文档库 最新最全的文档下载
当前位置:文档库 › 聚合釜温度_温度串级控制系统方案

聚合釜温度_温度串级控制系统方案

聚合釜温度_温度串级控制系统方案
聚合釜温度_温度串级控制系统方案

课程设计

题目聚合釜温度-温度串级控制系统学院自动化

专业自动化卓越工程师

班级自动化zy1201班

姓名

指导教师傅剑

2015 年12 月8 日

课程设计任务书

学生姓名:专业班级:自动化zy1201 指导教师:傅剑工作单位:武汉理工大学题目: 聚合釜温度-温度串级控制系统

初始条件:

聚氯乙烯是最通用的塑料品种,广泛应用于国民经济各个领域。在氯乙稀在聚合釜中进行聚合反应的同时释放出热量,使得温度升高。为了保证产品质量,应及时将反应热移走,保持釜内温度恒定。现采用夹套中冷却水流量为控制量来控制反应温度。以聚合釜温度为主参数,以夹套中水的温度为副参数,构成串级控制系统,将反应温度控制在51℃,稳态误差±1℃

要求完成的主要任务:

1、了解聚合釜工艺设备

2、绘制聚合釜温度-温度控制系统方案图

3、确定系统所需检测元件、执行元件、调节仪表技术参数

4、撰写系统调节原理及调节过程说明书

时间安排

11月3日选题、理解课题任务、要求

11月4日方案设计

11月5日~11月8日参数计算撰写说明书

11月9日答辩

指导教师签名:年月日

系主任(或责任教师)签名:年月日

目录

1.课程设计目的与要求 (1)

1.1聚合釜概述 (1)

1.2设计目的 (1)

2.系统总体方案论证 (2)

2.1设计聚合釜温度控制系统总体方案论证 (2)

2.2聚合釜温度串级控制系统分析 (4)

2.3控制规律的选择 (4)

3.仪表及器件的选择 (4)

3.1温度传感器的选择 (4)

3.2温度变送器的选择 (5)

3.3执行器的选择 (5)

3.4调节器的选择 (5)

4 小结 (6)

5. 参考文献 (7)

1课程设计目的与要求

1.1聚合釜概述

制备高分子化合物的主要设备。一般是立式圆柱形高压釜,带有夹套,以

便通入蒸汽或冷水来加热或冷却。用于乳液聚合的,内有不锈钢的水平桨式搅

拌器,由电动机通过传动装置和减速器传动。釜的外壁常用碳钢制成,内衬不

锈钢,也有衬搪瓷的。聚合时可以单釜间歇生产,也可以是多釜串联连续生产。聚合反应物由一个釜的下部进入下一釜的上部。釜上装有温度、压力等仪表,

以及进出料口等。用于本体聚合的,则釜内不装搅拌器,且不串联。

聚合釜一般由釜体、釜盖、夹套、搅拌器、传动装置、轴封装置、支承等组成。由于用户因生产工艺、操作条件不尽相同,聚合釜内的搅拌型式一般有锚式、浆式、涡轮式、推进式或框式。搅拌装置在高径比较大时,可用多层搅拌桨叶,也可根据用户的要求任意选配。并在釜壁外设置夹套,或在器内设置换热面,也可通过外循环进行换热。加热方式有电加热、热水加热、导热油循环加热、远红外加热、外(内)盘管加热等,冷却方式为夹套冷却和釜内盘管冷却等。

1.2设计目的

聚氯乙烯是最通用的塑料品种,广泛应用于国民经济各个领域。在氯乙稀在聚合釜中进行聚合反应的同时释放出热量,使得温度升高。为了保证产品质量,应及时将反应热移走,保持釜内温度恒定。工艺要求反应温度为51℃±1℃。这是一个多种参数相互制约的复杂过程,工艺控制指标的好坏关系到生产能否稳定运行,生产效益以及安全问题。因此如何实现氧化炉的最优控制,多年来一直是我国化肥技术十分关注,并为之不懈努力的课题。通过技术改进,聚合釜的控制水平达到了国内先进的水平,产品质量的到提高,设备安全性得到了

保证,延长了设备的运行周期,大大提高了聚合釜的经济效益。

燃气蒸汽锅炉DCS控制系统方案

xxx工业有限责任公司 锅炉房3台10T蒸汽锅炉自控系统 控 制 方 案 xxxx电气系统

一:概述 xxxx电气是暖通、供暖节能、锅炉、热能设备等领域自动化控制的高科技股份制公司,是国最大的锅炉电脑控制器厂家。 xx公司于1995年在全国率先推出锅炉电脑控制器,至今已发展到全系列燃煤、燃油(气)和电热锅炉的电脑控制、PLC控制、小型和大型DCS控制和供暖节能控制,控制锅炉的吨位达到150t/h,并且始终保持技术领先地位。目前xx公司产品已遍布全国,部分出口国外,近1000家国锅炉厂和11家外资锅炉厂配套使用,已成为我国锅炉控制的主流产品和著名品牌,是中国锅炉行业“工业锅炉控制标准”起草单位。 公司资质: 中国锅炉行业“工业锅炉控制标准”起草单位 省级高新技术企业 国家级高新区企业 计算机软件企业 中国锅炉行业协会团体会员 二、控制对象和设备 10T燃油气两用饱和蒸汽锅炉3台,每台包括: ●程控器外置式燃烧器1台;风机功率12KW, ●给水泵2台,功率15kw(一主一备); ●循环泵 ●节能泵 由上述设备组成锅炉补水及蒸汽负荷输出系统。 三、关于标准 1、目前尚无锅炉控制器的国家标准或行业标准,我公司执行的是xxxx公司企业标准Q/3201RTG01-2000,是 目前国唯一具有企业标准的锅炉电脑控制厂家。 2、我国工业锅炉控制装置的行业标准正在制定中,我公司为该标准的第一起草单位。 3、本控制方案依照国家有关标准和规程及xxxx公司企业标准编制,全面满足招标方要求。 四:系统设计原则 我方在进行本控制系统设计时,将严格遵循以下系统设计原则:

安全性原则:由于锅炉属于压力容器,而且工作环境比较恶劣,因此,控制系统首先要保证的就是锅炉系统运行的安全性,这是首要设计原则。为了达到安全的目的,在一次仪表和二次仪表的选型上,要严格遵循行业规,从根源上保证系统的安全。 可靠性原则:可靠性原则是针对控制系统的安全而言的,同样是为了保证锅炉的安全运行,在控制系统设计时,要注意控制的层次和相应层次的操作等级、权限。目前,国际上普遍认同的可靠控制系统分为三个等级:计算机上位监控子系统、实时控制子系统和就地强电手动操作子系统,本项目也将严格按这种方式来设计整体控制系统。 科学性原则:科学性原则是指控制系统中选用的一次、二次仪表、PLC等产品都属于目前国和国际上的主流产品,同时,控制系统的结构是合理的,具有行业针对性的。 先进性原则:先进性原则是指在系统科学设计和元器件经济合理的前提下,要尽量保证控制系统符合国际上自动化控制系统的发展方向,保证本控制系统在5-10年仍属于比较先进的锅炉控制系统。 五、控制方案 根据燃气锅炉的运行特点,锅炉控制系统控制采用小型分布式控制系统,本系统由一个工程师站,两个操作员站作为集中监控平台;S7-300作为锅炉及辅机控制系统,一次仪表信号分别送入PLC ,由PLC 经智能逻辑运算后驱动燃烧、循环泵等相关设备;上位系统一方面接收下位机上传的现场信号进行数据显示及报表和记录生成,另一方面,根据数据分析结果对下位机进行管理,实时监控锅炉系统运行以保证整个锅炉控制系统绝对安全可靠。拓扑图如下: 上位机: I/O数据处理、回路控制和顺序控制、完成面向过程的全部监测、调节和运算功能。包括温度、压力的显示、各种复杂调节和先进控制算法,各种电机的起停等控制,相关设备运行状态的监控及连锁保护等。 PLC柜:现场数据采集及简单处理、现场执行机构驱动。 操作员站及工程师站:工控机采用研华品牌,P4,512MB存,250G硬盘,DVD光驱,显示器采用22寸DELL 液晶显示器

反应釜温度智能控制系统设计 (6)

中北大学 毕业设计开题报告 学生姓名:李依遥学号:0805054101 学院、系:信息与通信工程学院电气工程系专业:自动化 设计题目:反应釜温度智能控制系统设计 ——软件部分 指导教师:孟江 2012 年 3 月 15 日

开题报告填写要求 1.开题报告作为毕业设计答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计工作前期内完成,经指导教师签署意见及所在系审查后生效; 2.开题报告内容必须用按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.学生写文献综述的参考文献应不少于15篇(不包括辞典、手册)。文中应用参考文献处应标出文献序号,文后“参考文献”的书写,应按照国标GB 7714—87《文后参考文献著录规则》的要求书写,不能有随意性; 4.学生的“学号”要写全号(如020*******),不能只写最后2位或1位数字; 5. 有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年3月15日”或“2004-03-15”; 6. 指导教师意见和所在系意见用黑墨水笔工整书写,不得随便涂改或潦草书写。

毕业设计开题报告

式一般有锚式、桨式、涡轮式、推进式或框式等,搅拌装置在高径比较大时,可用多层搅拌桨叶,也可根据用户的要求任意选配。并在釜壁外设置夹套,或在器内设置换热面,也可通过外循环进行换热。加热方式有电加热、热水加热、导热油循环加热、远红外加热、外(内)盘管加热等,冷却方式为夹套冷却和釜内盘管冷却,搅拌桨叶的形式等。支承座有支承式或耳式支座等。转速超过160转以上宜使用齿轮减速机.开孔数量、规格或其它要求可根据用户要求设计、制作。反应釜在设定恒温条件下,在密闭的容器内,在常压或负压下进行搅拌、反应,并能控制反应溶液的蒸发与回流,是现代化学小样实验、生物制药及新材料合成的理想设备[6]。 3.反应釜的温度控制 反应釜温度控制是通过控制两个阀门即加热水阀门和冷却水阀门来实现的,通过搅拌机的搅拌使物料均匀。在升温阶段,打开加热水阀门,对釜内的蛇管通以加热水,使釜温升高,通过控制阀门开度来控制温度升高的速率,当加热到预订反应温度后就停止加热,反应过程中在夹套中通以冷却水,将反应产生的多余热量移走,控制温度保持恒定。导热介质的选择根据各种不同展品的工艺温度要求确定,常见的导热介质又通过热蒸汽和导热油。温度测量常用热电阻或热电偶及其变送器组成。通入反应釜的热导介质要求保持温度恒定,通过调节流入反应夹套的导热介质的流量,来控制反应釜内物料的温度符合工艺要求[7]。 二、对反应釜采用的控制技术 1.常规PID控制 PID控制器应用的非常广泛,其设计技术成熟,长期以来形成了典型的结构,它的参数整定方便,结构更改灵活,能满足大多数工业控制要求。PID技术比较简单,易于掌握,是常用的控制技术之一。对于参数不变的控制对象或模型参数变化不显著的控制对象来说,使用PID控制能够达到比较理想的控制效果,而且实现起来非常简单[8]。 在本课题的系统设计中,作为被控对象的反应釜由于模型较为复杂,无法建立精确的数学模型,采用PID算法比较方便,但PID算法也存在现场参数调整麻烦,被控对象模型参数难以确定以及外界干扰会使控制漂离最佳工况等问题。针对这些问题,本课题在反应釜温度控制系统中,采用了模糊控制技术与PID相结合的方法来弥补只用PID调节器时的缺憾。 2.模糊控制技术

锅炉温度串级控制系统的设计说明书

1 前言 (1) 2 控制系统的总体方案 (2) 2.1 概述 (2) 2.2 控制方式的确定 (2) 2.3检测元件和执行机构的选择 (3) 2.4微型计算机的选择 (4) 2.5输入输出通道及外围设备的选择 (6) 2.6系统的原理框图 (6) 3 控制算法的选择和参数计算 (8) 3.1 控制算法的选择 (8) 3.2 参数的计算 (8) 4系统硬件设计 (16) 4.1概述 (16) 4.2 系统的硬件设计 (16) 4.3系统电气原理图 (33) 4.4 元器件明细表 (34) 5 软件程序的编制 (35) 5.1概述 (35) 5.2程序流程图 (35) 5.3 地址分配 (40) 5.4程序设计 (40) 6 控制系统的调试与实验 (42) 6.1单元电路调试 (42) 6.2 程序调试 (42) 6.3 系统调试 (43) 6.4 系统实验和结果分析 (43) 7 设计总结 (44) 7.1 系统具备的主要功能 (44) 7.2 系统的测量精度 (44) 7.3 存在的问题及改进措施 (44) 参考文献 (46) 致谢 (47)

1 前言 随着我国国民经济的快速发展,锅炉的使用范围越来越广泛。而锅炉温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常必要的。而锅炉系统是一个具有时变和时滞的比较复杂的系统,因此,对锅炉温度进行控制是工业过程控制中一个重要而且困难的问题。由于串级控制具有有效改善过程的动态特性、提高工作频率、减小等效过程时间常数和加快响应速度等特点,所以在克服被控系统的时滞方面能够取得较好的效果[1]。 由于PLC具有高可靠性、易于实现等优点,在工业控制领域中得到了广泛的应用。进入21世纪以来,PLC已经由原来的逻辑控制器发展成具有较强的数据处理能力、通讯能力的标准工控设备,用其进行各种算法的实现是工控领域的发展趋势。 本设计以锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为副被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度串级控制系统;采用PID 算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制[2]。 本文对锅炉温度控制系统的硬件和软件都进行了介绍,全文主要有5个部分。 第1部分是对锅炉温度控制系统的总体方案的介绍。控制总体方案的设计是系统设计的核心。若设计方案设计不正确,则无论选用何种先进的过程控制仪表或计算机系统,其安装如何细心,都不可能使系统在工业生产过程中发挥良好的作用,甚至系统不能运行。 第2部分是对锅炉温度控制系统控制算法的选择和参数的设置进行了介绍。采用合适的控制算法能更好地对整个系统进行控制。 第3部分是锅炉液位控制系统硬件的设计,对选择的仪表、设备等的性能、使用方法和接口要求等进行了介绍。 第4部分是对锅炉液位控制系统软件程序的编制,主要是采用PLC梯形图编程语言进行编程,并写出相应的流程图和地址分配。 第5部分是对锅炉温度控制系统的调试与实验。其中包括单元电路调试、程序调试、系统调试、系统试验和结果分析。

温湿度控制控制说明

组合式空调机组温湿度控制方案说明 一、设计概述 本控制系统便于提高HVAC设备的性能和工作人员的工作效率。该系统控制器独立运行,保证自动控制过程的安全、可靠性;PID 控制方式提供了良好的控制精度和调节特性,特别适合于暖通空调系统控制。系统提供了消防信号联锁及报警、压差报警,风机启动连锁等多重保护措施,保证系统的安全运行。本系统使用和操作极为简便,控制灵活方便。用户可通过直观的显示监测和控制空调设备,方便的修改温湿度控制设定值,实时监测运行数据。 二、监视及控制内容 1.空调箱温湿度控制原理: 1)温湿度控制 DDC控制器采样回风温T和回风湿度H在DDC内部与设定点比较,其差值△T和△H经比例积分PI控制模块计算后输出调节值至调节压缩机、电加热、加湿器输出,保持室内温度湿度稳定。当回风温度高于设定点温度,控制器输出信号给压缩机启动,降低室内温度。当回风温度低于设定点温度,控制器输出信号给电加热,使其逐级打开,使室内温度升高。当湿度高于设定湿度时,控制器输出信号给压缩机,使其打开,降低温度除湿。 当湿度低于设定湿度时,控制器输出信号给加湿器,让其打开,增大加湿量,保持室内湿度稳定。 2)故障报警 空调机有任何不正常状态, 系统均视为故障讯号, 并立即报警, 报警包括:温度超限报警、湿度超限报警、风机状态异常报警、滤网阻塞报警等。 3)联锁控制 压缩机、电加热、加湿器与风机连锁控制:在冬季和夏季运行模式下,风机启动后,压缩机、电加热、加湿器即根据需要动作,然后根据回风温度、湿度要

求打开或者关闭,在正常关机情况下,自控系统在接到关机信号后,关闭电加热、加湿器、压缩机。 机组启停连锁控制: 空调自控系统在得到风机运行状态反馈信号的情况下,根据回风温湿度要求开启电加热、压缩机、电加湿等。 一旦空调系统故障报警,空调自控系统自动关闭电加热、电加湿、压缩机,关闭风机,当压缩机有任何故障,也将关闭压缩机,并显示报警原因,停止其工作。 4)控制参数显示和设定: 空调机各状态参数在就地DDC控制器上显示出来, 参数包括: 回风温 度、湿度,面板温度设定输入(也即面板输出到控制器的温度设定信号)、面板湿度设定输入(也即面板输出到控制器的湿度设定信号)。 另也可对所有DDC控制器的DO和AO点进行超驰控制, 实现对所有不同设备的手动控制。

温度控制系统

《单片机技术》课程设计任务书 一、设计题目:数字电子钟、数字频率计、数字电压表、交通灯、抢答器、密码 锁、波形发生器、数字温度计、计算器、数字式秒表。 二、适用班级: 三、指导教师: 四、设计目的与任务: 学生通过理论设计和实物制作解决相应的实际问题,巩固和运用在《单片机技术》中所学的理论知识和实验技能,掌握单片机应用系统的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。 五、设计内容与要求 设计内容 1、数字电子钟 设计一个具有特定功能的电子钟。该电子钟上电或按键复位后能自动显示系统提示符“P.”,进入时钟准备状态;第一次按电子钟启动/调整键,电子钟从0时0分0秒开始运行,进入时钟运行状态;再次按电子钟启动/调整键,则电子钟进入时钟调整状态,此时可利用各调整键调整时间,调整结束后可按启动/调整键再次进入时钟运行状态。 2、数字频率计 设计一个能够测量周期性矩形波信号的频率、周期、脉宽、占空比的频率计。该频率计上电或按键复位后能自动显示系统提示符“P.”,进入测量准备状态。按频率测量键则测量频率;按周期测量键则测量周期;按脉宽测量键则测量脉宽;按占空比测量键则测量占空比。 3、数字电压表 设计一个能够测量直流电压的数字电压表。测量电压范围0~5V,测量精度小数点后两位。该电压表上电或按键复位后能自动显示系统提示符“P.”,进入测量准备状态,按测量开始键则开始测量,并将测量值显示在显示器上,按测量结束键则自动返回“P.”状态。 4、交通灯 设计一个具有特定功能的十字路口交通灯。该交通灯上电或按键复位后能自动显示系统提示符“P.”,进入准备工作状态。按开始键则开始工作,按结束键则返回“P.”状态。要求甲车道和乙车道两条交叉道路上的车辆交替运行,甲车道为

反应釜温度过程控制课程设计

过程控制系统课程设计 课题:反应釜温度控制系统 系别:电气与控制工程学院 专业:自动化 姓名:彭俊峰 学号:092413238 指导教师:李晓辉 河南城建学院 2016年6月15日

引言 (1) 1系统工艺过程及被控对象特性选取 (2) 1.1 被控对象的工艺过程 (2) 1.2 被控对象特性描述 (4) 2 仪表的选取 (5) 2.1过程检测与变送器的选取 (5) 2.2执行器的选取 (6) 2.2.1执行器的选型 (7) 2.2.2调节阀尺寸的选取 (7) 2.2.3调节阀流量特性选取 (7) 2.3控制器仪表的选择 (8) 3.控制方案的整体设定 (10) 3.1控制方式的选择 (10) 3.2阀门特性及控制器选择 (10) 3.3 控制系统仿真 (12) 3.4 控制参数整定 (13) 4 报警和紧急停车设计 (14) 5 结论 (15) 6 体会 (16) 参考文献 (17)

反应器是任何化学品生产过程中的关键设备,决定了化工产品的品质、品种和生产能力。釜式反应器是一种最为常见的反应器,广泛的应用于化工生产的各个领域。釜式反应器有一些非常重要的过程参数,如:进料流量(进料流量比)、液体反应物液位、反应压力、反应温度等等。对于这些参数的控制至关重要,其不但决定着产品的质量和生产的效率,也很大程度上决定了生产过程的安全性。 由于非线性和温度滞后因素很多,使得常规方法对釜式反应器的控制效果不是很理想。本文以带搅拌釜式反应器的温度作为工业生产被控对象,结合PID 控制方式,选用FX2N-PLC温度调节模块,同时为了提高系统安全性,设计了报警和紧急停车系统,最终设计了一套反应釜氏的温度过程控制系统。

温度控制器的工作原理

温度控制器的工作原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID模糊控制技术*用先进的数码技术通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。 传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。 要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控时,很多人会放弃自动控制而采用调压器来代替温度控制器。当然,在电压稳定工作的速度不变、外界气温不变和空气流动速度不变的情况下,这样做是完全可以的,但要清楚地知道,以上的环境因素是不断改变的,同时,用调压器来代替温度控制器时,必须在很大程度上靠人力调节,随着工作环境的变化而用人手调好所需温度的度数,然后靠相对稳定的电压来通电加热,勉强运作,但这决不是自动控温。当需要控温的关键很多时,就会手忙脚乱。这样,调压器就派不上用场,因为靠人手不能同时调节那么多需要温控的关键,只有采用PID模糊控制技术,才能解决这个问题,使操作得心应手,运行畅顺。例如烫金机,其温度要求比较稳定,通常在正负2℃以内才能较好运作。高速烫金机烫制同一种产品图案时,随着速度加快,加热速度也要相应提高。这时,传统的温度控制器方式和采用调压器操作就不能胜任,产品的质量就不能保证,因为烫金之前必须要把烫金机的运转速度调节适当,用速度来迁就温度控制器和调压器的弱点。但是,如果采用PID模糊控制的温度控制器,就能解决以上的问题,因为PID中的P,即Pvar功率变量控制,能随着烫金机工作速度加快而加大功率输出的百分量。 有机械式的和电子式的, 机械式的采用两层热膨胀系数不同金属亚在一起,温度改变时,他的弯曲度会发生改变,当弯曲到某个程度是,接通(或断开)回路,使得制冷(或加热)设备工作。

温度控制系统设计方案

温度控制系统设计方案 1引言 温度是工业过程控制中主要的被控参数之一,在冶金、化工、建材、食品、石油等工业中,工艺过程所要求的温度的控制效果直接影响着产品的质量。对于不同场所、不同工艺、所需温度高低围不同、精度不同,则采用的测温元件、测温方法以及对温度的控制方法也将不同,随着电子技术和微型计算机的迅速发展,微机测量和控制技术得到了迅速的发展和广泛的应用。越来越显示出其优越性。 随着集成电路技术的发展,单片微型计算机的功能不断增强,许多高性能的新型机种不断涌现出来。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为自动化和各个测控领域中广泛应用的器件,在温度控制系统中,单片机更是起到了不可替代的核心作用。在工业生产中,如用于热处理的加热炉、用于融化金属的坩锅电阻炉等,都用到了电阻加热的原理。 鉴于单片机技术应用的广泛性和优越性,温度控制的重要性,因而设计一种较为理想的温度控制系统是非常有价值的。本文就是根据这一思想来展开的。 1.1 系统设计的目的和任务 1.1.1 系统设计的目的 通过本次毕业设计,主要想达到以下目的: 1. 增进对单片机的感性认识,加深对单片机理论方面的理解。 2. 掌握单片机的部功能模块的应用,如定时器/计数器、中断、片外存贮器、I/O口等。 3. 了解和掌握单片机应用系统的软硬件设计过程、方法及实现,为以后工作中设计和实现单片机应用系统打下基础。 4. 熟悉闭环控制系统的组成原理及单片机PID算法的实现方法。 1.1.2 系统设计的任务 1.查阅资料,弄清楚所要解决的问题的思路,确定设计方案。 2.系统硬件电路设计。 3.系统相关软件设计。 4.仿真实现温度参数设定、转换、显示等功能。 5.依据对象模型设计控制器参数, 6.系统调试与分析;并依据调试结果予以完善。 1.2毕业设计论文安排 1.论证系统设计方案,设计系统原理图。

基于MCGS的反应釜控制系统设计与实现

基于MCGS的反应釜控制系统设计与实现 Design and Realization about Reactor Control System Based on MCGS 耿瑞芳曹辉马栋萍王暄 GENG Rui-fang,CAO-Hui,MA Dong-ping,Wang-Xuan (北京联合大学生物化学工程学院北京 100023) (Biochemical Engineering College of Beijing Union University ,Beijing,100023)摘要:设计了一套反应釜计算机控制系统,用以实现反应釜配料比值控制,以及反应釜温度—夹套温度串级控制。选用研华工控机、RS232/485转换模块,以及支持MCGS组态及通信功能的天辰智能仪表组成硬件系统;用MCGS工控组态软件编写控制程序。实际运行结果表明,该系统能够按照工艺要求正常运行,串级控制系统调节精度高,可靠性和工作效率均优于简单控制系统。 关键词:反应釜;MCGS;计算机控制系统;串级控制 中图分类号:TP273+.5文献标识码:B Abstract: A computer control system for reactor has been designed for realize materiel-allotment ratio control, and the string control about the Reactor temperature-interlayer temperature. Hardware system is composed of YanHua IPC, RS232/485 transitional module,and TianChen intelligent meters which support MCGS configuration and communication function;Using MCGS industrial control configuration software write the control programs.The practical running results indicate that the system can runs normally according to the technical requests, string controlling system has high adjustive precision, and its reliability and work efficiency are excelled the simple controlling system. Key Words: reactor;MCGS;computer control system;string control 1 引言 反应釜是化工生产过程中的关键设备之一,同时也是主要的能耗设备。搅拌釜式反应器系统是一个非线性、时变、大滞后的间歇反应过程,用于小批量、多品种的液相反应系统,如制药、染料等精细化工生产过程。 MCGS是由北京昆仑通态自动化有限公司研制开发的一套适合国情的、通用性强、高品质、低价位的工控组态软件。它具有简单灵活的可视化操作界面,丰富、生动的多媒体画面,能够支持多种硬件设备,实现“设备无关”,实时性强等优点。 2 工艺流程及控制要求 反应釜系统工艺控制流程图见图1。 图1 反应釜工艺控制流程图 图中, TK-A、TK-B、TK-C为储料罐,分别盛放反应物料A、B、C;LIC-302H(L),LIC-303H

组态王课程设计锅炉温度控制系统

锅炉温度控制系统上位机设计 1.设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对

温度控制器的工作原理

温度控制器的工作原理文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

温度控制器的工作原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID 模糊控制技术 *用先进的数码技术通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。 传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。 要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar 三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控

温度控制器的工作原理

精心整理温度控制器的工作原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID模糊控制技术*用先进的数码技术通过Pvar、Ivar、Dvar (比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。 传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。

要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控时,很多人会放弃自动控制而采用调压器来代替温度控制器。当然,在电压稳定工作的速度不变、外界气温不变和空气流动速度不变的情况下,这样做是完全可以的,但要清楚地知道,以上的环境因素是不断改变的,同时,用调压器来代替温度控制器时,必须在很大程度上靠人力调节,随着工作环境的变化而用人手调好所需温度的度数,然后靠相对稳定的电压来通电加热,勉强运作,但这决不是自动控温。当需要控温的关键很多时,就会手忙脚乱。这样,调压器就派不上用场,因为靠人手不能同时调节那么多需要温控的关键,只有采用PID模糊控制技术,才能解决这个问题,使操作得心应手,运行畅顺。例如烫金机,其温度要求比较稳定,通常在正负2℃以内才能较好运作。高速烫金机烫制同一种产品图案时,随着速度加快,加热速度也要相应提高。这时,传统的温度控制器方式和采用调压器操作就不能胜任,产品的质量就不能保证,因为烫金之前必须要把烫金机的运转速度调节适当,用速度来迁就温度控制器和调压器的弱点。但是,如果采用PID模糊控制的温度控制器,就能解决以上的问题,因为PID中的P,即Pvar功率变量控制,能随着烫金机工作速度加快而加大功率输出的百分量。 有机械式的和电子式的, 机械式的采用两层热膨胀系数不同金属亚在一起,温度改变时,他的弯曲度会发生改变,当弯曲到某个程度是,接通(或断开)回路,使得制冷(或加热)设备工作。电子式的通过热电偶、铂电阻等温度传感装置,把温度信号变换成电信号,通过单片机、PLC等电路控制继电器使得加热(或制冷)设备工作(或停止)

反应釜的温度控制系统的设计毕业设计论文

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 安徽工业大学 毕业设计任务书 学院、系:电气信息学院自动化系 专业:自动化 学生姓名:学号: 设计题目: 基于HDU4000过程控制系统的反应釜温 度控制系统的设计 起迄日期: 设计地点: 指导教师: 系主任:

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 毕业设计任务书 1.毕业设计课题的任务和要求: 反应釜生产和消费应用的高速增长期,已广泛应用。化工生产等必不可缺,所以反应釜的温度控制也尤为重要,尤其是恒温阶段,本设计要求 1.介绍控制系统的硬件组成,所采用的控制方案; 2.利用可编程逻辑控制器实现反应釜温度控制; 3.使用组态软件对系统进行组态; 4.监控温度PLC 控制系统的运行情况。 2.毕业设计课题的具体工作内容(包括原始数据、技术要求、工作要求等):本系统是以PLC、WinCC为基础,利用PLC实现温度控制系统的设计和应用。设计人员应具备下列知识: 1. 以过程控制实验装置中的反应釜温度作为被控对象设计一个控制对象,实现对反应釜温度的恒值控制; 2.组态测控界面上,实时设定并显示温度给定值、测量值及控制器输出值; 3.实时显示温度给定值实时曲线、温度测量值实时曲线; 4.选择合适的整定方法确定PID参数,并能在组态测控界面上实时改变PID参数。 5.设计的反应釜温度控制系统要能够实现反应釜温度的自动控制,控制作用又快又好,。

过程控制系统复习题2010

在控制系统中,增加比例度,控制作用;增加积分时间;控制作用;增加微分时间,控制作用。减少、减少、增加。 1.过程控制系统一般由控制器、执行器、被控过程、测量变送等环节组成。 2、过程控制系统中按被控参数的名称来分有压力、流量、液位、温度等控制系统。 2.过程控制系统由工程仪表和被控过程两部分组成。 3.过程控制仪表的测量变送环节由传感器和变送器两部分组成。 4.过程检测仪表的接线方式有两种:电流二线制四线制、电阻三线制 5.工程中,常用引用误差作为判断进度等级的尺度。 6.压力检测的类型有三种,分别为:弹性式压力检测、应变式压力检测、压阻式压力检测7.调节阀按能源不同分为三类:气动调节阀、电动调节阀、液动调节阀 8.电动执行机构本质上是一个位置伺服系统。 9.气动执行结构主要有薄膜式和活塞式两大类。 10. 理想流量特性有四类,分别是直线、对数、抛物线、快开。 11. 过程数学模型的求取方法有三种,分别是机理建模、试验建模、混合建模。 12.PID调节器分为模拟式和数字式两种。 13.造成积分饱和现象的内因是控制器包含积分控制作用,外因是控制器长期存在偏差。14.自动控制系统稳定运行的必要条件是:闭环回路形成负反馈。 15. DCS的基本组成结构形式是“三点一线”。 2、仪表的精度等级又称准确度级,通常用引用误差作为判断仪表精度等级的尺度。 t;静态3、过程控制系统动态质量指标主要有衰减比n 、超调量σ和过渡过程时间s 质量指标有稳态误差e ss 。 4、真值是指被测变量本身所具有的真实值,在计算误差时,一般用约定真值或相对真值来代替。 5、根据使用的能源不同,调节阀可分为气动调节阀、电动调节阀和液动调节阀三大类。 6、过程数学模型的求取方法一般有机理建模、试验建模和混合建模。 7、积分作用的优点是可消除稳态误差(余差),但引入积分作用会使系统稳定性下降。 8、在工业生产中常见的比值控制系统可分为单闭环比值控制、双闭环比值控制和变比值控制三种。 9、Smith预估补偿原理是预先估计出被控过程的数学模型,然后将预估器并联在被控过程上,使其对过程中的纯滞后进行补偿。 1、过程控制系统中,有时将控制器、执行器和测量变送环节统称为过程仪表,故过程控制系统就由过程仪表和被控过程两部分组成。 2、仪表的精度等级又称准确度级,级数越小,仪表的精度就越高。 3、过程控制主要是指连续生产过程,被控参数包括温度、压力、流量、物位和成分等变量。 p三种。 4、工业生产中压力常见的表示方法有绝对压力pa 、表压力p 和负压(真空度)a 5、调节阀的流量特性有直线流量特性、对数(等百分比)流量特性、抛物线流量特性和快开流量特性四种。 6、时域法建模是试验建模中的一种,可分为阶跃响应曲线法和矩形脉冲响应曲线法。

管式加热炉温度-温度串级控制系统的设计

课程设计任务书 学生姓名:方诗豪专业班级:自动化0804 指导教师:傅剑工作单位:自动化学院 题目: 管式加热炉温度-温度串级控制系统的设计 初始条件: 管式加热炉是石油工业中重要的设备之一,它的任务是把原油加热到一定的温度,以保证下一道工序的顺利进行。加热炉的工艺过程为:燃料油经雾化后在炉膛中燃烧,被加热油料流过炉膛四周的排管后,就被加热到出口温度。试以温度-温度串级控制控制策略设计过程控制系统,使得管式加热炉出口温度为为70℃,稳态误差±2℃。 要求完成的主要任务: 1、了解管式加热炉工艺设备及其工作流程 2、基于对象特点分析,绘制控制系统方案图 3、确定系统所需检测元件、执行元件、控制器技术参数 4、撰写系统调节原理及调节过程说明书 5、总结课程设计的经验和收获 时间安排 12月19日选题、理解课题任务、要求 12月20日方案设计 12月21~28日参数计算、撰写说明书 12月29日答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 前言 (2) 1设计的目的及意义 (3) 1.1管式加热炉简介 (3) 1.2 设计目的及意义 (4) 2 管式加热炉温度控系统工作原理及控制要求 (4) 3 总体设计方案 (5) 3.1 温度—温度串级控制系统 (5) 3.2 方案特点 (6) 4 串级控制系统分析 (6) 4.1 主回路设计 (6) 4.2 副回路选择 (7) 4.3 主、副调节器规律选择 (7) 4.4 主、副调节器正反作用方式确定 (7) 4.5 控制器软件设计 (7) 4.6数字PID控制器参数整定 (9) 5 各仪表的选取及元器件清单 (10) 5.1 温度检测元件 (10) 5.2 温度变送器 (12) 5.3 调节阀 (13) 5.4 联锁保护 (13) 6 感受和体会 (14)

室内温度检测控制器.

山东科技大学 课程实训说明书课程:单片微机原理 题目:室内温度检测控制器 院系:信息工程系 专业班级:电子信息科学与技术13-2班 学号:201323010230 学生姓名:徐志宏 指导教师:亓涛许晋京 2015 年12 月31 日

目录 一、课题设计思路 1.1 功能要求…………………………………………………. 1.2 设计原理及原理图…………………………………. 1.3 系统流程图………………………………………………. 二、硬件设计及软件编程 2.1 电路连线引脚图………………………………… 2.2 温度传感器 2.2.1 DS18B20工作原理……………………………. 2.2.2 硬件连接…………………………………… 2.2.3 软件程序设计……………………………… 2.3 时间存储器 2.3.1 DS1302工作原理………………………….. 2.3.2硬件连接…………………………………… 2.3.3软件程序设计………………………………. 2.4 EEPROM 2.4.1 24C16工作原理……………………………. 2.4.2硬件连接…………………………………… 2.4.3软件程序设计……………………………… 2.5 按键设计………………………………………… 三、整体文件工程…………………………………… 四、实训总结………………………………………

一、课题设计思路 1.1 功能要求 实时检测室内环境温度,并通过继电器控制电加热器的开关,保持所处监测点温度保持在设定温度范围内。显示器实时显示实际温度值。超过温度设定值蜂鸣器报警与闪光三秒,并将超限值和超限时间保存在EEPROM中。温度值可人工随时设定、保存、查询显示功能。显示器的显示模式可通过键盘控制,显示模式有:实时温度,当前时间的月、日和时、分,设定的超温报警下限、电加热下限(低于报警下限启动电热器)、报警上限、风冷却上限(高于报警上限启动风扇)。可查询报警参数及时间(时、分)。 1.2 设计原理及系统原理图 ①温度传感器DS18B20将收集到温度数据传到单片机中经过数据处理在LED数码显示管中显示出来。 ②单片机和SPI总线存储器DS1302进行通信,单片机向存储器写入一串命令,然后,单片机读出时间数据进行显示。 ③设计两个按键实现二者的转换,键1实现显示温度,键2实现显示时间,另外设4个按键实现时间中小时数值的加减和分钟的加减以达到实现设定时间的目的。 ④将读出的温度与设定的数据(温度上下限)进行比较,若不在范围内则蜂鸣器报警、发光二极管闪烁;超过上限则通过继电器启动电风扇,超过下限则启动电热器 ⑤将超限值写入EEPROM中再读出,按键实现上下限以及超限值的显示。另外设两个按键实现上下限的加减以便达到自定义上下限的目的。系统原理图如下:

温度控制系统

目录 第一章设计背景及设计意义 (2) 第二章系统方案设计 (3) 第三章硬件 (5) 3.1 温度检测和变送器 (5) 3.2 温度控制电路 (6) 3.3 A/D转换电路 (7) 3.4 报警电路 (8) 3.5 看门狗电路 (8) 3.6 显示电路 (10) 3.7 电源电路 (12) 第四章软件设计 (14) 4.1软件实现方法 (14) 4.2总体程序流程图 (15) 4.3程序清单 (19) 第五章设计感想 (29) 第六章参考文献 (30) 第七章附录 (31) 7.1硬件清单 (31) 7.2硬件布线图 (31)

第一章设计背景及研究意义 机械制造行业中,用于金属热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶惯性环节。现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。 自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。 ,

相关文档
相关文档 最新文档