证据,尽管能量这一说法非常含糊。有说法解释这种能量为一团等离子体,受到很强的磁场作用被束缚成剑的形状。光剑的剑身是由其后的金属剑柄发射出的,剑柄一般来说约长二十至三十厘米,可以根据使用者的个人需要被设计成特定的样式。光剑开关开启和关闭时,以及光剑挥动时都会发出磁场嗡嗡的声音。

等离子体

等离子体(plasma)又叫做电浆,是由部分电子被剥夺后的原子及原子团被电离后产生的正负离子组成的离子化气体状物质,尺度大于德拜长度的宏观电中性电离气体,其运动主要受电磁力支配,并表现出显著的集体行为。它广泛存在于宇宙中,常被视为是除去固、液、气外,物质存在的第四态。等离子体是一种很好的导电体,利用经过巧妙设计的磁场可以捕捉、移动和加速等离子体。等离子体物理的发展为材料、能源、信息、环境空间、空间物理、地球物理等科学的进一步发展提供了新的技术和工艺。

等离子体是不同于固体、液体和气体的物质第四态。物质由分子构成,分子由原子构成,原子由带正电的原子核和围绕它的、带负电的电子构成。当被加热到足够高的温度或其他原因,外层电子摆脱原子核的束缚成为自由电子,就像下课后的学生跑到操场上随意玩耍一样。电子离开原子核,这个过程就叫做“电离”。这时,物质就变成了由带正电的原子核和带负电的电子组成的、一团均匀的“浆糊”,因此人们戏称它为离子浆,这些离子浆中正负电荷总量相等,因此它是近似电中性的,所以就叫等离子体。

看似“神秘”的等离子体,其实是宇宙中一种常见的物质,在太阳、恒星、闪电中都存在等离子体,它占了整个宇宙的99%。21世纪人们已经掌握和利用电场和磁场产生来控制等离子体。最常见的等离子体是高温电离气体,如电弧、霓虹灯和日光灯中的发光气体,又如闪电、极光等。金属中的电子气和半导体中的载流子以及电解质溶液也可以看作是等离子体。在地球上,等离子体物质远比固体、液体、气体物质少。在宇宙中,等离子体是物质存在的主要形式,占宇宙中物质总量的99%以上,如恒星(包括太阳)、星际物质以及地球周围的电离层等,都是等离子体。为了研究等离子体的产生和性质以阐明自然界等离子体的运动规律并利用它为人类服务,在天体物理、空间物理、特别是核聚变研究的推动下,近三、四十年来形成了磁流体力学和等离子体动力学。

等离子体由离子、电子以及未电离的中性粒子的集合组成,整体呈中性的物质状态。等离子体可分为两种:高温和低温等离子体。等离子体温度分别用电子温度和离子温度表示,两者相等称为高温等离子体;不相等则称低温等离子体。低温等离子体广泛运用于多种

等离子体发生器

生产领域。例如:等离子电视,婴儿尿布表面防水涂层,增加啤酒瓶阻隔性。更重要的是在电脑芯片中的时刻运用,让网络时代成为现实。

高温等离子体只有在温度足够高时发生的。恒星不断地发出这种等离子体,组成了宇宙的99%。低温等离子体是在常温下发生的等离子体(虽然电子的温度很高)。低温等离子体可以被用于氧化、变性等表面处理或者在有机物和无机物上进行沉淀涂层处理。

等离子体(Plasma)是一种由自由电子和带电离子为主要成分的物质形态,广泛存在于宇宙中,常被视为是物质的第四态,被称为等离子态,或者“超气态”,也称“电浆体”。等离子体具有很高的电导率,与电磁场存在极强的耦合作用。等离子体是由克鲁克斯在1879年发现的,1928年美国科学家欧文·朗缪尔和汤克斯(Tonks)首次将“等离子体”(plasma)一词引入物理学,

用来描述气体放电管里的物质形态。严格来说,等离子体是具有高位能动能的气体团,等离子体的总带电量仍是中性,借由电场或磁场的高动能将外层的电子击出,结果电子已不再被束缚于原子核,而成为高位能高动能的自由电子。

等离子体是物质的第四态,即电离了的“气体”,它呈现出高度激发的不稳定态,其中包括离子(具有不同符号和电荷)、电子、原子和分子。其实,

人们对等离子体现象并不生疏。在自然界里,炽热烁烁的火焰、光辉夺目的闪电、以及绚烂壮丽的极光等都是等离子体作用的结果。对于整个宇宙来讲,几乎99.9%以上的物质都是以等离子体态存在的,如恒星和行星际空间等都是由等离子体组成的。用人工方法,如核聚变、核裂变、辉光放电及各种放电都可产生等离子体。分子或原子的内部结构主要由电子和原子核组成。在通常情况下,即上述物质前三种形态,电子与核之间的关系比较固定,即电子以不同的能级存在于核场的周围,其势能或动能不大。

普通气体温度升高时,气体粒子的热运动加剧,使粒子之间发生强烈碰撞,大量原子或分子中的电子被撞掉,当温度高达百万开到1亿开,所有气体原子全部电离。电离出的自由电子总的负电量与正离子总的正电量相等。这种高度电离的、宏观上呈中性的气体叫等离子体。

等离子体和普通气体性质不同,普通气体由分子构成,分子之间相互作用力是短程力,仅当分子碰撞时,分子之间的相互作用力才有明显效果,理论上用分子运动论描述。在等离子体中,带电粒子之间的库仑力是长程力,库仑力的作用效果远远超过带电粒子可能发生的局部短程碰撞效果,等离子体中的带电粒子运动时,能引起正电荷或负电荷局部集中,产生电场;电荷定向运动引起电流,产生磁场。电场和磁场要影响其他带电粒子的运动,并伴随着极强的热辐射和热传导;等离子体能被磁场约束作回旋运动等。等离子体的这些特性使它区别于普通气体被称为物质的第四态。

在宇宙中,等离子体是物质最主要的正常状态。宇宙研究、宇宙开发、以及卫星、宇航、能源等新技术将随着等离子体的研究而进入新时代。

空间跳跃技术

跳跃星门(下文简称星门)的建造是基于人工虫洞,且由双星系统中的引力共振形成的。该共振相当于恒星天体引力波之间的摩擦。天体质量越大,它们之间的共振就会越强烈。恒星系中行星的位置以及大型行星体尘环的复杂结构都受到这种共振现象的影响。这些稳定的波形成了一连串的驻波,就好像吉他弹奏时琴弦振动所形成的波一样。最强的共振是1:1共振(称为第一谐波),该力场存在两个稳定点,两颗恒心的中心各存在1个。次强的共振是1:2共振(称为第二谐波),其稳定点存在于两颗恒星连线的中间点(假设两颗恒星质量相等),之后的依次类推。

空间跳跃系统结合了两大技术元素:其一是超光速加速技术,其二是横跨空间两点的虫洞理论的应用。

第一元素将飞船引擎的输出功率增强到峰值,将飞船速度从亚光速推进到光速。对短途航行来说这很有用,但是对于星系间航行效果并不理想。

第二元素相对更加危险,需要在宇宙空间的结构中打开一个裂缝。这个裂缝将宇宙中相隔遥远却相互关联的两个点连接起来,这就是“虫洞”。使用赛伯坦的星系网格地图作为参考,飞船上的电脑计算出可以抵达目的地的最近的相关裂缝位置,并以光速到达这个位置。然后使用空间跳跃装置撕开一个空间裂缝,让飞船从中通过抵达目的地。

使用受损、低效的空间跳跃装置或者进行匆忙的航行都很可能导致不幸的结果,例如会发生难以掌控的时空跳转。

音爆

当物体接近音速时,会有一股强大的阻力,使物体产生强烈的振荡,速度衰减。这一现象被俗称为音障(Sound Barrier)。突破音障时,由于物体本身对空气的压缩无法迅速传播,逐渐在物体的迎风面积累而终形成激波面,在激波面上声学能量高度集中。这些能量传到人们耳朵里时,会让人感受到短暂而极其强烈的爆炸声,称为音爆(Sonic Boom)。

如果给空气一个扰动,声音也会像水一样通过波的形式向外传播,这就是声波。我们平时听见的声音就是声波传入耳内使鼓膜震动而产生的。当飞机在空中作超音速飞行时,在机头或突出部分,也会像水中前进的快艇一样出现一种楔形或锥形波,这就是激波。

飞机所发出的疏密状的音波无法跑到飞机前方,所以就全部叠在机身后方,形成了圆锥形状的音锥。当它们向外传播时便互相干扰和影响,然后汇集成一道包罗机头的音爆前激波和一道尾随机尾的后激波。这种波虽然可以用上述的楔形水波来比拟,但有着迥然不同的性质。激波的厚度很小,经过波后空气的压强、密度、温度都突然升高,速度立即下降。当这两道激波波及到无论哪个空间和物体时,均会感到这种强烈的变化,反映到人的耳朵里,使耳鼓膜受到突然的空气压强变化,就感觉是两声雷鸣般的巨响。这种响声就称之为“音爆”(sonic boom )。

“音爆”只有在飞机作超音速飞行时才会出现。飞机在超音速飞行时产生的强压力波,传到地面上形成如同雷鸣的爆炸声。

在突破音障时伴随的一个奇特现象便是“音爆云”,这是由于在激波面后方由于气压降低而引起温度降低,水气凝结形成微小的水珠,看上去就像云雾一般。这种云雾通常只能持续几秒钟,激波现身,转瞬即逝。音爆云是国内对这种现象的一个俗称,较为严肃一点的描述为Prandtl-Glauert condensation clouds(普朗特-格劳厄脱凝结云)。

因此,音爆云常见于战斗机和舰载机。在海面上空气非常湿润,激起的云雾更大更漂亮。就像给飞机套上一件天鹅裙,不过没有优雅的感觉,反而是近乎疯狂。如果能亲眼看到,场面一定很壮观。

超空间跳跃

超空间跳跃是指人们设想中,运用巨大的能量场(如重力场或强磁场),使在其范围内的物体瞬间进入与三维空间完全不同的多维空间,由于在超空间跳跃中不存在所谓的时间,所以可以进行极高速星际航行。史蒂芬·霍金在著作《时间简史》、《果壳中的宇宙》中均讨论了超空间跳跃的可能性,提出了“弦理论”进行空间跳跃的设想,认为运用足够的能量,就可以制作出一个能量巨大的“弦”,将太空船带入超空间跳跃航行,因此在霍金看来超空间跳跃理论上是可行的。同时,他一方面认为虫洞极难发现且被人类利用,另一方面也认为通过虫洞进行空间跳跃并非空谈。

论述物理气相沉积和化学气相沉积地优缺点

论述物理气相沉积和化学气相沉积的优缺点 物理气相沉积技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD法中使用最早的技术。 溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。磁控(M)辉光放电引起的称磁控溅射。电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程。 离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。这样在深度负偏压的作用下,离子沉积于基体表面形成薄膜。 物理气相沉积技术基本原理可分三个工艺步骤: (1)镀料的气化:即使镀料蒸发,异华或被溅射,也就是通过镀料的气化源。 (2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。 (3)镀料原子、分子或离子在基体上沉积。 物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐饰、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层。 随着高科技及新兴工业发展,物理气相沉积技术出现了不少新的先进的亮点,如多弧离子镀与磁控溅射兼容技术,大型矩形长弧靶和溅射靶,非平衡磁控溅射靶,孪生靶技术,带状泡沫多弧沉积卷绕镀层技术,条状纤维织物卷绕镀层技术等,使用的镀层成套设备,向计算机全自动,大型化工业规模方向发展。 化学气相沉积是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。现代科学和技术需要使用大量功能各异的无机新材料,这些功能材料必须是高纯的,或者是在高纯材料中有意地掺人某种杂质形成的掺杂材料。但是,我们过去所熟悉的许多制备方法如高温熔炼、水溶液中沉淀和结晶等往往难以满足这些要求,也难以保证得到高纯度的产品。因此,无机新材料的合成就成为现代材料科学中的主要课题。 化学气相沉积是近几十年发展起来的制备无机材料的新技术。化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态无机薄膜材料。这些材料可以是氧化物、硫化物、氮化物、碳化物,也可以是III-V、II-IV、IV-VI族中的二元或多元的元素间化合物,而且它们的物理功能可以通过气相掺杂的淀积过程精确控制。目前,化学气相

核聚变

学年论文 核聚变——未来的新能源 班级:08113 学号:27 姓名:宋广佳 指导教师:姚大力

核聚变——未来的新能源 0811327 宋广佳 【摘要】:氢弹应用的正是聚变原理,这是人类利用核聚变能的首次成功尝试。两个氢原子合为一个氦原子,叫核聚变,太阳就因此释放出巨大能量。核聚变产生的能量比核裂变还要多,而其辐射却要少得多,而且核聚变燃料可以说是取之不尽、用之不竭的。 关键词:核聚变未来新能源国际合作项目研究 能源是社会发展的基石。古人伐木为薪,后来柴薪逐渐被煤、石油、天然气等化石燃料取代。而今,化石能源面临“危机”,同时又对环境造成严重污染。以煤炭、石油、天然气等化石能源替代柴薪的第一次能源革命,带来了社会、经济的迅速发展。然而这些宝贵的化石能源是不可再生的,据估计,100年后地球上的化石能源将会枯竭。面对即将来临的能源危机,人类开始寻找新能源。回顾人类发展的历史,每一次高效能新能源的利用,都会使社会进入一个新的时代,带来一次新的飞跃。新能源的开发是社会发展的重要基础。 能源分为一次能源和二次能源,化石能源、太阳能、风能、地热能、核能、潮汐能等为一次能源,而焦煤、蒸汽、液化气、酒精、汽油、电能为二次能源。其次,按利用状况,可分为常规能源和新能源。前者是指在不同历史时期的科技发展水平下已被广泛应用的能源,现阶段指煤、石油、天然气、水能和核裂变能五种;后者指由于技术、经济或能源品质等因素而未能大规模使用的能源,如太阳能、风能、海洋能、地热能等。为了社会的稳定发展,人们正在利用高新科学技术开发新的能源。从长远来看,核能将是继石油、煤和天然气之后的主要能源,人类将从“石油文明”走向“核能文明”。原子弹、氢弹的爆炸,使人们认识到原子核内蕴藏着巨大的能量,核电站正是合理利用核能的一个途径。而今,太阳能、地热能、海洋能、生物能等各种新能源也正在开发过程中。日本政府于1993年就提出旨在开发利用新能源的“新阳光计划”,每年都要为新能源技术开发拨款约362亿日元。日本新能源利用的目标是,到2008年争取使新能源在一次能源中所占的比重由目前的1%提高到3%。美国《国家综合能源战略》确定的新能源开发利用目标是,发展先进的可再生能源技术,开发非常规的甲烷资源,发展氢能的储存、分配和转化技术。 为什么太阳能源源不断地向外释放能量,好像永远不会枯竭?这个疑问直到爱因斯坦提出了狭义相对论才有了答案。在极高的温度下,太阳物质发生核聚变反应,释放出巨大的聚变能,其中极小一部分来到地球,成为地球一切生命和能源之源。 一、什么叫核聚变 世界上的每一种物质都处于不稳定状态,有时会分裂或合成,变成另外的物质。物质无论是分裂还是合成,都伴随着能量的转移过程。大家熟知的原子弹利用的则是裂变原理,目前的核电站也是利用核裂变来发电的。核裂变虽然能产生巨大能量,但裂变堆的核燃料蕴藏极为有限,不仅其强大辐射会伤害人体,而且废料也很难处理,可能遗害千年。1946年,第一颗原子弹在广岛上空引爆,此后不久,氢弹爆炸又获得成功。氢弹应用的正是聚变原理,这是人类利用核聚变能的首次成功尝试。两个氢原子合为一个氦原子,叫核聚变,太阳就因此释放出巨大能量。核聚变产生的能量比核裂变还要多,而其辐射却要少得多,而且核聚变燃料可以说是取之不尽、用之不竭的。氢弹威力无比,却无法控制,一旦释放就无法挽回。是否可以控制聚变能,使之缓慢释放,造福人类呢?

物理气相沉积

物理气相沉积(PVD)技术 第一节概述 物理气相沉积技术早在20世纪初已有些应用,但在最近30年迅速发展,成为一门极具广阔应用前景的新技术。,并向着环保型、清洁型趋势发展。20世纪90年代初至今,在钟表行业,尤其是高档手表金属外观件的表面处理方面达到越来越为广泛的应用。 物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD法中使用最早的技术。 溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。磁控(M)辉光放电引起的称磁控溅射。电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程。 离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。这样在深度负偏压的作用下,离子沉积于基体表面形成薄膜。 物理气相沉积技术基本原理可分三个工艺步骤: (1)镀料的气化:即使镀料蒸发,异华或被溅射,也就是通过镀料的气化源。 (2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。 (3)镀料原子、分子或离子在基体上沉积。 物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光

等离子体的磁约束原理

等离子体的磁约束原理 张玉萍 在辉光放电、弧光放电的阳极柱里,气体处在高度电离状态,但是其中正、负电荷密度几乎相等,这时的系统同普通的气体有明显的区别,1929年,美国的朗默尔(Langmuir)将它取名为“plasma”,译名为“等离子体”。在热核反应的高温(约在几百万开甚至一亿开左右)下,物质处于等离子态,但在热核反应的高温下,任何固体材料的容器早已熔毁,而且散热的速度随温度的升高而急剧增加。目前在大多数受控热核反应的实验装置里用磁场来约束等离子体,使之脱离器壁并限制它的热导。下面简单介绍等离子体磁约束的原理。 我们知道,带电粒子的速度v和磁感强度B成任意夹角时,此带电粒子在磁场中作螺旋线运动,且回旋半径R与磁感强度B成反比,磁场越强,半径越小,这样一来,在很强的磁场中,每个带电粒子的运动便被约束在一根磁感线附近的很小的范围内(右图),也就是说,带电粒子回旋轨道的中心(也叫引导中心)只能沿磁感线纵向移动,而不能横越它,只有当粒子发生碰撞时,引导中心才能由一根磁感线跳到另一根磁感线,因此,强磁场可以使带电粒子的横向输运过程(如扩散、热导)受到很大的限制。

实际问题中,例如受控热核反应,不仅要求引导中心受到横向约束,也希望有纵向约束。下述磁镜装置便能限制引导中心的纵向移动。如上图(a)所示,两个电流方向相同的线圈产生中央弱两端强的不均匀磁场,当处于中间区域的带电粒子沿着z轴向右运动时,设粒子带正电荷q, 速度v沿z轴,如图5-2(b)所示,粒子受到洛伦兹力 B v? q作用,使粒子向着如上图(b)所 示方向(垂直屏幕向里)偏转,可见粒子将获得绕轴旋转的运动速度θv(图中用?代表其方向),随着粒子分速度θv的出现,又将受到洛伦兹力F的作用,其径向分量r F使粒子向轴线偏转,轴

等离子体增强化学气相沉积技术基础

等离子体增强化学气相沉积技术基础 §1.1等离子体概论 §1.1.1等离子体的基本概念和性质 近代科学研究的结果表明,物质除了具有固态、液态和气态的这三种早为人们熟悉的形态之外,在一定的条件下,还可能具有更高能量的第四种形态——等离子体状态。例如通过加热、放电等手段,使气体分子离解和电离,当电离产生的带电粒子密度达到一定的数值时,物质的状态将发生新的变化,这时的电离气体已经不再是原来的普通气体了。由于这种电离气体不管是部分电离还是完全电离,其中的正电荷总数始终和负电荷总数在数值上是相等的,于是人们将这种由电子、离子、原子、分子或者自由基团等粒子组成的电离气体称之为等离子体[ 1]。 不管在组成上还是在性质上,等离子体不同于普通的气体。普通气体由电中性的分子或原子组成,而等离子体则是带电粒子和中性粒子的集合体。等离子体和普通气体在性质上更是存在本质的区别,首先,等离子体是一种导电流体,但是又能在与气体体积相比拟的宏观尺度内维持电中性;其次,气体分子间不存在净电磁力,而等离子体中的带电粒子之间存在库仑力;再者,作为一个带电粒子体系,等离子体的运动行为会受到电磁场的影响和支配。因此,等离子体是完全不同于普通气体的一种新的物质聚集态。 应当指出,并非任何的电离气体都是等离子体。众所周知,只要绝对温度不为零,任何气体中总存在有少量的分子和原子电离。严格地说来,只有当带电粒子地密度足够大,能够达到其建立的空间电荷足以限制其自身运动时,带电粒子才会对体系性质产生显著的影响,换言之,这样密度的电离气体才能够转变成等离子体。除此之外,等离子体的存在还有其特征的空间和时间限度,如果电离气体的空间尺度L不满足等离子体存在的空间条件L>>λD(德拜长度λD为等离子体宏观空间尺度的下限)的空间限制条件,或者电离气体的存在的时间不满足τ>>τp(等离子体的振荡周期τp为等离子体存在的时间尺度的下限)时间限制条件,这样的电离气体都不能算作等离子体[2]。 §1.1.2等离子体的特性参数描述

物理气相沉积PVD技术

物理气相沉积(PVD)技术 第一节 概述 物理气相沉积技术早在20世纪初已有些应用,但在最近30年迅速发展,成为一门极具广阔应用前景的新技术。,并向着环保型、清洁型趋势发展。20世纪90年代初至今,在钟表行业,尤其是高档手表金属外观件的表面处理方面达到越来越为广泛的应用。 物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。 物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD法中使用最早的技术。 溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。磁控(M)辉光放电引起的称磁控溅射。 电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程。 离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。这样在深度负偏压的作用下,离子沉积于基体表面形成薄膜。 物理气相沉积技术基本原理可分三个工艺步骤: (1)镀料的气化:即使镀料蒸发,异华或被溅射,也就是通过镀料的气化源。 (2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。 (3)镀料原子、分子或离子在基体上沉积。 物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐饰、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层。随着高科技及新兴工业发展,物理气相沉积技术出现了不少新的先进的亮点,如多弧离子镀与磁控溅射兼容技术,大型矩形长弧靶和溅射靶,非平衡磁控溅射靶,孪生靶技术,带状泡沫多弧沉积卷绕镀层技术,条状纤维织物卷绕镀层技术等,使用的镀层成套设备,向计算机全自动,大型化工业规模方向发展。 第二节 真空蒸镀

等离子体概述

一、等离子体概述 物质有几个状态?学过初中物理的会很快回答固态、液态、气态。其实,等离子态是物质存在的又一种聚集态,称为物质的第四态。它是由大量的自由电子和离子组成,整体上呈现电中性的电离气体。 在一定条件下,物质的各态之间是可以相互转化的,当有足够的能量施予固体,使得粒子的平均动能超过粒子在晶格中的结合能,晶体被破坏,固体变成液体。若向液体施加足够的能量,使粒子的结合键破坏,液体就变成了气体。若对气体分子施加足够的能量,使电子脱离分子或原子的束缚成为自由电子,失去电子的原子成为带正电的离子时,中性气体就变成了等离子体。物质的状态对应了物质中粒子的有序程度,等离子内物质中的粒子有序程度是最差的。相应的,等离子体内的粒子具有较高的能量、较高的温度。实际上,宇宙中99.9%的物质处于等离子态,它是宇宙中物质存在的普遍形式,不过地球上,等离子体多是人造的。 人工如何造出等离子体呢?从上面的论述可以看出,等离子体的能量是很高的,任何物质加热到足够高的温度,都会成为电离态,形成等离子体。在太阳和恒星的内部,都存在着大量的高温产生的等离子体。太阳和恒星的热辐射和紫外辐射能使星际空间的稀薄气体产生电离,形成等离子体,如地球上空的电离层就是这样来的。各种直流、交流、脉冲放电等均可用来产生等离子体。利用激光也可以产生等离子体。 等离子体如何描述?温度。等离子体有两种状态:平衡状态和非平衡状态。等离子体中的带电粒子之间存在库伦力的作用,但是此作用力远小于粒子运动的热运动能。当讨论处于热平衡状态的等离子体时,常将等离子体当做理想气体处理,而忽略粒子间的相互作用。在热平衡状态下,粒子能量服从麦克斯韦分布。每个粒子的平均动能32 E kT =。对于处于非平衡状态下的等离子体,一般认为不同粒子成分各自处于热平衡态,分别用e T 、i T 、n T 表示电子气、离子气和中性气体的温度,并表示各自的平均动能。可以用动力学温度E T (eV )表示等离子体的温度,E T 的单位是能量单位,由粒子的动能公式可得 2133222 E E mv kT T = ==,E T 就是粒子的等效能量kT 值(1eV 的能量温度,相应的开氏绝对温度为1T k ==11600K )。 温度是描述等离子体能量的,还有其它的一些概念来表述。(1)高温等离子体,低温等离子体,冷等离子体。高温等离子体也是完全电离体,温度6810~10K ,核反应、恒星的等离子体是这类。低温等离子体是部分电离体,463410~10,310~310e i T K T K ==??,电弧等离子体、燃烧等离子体是这种。冷等离子体是410,e i T K T >约等于室温的等离子体。 (2)电离度。强电离等离子体指电离度η>10-4的等离子体,弱电离等离子体η<10-4。η是电离度,0=n n n η+,n 是两种异电荷粒子中任何一种密度,0n 为中性粒子密度。粒子密度是表示单位体积中所含粒子的数目。(3)稠密等离子体和稀薄等离子体。具体区分度不详。

等离子体增强化学气相沉积(PECVD)综述知识交流

等离子体增强化学气相沉积(P E C V D)综述

等离子体增强化学气相沉积(PECVD)综述 摘要:本文综述了现今利用等离子体技术增强化学气相沉积(CVD)制备薄膜的原理、工艺设备现状和发展。 关键词:等离子体;化学气相沉积;薄膜; 一、等离子体概论——基本概念、性质和产生 物质存在的状态都是与一定数值的结合能相对应。通常把固态称为第一态,当分子的平均动能超过分子在晶体中的结合能时,晶体结构就被破坏而转化成液体(第二态)或直接转化为气体(第三态);当液体中分子平均动能超过范德华力键结合能时,第二态就转化为第三态;气体在一定条件下受到高能激发,发生电离,部分外层电子脱离原子核,形成电子、正离子和中性粒子混合组成的一种集合体形态,从而形成了物质第四态——等离子体。 只要绝对温度不为零,任何气体中总存在有少量的分子和原子电离,并非任何的电离气体都是等离子体。严格地说,只有当带电粒子密度足够大,能够达到其建立的空间电荷足以限制其自身运动时,带电粒子才会对体系性质产生显著的影响,换言之,这样密度的电离气体才能够转变成等离子体。此外,等离子体的存在还有空间和时间限度,如果电离气体的空间尺度L下限不满足等离子体存在的L>>l D(德拜长度l D)的条件,或者电离气体的存在的时间下限不满足t>>t p(等离子体的振荡周期t p)条件,这样的电离气体都不能算作等离子体。

在组成上等离子体是带电粒子和中性粒子(原子、分子、微粒等)的集合 体,是一种导电流体,等离子体的运动会受到电磁场的影响和支配。其性质宏观上呈现准中性(quasineutrality ),即其正负粒子数目基本相当,系统宏观呈中性,但是在小尺度上则体现电磁性;其次,具有集体效应,即等离子体中的带电粒子之间存在库仑力。体内运动的粒子产生磁场,会对系统内的其他粒子产生影响。 描述等离子体的参量有粒子数密度n 和温度T 。 通常用n e 、n i 和n g 来表示等离子体内的电子密度、粒子密度和中性粒子密度。当n e =n i 时,可用n 来表示二者中任一带电粒子的密度,简称等离子体密度。但等离子体中一般含有不同价态的离子,也可能含有不同种类的中性粒子,因此电子密度与粒子密度不一定总是相等。对于主要是一阶电离和含有同一类中性粒子的等离子体,可以认为n e ≈ n i ,对此,定义:a =n e /( n e + n g )为电离度。在热力学平衡条件下,电离度仅取决于粒子种类、粒子密度及温度。用T e 、T i 和T g 来表示等离子体的电子温度、离子温度和中性粒子温度,考虑到“热容”,等离子体的宏观温度取决于重粒子的温度。在热力学平衡态下,粒子能量服从麦克斯韦分布,单个粒子平均平动能KE 与热平衡温度T 关系为: 21322 kT KE mv == 等离子体的分类按照存在分为天然和人工等离子体。按照电离度a 分为: a<<0.1称为弱电离等离子体,当a > 0.1时,称为为强电离等离子体;a =1 时,则叫完全等离子体。按照粒子密度划分为致密等离子体n >1518310cm -,若n<1214310cm -为稀薄等离子体。按照热力学平衡划分为完全热力学平衡等离子体,即

等离子体增强化学气相沉积法

PECVD PECVD ( Plasma Enhanced Chemical Vapor Deposition ) -- 等离子体增强化学气相沉积法PECVD:是借助微波或射频等使含有薄膜组成原子的气体电离,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在基片上沉积出所期望的薄膜。为了使化学反应能在较低的温度下进行,利用了等离子体的活性来促进反应,因而这种CVD称为等离子体增强化学气相沉积(PECVD). 实验机理:是借助微波或射频等使含有薄膜组成原子的气体,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在基片上沉积出所期望的薄膜。 优点: 基本温度低;沉积速率快;成膜质量好,针孔较少,不易龟裂。 缺点如下: 1.设备投资大、成本高,对气体的纯度要求高; 2.涂层过程中产生的剧烈噪音、强光辐射、有害气体、金属蒸汽粉尘等对人体有害; 3.对小孔孔径内表面难以涂层等。 例子:在PECVD工艺中由于等离子体中高速运动的电子撞击到中性的反应气体分子,就会使中性反应气体分子变成碎片或处于激活的状态容易发生反应。衬底温度通常保持在350℃左右就可以得到良好的SiOx或SiNx薄膜,可以作为集成电路最后的钝化保护层,提高集成电路的可靠性。 几种PECVD装置 图(a)是一种最简单的电感耦合产生等离子体的PECVD装置,可以在实验室中使用。 图(b)它是一种平行板结构装置。衬底放在具有温控装置的下面平板上,压强通常保持在133Pa左右,射频电压加在上下平行板之间,于是在上下平板间就会出现电容耦合式的气体放电,并产生等离子体。 图(c)是一种扩散炉内放置若干平行板、由电容式放电产生等离子体的PECVD装置。它的设计主要为了配合工厂生产的需要,增加炉产量。

等离子体化学气相沉积法合成石英玻璃(英文)

朱洪波等:矿渣粉、高钙灰及其改性材料对水泥早期水化进程的影响· 531 ·第36卷第4期 等离子体化学气相沉积法合成石英玻璃 宋学富1,孙元成2,钟海2,王宏杰2,顾真安2 (1. 哈尔滨工业大学材料科学与工程学院,哈尔滨 150001;2. 中国建筑材料科学研究总院,北京 100024) 摘要:用高频等离子体作为热源,采用化学气相沉积法合成了石英玻璃样品。实验分别使用O2和空气作为等离子体电离气体和冷却保护气体,改变等离子体电离工作气体种类时,等离子体火焰长度和石英玻璃沉积温度变化较大,而灯具冷却保护气体的改变对等离子火焰长度和石英玻璃沉积温度的影响不大。当等离子体电离气体和灯具保护气体均为O2时,等离子体火焰长度为12cm,石英基体温度为1300℃,当等离子体电离气体和灯具保护气体均为空气时,等离子体火焰长度可达24cm,石英基体温度升高到1840℃,可确保气相沉积过程进行,合成的石英玻璃在波长190nm处光透过率达84%,羟基含量3.5×10–6,可达到全光谱透过的要求。 关键词:等离子火焰;化学气相沉积;石英玻璃 中图分类号:TQ171;O643 文献标识码:A 文章编号:0454–5648(2008)04–0531–04 SYNTHESIS OF SILICA GLASS BY PLASMA CHEMICAL V APOR DEPOSITION METHOD SONG Xuefu1,SUN Yuancheng2,ZHONG Hai2,WANG Hongjie2,GU Zhen’an2 (1. School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001; 2. China Building Materials Academy, Beijing 100024, China) Abstract: Silica glass was synthesized by plasma chemical vapor deposition method, which uses inductively coupled plasma as the heat source. Air and oxygen were separately used as ionized gas and protecting gas. The influence of ionized gases on the length of plasma flame and the temperature of substrate is more significant than that of the protecting gases. A length of 24cm plasma flame and a deposition temperature of 1300℃were obtained when oxygen was used as both ionized gases and protecting gases, but in the case of air, the length of plasma flame was 24cm and the deposition temperature was 1840℃. Both of the longer plasma flame and the higher deposition temperature offered a good condition to deposit high quality silica glass. The silica glass has 84% transmittance at a wavelength of 190nm and 3.5 10–6 of the hydroxyl group, which is the glass of full-spectrum transmittance. Key words: plasma flame; chemical vapor deposition; silica glass Silica glass has the low thermal expansion coefficient, low conductivity, good thermal shock resistance, corro-sion resistance and excellent spectrum transmittance, because of the high bond energy and compactness of the network structure. Thus it has become the fundamental material of the high-tech field and has been widely used in optics, photoelectrons and dielectric materials.[1–2] Higher properties of silica glass are required with the development of space technology, and the silica glass prepared by common chemical vapor deposition (CVD) method does not meet these requirements, because it contains a large quantity of hydroxy groups. Recently, the plasma chemical vapor deposition (PCVD) method has been widely used to prepare optical fiber, nanomaterials and thin films, and in heat treatment of materials.[3–4] The cleanliness of its heat source ensures the purity of materials and avoids secondary pollutant. In this paper, silica glass was synthesized by PCVD. 1 Experimental procedure A high frequency current was obtained by a modified 收稿日期:2007–10–01。修改稿收到日期:2008–01–30。第一作者:宋学富(1978—),男,博士研究生。 通讯作者:顾真安(1936—),男,中国工程院院士。Received date:2007–10–01. Approved date: 2008–01–30. First author: SONG Xuefu (1978–), male, postgraduate student for doctor degree. E-mail: songxuefu@https://www.wendangku.net/doc/e59471198.html, Correspondent author: GU Zhen’an (1936–), male, academician of the Chinese Academy of Engineering. E-mail: guzha@https://www.wendangku.net/doc/e59471198.html, 第36卷第4期2008年4月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 36,No. 4 April,2008

等离子体物理思考题参考050718讲解

思考题 1.1 电离气体一定是等离子体吗?反过来呢? 答:电离气体不一定是等离子体,反过来也不一定。 1.2 试就高温、低温、高密度、低密度等离子体各举一例。 答:磁约束受控热核聚变等离子体是高温等离子体,电弧等离子体是低温等离子体,太阳内部等离子体是高密度等离子体,电离层等离子体是低密度等离子体。 1.3 德拜屏蔽效应一定要有异性离子存在吗? 答:不一定,完全由电子构成的非中性等离子体也具有德拜屏蔽效应。 1.4 用电子德拜长度表示等离子体的德拜长度的前提是什么? 答:主要是所考虑问题的时间尺度应小于离子的响应时间,离子不能响应。 1.5 由于德拜屏蔽,带电粒子的库仑势被限制在德拜长度内,这是否意味着 粒子与德拜球外粒子无相互作用?为什么? 答:有,但是表现为集体相互作用,实际上屏蔽本身可以视为相互作用的传递过程,粒子对德拜球外的粒子的相互作用,通过周围屏蔽粒子的传递而作用。 1.6 对于完全由同一种离子构成的非中性等离子体,能够有德拜屏蔽的概念 吗? 答:同样有,但此时是指在平衡状态下,系统对电扰动的屏蔽作用。 1.7 常规等离子体具有不容忍内部存在电场的禀性,这是否意味着等离子体 内部不可能存在很大的电场,为什么? 答:不一定,在小于德拜长度的空间尺度中,可以存在局域很强的电场,在比等离子体特征响应时间小的时间尺度中,可以存在瞬时的强电场。 1.8 在电子集体振荡的模型中,若初始时不是所有电子与离子产生分离而是 部分电子,则振荡频率会发生变化吗?如果变化,如何解释? 答:从方程上看,此时的振荡频率似乎会减小,即将电子密度换成分离电子密度,如果这样,集体振荡频率就不是等离子体的一种特征频率,因为与振荡扰动的幅度相关。但事实上这样处理是不对的,部分电子与离子分离的情况应用此模型无法进行。因为当部分电子分离时,未分离的电子同样会运动,使得电场会增大,结果使振荡频率仍然是等离子体频率。 1.9 粒子之间的碰撞是中性气体中粒子相互作用的唯一途径,在等离子体中

等离子物理气相沉积热障涂层研究进展

第9卷 第2期 热 喷 涂 技 术 V ol.9, No.22017年6月 Thermal Spray Technology Jun., 2017 等离子物理气相沉积热障涂层研究进展 高丽华1,2,于月光1,2,贾芳1,2,冀晓鹃1,2, 章德铭1,2 (1.北京矿冶研究总院,北京 100160; 2. 北京市工业部件表面强化与修复工程技术研究中心,北京 102206) 摘要:等离子物理气相沉积技术可通过气相、液相与固相的共沉积,实现不同组织结构涂层沉积,在高性能热障涂层制备方面表现出了很好的应用前景。本文简要介绍了等离子物理气相沉积工艺特点,并从等离子物理气相沉积射流特性、喷涂工艺与涂层组织特点、涂层性能及沉积机理这几方面综述了近年来等离子物理气相沉积热障涂层的研究进展。 关键词:等离子物理气相沉积(PS-PVD );热障涂层(TBC );射流特性;沉积机理 中图分类号:TG174.4 文献标识码:A 文章编号:1674-7127(2017)06-0001-08 DOI 10.3969/j.issn.1674-7127.2017.02.001 Progress in Plasma Spray-Physical Vapor Deposition Thermal Barrier Coatings GAOLi-hua 1,2,YU Yue-guang 1,2,JIA Fang 1,2,JIXiao-juan 1,2, ZHANG De-ming 1,2 (1.Beijing General Research Institute of Mining and Metallurgy ,Beijing 100160,China ;2.Beijing Engineering Technology Research Centre of Surface Strengthening and Repairing of Industry parts ,Beijing 102206,China ) Abstract :Plasma spray-physical vapor deposition (PS-PVD) has exhibited potential capacity to shape the coating microstructures by controlling the co-deposition of vapor phase,liquid droplets and solid phase. Therefore, PS-PVD shows good application prospects in the preparation of thermal barrier coatings. In this paper,the technological feature of plasma spray-physical vapor deposition was briefly demonstrated. Besides, an overlook on recent research progress in PS-PVD thermal barrier coatingswere presented, including plasma characteristics,process development and coating microstructure characteristics, coatingproperties and deposition mechanism. Keywords :Plasma Spray-Physical Vapor Deposition (PS-PVD);Thermal Barrier Coatings(TBCs);Plasma Characteristics ;Deposition Mechanism 作者简介:高丽华(1986-),女,河北邢台人,博士研究生,工程师. Email :gaolihua87@https://www.wendangku.net/doc/e59471198.html, 热障涂层(Thermal barrier coatings, TBCs ) 技术通常是将耐高温、低热导、抗腐蚀的陶瓷材 料以涂层方式与金属基体相复合,以降低高温环 境下金属表面温度的一种热防护技术。目前,热 障涂层技术已经与高温结构材料技术、高效气膜冷却技术并列成为航空发动机高压涡轮叶片的三大关键技术。典型的热障涂层通常由两层构成:中间为起抗氧化作用的金属粘结过渡层(Bond Coat, BC ),常用材料为MCrAlY (M: Ni, Co 或Ni+Co );外层为起隔热作用的陶瓷涂层,目前最

等离子体

等离子体又叫做电浆,是由部分电子被剥夺后的原子及原子团被电离后产生的正负电子组成的离子化气体状物质,它广泛存在于宇宙中,常被视为是除去固、液、气外,物质存在的第四态。等离子体是一种很好的导电体,利用经过巧妙设计的磁场可以捕捉、移动和加速等离子体。等离子体物理的发展为材料、能源、信息、环境空间、空间物理、地球物理等科学的进一步发展提供了新的技术和工艺。 物质由分子组成,分子由原子组成,原子由带正电的原子核和围绕它的、带负电的电子构成。当被加热到足够高的温度或其他原因,外层电子摆脱原子核的束缚成为自由电子,就像下课后的学生跑到操场上随意玩耍一样。电子离开原子核,这个过程就叫做“电离”。这时,物质就变成了由带正电的原子核和带负电的电子组成的、一团均匀的“浆糊”,因此人们戏称它为离子浆,这些离子浆中正负电荷总量相等,所以就叫等离子体。 1简介 看似“神秘”的等离子体,其实是宇宙中一种常见的物质,在太阳、恒星、闪电中都存在等离子体,它占了整个宇宙的99%。21世纪人们已经掌握和利用电场和磁场产生来控制等离子体。例如焊工们用高温等离子体焊接金属。 等离子体由离子、电子以及未电离的中性粒子的集合组成,整体呈中性的物质状态。等离子体可分为两种:高温和低温等离子体。等离子体温度分别用电子温度和离子温度表示,两者相等称为高温等离子体;不相等则称低温等离子体。低温等离子体广泛运用于多种 等离子体发生器 生产领域。例如:等离子电视,婴儿尿布表面防水涂层,增加啤酒瓶阻隔性。更重要的是在电脑芯片中的蚀刻运用,让网络时代成为现实。 高温等离子体只有在温度足够高时发生的。恒星不断地发出这种等离子体,组成了宇宙的99%。低温等离子体是在常温下发生的等离子体(虽然电子的温度很高)。低温等离子体可以被用于氧化、变性等表面处理或者在有机物和无机物上进行沉淀涂层处理。 等离子体(Plasma)是一种由自由电子和带电离子为主要成分的物质形态,广泛存在于宇宙中,常被视为是物质的第四态,被称为等离子态,或者“超气态”,也称“电浆体”。等离子体具有很高的电导率,与电磁场存在极强的耦合作用。等离子体是由克鲁克斯在1879年发现的,1928年美国科学家欧文·朗缪尔和汤克斯(Tonks)首次将“等离子体”(plasma)一词引入物理学,用来描述气体放电管里的物质形态[1]。严格来说,等离子体是具有高位能动能的气体团,等离子体的总带电量仍是中性,借由电场或磁场的高动能将外层的电子击出,结果电子已不再被束缚于原子核,而成为高位能高动能的自由电子。 等离子体是物质的第四态,即电离了的“气体”,它呈现出高度激发的不稳定态,其中包括离子(具有不同符号和电荷)、电子、原子和分子。其实,人们对等离子体现象并不生疏。在自然界里,炽热烁烁的火焰、光辉夺目的闪电、以及绚烂壮丽的极光等都是等离子体作用的结果。对于整个宇宙来讲,几乎99.9%以上的物质都是以等离子体态存在的,如恒星和行星际空间等都是由等离子体组成的。用人工方法,如核聚变、核裂变、辉光放电及各种放电都可产生等离子体。分子或原子的内部结构主要由电子和原子核组成。在通常情况下,即上述物质前三种形态,电子与核之间的关系比较固定,即电子以不同的能级存在于核场的周围,

石英玻璃等离子化学气相沉积法制备工艺

石英玻璃等离子化学气相沉积法制备工艺 (武汉理工大学材料学院武汉430070 ) 摘要:本文研究开发了以高频等离子体作为热源,用化学气相沉积法合成高纯石英玻璃的实验装置。液滴生长凝聚动力学的分析表明,等离子体化学气相沉积过程中的颗粒沉积过程分为三个阶段:化学反应阶段,成核阶段,粘附沉积阶段。合成的石英玻璃光谱性能优越,羟基低,紫外透过率高,波长在188~3200nm之间的光透过率均在84%以上。能够满足高技术领域对宽波段光透过材料的需求。 关键词:石英玻璃;等离子体化学气相沉积;紫外光学玻璃 Research On Synthetic Silica Glass by Plasma Chemical Vapor Deposition Hou wei (Wuhan University of Technology Institute of Materials ,Wuhan 430070,China )Abstract: High frequency plasma chemical vapor deposition(PCVD)was proved a good method as a clean ambience with high temperature thermal resource which used in synthesizing high pure silica glass.According to the growth and coacervation kinetics of the liquid drop, deposition of the particle was divided into three steps:chemical reaction, nucleation period, conglutinating and growing period.The high pure silica glass had the characters of low hydroxyl group (OH) content and spectrum transmission high optical homogeneity,with excellent spectral transmittance. Key words : silica glass,PVCD, plasma efficiency,ultraviolet learn glass 1 背景介绍: 单一组分玻璃,具有优越的物理、化学性能,高纯度、化学稳定、石英玻璃是Si0 2 光谱透过波长宽、抗热冲击、耐高温变形、耐射线辐射、电绝缘等。在非晶态材料中,只有高硅氧玻璃(Vycor)与石英玻璃的性能接近,其它任何玻璃材料都不具备如此全面的应用性能。 石英玻璃是一种重要的工业材料,在电光源、冶金、化工、电予、光纤、激光、航天和核技术损域广泛应用。

相关文档