文档库 最新最全的文档下载
当前位置:文档库 › 船舶操纵

船舶操纵

船舶操纵
船舶操纵

一:锚泊操纵

不同的锚泊方式适用于不同的水域和条件,各有自身的优点及缺点。锚泊方式一般分为四种,如图4—34所示。

图4—34锚泊方式

1.单锚泊(riding at single anchor)

船舶抛一只锚进行锚泊的方式称为单锚泊,是应用最为普遍的锚泊方式。大风浪中为抑制船舶偏荡运动,也将另一锚抛出,呈短链拖动状态;但由于该锚并不在系留方面起主要作用,仅仅是一个止荡锚,因此,仍将该锚泊方式列在单锚泊方式中。单锚泊方式,作业容易,抛起锚方便,适用水域较广;不足之处是偏荡严重,总的来看锚泊力较弱。2.八字锚泊(open mooring)

船舶先后抛出左右二锚,使双链保持一定夹角(一般为60°左右)的锚泊方式称为八字锚泊。港内锚泊水域受限时,单锚泊不足以抵御风力时均可采用此种锚泊方式。

八字锚泊方式,锚泊力和抑制偏荡的作用随二链交角不同而不同;若以60°夹角的八字锚泊论,较单锚泊在上述两方面均有明显的增强。其缺点是作业较为复杂,当风流方向多次改变后锚链常出现绞缠。

3.一字锚泊(f1ying moor或ordinary moor)

狭窄水域内,船舶沿水域纵长方向(一般沿流向)先后抛出二锚,使双链交角保持在近于180°的锚泊方式称为一字锚泊。多用于狭水道或内陆江河。在风流影响下,受外力作用较大的锚称为力锚(riding anchor);另一锚则称为惰锚(1ee anchor)。锚链相应地称之为力链和惰链。通常力链长度为4节,惰链长度为3节。

一字锚泊方式具有最大程度地限制锚泊船运动范围的优点;但作业也较为复杂,风流方向变化后缠链也较频繁。该法适用于回旋余地较窄的江河中或港内锚泊。

4.平行锚泊(riding to both anchors)

船舶同时抛下左右二锚,使双链等长并保持平行,即夹角为零的锚泊方式称为平行锚泊,也称为一点锚。

该锚泊方式可抵御强烈的风浪,也可在江河中抵御湍急的水流,是可以最大程度地发挥双锚锚泊力的一种锚泊方式。合抓力约为二倍单锚抓力,且操作较为简单。我国南海海域常受台风袭扰,许多船长采用平行锚泊方式抗台取得了可喜的成绩。缺点是由于二锚距离较近,偏荡现象尚难受到抑制,两锚链也可能出现绞缠,但清解较为容易。

在全面做好锚泊准备工作之后,即可实施锚泊操纵。按照锚泊方式,锚泊操纵可分为:1.抛单锚操纵方法(riding at single anchor)

单锚泊操纵方法有前进抛锚法和后退抛锚法两种。军舰为求锚位之准确有时采用前进抛锚法,一般商船多采用后退抛锚法,具体操作要领如下:

1)船身与风向、流向的交角宜小

通常,为使锚得以稳定人土,在空载、强风、流弱时,应以船首迎风抛锚;重载、流强时,应以船首迎流抛锚。尤其是重载流急时,船首尾线与流向的交角越小越好,一般不大于15°。

2)落锚时的余速宜小

为了减轻抛锚时锚链受到的张力,减少拖锚距离,保持锚的抓底稳定性,抛锚的最佳时机是船静止略有退势时。若进速较大,就不得不使用较多倒车,影响船首向与流向的夹角,影响锚位的准确性;若退速过大,就会出链过快而刹不住,即便刹紧,锚链也可能要断裂或拉损锚机;若静止不动,则描链会垂直松下与锚绞缠。

落锚时后退的对地船速,一般万吨级商船应控制在2kn以下,而VLCC因锚机刹车力的关系,则应小于0.5kn。

落锚时的船速除利用冲程资料估算之外,还可用正横附近灵敏度较高(船标间距近,两标间距远)的串视物标之相对运动来判定。在流缓水域,也可用本船倒车排出流水花来判断。当倒车排出流水花达本船中部时,可判断为船舶已对水停止前冲,但必须注意:当流急时,此时船虽对水停止前冲,但对地却以与流近乎同速漂移,即对地已经有了退速。

夜间,如对流向、流速情况不太了解,当估计本船余速已经很微,但把握又不太大时,可先抛出短链(如2倍水深)即刹住,根据锚链方向和松紧程度判断本船对地速度及流向,

然后再用车、舵调节之,到适宜时刻,再松链至锚泊需要长度,这种做法比较稳妥。3)松链

抛锚时,船首指挥人员若估计船速尚较快,则先抛短链较为主动,此时因其抓力较小,较易刹住并可拖锚制速,若出链较长,就难以刹住,可能会出现故障。落锚后,应随时将链的受力大小及方向报告驾驶台,以便及时用车舵配合进行调整。在重载、风流较强、锚地水面较小时,尤应注意。

一般在最初出链两倍水深时,即应刹住使链受力,迫使锚深抓海底。松链时;宜松出适当长度后,再紧一下锚链;不要一下子松出很多。否则,船身在风流作用下后退速度较高,刹链时将受到较大顿力,于设备不利。船的余速较高、锚链吃力很大时,除报告驾驶台用车舵配合外,松链时,只能稍松一下刹车带,让锚链在受到很大张力时缓缓松出,以便在必要时再度将链立即刹住。松链至预定长度的最后一节时,如船仍有一定退速,宜用短暂进车加以缓和,以稳定锚的最终抓土态势,避免因锚链张力过大而拖动。

4)深水抛锚

大型船有时需在较深水域锚泊.而锚及锚链的重量又都偏大偏重,此时锚从锚孔落下,松出速度较高,容易出现锚机刹车带失效或受损等情况。同时,由于水深过大,锚落底时的水中速度将远大于其投落实验时的速度,如果海底底质比较坚硬,则可能引起锚的变形及损伤。另外,有时在必须进行深水抛锚的地方,其海底多向洋面一侧出现急剧倾斜,甚或会遇到凹凸不平、底质甚差等情况。此时,应采用深水抛锚法。其要领如下:(1)水深大于25m时,不可直接由锚孔或水面备锚状态抛锚,应利用锚机将锚送出至接近海底的高度,而后使船在确保极小的退势下,用刹车带将锚抛出。

(2)水深大于50m时,可利用锚机先将锚送达海底而后以极微的退势抛锚;或利用锚机将预定需抛出的锚链送出去,并使锚链横卧海底。在海底突然变深的海域抛锚时,首先按预定抛锚水深松出大致相同长度的锚链(用锚机送出),然后以极小的退速向岸边接近,当锚触到海底时,即可进行抛锚或继续用锚机送链至锚泊状态。但要注意,可以锚泊的水深是有限度的,它应以锚机的额定起锚能力,能把锚绞进的水深作为标准/深水抛锚时的最大水深

Hmax=(Pω-λaWa)/ωc (4—2)

式中,Pω——锚机起锚能力(额定起锚能力);

λa ——锚从海底拉起时的抓力系数,其值为1.5~2.0;

Wa——锚重;

ωc——单位长度的链重。

锚机的起锚能力Pω为

Pω=1.35(Wa +80ωc)(4—3)

则Hmax=108- Wa/ωc(λa-1.35) (4—4)

根据计算,按照一般船的排水量应配备的锚及链的标准来看,深水抛锚的水深极限可取85m

左右。

2.抛一字锚操纵方法

一字锚抛法有顶流前进抛与顶流后退抛两种,如图4—35所示。

图4—35一字锚

利用船舶前进余速,先抛惰锚后抛力锚的方法称为顶流前进抛锚法,船舶及早停车淌航使船顶流前进,保持对地余速为1kn左右,至惰锚锚位抛出第一锚。如有侧风,为防止两锚链绞缠,第一锚应为上风舷锚。根据需要,可使用车舵以保向及调整惯性,使船仍沿锚位线前进,并徐徐松出锚链,松至预定的两舷出链长度之和时,刹住。当船首到达力锚锚位附近时,在使船略有对地退速情况下,抛出力锚,(侧风时为下风舷锚)并逐渐松出力链,使之吃力;与此同时绞进惰链。候船首抵两锚位中点附近时,调整两链至预定长度为止。一般情况下各抛锚链3节甲板左右或力链4节甲板,惰链3节甲板。该法由于易于保向,锚位准确,风流作用下两锚均保持良好抓底状态,因而采用较多。

顶流后退抛锚法,是先抛出力锚,候力锚带力,渐渐后退松出力链,至惰锚锚位处在抛出惰锚;然后在送出惰链的同时绞进力链,最终将船首系留在两锚位中点附近。该法较有利于防止前进中惰链受力过大的缺点,但不利于保持船舶状态和航向,特别是受到较大外力影响时,如横风等,很难有准确锚位和良好的锚泊状态。

在涨、落流速相差较大时,迎向强流方向的链一般可出链4节,迎向较弱一方的链一般可出至3节。收链过紧对抵御横风影响造成的船位移动有利,但两锚因横向受力过大而易走锚;收链较松,则船位移向下风侧较远,所以应视需要进行调整。

总的来看,一字锚的优点在于限制了锚泊船的回旋范围,适用于狭窄水域内的锚泊。其缺点是,当几次转流后,如不适时妥善处理,两锚链容易绞缠,而且在横风较大时,也易走锚。

根据经验,为防止双链绞缠(foul hawse),当转流时应将惰链绞紧,并向惰链一舷作一舵角有较好的效果。链绞缠后,可于平流时,请拖轮顶尾进行清解(clearing hawse),也较易行;若无拖轮,则只有自力清解。为此,抛锚后应将锚链节的连结卸扣留在甲板上,以备发生绞缠时便于清解。

3.抛八字锚操纵方法

有强风、急流或底质较差时,必须增加锚的系留力以保证安全。如增加单锚的链长,虽然也能增强锚抓力,但它却加大了船的偏荡和断链的危险性,此时须抛双锚,将两舷锚链抛成颠倒的“八”字形,并使两锚连线与风向垂直,这种双锚泊方法称为八字锚(open mooring)。

图4—36顶风退抛八字锚

设八字锚两链张角为θ,若双锚出链长度相等,则合抓力为2倍的单锚抓力在首尾向的分力。

即Pa=2Pcos(θ/2)

由此可见,两锚链夹角θ越大,Pa就越小,但在θ=60°~90°时, Pa虽小却有助于减轻偏荡,从而缓解锚链所受的冲击张力;θ越小,Pa越大,但偏荡却反而剧烈。

根据经验,当两链的夹角为50°~60°左右时,对减偏荡,使两锚的合抓力约为单锚拉力的1.7~1.8倍,权衡各方面情况均较有利。对于超大型船舶而言,从缓解偏荡角度出发,两链的夹角则以90°左右为宜。

八字锚的操作方法有以下几种:

1)顶风后退抛八字锚(图4一36)

使船迎风、迎流或迎风流之合力方向缓速航进到位1,在略有退势时,抛下任一舷锚(风流不一致时,应先抛上风锚)。

倒车后退松链约2节左右,船退到位2。进车,向未抛锚舷施舵,控制已抛之锚的链长(此时等于两锚间距)达预定长度的0.5~1倍,即能保证夹角θ为30°~60°(位3时),用舵调整船身,并抛下另一锚。

然后,随着风流作用船体后退,继续松链至预定长度,使两链均衡受力,并保持有一舷的联接卸扣留在甲板上,船在位4停泊稳妥。

2)单锚泊改抛八字锚

如已抛单锚锚泊的船舶需改抛八字锚,则应在强风来袭前进行。先将已抛锚链收短至仅足以系住船为止,一般为2~3节,如图4一36位2处。然后依照上述顶风流抛八字锚的方法进行锚泊操作。

3)横风流抛八字锚

横风条件下抛八字锚,分为前进抛锚法和后退抛描法二种。图4一37是采用横风流前进抛锚法。

图4—37横风流抛八字锚

船横风流缓速航进至位1时,抛上风(流)描,进车松链,达位2时抛下风(流)锚,微倒车,让风流将船压向下风流,同时相应松出两链至预定长度并调整使其受力均匀,在位3稳定锚泊。

若采用后退抛锚法,则应先抛下风流锚,后抛上风流锚。

4)抗台抛八字锚

抗台风抛八字锚,为了避免两链受力不均匀和发生绞缠,应特别注意两描抛下的先后顾序。在北半球,当判断本船处于台风右半圆时,由于风向顺时针方向变化,所以应先抛左锚,后抛右锚,出链长度则左长右短。左半圆风向逆时针变化,则应先抛右锚,后抛左锚,锚链右长左短。若在南半球则相反。如先后次序颠倒,当风向转变时,双锚链将发生绞缠。

图4一38是北半球右半圆抛八字锚抗台的例子。

图4—38北半球右半圆抛八字锚抗台

(1)台风来临前,吹NNW一NNB风向时,抛出左锚至足够长度,然后再抛出1~2节右锚链,如位1。

(2)风向顺时针变化至NE时,可逐渐松出右锚链,尽量避免右锚拖动,如位2。

(3)当风向转至E时,风力已增强,转至SE,风力最强。此时,右锚也松至足够长度,与左锚链长度相等,两链交叉成60°夹角,八字口正好对着风向,如位3。

4.抛平行锚操纵方法

八字锚的张角向180°变化而成一字锚,八字锚的张角若向0°变化,即成为平行锚。

按照八字锚双锚抓力合力推算法,该合力对平行锚而言为单锚抓力之2倍。

平行锚在抛法上,只要顶风流略有退势时,将两锚同时抛出,然后松链至两锚出链长度相等为止,则较任何双锚泊方法都简便易行,又有最大的抓力输出;而且,只要做到两舷锚链等长,使船左右两舷所受外力较之抛单锚更接近平衡,从风力形成偏荡的观点来看锚泊力也稳定得多。此外,由于双锚就近同时抛出,因底质不同而使两锚抓力相差过多的可能性大大减小,因而增加了锚泊的稳定度。

即令在台风中,不管是在可航半圆,还是在危险半圆之内,风向改变在整个台风过境中也仅为180°左右,因此,即使出现链绞缠,也只左右交叉一次,而且随着风向渐次改变,海底双锚之拖动对于缓解这种链的绞缠又起着有利作用。按照实操经验看,台风过后,清解这种绞缠并不困难,而有时则根本不出现这种绞缠。

平行锚的缺点是与单锚泊一样回旋余地较大;其偏荡运动虽较单锚泊略小,但仍较八字锚的偏荡运动大得多。

二:港内掉头操纵

1.顺流抛锚掉头(turning short round with an anchor)

顺流抛锚掉头,是借锚的抓力拉住船首,利用流或风的有利因素推尾掉头。船舶顺流进港,常需要在狭小的港内掉头后顶流靠泊。顺流抛锚掉头是较为常用的一种港内掉头方法。如图4—1所示。

操纵要点如下:

1)选择合适的流速:

①重载万吨级大船,则船抵掉头区时的流速以1~1.5kn为宜;

②在潮流港务必使船抵掉头区时恰为流趋缓和边流流向未变之时;

③一般情况下,应控制流速在0.5~1.5kn。

顺流掉头,流越急,掌握船位越困难,锚机受力过大易出事故,一般不应大于1.5kn;反之,若流速小于0.5kn容易造成掉头过程太长而阻塞航道过久。因此,,即便空载受流影响虽易控制,但也不宜在流速过急时进行。流急或无力时均需要拖轮协助掉头。

2)保证足够的掉头水域:按上述方法确定。

3)确定正确的掉头方向:

①右旋FPP单桨船一般宜采用向右掉头,以便获得倒车沉深横向力和排出流横向力加速船首右转。

②遇到4~5级以上的横风,为了争取上风位置,减少风致漂移量,宜采取迎风掉头,特别是空船尤应如此。

③弯曲水道应向凸岸一边掉头。弯曲水道处凸岸边流缓,可以减少船首锚的负荷;而凹岸边流急,冲击船尾部,可加快船身回转速度,缩短掉头时间。

4)控制余速:根据本船停止性能及早停车淌航,务使船抵掉头区之前,余速减少至最低限度,绝不能把制动船舶前冲惯性寄托于抛锚前的快倒车,不然船位和船首向就难以控制。而且惯性过大,不易用倒车抑制。例如万吨满载船约在8链之外就应将车停下。重载船、受风影响不大时,宁可早些停车,这样,可为无舵效时必须使用短暂进车留有余地。抵落锚点前,应适当使用倒车,减低冲力,助船右转。

5)掌握正确的抛锚时机:抵落锚点前1~2倍船长处的船位应摆在航道中央略偏左的地方。该时若对水余速超过1kn,应立即使用倒车刹减,并同时操右满舵,使船首向右侧回转,并超过航道中线而船身约与流向成30度角的状态(位2),船身受流,横移阻力急增,余速剧减,可伺机停车并抛右锚,一般出链2.5~3倍水深,一次出够、刹牢,防止松链过长而拉断锚链。如船对水速度已消失,则随流漂移而拖锚淌航,根据公式S=0.0135Δv2/Fa可大略估算出拖锚淌航距离。满载万吨船、流速2kn时,淌航约150m后才能停住;流速1.5kn时则只淌航60~70m。

如抛锚后发现冲势仍大,拖锚淌航嫌快时,切不可失策松出右链,以免刹不住或使之挣断;此时,应当加抛左锚、出链1节入水。或者请拖轮助操,立即于左首部就位进行顶推。落锚时应注意海底电缆,尽量避免在其上流不远处掉头,以防锚勾上电缆造成严重损失。

6)控制船身:抛锚掉头,假定锚和船首位置不动或移动很小,但船身是以锚为支点进行回转,所以在驾驶台仍可发现串视物标在前后变化,尤其是驾驶台在尾部的船舶更为显著。因此,船位的判断主要还是依据船首与物标之间的相对位移来决定。一般当船首掉转到70度左右后(位3).由于流压和向后侧锚链的弹力作用,船身易出现后缩现象,首尾应随时报告离岸距离和周围海面情况,以便及时进车加以抑制。当船转至近乎横流时(位4),作为支点的锚受力最大,可用片刻进车、右舵,以缓解锚链张力,配合顶流,拎直船身(位6)。7)起锚:应注意锚链的导向,及时用车舵配合,如加抛了另一锚,则应先绞后抛之锚,不

然双锚易发生绞缠。

2.顶流拖首掉头(turning by pulling the bow)

1)操纵要点

顶流拖首掉头,可用在掉头区或离泊后就泊位前掉头出航。

(1)顶流掉头,为减少操纵中的流压漂移,便于控制船位、缩短掉头所需水域,最好应于平流时抵掉头区,争取在平流或近乎平流中掉头,否则顶流流速不宜超过1kn。

(2)掉头方向,一般情况下均以拖轮拖首向右掉头较为方便,空船、横风较强、水域较窄则以迎风掉头为安全;若风影响较小,水域足够,在泊位边掉头,右舷靠泊,则向左掉头亦无不可。

(3)控制余速,抵掉头区前应及早停车淌航,开始掉头时,船的冲势应基本消失,以免影响拖轮行动,甚而出现危及拖轮安全的现象。当抵掉头位置前尚有半个船长时仍觉进速大快,应立即倒车制止,使船停住。一般来说,满载万吨船应在掉头位置1000m以外停车淌航。

4)注意掌握船位和船身进退。向右掉头,开始时船位宜保持在中央航道左侧,当船速消失即可令拖轮向右拖转而开始掉头。拖轮在领直而未右转拖带之前,大船不宜右舵以免妨碍拖轮向右转向。在大船转向过程中,由于拖缆带有朝前趋势,大般可能出现前冲现象,此时,应在目测首、尾与岸线之距离的同时,应用正横附近物标,以判断船身的进退,及时用车舵略作调整,特别要注意及早倒车制止前冲,保持船位于航道中间,以便顺利进行掉头。船身横于航道时,拖缆将变成倒向,大船船身可能后缩,一经发现,应用右舵并少量进车调整。

(5)减低转头速度,稳定船首向。船首转向150°左右时,向右转头速度仍很高,应及时操左满舵,配合进车以刹减之。最后领直船身,稳住船首向。

船舶操纵性总结

2010年度操纵性总结 1.船舶操纵性含义 船舶操纵性是指船舶借助其控制装置来改变或保持其运动速率、姿态和方向的性能。 2.良好的操纵性应具备哪些特性 具有良好操纵性的船舶,能够根据驾驶者的要求,既能方便、稳定地保持航向、航速,又能迅速地改变航向、航速,准确地执行各种机动任务。 3. 4.分析操舵后船舶在水平面运动特点。 船的重心G做变速曲线运动,同时船又绕重心G做变角速度转动,船的纵中剖面与航速之间有漂角。 5.漂角β的特性(随时间和沿船长的变化)。 船长:船尾处的速度和漂角为最大,向船首逐渐减小,至枢心P点处速度为最小且漂角减小至零,再向首则漂角和速度又逐渐增大,但漂角变为负值。 6. 7.作用在在船上的水动力是如何划分的。 船在实际流体中作非定常运动时所受的水动力,分为由于惯性引起的惯性类水动力和由于粘性引起的非惯性类水动力两类来考虑,并

忽略其相互影响。 8. 9.线性水动力导数的物理意义和几何意义。 物理意义:各线性水动力导数表示船舶在以u=u0运动的情况下,保持其它运动参数都不变,只改变某一个运动参数所引起船体所受水动力的改变与此运动参数的比值。 几何意义:各线性水动力导数表示相应于某一变化参数的受力(矩)曲线在原点处的斜率。 10.常见线性水动力导数的特点。 位置导数:(Yv,Nv)船以u和v做直线运动,有一漂角-β,船首部和尾部所受横向力方向相同,都是负的,所以合力Yv是较大的负值。而首尾部产生的横向力对z轴的力矩方向相反,由于粘性的影响,使尾部的横向力减小,所以Nv为不大的负值。所以,Yv<0, Nv<0。 控制导数:(Yδ,Nδ)舵角δ左正右负。当δ>0时,Y(δ)>0,N(δ)<0。(Z轴向下为正)所以Yδ>0,Nδ<0。 旋转导数:(Yr,Nr) 总横向力Yr数值很小,方向不定。Nr数值较大,方向为阻止船舶转动。所以,Nr<0。 11. 12. 13. 14.一阶K、T方程及K、T含义,可应用什么操纵性试验测得。 在操舵不是很频繁的情况下,船舶的首摇响应线性方程式可近似

船舶操纵复习小知识

旋回圈:全速,满舵,重心; 90°降速25%~50%、65%; 旋回圈:进距、横距:纵/横向、90°;进距小航向稳定性好; 旋回初径:横向、180°、3~6备船长; 旋回直径:定长旋回、重心圆直径、0.9~1.2倍旋回初径; 滞距:操舵到进入旋回的滞后距离; 反移量:重心在旋回初始反向横移距离、一个罗经点最大;船尾甩开; 漂角:船首尾线上重心点的线速度与船首尾面的交角;船宽、速度大、漂角大、旋回直径小、旋回性能好; 转心:船舶自转中心;无横移速度、无漂角;首柱后1/3~1/5船长;旋回性能越好,漂角越大,转心偏前;后退时靠近船尾; 旋回橫倾:先内后外、先同侧后异侧、急舵大角、斜航阻力 90°; 旋回时间:360°、与排水量相关、6min,超大型船大一倍; 超大型船:漂角大、回旋性好,降速快,进距大、时间长,航向不稳定; 旋回圈大小:肥大旋回圈小、船首部水下面积大(船型、吃水差:首倾减小,尾倾增加,越肥大,影响越大0.8~10%,0.6~3%)、舵角大、操舵时间短、舵面积大(舵面积、吃水)、旋回圈小; 橫倾:一般船速范围内低舷侧阻力大,高舷侧旋回圈小; 螺旋桨转动方向:右旋单车,左旋回初径小; 浅水:阻力大,漂角小,舵力小,旋回圈大; 顶风,顶流,污底:旋回圈小;顺风,顺流:增大旋回圈; 舵效:K/T K/T大舵效好,K/T小舵效不好; 减小伴流(降低船速),加大排出流(提高车速),提高滑失比(降低桨的进速,增加桨的转速和螺距);舵角大,舵效好;舵速大,舵效好;排水大,吃水深,舵效差;尾倾,舵效好,首倾,舵效差; 橫倾,一般船速范围内低舷侧阻力大 舵机,越快越好; 迎风、顶流偏转舵效好,顺风、顺流偏转舵效差; 满载,高速首迎风;空船,低速尾迎风;浅水,舵效差; 舵力转船力矩:舵中心到船舶重心的距离*作用在舵上的垂直压力 静航向稳定性:重心仍在原航向。 不稳定:斜航。首倾 动航向稳定性: 稳定:正舵,外力偏转,稳定于新航向;

船舶操纵与避碰试题A(操纵部分,含答案)

2013至2014学年第一学期期末考试《船舶操纵与避碰》试卷(必修,A卷) (考试时间:90分钟,满分:100分) 用题年级、专业(班级):2012级航海技术01、02、03班 一、单选题。(每题1分,共80分) 1. 直航船操一定舵角后,其旋回初始阶段的船体: A. 开始向操舵一侧横移,横移速度较小 B. 开始向操舵相反一侧横移,横移速度较大 C. 开始向操舵一侧横移,横移速度较大 D. 开始向操舵相反一侧横移,横移速度较小 2. 直航船操一定舵角后,其加速旋回阶段的: A. 转向角速度为变量,横移速度为常量 B. 转向角速度为常量,横移速度为变量 C. 转向角速度为变量,横移速度为变量 D. 转向角速度为常量,横移速度为常量 3. 直航船操一定舵角后,其定常旋回阶段: A. 降速达到最大,外倾角趋于稳定 B. 船速继续下降,外倾角继续增大 C. 船速继续下降,外倾角趋于稳定 D. 降速达到最大,外倾角继续增大 4. 船舶作舵旋回时: A. 船尾向转舵一侧横移;船舶重心向转舵相反一侧横移 B. 船尾向转舵相反一侧横移;船舶重心向转舵一侧横移 C. 船尾向转舵相反一侧横移;船舶重心向转舵相反一侧横移 D. 船尾向转舵一侧横移;船舶重心向转舵一侧横移 5. 船舶旋回时间是指: A. 自转舵起至航向角变化90°所用的时间 B. 自转舵起至航向角变化180°所用的时间 C. 自转舵起至航向角变化270°所用的时间 D. 自转舵起至航向角变化360°所用的时间 6. 船舶旋回时的转心位置 A. 保持不变,位于首柱后1/3至1/5船长处 B. 由船中向船首方向移动,当船舶进入定常旋回后,该位置稳定 C. 由船尾向船中移动,当船舶进入定常旋回后,该向将稳定在船中 D. 保持不变,位于船中 7. 下列有关影响旋回圈大小因素的叙述哪些是正确的?Ⅰ.方形系数大的船,旋回圈小Ⅱ.有球鼻首的船,旋回圈较小Ⅲ.船舶重载时,旋回初径有所减小Ⅳ.浅水中旋回时,旋回圈变大 A.Ⅰ~Ⅲ B.Ⅱ~Ⅳ C.Ⅰ、Ⅱ、Ⅳ D.Ⅰ~Ⅳ 8. 船舶航行中,在船首前方发现障碍物,为了使船在最短的纵向距离上避开障碍物,应如何操纵船舶? A. 当制动纵距大于旋回纵距时,用车让 B. 当制动纵距小于旋回纵距时,用车让 C. 当制动横距大于旋回横距时,用舵让 D. 当制动纵距小于旋回纵距时,用舵让 9. 船舶根据外界风流大小预配风流压差保证船舶行驶在预定航线上,此时船舶实现的是: A.动航向稳定性 B.位置稳定性 C.直线稳定性 D.方向稳定性 10. 船舶首倾时比尾倾时的: A. 航向稳定性差,旋回圈大 B. 航向稳定性差,旋回圈小 C. 航向稳定性好,旋回圈大 D. 航向稳定性好,旋回圈小 11. 船舶的基本阻力包括: A. 摩擦阻力、涡流阻力和空气阻力 B. 摩擦阻力、涡流阻力和兴波阻力 C. 摩擦阻力、涡流阻力和波浪阻力 D. 摩擦阻力、涡流阻力和浅水阻力 12. 减速直线航行的船舶所受的各种阻力之和应: A. 等于所受到的推力 B. 大于所受到的推力 C. 小于所受到的推力 D. 等于或小于所受到的推力 13. 螺旋桨排出流的特点是: A. 流速较快,范围较广,水流流线几乎相互平行 B. 流速较慢,范围较广,水流流线几乎相互平行

船舶操纵知识点196

船舶操纵知识点196

船舶操纵 1.满载船舶满舵旋回时的最大反移量约为船长的1%左右,船尾约为船长的1/5至1/10 2. 船舶满舵旋回过程中,当转向角达到约1个罗经点左右时,反移量最大 3. 一般商船满舵旋回中,重心G处的漂角一般约在3°~15° 4. 船舶前进旋回过程中,转心位置约位于首柱后1/3~1/5船长处 5. 万吨船全速满舵旋回一周所用时间约需6分钟 6. 船舶全速满舵旋回一周所用时间与排水量有关,超大型船需时约比万吨船几乎增加1倍 7. 船舶尾倾,且尾倾每增加1%时,Dt/L将增加10%左右 8. 船舶从静止状态起动主机前进直至达到常速,满载船的航进距离约为船长的 20倍,轻载时约为满载时的1/2~2/3 9. 排水量为1万吨的船舶,其减速常数为4分钟

大时,多的背流面容易出现空泡现象 32. 舵的背面吸入空气会产生涡流,降低舵效 33. 一般舵角为32~35度时的舵效最好 34. 当出链长度与水深之比为2.5时,拖锚制动时锚的抓力约为水中锚重的1.6倍 35. 当出链长度与水深之比为2.5时,拖锚制动时锚的抓力约为锚重的1.4倍 36. 一般情况下,万吨以下重载船拖锚制动时,出链长度应控制在2.5倍水深左右 37. 霍尔锚的抓力系数和链的抓力系数一般分别取为:3-5, 0.75-1.5 38. 满载万吨轮2kn余速拖单锚,淌航距离约为1.0倍船长 39. 满载万吨轮2kn余速拖双锚,淌航距离约为0.5倍船长 40. 满载万吨轮1.5kn余速拖单锚,淌航距离约为0.5倍船长 41. 满载万吨轮3kn余速拖双单锚,淌航距离约为1.0倍船长 42. 拖锚淌航距离计算:S=0.0135(△vk2/Pa) 43. 均匀底质中锚抓底后,若出链长度足够,则抓力随拖动距离将发生变化:一般拖动约5-6倍

大连海事大学船舶操纵复习提纲1到19条

避碰部分复习提纲(1~19) NO.1 一、适用对象及水域 1. 适用的水域 1)公海 2)连接公海而可供海船航行的一切水域 2. 适用的对象 适用于上述适用水域中的一切船舶,而非仅适用于海船。 二.“规则”与地方规则的关系 1.特殊规定(特殊的航行规则) 1)制定的部门——有关主管机关: An appropriate authority 2)适用对象: 港口、港外锚地、江河、湖泊、内陆水道. 3)关系: (1)特殊规定优先于“规则” (2)特殊规定应尽可能符合“规则”各条,以免造成混乱。 2. 额外的队形灯、信号灯、号型或笛号(特殊的号灯、号型及声号) 1)制定部门---各国政府:The Governmant of any State 2)适用对象、信号种类及要求 NO.2 一、对象 1.船舶 2.船舶所有人 3.船长或船员 二、三种疏忽的分类: 1.遵守本规则的疏忽 其表现形式多种多样,一般可归纳为以下几种: 1)忽职守,麻痹大意。不执行甚至违反《规则》; 2)错误地解释和运用《规则》条文; 3)片面强调《规则》的某一规定,而忽视条款间的关系和系统性; 4)只要求对方执行《规则》,不顾自身的义务和责任。 2.对海员通常做法可能要求的任何戒备上的疏忽 (1)不熟悉本船的操纵性能及当时的条件的限制而盲目操船; (2)对风流的影响估计不足;

(3)对浅水,岸壁,船间效应缺乏应有的戒备; (4)不复诵车钟令和舵令; (5)未适应夜视而交接班 (6)狭水道,复杂水域航行时没有备车,备锚,增派了望人员; (7)在不应追越的水域,地段或情况下盲目追越; (8)未及时使用手操舵; (9)锚泊的水域或方法不当;或对本船或他船的走锚缺乏戒备 (10)了解地方特殊规定及避让习惯。 3.当时特殊情况可能要求的戒备上的疏忽 构成特殊情况的原因很多, 主要有:自然条件的突变;复杂的交通条件; 相遇船舶突然出现故障;出现《规则》条款没有提及的情况和格局等。 例如:(1)突遇浓雾,暴风雨等严重影响视距和船舶操纵性能的天气; (2)两艘以上的船舶相遇构成碰撞的局面; (3)夜间临近处突然发现不点灯的小船,或突然显示灯光的船舶; (4)他船突然采取具有危险性的背离《规则》的行动; (5)由于环境和条件的限制,使本船或他船无法按照《规则》的规定采取避碰行动。 三.“背离”的目的,条件与时机 1.目的:为避免紧迫危险。 2.条件: (1)“危险”确实存在,不是臆测或主观臆断的; (2)危险是紧迫; (3)“背离”是合理(且有效)的,不背离反而不利于避碰。 4.时机: 采取背离行动的时机显然只能在紧迫局面形成之后,“紧迫危险”尚未出现之前,不可过早或过晚。 NO.3 1.船舶: (1)显然,军舰专用船舶和从事海上勘探的各种钻井船等均属于船舶。 (2)潜水艇——当其在水面航行时,方为“船舶”。 (3)非排水船舶——航行时,基本上或完全不靠浮力支持船舶重量的船舶。 2. 机动船:这里为广义,但在第二章各条中,不包括: 失去控制的船舶,操限船和限于吃水的船舶,从事捕鱼的船舶。 3. 帆船Sailing vessel (指任何驶帆的船舶,如果装有推进器但不在使用.) 为单纯用帆行驶的船舶。机帆并用----为机动船。 4.从事捕鱼的船舶: (1)正在从事捕鱼,不论其是否对水移动; (2)作业时,所使用的渔具使其操纵性能受到限制。 5.水上飞机——水面航行时属“船舶”,水上超低空飞行时属“飞机”。

船舶操纵考试题库

船舶操纵考试题库(满分100分60分及格) 一、单选题 1.旋回直径约为旋回初径的: A.0.5倍 B.0.6倍 C.0.9~1.2倍 D.0.6~1.2倍 答案:C 2.______属于船舶操纵性能。 A.旋回性能 B.抗沉性 C.摇摆性 D.稳性 答案:A 3.船舶旋回中,随着漂角的逐渐增大,______。 A.降速减轻 B.转心后移 C.横倾角增大 D.旋回半径增大 答案:B

4.下列哪项可以作为衡量操纵性的标准? A.纵距和旋回初径 B.横距和漂角 C.纵距和反移量 D.进距和旋回半径 答案:A 5.航向稳定性好的船舶是指船舶在: A.航进中即使很少操舵也能较好的保向 B.操舵改向时,能较快地应舵 C.旋回中正舵,能较快地使航向稳定下来 D. A\B\C都正确 答案:D 6.船舶旋回中的漂角β: A.在首尾线的各点处具有相同的值 B.在重心G处的值最大 C.在转心P处的值最大 D.以重心G处首尾面迎流角衡量,约为3°~15° 答案:D 7.船舶试航时,变速运动所需时间及航程主要决定于:A.船舶排水量,变速范围,推力阻力的变化 B.船舶排水量,风流的影响

C.船舶线型,螺旋桨的直径 D.船舶大小及主机类型 答案:A 8.从实际操纵出发,船舶应具备良好的: A.旋回性和改向性 B.航向稳定性和抑制偏摆性 C.制动性(停船冲程短,冲时少) D. A\B\C均正确 答案:D 9.船舶改变航行方向的快慢能力称为: A.快速性 B.旋回性 C.稳定性 D.航向机动性 答案:D 10.船在航行中受外力影响而偏离航向,当外力消失,在不用舵的情况下不能稳定在一个新航向上的性能称为: A.静航向稳定性 B.静航向不稳定 C.动航向稳定 D.动航向不稳定

第二章 船舶操纵基本知识

第二章船舶操作基本知识 船舶操纵是指船舶驾驶人员根据船舶操纵性能和客观环境因素,正确地控制船舶以保持或改变船舶的运动状态,以达到船舶运行安全的目的。 船舶操纵是通过车、舵并借助锚、缆和拖船来实现的。要完成操纵任务,除保证所有操纵设备处于正常良好的技术状态外,操纵人员必须掌握船舶操纵性能(惯性和旋回性等)及对客观环境(风、流、水域的范围等)的正确估计。 第一节车的作用 推动船舶向前运动的工具叫船舶推进器,推进器的种类很多,目前常见的有明轮、喷水器推进器螺旋桨、平旋推进器、侧推器等。因为螺旋桨结构简单、性能可靠且推进效率高,所以被广泛应用于海上运输船舶。 一、螺旋桨的构造

1、螺旋桨的材料和组成 螺旋桨常用铸锰黄铜、青铜和不锈钢制作。现在也有采用玻璃制作的。 螺旋桨有桨叶和浆毂两部分组成,连接尾轴上。 (1)桨叶,一般为三片和四片,个别也有五片甚至六片的,低速船采用宽叶,高速船采用窄叶。 (2)桨毂,多数浆毂与桨叶铸成一体。浆毂中心又圆锥形空,用以套在尾轴后部。 (3)整流帽 (4)尾轴 2、螺旋桨的配置 一般海船都采用单螺旋桨,叫单车船。也有部分船舶(客船和军舰)采用双螺旋桨,叫双车船。 单桨船的螺旋桨通常是右旋转式的。右旋是指船舶在前进时,从船尾向船首看,螺旋桨在顺车时沿顺时针方向转动的称为右旋,沿逆时针方向转动的称为左旋。目前,大多数商船均采用右旋式。 双桨船的螺旋桨按其旋转方向可分为外旋式和内旋式两,对于双桨船,往舷外方向转动的称为外旋,反之称内旋。通常采用外旋,以防止水上浮物卷入而卡住桨叶。进车时,左舷螺旋桨左转,右舷螺旋桨右转,则称为外旋式;反之,称为内旋式。 二、推力、阻力和功率 1、船舶推力

船舶操纵性总结

哈尔滨工程大学船舶操纵性总结 1.船舶操纵性含义:P1 2.良好的操纵性应具备哪些特性 具有良好操纵性的船舶,能够根据驾驶者的要求,既能方便、稳定地保持航向、航速,又能迅速地改变航向、航速,准确地执行各种机动任务。 3.对于船舶的水平面运动,绘制固定坐标系和运动坐标系。 4.分析操舵后船舶在水平面运动特点。 5.漂角β的特性(随时间和沿船长的变化)。 6.坐标原点在船的重心处时,船舶的运动方程的推导。 7.作用在在船上的水动力是如何划分的。 8.粘性水动力方程线性展开式及无因次化。 9.线性水动力导数的物理意义和几何意义。

物理意义:各线性水动力导数表示船舶在以u=u0运动的情况下,保持其它参数都不变,只改变某一个运动参数所引起船体所受水动力的改变与此运动参数的比值。 几何意义:各线性水动力导数表示相应于某一变化参数的受力(矩)曲线在原点处的斜率。 10.常见线性水动力导数的特点。 11.船舶操纵水平面运动的线性方程组推导及无因次化。 12.写出MMG方程中非线性水动力的三种表达式。 13.首摇响应二阶线性K-T方程推导。 14.一阶K、T方程及K、T含义,可应用什么操纵性试验测得。 15.画图说明船舶在作直线航行时(舵角δ=0),若受到某种扰动后, 其重心运动轨迹的四种可能情况,并说明三种稳定性之间的关系。 16.影响稳定性的因素有哪些? 17.船舶回转过程的三个阶段及船舶在各个过程运动特点(速度、加 速度信息) 18.船舶回转运动主要特征参数。 19.影响定常回转直径的5个因素是什么? 20.推导船舶定常回转时横倾角的确定公式。 21.按照操舵规律由线性响应方程求解舶的回转角速度和艏向角。 22.如何获得船舶的水动力导数? 可以通过理论数值计算、经验公式估算和拘束模型的水动力试验三种方法来获得船舶的水动力导数。

船舶操纵简答题类型

船舶操纵简答题类型 1.前航中船舶受到扰动后,船舶运动的稳定性有哪几种,船舶的航向稳定性指的是什么? 2.图示分析前进中的船舶斜顺风航行时受力和偏转规律。 3.船舶在选择锚地时应主要考虑哪些因素? 4.简述船舶在北半球台风右半圆的避台操纵方法。 5.简述船舶在波浪中航行横摇的谐摇条件及避免谐揺的措施。 6.简述减轻单锚泊偏荡的措施。 7.简述给定船舶影响倒车停船冲程的因素。 8.试比较大风浪中航行时滞航与漂滞的区别及优缺点。 9.简述发现人员落水时的紧急措施。 10.何谓船舶的动航向稳定性,如何判别? 11.常用锚泊方式有哪几种,各有什么优缺点? 12.简述船舶纵向受浪时的危害和预防措施。 13.简述驶近落水者的“Williamson”旋回的操纵方法及适用情况。 14.试述伴流横向力产生的原因、条件及作用规律。 15.拖轮顶首协助前进中大船转首,为何存在大船前进速度的极限航速? 16.前进中的船舶在斜顶风与斜顺风航行时,哪种情况易于保向?为什么? 17.简述超大型船舶的操纵性特点。 18.何谓滑失?对螺旋桨推力、排出流、舵效有何影响? 19.绘出倒车停船轨迹,并说明为何呈现这样的形状。 20.简述影响岸壁效应的因素。 21.简述驶近落水者的“Scharnow”旋回的操纵方法及适用情况。 22.简述影响锚抓力的因素。 23.简述影响给定船舶旋回直径大小的因素。 24.简述影响舵效的因素。 25.试述沉深横向力产生的条件,成因及其致偏作用。 26.图示说明后退中的船舶在正横后来风的受力和偏转规律。 27.简述驶近落水者的“单旋回”的操纵方法及适用情况。 28.决定富余水深应考虑哪些因素? 29.绘草图说明右旋FPP单桨船利用车、舵减小掉头区的方法。 30.图示说明后退中的船舶在正横前来风的受力和偏转规律。 31.简述驶近落水者的“双半旋回”的操纵方法及适用情况。 32.试述影响船舶旋回直径大小的船型因素。 33.试述不同船速情况下船体下沉的特点。 34.简述空载船舶在大风浪中航行的弊端。 35.简述停车不对水移动的船舶在风中的偏转和运动规律。 36.简述浅水中船舶操纵运动特点。 37.什么是岸壁效应?船舶在接近岸壁航行时应如何操舵保向? 38.简述影响船舶保向性的因素。

第1章 船舶操纵基础理论解读

第一章船舶操纵基础理论 通过本章的学习,要求学员概念理解正确,定义描述准确,对船舶操纵性能够正确评估,并具有测定船舶操纵性能的知识。 根据船舶操纵理论,操纵性能包括: 1)机动性(旋回性能和变速运动性能) 2)稳定性(航向稳定性) 第一节船舶操纵运动方程为了定量地描述船舶的操纵运动,我们引入船舶操纵运动方程,用数学方法来讨论船舶的运动问题。 一、船舶操纵运动坐标系 1.固定坐标系Ox0y0z0 其原点为O,坐标分别为x0,y0,z0,由于我们仅讨论水面上的船舶运动,因此,该坐标系固定于地球表面。 作用于船舶重心的合外力在x0,y0轴上的投影分别为X0和Y0 对z0轴的合外力矩为N

2. 运动坐标系Gxyz 其原点为点G (船舶重心),坐标分别为x ,y ,z ,该坐标系固定于船上。 这主要是为了研究船舶操纵性的方便而建立的坐标系。 x ,y ,两个坐标方向的运动速度分别为u 和v ,所受的外力分别为X 和Y , 对z 轴的转动角速度为r ,z 轴的外力矩为N 。 二、 运动方程的建立 根据牛顿关于质心运动的动量定理和动量矩定理,船舶在水面的平面运动可由下列方程描述: y 0

??? ??===? Z og o og o I N y m Y x m X 该式一般很难直接解出。为了方便,将其转化为运动坐标系表示,这样可以使问题大为简化。经过转换,得: ?? ? ??=+=-=r I N ur v m Y vr u m X Z )()( 该方程看似复杂,但各函数和变量都与固定坐标系没有关系,因此,可以使问题大为简化。 三、 水动力和水动力矩的求解 对于上述方程中的水动力和水动力矩可表示为: ?? ? ??===),,,,,,(),,,,,,(),,,,,,(δδδr v u r v u f N r v u r v u f Y r v u r v u f X N Y X

船舶操纵性与耐波性复习

漂角:船舶重心处速度与动坐标系中ox轴之间的夹角,速度方向顺时针到ox轴方向为正。首向角:船舶纵剖面与固定坐标系OX轴之间的夹角,OX到x轴顺时针为正 舵角:舵与动坐标系ox轴之间的夹角,偏向右舷为正 航速角:重心瞬时速度与固定坐标系OX轴的夹角,OX顺时针到速度方向为正 浪向角:波速与船速之间的夹角。 作用于船体的水动力、力矩将与其本身几何形状有关(L、m、I),与船体运动特性有关(u、v、r、n),也与流体本身特性有关(密度、粘性系数、g)。 对线速度分量u的导数为线性速度导数,对横向速度分量v的导数为位置导数,对回转角速度r的导数为旋转导数,对各角速度分量和角加速度分量的导数为加速度导数,对舵角的导数为控制导数。 直线稳定性:船舶受瞬时扰动后,最终能恢复指向航行状态,但是航向发生了变化; 方向稳定性:船舶受瞬时扰动后,新航线为与原航线平行的另一直线; 位置稳定性:船舶受瞬时扰动后,最终仍按原航线的延长线航行; 具备位置稳定性的必须具备直线和方向稳定性,具备方向稳定性的必定具有直线运动稳定性。 1.定常回转直径 2.战术直径 3.纵距 4.正横距 5.反横距 回转的三个阶段 一、转舵阶段二、过度阶段三、定常回转阶段 耦合特性:船舶在水平面内作回转运动时会同时产生横摇、纵摇、升沉等运动,以及由于回转过程中阻力增加引起的速降。以上所述可理解为回转运动的耦合,其中以回转横倾与速降最为明显。 Tr r Kδ += 回转性指数K是舵的转首力矩与阻尼力矩系数之比,表征船舶转首性, 应舵指T 是惯性力矩数系数与阻尼力矩系数之比, 由T=I/N可见:参数T是惯性力矩与阻尼力矩之比,T值越大,表示船舶惯性大而阻尼力矩小;反之,T值越小,表示船舶惯性小而阻尼力矩大。 由K=M/N可见:参数K是舵产生的回转力矩与阻尼力矩之比,K值越大,表示舵产生的回转力矩大而阻尼力矩小;反之,K值越小,表示舵产生的回转力矩小而阻尼力矩大。 K值越大,相应回转直径越小,回转性越好.T为小正值时,船舶具有良好的航向稳定性. K表示了回转性,T表示了应舵性和航向稳定性。舵角增加:K、T同时减小;吃水增加:K、T 同时增大;尾倾增加:K、T同时减小;水深变浅:K、T同时减小;船型越肥大:K、T 同时增大。 船舶操纵性设计的基本原则是:给定船的主尺度(即船的惯性),以提供必要和足够的流体动力阻尼及舵效,使之满足设计船舶所要求的回转性、航向稳定性和转首性。通常最常用的办法是改变舵面积,因为舵既有明显的航向稳定作用,又会产生回转力矩。

(完整版)船舶操纵与避碰总结

船舶操纵与避碰 9101:3000总吨及以上船舶船长9102:500~3000总吨船舶船长9103:3000总吨及以上船舶大副9104:500~3000总吨船舶大副9105:3000总吨及以上船舶二/三副9106:500~3000总吨船舶二/三副9107:未满500总吨船舶船长9108:未满500总吨船舶大副9109:未满500总吨船舶二/三副 考试大纲 适用对象 9101 9102 9103 9104 9105 9106 9107 9108 9109 1 船舶操纵基础 1.1 船舶操纵性能 1.1.1 船舶变速性能 1.1.1.1 船舶启动性能√√√√√√ 1.1.1.2 船舶停车性能√√√√√√ 1.1.1.3 倒车停船性能及影响倒车冲程的因素√√√√√√ 1.1.1.4 船舶制动方法及其适用√√√√√√ 1.1.2 旋回性能 1.1. 2.1 船舶旋回运动三个阶段及其特征√√√√√√ 1.1. 2.2 旋回圈,旋回要素的概念(旋回反移量、滞距、 纵距、横距、旋回初径、旋回直径、转心、旋回 时间、旋回降速、横倾等) √√√√√√ 1.1. 2.3 影响旋回性的因素√√√√√√ 1.1. 2.4 旋回圈要素在实际操船中的应用(反移量、旋回 初径、进距、横距、旋回速率在实际操船中的应 用;舵让与车让的比较) √√√√√√√√√ 1.1.3 航向稳定性和保向性 1.1.3.1 航向稳定性的定义及直线与动航向稳定性√√√√√√

1.1.3.2 航向稳定性的判别方法√√√√√√ 1.1.3.3 影响航向稳定性的因素√√√√√√ 1.1.3.4 保向性与航向稳定性的关系;影响保向性的因素√√√√√√ 1.1.4 船舶操纵性指数(K、T指数)的物理意义及其与操纵性 √√ 能的关系 1.1.5 船舶操纵性试验 1.1.5.1 旋回试验的目的、测定条件、测定方法√√√√√√ 1.1.5.2 冲程试验的目的、测定条件、测定方法√√√√√√ 1.1.5.3 Z形试验的目的和试验方法√ 1.1.6 IMO船舶操纵性衡准的基本内容√√√ 1.2 船舶操纵设备及其运用 1.2.1 螺旋桨的运用 1.2.1.1 船舶阻力的组成:基本阻力和附加阻力√√√√√√ 1.2.1.2 吸入流与排出流的概念及其特点√√√√√√ 1.2.1.3 推力与船速之间的关系,推力与转数之间的关系√√√√√√ 1.2.1.4 滑失和滑失比的基本概念,滑失在操船中的应用√√√√√√ 1.2.1.5 功率的分类及其之间的关系√√√√√√ 1.2.1.6 船速的分类及与主机转速之间的关系√√√√√√ 1.2.1.7 沉深横向力产生的条件、机理及偏转效果√√√√√√ 1.2.1.8 伴流的概念,螺旋桨盘面处伴流的分布规律√√√√√√ 1.2.1.9 伴流横向力产生条件、机理及偏转效果√√√√√√ 1.2.1.10 排出流横向力产生条件、机理及偏转效果√√√√√√ 1.2.1.11 螺旋桨致偏效应的运用√√√√√√ 1.2.1.12 单、双螺旋桨船的综合作用√√√√√√ 1.2.1.13 侧推器的使用及注意事项√√√ 1.2.2 舵设备及其运用

船舶操纵与避碰模拟试题三

船舶操纵与避碰模拟试题三 1.船舶在能见度不良的水域行,下列说法正确的是: ①应使用适合当时能见度不良的手段保持正规 瞭望;②、应使用适合当时能见度不良的手段判断避碰危险;③、船舶采取避碰行动的幅度应使他船使用视觉和雷达观察时容易察觉到。 A、① B、①② C、③ D、①②③ 2.在IMO采纳的分到通航水域,下列说法正确的是: ①、任何船舶均不得锚泊;②、除了分隔带以外, 任何船舶应避免在分到通航水域锚泊;③、除了免受分道通航制条款约束的操纵能力受到限制的船舶因作业需要以外,其他船舶应当避免在分道同航制水域抛锚。 A、① B、③ C、② D、②③ 3.锚泊从事清除水雷作业的船舶在迷雾中应鸣放的声号是: A、一长声 B、两长声 C、一长两短 D、五短声 4.夜间在海上看到一船垂直显示上白下红两盏号灯以及红、绿航灯,则下列判断不正确的是:①该船一定在航;②该船一定在航且对水移动;③该船为从事引航任务的船舶;④该船正从事捕鱼

A、③④ B、②④ C、①②③ D、①②③④ 5. 下列哪些做法可以保持良好的情境意识: ①正 确感知周围情况②敏感地察觉周围情况的变化 ③全面了解周围情况变化的影响④正确考虑和 计划好即将面临的情况以及知道周围将发生什么 A、①②③④ B、①②③ C、②③④ D、 ①③④ 6.白天,如看到一尖端朝上的圆锥体,表明该船是: A、驶帆的机动船 B、驶帆的无机器动力的船 C、从事拖网作业的船 D、从事非拖网作业的船 7.航行中交接班时如果正在进行船舶操纵或其它避免危险的行动,则接班驾驶员应:①立即报告船长②有船长决定是否接班③应等操作完成之后接班④应正常接班 A、①② B、③ C、① D、④ 8.实验表明,会产生船吸作用的两船间距约为: A、两船穿宽之和的1倍 B、两船船长之和的1倍

船舶的操纵性能

船舶的操纵性能(旋回性、冲程、保向性、改向性以及船舶变速运动性能) 船舶驾驶人员必须较好地掌握船舶操纵知识,了解本船的操纵性能以及各种外界条件对本船操纵性能的影响,才能正确操纵船舶;准确控制船舶的运动。往往一艘操纵性能良好的船舶,具有稳定地保持运动状态和迅速准确地改变运动状态的性能。 一、旋回性能是船舶操纵中的重要部分,它包括的因素有偏移或反移量、进距、横距、旋回初径、漂角、转 心、旋回时间、旋回中的降速和横倾等。这些数值是在船舶满载,半载以及空载等不同的状态下实测所得,掌握这些要素,对避让船舶、狭窄区域旋回或掉头等情况下安全操纵船舶有着重要的作用,也是判定船舶是否处于安全操纵范围内的重要参数。偏移或反移量(KICK)是船舶重心向转舵相反一舷横移的距离,满载时其最大值约为船长的1%左右,但船尾的反移量较大,其最大值约为船长的1/10—1/5,可趁利避害的加以运用,如来船已过船首,且可能与船尾有碰撞危险,紧急情况下可向来船一侧满舵利用

反移量避免碰撞(有人落水时向人落水一舷操满舵也是利用该反移量);进距(ADVCNCE)是开始转舵到航向转过任一角度时中心所移动的纵向距离,旋回资料中提供的纵距通常特指转过90度的进距,即最大进距,其值约为旋回初径的0.85—1.0倍,熟练掌握可常帮助我们正确判断船首来船或危险的最晚避让距离;横距(TRANSPER)是开始转舵到航向90度时船舶中心所一定的横向距离,其值约为旋回初径的0.55倍;旋回初径(TACTICAL DIAMETER)是船舶开始转舵到航向180度时重心所移动的横向距离,其值约为3-6倍船长;旋回直径(PINAL IAMETER)是船舶做定常旋回运动时的直径,约为旋回初径的0.9-1.2倍。漂角(DRIPT AUGTE)是船舶旋回中船首与重心G点处旋回圈切线的方向夹角,其值约在3度—15度之间,漂角约大,其旋回性能越好;转心P是旋回圈的曲率中心O到船舶首尾线所做垂线的垂点,该点处的漂角和横移速度为零,转心P约在船首柱后1/3-1/5船长处,因此,旋回中尾部偏外较船首里为大,操船是应特别注意;旋回时间是旋回360度所需要的时间,它与排水量有密切关系,排水

船舶操纵试题八

试题八 1. 船舶旋回运动中,漂角越大: A. 速降系数越小,速度下降越小,转心前移 B. 旋回性能越好,旋回直径越大,速度下降越小 C. 旋回性能越好,旋回直径越小,速度下降越大 D. 速降系数越小,速度下降越大,转心后移 2. 船舶旋回中的漂角β一般是指: A. 船首处旋回轨迹的切线与船舶首尾线之间的夹角 B. 重心处旋回轨迹的切线与船舶首尾线之间的夹角 C. 船尾处旋回轨迹的切线与船舶首尾线之间的夹角 D. 转心处旋回轨迹的切线与船舶首尾线之间的夹角 3. 船舶航行中,突然发现有人落水,为了防止船舶和螺旋桨对落水者造成伤害, 应立即怎样操纵船舶? A. 向落水者相反一舷操满舵,并停车 B. 向落水者相反一舷操满舵, 并加速 C. 向落水者一舷操满舵,并停车 D. 向落水者一舷操满舵,并加 速 4. 根据经验,自力靠码头操纵时,对于右旋螺旋桨船,无风流时右舷靠泊,在泊 位前倒车前应: A. 减小靠拢角 B. 增大靠拢角 C. 倒车前用右满舵 D. 尽量减少与 泊位间的横距 5. 船舶尾倾比首倾时的: A. 航向稳定性差,旋回圈大 B. 航向稳定性差,旋回圈小 C. 航向稳定性好,旋回圈大 D. 航向稳定性好,旋回圈小 6. 船舶在外力干扰下产生首摇,通过操舵抑制或纠正首摇使船舶驶于预定航向 的能力称为: A. 船舶保向性 B. 航向稳定性 C. 船舶旋回性 D. 船舶 追随性 7. 拖锚制动法和拖轮协助制动法分别适用于: A. 船舶高速和低速情况 B. 船舶低速和低速情况 C. 船舶低速和高速情况 D. 船舶高速和高速情况 8. 船舶离泊操纵,符合首离法的条件是:Ⅰ、顶流吹开风,风流较弱Ⅱ、顶 流吹拢风,风流较强Ⅲ、泊位前方清爽,而且当船首离开码头约15度,车、舵不会触及码头 A.Ⅰ、ⅢB.Ⅰ、ⅡC.Ⅱ、Ⅲ D.Ⅰ~Ⅲ9. 风对船舶保向航行的影响是:Ⅰ、正横附近来风时最易于保向Ⅱ、斜逆风 较斜顺风易于保向Ⅲ、风速与船速之比升高时保向性将变差 A.Ⅰ、Ⅱ B.Ⅰ、Ⅲ C.Ⅱ、Ⅲ D.Ⅰ~Ⅲ 10. 船舶排水量和船底污底对船舶转头惯性的影响是: A. 与排水量成正比,与船底污底成正比 B. 与排水量成正比,与船底 污底成反比 C. 与排水量成反比,与船底污底成反比 D. 与排水量成反比,与船底 污损成正比

第一章 船舶操纵性能复习重点

第一章船舶操纵性能 说课笔记 知识与技能掌握要点: 通过学习,掌握船舶的旋回性能。重点对三副岗位值班与船舶操纵知识及能力要求相联系,做到技能在航运船舶工作中能实际运用; 对操纵运动方程与K、T指数能进行定性分析。对于船员职务晋升多项考试具有重要指导作用。并做到工学结合,使船舶操纵知识及能力要求与岗位紧密相联。 对航向稳定性与保向性、变速运动性能能准确理解。通过旋回试验等实训操作,对中、大型商船操纵有感性认识,为下一步深入学习打下基础。 掌握Z形试验与螺旋试验方法。使学生明确用途,以及在新船试航及修船试航中三副的操作要点。 工学结合: 三副值班时,船舶操纵知识及能力要求与本次课的关联; 岗位与船舶操纵知识及能力要求实际应用; 测试冲程选外高桥叠标场仿真场景,突出训练三副角色。

课程教学特色: 理论性较强,注意三校生与普高生的认知能力差别; 充分运用企业提供生产案例和影视资料,使内容贴近航运岗位; KT指数讲解插入本校教师几十年前的理论贡献,增强学生荣誉感; 在重点训练外高桥测速场冲程实验后,运用仿真模拟设备让学生领略世界主要狭水道场景。对学生职业兴趣的培养有意义。 第一节船舶旋回性能 在船舶操纵中,就舵的使用而言,大致可分为小舵角的保向操纵、一般舵角的转向操纵及大舵角的旋回操纵三种,船舶旋回性是船舶操纵中极为重要的一种性能。 一、船舶旋回运动的过程 船舶以一定航速直线航行中,操某一舵角并保持之,船舶将作旋回运动。根据船舶在旋回运动过程中的受力特点及运动状态的不同,可将船舶的旋回运动分为三个阶段,如图1—1所示。 1.第一阶段——转舵阶段 船舶从开始转舵起至转至规定舵角止(一般约8~15s),称为转舵阶段或初始旋回阶段。

船舶操纵性总结

哈尔滨工程大学船舶操纵性总结 1. 船舶操纵性含义:P1 2. 良好的操纵性应具备哪些特性 具有良好操纵性的船舶,能够根据驾驶者的要求,既能方便、稳定地保持航向、航速,又能迅速地改变航向、航速,准确地执行各种机动任务。 3.对于船舶的水平面运动,绘制固定坐标系和运动坐标系 ? 1-1-3表示籍舶操纵运动的参数GS中各运勒参数都为it値) 4. 分析操舵后船舶在水平面运动特点。 5. 漂角B的特性(随时间和沿船长的变化)。 6. 坐标原点在船的重心处时,船舶的运动方程的推导。 7. 作用在在船上的水动力是如何划分的。 8. 粘性水动力方程线性展开式及无因次化。 9. 线性水动力导数的物理意义和几何意义。物理意义:各线性水动力导数

表示船舶在以u=u0 运动的情况下,保持其它参数都不变,只改变某一个运动参数所引起船体所受水动力的改变与此运动参数的比值。 几何意义:各线性水动力导数表示相应于某一变化参数的受力(矩)曲线在原点处的斜率。 10. 常见线性水动力导数的特点。 11. 船舶操纵水平面运动的线性方程组推导及无因次化。 12. 写出MMG 方程中非线性水动力的三种表达式。 13. 首摇响应二阶线性K-T 方程推导。 14. 一阶K、T 方程及K、T 含义,可应用什么操纵性试验测得。 15. 画图说明船舶在作直线航行时(舵角3 =0),若受到某种扰动后, 其重 心运动轨迹的四种可能情况,并说明三种稳定性之间的关系。 16. 影响稳定性的因素有哪些 17. 船舶回转过程的三个阶段及船舶在各个过程运动特点(速度、加速度信 息) 18. 船舶回转运动主要特征参数。 19. 影响定常回转直径的5 个因素是什么 20. 推导船舶定常回转时横倾角的确定公式。 21. 按照操舵规律由线性响应方程求解舶的回转角速度和艏向角。 22. 如何获得船舶的水动力导数 可以通过理论数值计算、经验公式估算和拘束模型的水动力试验三

船舶操纵性总结汇总

操纵性 绪论 操纵性定义:船舶按照驾驶者的意图保持或改变其运动状态的性能,即船舶能保持或改变航速、航向和位置的性能。 操纵性内容: 1. 航向稳定性:表示船舶在水平面内的运动受扰动而偏离平衡状态,当扰动完全消除后能保持其原有平衡状态的性能。 2.回转性:表示船舶在一定舵角作用下作圆弧运动的性能。 3.转首性和跟从性:表示船舶应舵转首及迅速进入新的稳定运动状态的性能。 4. 停船性能:船舶对惯性停船和盗车停船的相应性能。 附加质量和附加惯性矩: 作不定常运动(操纵和耐波运动)的船舶,除了船体本身受到愈加速度成比例的惯性力外,同时船体作用于周围的水,使之得到加速度。根据作用力和反作用力,水对船体存在反作用力,这个反作用力称为附加惯性力。 附加惯性力是与船的加速度成比例的,其比例系数称为附加质量。船舶操纵 一、操纵运动方程

1.1坐标系 一、固定坐标系: 固定坐标系是固结在地球表面,不随时间而变化的,如图所示。 首向角ψ:X 0与X 的夹角(由X 0转向X ,顺时针为正)。 二、运动坐标系: 运动坐标系是固结在船体上的,随船一起运动的,如图所示。 重心坐标:X OG 、Y OG ; 船速:V 重心G 瞬时速度; 航速角ψ0:X0轴与船速V 夹角(顺时针为正); 漂角:β船速与X 轴夹角(顺时针为正); 回转角速度:γ= dψdt ; 回转曲率:R 右舷为正; 舵角:δ左舷为正。 三、枢心: 回转时漂角为零点、横向速度为零的点。 1.2线性运动方程 一、坐标转换 00cos sin sin cos ψψψψ =-=+G G x u v y u v

二、简化方程 当重心在原点处:X G =0 运动坐标系一般方程: 三、对于给定船型、给定流体中的运动情况 船型参数和流体特性为已知条件; 操纵运动为缓变过程,忽略高阶小量; 忽略推进器转速影响; 操舵过程短暂,忽略转舵加速度。 则可将给定船型流体中受力情况表示如下: 由泰勒展开式,用水动力导数表示如下: 四、简化后的操纵运动线性方程式: 2()()() ψψψψψψ=--=++=++G G Z G X m u v x Y m v u x N I mx v u 00cos sin ψψ =+G G X mx my 00cos sin ψψ =-G G Y my mx ()() ψψψ =-=+=z X m u v Y m v u N I (,,,,,,)(,,,,,,)(,,,,,,) X X u v r u v r Y Y u v r u v r N N u v r u v r δδδ== =v r v r v r v r Y Y v Y r Y v Y r Y N N v N r N v N r N δδδδ =++++=+++ +111()()v ur v u u r r v u r +=++?+?=+

船舶操纵(内河船员考试)第三章知识要点

第三章特殊情况下船舶操纵 第一节大风浪中航行前的准备工作 1.同一河段风、流作用方向相反时,风浪大。风、流作用力方向相同时,风浪小;并以主 流区浪最大,缓流区浪小;下风岸浪大,上风岸浪小;宽阔河段浪大,狭窄河段浪小; 转潮前后一段时间内浪大。 2.船舶在大风浪中航行,产生严重摇摆(包括横摇、纵摇、垂荡运动的复合运动),面且 造成拍底、甲板上浪、尾淹、螺旋桨空转等危害。 3.大风浪来临前保证船舶水密的措施,应包括:检查各水密门是否良好,不使用的一律关 闭拴紧;天窗和舷窗都要盖好,并旋紧铁盖;检查甲板开口封闭的水密性,必要时进行加固;将通风口关闭;锚链管盖好。 4.排水畅通包括:排水管系、泵、阀状态良好;污水沟畅通;甲板排水孔应畅通。 5.绑牢活动物件包括:(1)起吊设备、锚设备以及一切未固定的甲板物件就系固和绑扎。 (2)散装货物应平舱。(3)水舱、燃油舱应尽可能注满或抽空,减少自由液面。(4)舱内和甲板的重件货物。(5)配载时详细计算稳性,满足风浪中的航行要求。 6.在吃水差方面,既要防止螺旋桨空转,又要减轻拍底,一般以适当艉纵倾较为理想。 第二节大风浪中的操船措施 7.船舶在波浪中的横摇周期与船宽成正比,与初稳性高度的平方根成反比。 8.减轻横摇的措施:调整船舶的横摇周期、改变航向和速度以调节波浪的遭遇周期。如果 船舶正横受浪时,且横摇周期与波浪周期相等,此时改变船速对波浪遭遇周期无影响,只有改变航向才能取得减轻横摇的效果。 9.船速越高,垂荡越激烈。 10.船首干舷越低,船速越大,波高越强,甲板上浪也越厉害。 11.为了减轻空转现象和防止桨叶等受损,应保持桨叶浸入水中20%-30%的螺旋桨直径,当 出现空转时,可及时调整航向和速度以减轻船舶摇荡。 12.船舶在大风浪中顶浪航行,可通过下列措施减轻拍底、甲板上浪:降低航速、偏浪航行、 改顶浪航行为顺浪航行、正确变换车速(交替运用快慢车)。 13.船速越快,波浪对船首的冲击力就越大;船首的面积越大(如U型首),波浪的冲击力 越大;方形系数、棱形系数越大,冲击力越大。 14.船舶顺浪航行时,由于波浪与船舶相对速度小,可以大大减弱波浪对船体的冲击。 15.当航速小于波浪传播速度时,将形成尾淹现象;当航速等于波浪传播速度时,则船尾冲 漂(不易保持航向);一般采取调整航速的措施,使航速稍大于波浪的传播速度,既能避免尾淹,又能保持舵效。 16.偏浪航行是船舶的主航向与风浪的方向成20-40度的夹角,斜着波浪传播的方向前进的 方法。

相关文档