文档库 最新最全的文档下载
当前位置:文档库 › 传感器原理与应用课程设计

传感器原理与应用课程设计

传感器原理与应用课程设计
传感器原理与应用课程设计

传感器原理与应用课程设计

全电子式汽车仪表总成

设计指导书

谢森李振华

上海电视大学

目录

第一章设计任务书 (1)

第二章设计提示 (3)

第三章参考设计 (8)

第四章仿真调试 (13)

第五章电路板制作 (18)

第六章设计报告写法 (20)

第一章设计任务书

一、题目:全电子式汽车仪表总成设计

二、目的:

同学们学过传感器原理及应用课程后,已初步了解了常用传感器的工作原理、特点等理论知识,但还缺乏实际设计应用的能力。今安排的课程设计——汽车仪表总成,是一种把汽车上所有测量仪表总装在一起,集中向驾驶员提供各种驾驶信息的仪表板。选择这个课题,不仅因为这里检测的参数,正是许多其它工业测控中最常用到的温度、压力、液位、速度、大电流等参数,具有代表性、综合性,可以培养我们的实际工作能力;而且因为全电子式仪表具有一定的先进性,它代表了当前汽车仪表的发展方向,可以培养我们的研发能力。传统汽车仪表属机电热力式仪表,其体积大、功耗大而寿命不长,故正朝电子化,微机化方向迅猛发展。

希望同学们能在设计过程中学会从工程角度思考问题,熟悉本专业领域的传感器产品,学会对产品传感器的正确接口、信号调理、线性化、校准及常用的电子显示/报警方法。

三、任务:

本课程要求同学从图一汽车仪表总成图中的二组仪表中各任选一半(即三只表),将其改进设计为全电子式的仪表。

其中车速-里程表任务属于数字仪表设计训练,只要求考虑一种老师建议的系统方案,要求通过查找IC手册,把完整详细的电路图画出来,讲清工作原理,进行必要的计算即可。不仿真、不制作,只作理论设计。

组合仪表任务属于模拟仪表设计训练,这是传感接口技术中最重要的基本功,故要求任选二只表进行详细的EWB仿真设计和实际制作(每组同学可共同制作一只或二只表),记下调试数据!进行结果误差分析。每只表都要讨论二种以上的设计方案,但只选择一种性价比最高的方案进行设计、仿真和制作。报告一律用五号字体WORD打印,一般6页左右即可。

要特别注意传感器的选择。作为产品设计方案应优选当前市售商品,但本实验设计允许选用简易元件(如PN结二极管,普通热敏电阻等,具体见下提示),以便实验室仿真和制作。你若对产品设计饶有兴趣,可在“方案讨论”中讨论一下即可。

最后的“发挥题”仅供思考,可与教师讨论,但不写入报告。

图一全电子式汽车仪表总成基本组成

四、具体指标和要求

1.车速表用20只LED线状显示汽车的即时行驶速度。

测速范围:0—100km/h

每LED显示:5km/h

轮胎直径:900mm

2.里程表用数码显示所行驶的不可复位累计总路程,及可复位单次小计路程。

计程范围:不可复位累计总里程0—99999.9 km,可复位小计里程0 —999.9 km

分度:以100米计数一次,即1次/0.1km

轮胎直径:900mm

3.油量表用3只LED条状显示燃油箱中的燃油油量。

测量范围:0—1/3—2/3—1

每LED约显示:1/3

4.油压表产品用10只LED条状显示发动机润滑油压力。

测量范围:0.5—5 bar,(自制时可降低标准为7只LED,范围:0.5—3 bar。)

每LED显示:0.5 bar

5.水温表用6只LED条状显示发动机冷却水温度,并以最高3只红LED作超温报警。

测量范围:50℃~ +100℃

每LED显示:10℃左右,(注意线性化显示)。

6.电流表分别用五只绿色LED和五只红色LED点状显示蓄电池充、放电流。

测量范围:-50A~0~+50A

每LED显示:10A(注意避免导线及接触电阻的影响).

五、发挥题

1.车内外气温表用二只二极管作自制的温度传感器和一只转换开关,以数码形式切换显示车内外气温(-20 ~ +50 ℃+/-1℃)。

2.无接触(免软轴连接)式车速里程传感器及其配套表设计软轴加工要求高且易损坏,若改用霍耳IC片、接近开关或干簧管自制车速里程传感器,则寿命和可靠性可大为提高。

3.自行设计一种高精度车速里程表传感器(精度不亚于10cm)注意克服负载对轮胎外径的影响。4.倒车防撞报警仪用超声波压电陶瓷传感器,测出物体距车尾小于1.5米时发出声光报警,或物体距车两侧小于0.4米时发出声光报警。

六、参考进度

1.查阅并自学常用汽车传感器资料——1天。至少要查到转速、油量、油压、温度传感器各二种类型以上,并记录其原理、特点及典型应用方法。

2.查阅/自学IC资料和大电流检测方法并初拟各表的实现方案——1天。至少要查到LM2917频率-电压转换器,LM3914点/条状LED 显示驱动器、LM324单电源四运放、CD4040 十二位二进制串行计数器、ICM7225 四位半LED数码管的脉冲计数/译码/驱动器、7805三端稳压器、7660负电压产生器,大电流检测的四端点电阻采样法、霍尔效应法。

3.三只表的详细电路图设计——3天。

4.计算机仿真——2天

5.制作调试——3天

6.撰写设计报告——4天。平时一定要注意搜集/记录资料,设计计算、实测数据不可缺少。

第二章 设计提示

准备:1.按任务书要求查阅传感器资料。

2.重点学习 一种汽车专用IC (也可广泛用于家电等) LM3914的内部结构原理,考虑如何用普通运放LM324仿制和用EWB 仿真。

3.LM3914的典型用法:

a .固定增益(1.2V 满量程)的最简单用法——只需外加一只电阻。

B .改变增益(最大可提高到200mV 满量程)的方法——内1. 2V 分压后作基准电压。

C .闪烁报警方法——看发放的资料。

一、 车速表

只要求考虑如下一种系统方案,要求通过查找IC 手册,把完整详细的电路图画出来,讲清工作原理,进行必要计算即可。不仿真、不制作。

图二 车速表原理图

传感器概要:

选用 SZMB —5型磁电式转速传感器,配合高为900mm 的轮胎时,其特性为每转输出60个正弦波(幅度>300mv ,但不稳定),故车速0~100km/h 时, 对应输出0~589.2Hz 近似正弦波。 计算提示:

1.先求出最大车速100km/h 时,传感器输出信号的频率fi ; 2.LM2917的输出公式:V out=Vcc.R1.C1.fi 二、 里程表

也不仿真和制作。

车速表和里程表应共用一个 SZMB —5型磁电式转速传感器,以降低成本.

注:为防止掉电而丢失里程数据,需选用有记忆功能的机械计数器,如青岛海泰电气股份公

司的876-I (II 、III )型六位电磁计数器,它不带回零装置,可防止篡改。

0~

计算提示: 先求900mm 的轮胎周长C ,再求脉冲当量q=C/60个脉冲(=0.047167m/脉冲),由此得 每100米应计数n=100/q 化为二进数=100001001010 (B),由此推得对应于CD4040的脚名和脚号,进行连线 。

三、 油量表

传感器:可用电阻式油量表,它有正向和反向变化式二种。典型正向变化式特性为 油量:0~1/2~1 对应输出电阻:0~30~60Ω 反向变化式(昌河ULG-17):油量:0~1/2~1 对应输出电阻:110~32.5~0Ω

此法简单,但因Rs 小,故非线性大,接近1LED (应自行计算分析),无法接受。

系统方案2——恒流源电阻取压采样

此法线性及抗干扰性均好,是电阻性传感器的优选取样电路之一,故决定采用。

简易恒流源参考电路:

精密恒流源参考电路:

简易恒流源计算提示:

1.基极分压电阻应较小,使510上压降稳定在2V 上,

2.为使Rx 上能产生满幅显示所需1.2V ,I=(2--0.7)V/W 应为20mA

条形显示器的实验制作:考虑到任务指标只要高中低三档显示,故可以用一只LM324 仿

照LM3914(见附录“参考资料”)自制。

20mA Rs=R1

820 820

四、油压表

系统方案:常用油压表也是电阻式的,故也有如上二种方案可选,不过因其阻值较高(185Ω)非线性不大,故取第一种方案——直接电阻分压取样。

传感器特性:

一种典型的电阻式油压传感器的实测数据为:

输入压力:0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 bar

实际输出:10, 28, 48, 65, 82, 98, 116, 133, 150, 168, 185欧姆

线性输出:10, 32, 45, 63, 80, 98, 115, 133, 150, 168, 185欧姆

可见线性已经比较理想。

计算:5V(185)/(185+Rs)=1.2V 解得Rs=585Ω

条形显示器的实验制作:考虑到实验制作指标可降低到7档显示,故可以用二只

LM324 仿照LM3914自制。

五、水温表

系统方案讨论:

常用的温度传感器种类很多,如热电偶,热电阻,热敏电阻,PN结,AD590等。可考虑用热敏电阻或PN结。

1.热敏电阻方案:

热敏电阻公式:Rt=Ro*exp[B(1/T —1/To),B为材料常数,T为绝对温度。

为克服热敏电阻低端电阻不为零的特性,宜采用电桥检测电路。(注意热敏电阻的负温度电阻特性,应将热敏电阻放在电桥的合适部位)。

为克服热敏电阻的严重非线性影响,可在其上并一只合适电阻Rp=Rm(B – 2Tm)/(B + 2Tm),其中Rm 为量程中点温度处的热敏电阻阻值;B 为热敏电阻的材料常数;Tm为量程中点处的绝对温度。

传感器特性:

RC7-1型电阻式温度传感器的实测数据为: 输入温度: 30 , 60 ,90, 120 , 150,160℃ 对应电阻:2013, 581, 205, 85 40,32Ω

可见线性很差。

计算:B=ln (R1/Ro )/(1/T1-1/To )=ln (32/581)/(1/433-1/333)=4180 则得公式:Rt=581*exp4180(1/T-1/333)

由此计算得:

线性化计算:采用并电阻方案RP=Rm (B —2Tm )/(B+2Tm )=338(4180 - 2*348)/(4180 +2*348)=241Ω, 则50,60,70,80,90,100℃时,对应总电阻分别为188,170,151, 131,111,93Ω,由此 画出曲线如下,可见线性大大改善.

t ℃ 100

75 100

500

1000

R 50

2.PN 结实验方案:

图三 PN 结水温表传感器实验制作.ewb

六、 电流表

系统方案讨论:

常用的直流大电流检测主要有二种:四端电阻法和霍耳效应法。由于 前者可以用简单结构避免不稳定的接触电阻影响,成本低,工作可靠,故选择四端电阻法。为减少能耗,应尽量减小其上的电压降。

自制大电流传感器原理:

r1、r2上的压降并不输入到测量放大器,而r3、r4相对测量放大器的高输入阻抗,可以忽略,保证了测量精度。

I

第三章 汽车仪表总成参考设计

一、 车速表

二、 里程表

f i

三、油量表

油量表实验制作:因只要3 级LED显示,故用一只LM324仿制LM3914即可。

LM3914原理与仿真:

外接电路Vcc

四、油压表

实际制作或仿真时,可用二片LM 324代替LM3914 ,仅作7段压力显示。

五、 水温表 本次实验暂不做显示部分,只做传感器接口电路。

1.热敏电阻方案:

3. PN 结实验方案:

图四 PN 结水温表传感器实验制作.ewb

R x=

六.电流表错误!

第四章仿真调试

利用仿真来调试电路,已经是现代电子系统设计开发产品的必由之路了。通过仿真可以检查电路的工作点、可以校准仪表、测量误差,获得设计报告所需的一切数据,还可以看到LED亮暗及数字显示等实际输出的效果。我们希望同学们通过仿真实践,还要学会常用电子仪器的使用,学会设计检修各种汽车仪表的通用思路和方法。

一、EWB5的使用概要

将已解压的EWB5子目录拷贝到你的PC机上,不用安装,即可运行其中的EWB32.EXE,直接进入仿真窗口。

又叫图纸区

一般操作步骤如下:

1.从窗首的器件库图标中找到你所需要的器件(包括测试仪表),用鼠标拖放到空白图纸区;

2.双击图纸上的器件,可以设置它的符号名称及各种参数大小、颜色等属性;

3.连接电路:将鼠标移近器件引脚末端,待出现小黑点时可用鼠标拖出连线,进行连接。一个小黑点四周只能连四根线,若周边方向错了,就会出现绞线。若导线重叠,就会出现假断线。

若二器件引脚未经导线连接就直接相接触,表面看是通了,实际是“假焊”。拖动一下器件就清楚了。

4.要在图上任意位置标注文字,可取一个独立的“连接点”元件(小黑点),双击之,即可在其LABLE栏书写任意中文说明。

5.按下窗口右上方的电源按钮(又叫仿真开关),电路即可工作。

6.调整电位器校准仪表。每一个电位器都有一个标识如图W,

按其标识键W就可以改变其百分比阻值,按caps键可以改变其变化方向。如忘了,可选中电位器后再按F1键帮助。如有多个电位器,则可双击电位器,在Value卡的Key:中改变标识键字符,加以区别。

二、验证方案设计

因为仿真中的传感器大多要用V、I、R或信号发生器代替,而它们的数值又往往和真实被测物理量的数值不同。这就需要选择一种替代(模拟)传感器的参数种类及其数值大小,拟订一套实验方法,来验证整个仪表的功能或考核仪表误差。

例1:里程表中,我们不可能使用真的传感器或真的让汽车跑起来,然后检验屏幕中的电路是否真的显示正确。但分析电路工作原理知,它只不过是对脉冲计数。我们只要知道数码管每显一个字代表0.1公里,传感器每个脉冲代表0.04712米,就不难算出要输入N=100/0.04712=2122个脉冲,数码管显示才增1。于是我们可用f=1KHz的方波发生器代替SZMB-5型转速传感器,用示波器监视其波形,当示波器窗口底部的状态栏显示运行时间为2122mS时,按下“暂停”按钮,看数码管是否真的显示末位翻1了即可。

例2:油量表因为油量传感器特性为,油量0-1/2-1对应输出电阻0-30-60Ω,所以油量传感器可以用100Ω的电位器Rx来替代。当Rx=0时,所有LED应灭;当Rx=20Ω时,LED1应亮;

当Rx=40Ω时,LED1、2应亮;当Rx=60Ω时,LED1应全亮。

例3:Rt水温表

已知RC7-1型热敏电阻式温度传感器的实测数据为:

输入温度:30 ,60,90,120 , 150,160℃

对应电阻:2013, 581, 205, 85 40,32Ω

故可用1K或5K电位器代替温度传感器。但若直接按上表校验,则只有二个数据落在LED显示范围(50~100℃)内,无法精确校核测量精度。为此需要计算每一个LED对应的电位器阻值。

热敏电阻公式:Rt=Ro*exp[B(1/T —1/To),B为材料常数,T为绝对温度

先由已知数据To=60+273=333K,Ro=581;T1=160+273=433,R1=32代入上式,

可解得:B=ln(R1/Ro)/(1/T1-1/To)=ln(32/581)/(1/433-1/333)=4180

则得公式:Rt=581*exp4180(1/T-1/333)由此计算得:

例4:PN结水温表

硅二极管的静态压降约0.7V,温度系数约-2.25mV。但若依此确定用电压源来代替PN结温度传感器,则误差是很大的。因为以上数据是近似的,还与二极管上所串的电阻等具体电路有关。EWB 软件可为每一个元件设置环境温度参数,我们可利用它来校核仪表的测温精度。

三、仪表的校准,即调零/调量程工作

一般线性模拟仪表都要通过调零/调量程工作,才能做到测量准确。调零就是在以显示量程低端值对应的输入信号下,调节调零电位器,使仪表显示量程的低端值。调量程就是在量程最大值对应的输入信号下,调节仪表的总放大倍数,使仪表显示量程的高端值。这二端调准了,其他输入下的测量也就可以认为准了。如有误差,也就是仪表误差了。

四、设计记录表格做好数据记录和分析

本套仪表多以少量LED作显示,若直接以它作输出来分析仪表误差,意义不大。因为它不能反映除LED外的整个放大器的好坏,本身的方法误差也很大。因此,我们改用放大器的最终输出端电压(以下简称“仪表输出V o”)作输出记录。

1. 以热敏电阻水温表为例,可设计如下记录表格:

2. 画出输入/输出曲线:

3.计算仪表最大绝对误差:Δvomax= (V ), 转化为实际温度值为ΔY omax= (℃)

仪表线性度(非线性误差):

五、参考实验步骤 ㈠油量表画

1.画出实验电路,标上测试点符号,接上测试仪表。参见下图:

1. 调准恒流源:调电位器W ,使Io=20mA

2. 调零:将电位器R 调至0,检查V r 及V o 均应为0 3. 调满量程:将传感器R 置满量程60Ω,检查V r 及V o 均应为1.2V 4.

V omax V omin 50 60 70 80 90 100

温度t (℃)

输出电压V e = f V o F.S.

ΔV omax

X100%

㈡油压表

1.画出实验电路,标上测试点符号,接上测试仪表。参见下图:

Ro

2. 调满量程:将传感器R置满量程133Ω(代表压力

3.5bar),调电阻Ro,使Vx为1.2V

3.调零:将电位器R调至0,检查Vx及V o均应为0

4. 填写下表,检查全部亮灯功能及仪表精度.

㈢热敏电阻式水温表

1.画出实验电路,标上测试点符号,接上测试仪表。参见下图:

2.调零:将传感器X置温度最低端(50℃) 857Ω处,调电位器Z,使V i+及Vi-近似相等, 此时V o应≈

0,(∵电位器不能连续调节,∴若不串/并电阻就无法调到V o绝对为0)。

3.调满量程:将传感器X置满量程(100℃)151Ω,同时粗调二个增益电阻110K,使V o近似为

1.2V,若满量程显示有误差,可留待末级(显示电路)来精细调解总增益。

4.

调零

传感器

㈣PN结式水温表

1.画出实验电路,标上测试点符号,接上测试仪表。参见下图:

2.调零:双击1N4148,在跳出的属性窗的Analysis Setup卡中设置Temperature为50即温度最低端

(50℃)处,然后调电位器Z,使V i+及Vi-近似相等, 此时V o应≈0。

3.调满量程:同上法,将传感器1N4148置满量程(100℃),调增益电位器F,使V o近似为

1.2V,若满量程显示有误差,可留待末级(显示电路)来精细调解总增益。

4.

第五章实验电路板制作

一、正规电路板制作

当仿真调试通过后,就可以用制板CAD软件PROTE设计印刷电路板图。这时首先要根据印板大小/形状、操作/调试/出线方便,有可能的话尽量按信号流向,高频或高输入阻抗时还要考虑抗干扰这些因素,认真将集成电路、电位器、进出端子等大件及固定孔位置布置好,即所谓“布局”工作做好。集成电路定位槽方向应保持一致,不要贪图走线方便而颠倒方向。然后,以各集成电路为中心,按电路图将电阻电容等小元件和每一根连线连好:普通连线越短越好;穿过IC管脚间的连线不要超过一根;双面排线时,上层尽量都走水平线,下层尽量都走垂直线,以避免形成绕不开的交叉线;单面排线时,可在上层(元件面)安排很短的“跳接线”,以避开线路交叉造成的短路故障;电源和地线尽量走四边,地线面积尽量大些。存盘后即可送加工厂,拍照、腐蚀、钻孔,涂上阻焊涂料,丝印上标注文字,即成为非常美观好用的成品印刷电路板。

二、实验电路板制作

早期采用可反复拔插元件的“面包板”,但因接触不良,故障很多,现已淘汰。现多采用均匀密布焊盘的“通用印刷电路板”,进行实验制作。其基本布局和连线的原则同上,不再赘述。

由于通常实验板面积较大,故以集成电路为中心布局RC的同时,还提倡元器件尽量平放,不要竖放,不要拥挤。尽量按电路原理图中该元件的相对位置布局,以增强电路板的可读性。同时最好在电路板的引出线/接线端子及电位器旁贴上标签,以便识别。对于实验中要经常调试的器件,还要兼顾调节方便来确定位置。

焊RC时,尽量不要剪断引脚,而应让引脚穿过板子后直接当作连线使用。不得已剪下的引脚也不应丢弃,可作连线使用,故发下的连线是很少的!请参见下面的实物照片。

为了防止调试过程中因不小心短路而烧毁器件,可用剪下的元件引脚线将电路的测试点单独焊出。测试时让它穿过一张纸后,再接万用表或鳄鱼夹。电源线与板上器件不当心短路是最危险的,故不要将电源鳄鱼夹直接夹到电路板上,而应用长短不同的软导线(30cm以上)将板上电源线引出后,再夹上电源鳄鱼夹,让鳄鱼夹远离电路板,最后再将鳄鱼夹夹到书里,可保万无一失。

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

传感器原理与应用重点

第一章测量技术基础 检测系统的基本概念 检测系统(测试系统 /测量系统 1、定义:确定被测对象的属性和量值为目的的全部操作 2、被测对象:宇宙万物(固液气体、动物、植物、天体…… 3、被测信息:物理量(光、电、力、热、磁、声、… 化学量(PH 、成份… 生物量(酶、葡萄糖、… 4检测技术是实验科学的一部分, 主要研究各种物理量的测量原理和信号分析处理方法。 检测技术是信息技术的重要组成部分, 它所研究的内容是信息的提取与处理的理论、方法和技术。 5信息与信号 信息是指客观世界物质运动的内容。 如:天气较冷、某处地震、刀具发生了磨损、李四病了。 信号是指信息的表现形式。 如:刀具磨损,切削力会加大;李四病了,可能会发烧;等等。 6检测技术是进行各种科学实验研究和生产过程参数测量必不可少的手段, 起着人的感官的作用。

简单的检测系统可以只有一个模块, 如玻璃管温度计。它直接将被测温度变化转化为液面示值。没有电量转换和分析电路,很简单,但精度低,无法实现测量自动化。 为提高测量精度和自动化程度, 以便于和其它环节一起构成自动化装置, 通常先将被测物理量转换为电量,再对电信号进行处理和输出。 B ……在电工、电子等课程中讲授,大多数不属于本课程的范围。 检测系统的组成 一般说来,检测系统由传感器、中间变换装置和显示记录装置三部分组成。 传感器将被测物理量 (如噪声 , 温度检出并转换为电量,中间变换装置对接收到的电信号用硬件电路进行分析处理或经 A/D变换后用软件进行信号分析,显示记录装置则将测量结果显示出来,提供给观察者或其它自动控制装置。 第二章传感器概述 传感器的组成和分类 一、传感器定义 传感器是一种以一定的精确度把被测量转成与之有确定关系的, 便于应用的某种物理量的测量装置。 传感器名称:变送器、变换器、探测器、敏感元件、换能器、一次仪表、探头等 二、传感器的组成 三、传感器的分类 按被测参数分类:温度、压力、位移、速度等

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 1.1什么是传感器?(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 1.2传感器特性在检测系统中起到什么作用? 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 1.3传感器由哪几部分组成?说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图1.1所示。 1.4传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意 义?动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 1.5某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 1.6某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、

传感器原理与应用作业参考答案

《传感器原理与应用》作业参考答案 作业一 1.传感器有哪些组成部分在检测过程中各起什么作用 答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。 各部分在检测过程中所起作用是:敏感元件是在传感器中直接感受被测量,并输出与被测量成一定联系的另一物理量的元件,如电阻式传感器中的弹性敏感元件可将力转换为位移。传感元件是能将敏感元件的输出量转换为适于传输和测量的电参量的元件,如应变片可将应变转换为电阻量。测量转换电路可将传感元件输出的电参量转换成易于处理的电量信号。 2.传感器有哪些分类方法各有哪些传感器 答:按工作原理分有参量传感器、发电传感器、数字传感器和特殊传感器;按被测量性质分有机械量传感器、热工量传感器、成分量传感器、状态量传感器、探伤传感器等;按输出量形类分有模拟式、数字式和开关式;按传感器的结构分有直接式传感器、差分式传感器和补偿式传感器。 3.测量误差是如何分类的 答:按表示方法分有绝对误差和相对误差;按误差出现的规律分有系统误差、随机误差和粗大误差按误差来源分有工具误差和方法误差按被测量随时间变化的速度分有静态误差和动态误差按使用条件分有基本误差和附加误差按误差与被测量的关系分有定值误差和积累误差。 4.弹性敏感元件在传感器中起什么作用 答:弹性敏感元件在传感器技术中占有很重要的地位,是检测系统的基本元件,它能直接感受被测物理量(如力、位移、速度、压力等)的变化,进而将其转化为本身的应变或位移,然后再由各种不同形式的传感元件将这些量变换成电量。 5.弹性敏感元件有哪几种基本形式各有什么用途和特点 答:弹性敏感元件形式上基本分成两大类,即将力变换成应变或位移的变换力的弹性敏感元件和将压力变换成应变或位移的变换压力的弹性敏感元件。 变换力的弹性敏感元件通常有等截面轴、环状弹性敏感元件、悬臂梁和扭转轴等。实心等截面轴在力的作用下其位移很小,因此常用它的应变作为输出量。它的主要优点是结构简单、加工方便、测量范围宽、可承受极大的载荷、缺点是灵敏度低。空心圆柱体的灵敏度相对实心轴要高许多,在同样的截面积下,轴的直径可加大数倍,这样可提高轴的抗弯能力,但其过载能力相对弱,载荷较大时会产生较明显的桶形形变,使输出应变复杂而影响精度。环状敏感元件一般为等截面圆环结构,圆环受力后容易变形,所以它的灵敏度较高,多用于测量较小的力,缺点是圆环加工困难,环的各个部位的应变及应力都不相等。悬臂梁的特点是结构简单,易于加工,输出位移(或应变)大,灵敏度高,所以常用于较小力的测量。扭转轴式弹性敏感元件用于测量力矩和转矩。 变换压力的弹性敏感元件通常有弹簧管、波纹管、等截面薄板、波纹膜片和膜盒、薄壁圆筒和薄壁半球等。弹簧管可以把压力变换成位移,且弹簧管的自由端的位移量、中心角的变化量与压力p成正比,其刚度较大,灵敏度较小,但过载能力强,常用于测量较大压力。波纹管的线性特性易被破坏,因此它主要用于测量较小压力或压差测量中。 作业二 1.何谓电阻式传感器它主要分成哪几种 答:电阻式传感器是将被测量转换成电阻值,再经相应测量电路处理后,在显示器记录仪上显示或记

传感器原理与应用复习要点

第一章传感器的一般特性 1.传感器技术的三要素。传感器由哪3部分组成? 2.传感器的静态特性有哪些指标?并理解其意义。 3.画出传感器的组成方框图,理解各部分的作用。 4.什么是传感器的精度等级?一个0.5级电压表的测量范围是 0~100V,那么该仪表的最大绝对误差为多少伏? 5.传感器工作在差动状态与非差动状态时的优点有哪些?灵敏度、 非线性度? 第二章应变式传感器 6.应变片有那些种类?金属丝式、金属箔式、半导体式。 7.什么是压阻效应? 8.应变式传感器接成应变桥式电路的理解、输出信号计算。应变片 桥式传感器为什么应配差动放器? 9.掌握电子称的基本原理框图,以及各部分的作用。 10.电阻应变片/半导体应变片的工作原理各基于什么效应? 11.半导体应变片与金属应变片各有哪些特点。 第三章电容式传感器 12.电容式传感器按工作原理可分为哪3种? 13.寄生电容和分布电容对电容式传感器有什么影响?解决电缆电容 影响的方法有那些? 14.什么是电容电场的边缘效应?理解等位环的工作原理。 15.运算法电容传感器测量电路的原理及特点。 第四章电感式传感器 16.了解差动变压器的用途及特点。 17.差动变压器的零点残余电压产生的原因? 第五章压电式传感器 18.什么是压电效应?什么是逆压电效应?常用压电材料有哪些? 19.压电传感器能否测量缓慢变化和静态信号?为什么? 20.压电传感器的前置放大器电路形式主要有哪两种?理解电压放大 器、电荷放大器的作用。 第六章数字式传感器 21.光栅传感器的原理。采用什么技术可测量小于栅距的位移量? 22.振弦式传感器的工作原理。 第七章热电式传感器 23.热电偶的热电势由那几部分组成? 24.热电偶的三定律的理解。 25.掌握热电偶的热电效应。 26.热电偶冷端补偿原理和必要性及补偿电桥法的补偿原理。 27.铂电阻采用三线制接线方式的原理和特点? 28.采用负温度系数热敏电阻稳定晶体管放大器静态工作点的工作原 理。 29.集成温度传感器AD590的主要特点。 30.数字式集成温度传感器DS18B20的主要特点。 第八章固态传感器 31.霍尔效应 32.霍尔集成传感器——线性、开关两类内部构成。 33.探测微弱光应采用何种传感器? 34.什么是光电效应,什么是光电导效应和光生伏特效应? 35.什么是内/外光电效应?利用此效应制作的典型传感器有那些? 36.为什么光电池作光照度测量时要采用短路输出形式? 37.硅光电池的最大开路电压是多少? 38.硅光电池的光电转换效率理论最大值和实际值? 39.在电路中使用光敏二极管怎样偏置? 40.光电隔离耦合器的内部结构是怎样的? 41.气敏传感器的原理,掌握可燃气体报警电路工作原理。 42.用电阻式湿度传感器测量湿度时,所加的激励电源为什么应为交 流电源?。 43.用光敏传感器设计一个自动开关路灯的控制电路。 第九章光纤式传感器 44.光纤传感器的特点有哪些? 45.光纤传感器的分类? 第十章传感器的标定 46.什么是传感器的标定?何情况下需要标定?第一章传感器的一般特性 1.传感器技术的三要素。传感器由哪3部分组成? 2.传感器的静态特性有哪些?并理解其意义。 3.画出传感器的组成方框图,理解各部分的作用。 4.什么是传感器的精度等级?一个0.5级电压表的测量范围是 0~100V,那么该仪表的最大绝对误差为多少伏? 5.传感器工作在差动状态与非差动状态时的优点有哪些?灵敏度、 非线性度? 第二章应变式传感器 6.应变片有那些种类?金属丝式、金属箔式、半导体式。 7.什么是压阻效应? 8.应变式传感器接成应变桥式电路的理解、输出信号计算。应变片 桥式传感器为什么应配差动放器? 9.掌握电子称的基本原理框图,以及各部分的作用。 10.电阻应变片/半导体应变片的工作原理各基于什么效应? 11.半导体应变片与金属应变片各有哪些特点。 第三章电容式传感器 12.电容式传感器按工作原理可分为哪3种? 13.寄生电容和分布电容对电容式传感器有什么影响?解决电缆电 容影响的方法有那些? 14.什么是电容电场的边缘效应?理解等位环的工作原理。 15.运算法电容传感器测量电路的原理及特点。 第四章电感式传感器 16.了解差动变压器的用途及特点。 17.差动变压器的零点残余电压产生的原因? 第五章压电式传感器 18.什么是压电效应?什么是逆压电效应?常用压电材料有哪些? 19.压电传感器能否测量缓慢变化和静态信号?为什么? 20.压电传感器的前置放大器电路形式主要有哪两种?理解电压放 大器、电荷放大器的作用。 第六章数字式传感器 21.光栅传感器的原理。采用什么技术可测量小于栅距的位移量? 22.振弦式传感器的工作原理。 第七章热电式传感器 23.热电偶的热电势由那几部分组成? 24.热电偶的三定律的理解。 25.掌握热电偶的热电效应。 26.热电偶冷端补偿原理和必要性及补偿电桥法的补偿原理。 27.铂电阻采用三线制接线方式的原理和特点? 28.采用负温度系数热敏电阻稳定晶体管放大器静态工作点的工作 原理。 29.集成温度传感器AD590的主要特点。 30.数字式集成温度传感器DS18B20的主要特点。 第八章固态传感器 31.霍尔效应 32.霍尔集成传感器——线性、开关两类内部构成。 33.探测微弱光应采用何种传感器? 34.什么是光电效应,什么是光电导效应和光生伏特效应? 35.什么是内/外光电效应?利用此效应制作的典型传感器有那些? 36.为什么光电池作光照度测量时要采用短路输出形式? 37.硅光电池的最大开路电压是多少? 38.硅光电池的光电转换效率理论最大值和实际值? 39.在电路中使用光敏二极管怎样偏置? 40.光电隔离耦合器的内部结构是怎样的? 41.气敏传感器的原理,掌握可燃气体报警电路工作原理。 42.用电阻式湿度传感器测量湿度时,所加的激励电源为什么应为交 流电源?。 43.用光敏传感器设计一个自动开关路灯的控制电路。 第九章光纤式传感器 44.光纤传感器的特点有哪些? 45.光纤传感器的分类? 第十章传感器的标定 46.什么是传感器的标定?何情况下需要标定?

传感器原理及应用习题答案

2-4、现有栅长为3mm 和5mm 两种丝式应变计,其横向效应系数分别为5%和3%,欲用来测量泊松比μ=0.33的铝合金构件在单向应力状态下的应力分布(其应力分布梯度较大)。试问:应选用哪一种应变计?为什么? 答:应选用栅长为5mm 的应变计。由公式ρρεμd R dR x ++=)21(和[]x m x K C R dR εεμμ=-++=)21()21(知应力大小是通过测量应变片电阻的变化率来实现的。电阻的变化率主要由受力后金属丝几何尺寸变化所致部分(相对较大)加上电阻率随应变而变的部分(相对较小)。一般金属μ≈0.3,因此(1+2μ)≈1.6;后部分为电阻率随应变而变的部分。以康铜为例,C ≈1,C(1-2μ)≈0.4,所以此时K0=Km ≈2.0。显然,金属丝材的应变电阻效应以结构尺寸变化为主。从结构尺寸看,栅长为5mm 的丝式应变计比栅长为3mm 的应变计在相同力的作用下,引起的电阻变化大。 2-5、现选用丝栅长10mm 的应变计检测弹性模量E=2×1011N/m 2、密度ρ=7.8g/cm 3的钢构件承受谐振力作用下的应变,要求测量精度不低于0.5%。试确定构件的最大应变频率限。 答:机械应变波是以相同于声波的形式和速度在材料中传播的。当它依次通过一定厚度的基底、胶层(两者都很薄,可忽略不计)和栅长l 而为应变计所响应时,就会有时间的迟后。应变计的这种响应 迟后对动态(高频)应变测量,尤会产生误差。由][]e l v f e l l 66max max ππλ<= <或式中v 为声波在钢构件中传播的速度; 又知道声波在该钢构件中的传播速度为: kg m m N E 33 6211108.710/102--????==ρν; s m kg s m Kg /10585.18.7/8.910242 28?=???=; 可算得kHz m s m e l v f 112%5.061010/10585.1||634max =???==-π。 2-6、为什么常用等强度悬臂梁作为应变式传感器的力敏元件? 现用一等强度梁:有效长l =150mm ,固 支处宽b=18mm ,厚h=5mm ,弹性模量E=2×105N/mm 2,贴上4片等阻值、K=2的电阻应变计,并接入四 等臂差动电桥构成称重传感器。试问: 1)悬臂梁上如何布片?又如何接桥?为什么? 2)当输入电压为3V ,有输出电压为2mV 时的称重量为多少? 答:当力F 作用在弹性臂梁自由端时,悬臂梁产生变形,在梁的上、下表面对称位置上应变大小相当,极性相反,若分别粘贴应变片R 1 、R 4 和R 2 、R 3 ,并接成差动电桥,则电桥输出电压U o 与力F 成正比。等强度悬臂梁的应变 E h b Fl x 206=ε不随应变片粘贴位置变化。 1)、悬臂梁上布片如图2-20a 所示。接桥方式如图2-20b 所示。这样当梁上受力时,R1、R4受拉伸力作用,阻值增大,R2、R3受压,阻值减小,使差动输出电压成倍变化。可提高灵敏度。 2)、当输入电压为3V ,有输出电压为2mV 时的称重量为: 计算如下: 由公式:o i i x i o U KlU E bh F E h b Fl K U K U U 66220=?==ε代入各参数算F =33.3N ; 1牛顿=0.102千克力;所以,F=3.4Kg 。此处注意:F=m*g ;即力=质量*重力加速度;1N=1Kg*9.8m/s 2. 力的单位是牛顿(N )和质量的单位是Kg ;所以称得的重量应该是3.4Kg 。

传感器原理与应用心得

传感器原理与应用心得 张宝龙电信工二班201400121099 传感器应用极其广泛,而且种类繁多,涉及的学科也很多,通过对传感器的学习让我基本了解了传感器的基本概念及传感器的静、动态特性电阻式、电感式传感器的结构、工作原理及应用。 传感器的特性主要是指输出入输入之间的关系。当输入量为常量或变化很慢时,其关系为静态特性。当输入量随时间变换较快时,其关系为动态特性。 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、迟滞、重复性、漂移等。 所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。 传感器的作用主要是感受和响应规定的被测量,并按一定规律

将其转换成有用输出,特别是完成非电量到电量的转换。传感器的组成并无严格的规定。一般说来,可以把传感器看做由敏感元件和变换元件两部分组成,。 通过最近的学习,是我了解到在实际中使用传感器的选择一定要慎重。我们可以根据测量对象与测量环境确定传感器的类型。其次,当我们在选择传感器时要注意传感器的灵敏度,频率响应范围,线性范围,稳定性,精度等。 人们为了从外界获取信息,必须借助于感觉器官。而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。 新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 通过对这门课的学习开阔了我的视野,让我了解了以前没有了解的东西。在老师的指导下让我明白了学习要有自觉性,要自己积极主动地去学习。

《传感器原理与应用》综合练习答案(期末考试)

《传感器原理与应用》综合练习 一、填空题 1.热电偶中热电势的大小仅与金属的性质、接触点温度有关,而与热电极尺寸、形状及温度分布无关。 2.按热电偶本身结构划分,有普通热电偶、铠装热电偶、微型热电偶。3.热电偶冷端电桥补偿电路中,当冷端温度变化时,由不平衡电桥提供一个电位差随冷端温度变化的附加电势,使热电偶回路的输出不随冷端温度的变化而改变,达到自动补偿的目的。 4.硒光电池的光谱峰值与人类相近,它的入射光波长与人类正常视觉的也相近,因而应用较广。 5.硅光电池的光电特性中,光照度与其短路电流呈线性关系。 6.压电式传感器的工作原理是基于某些介质材料的压电效应。 7.压电陶瓷是人工制造的多晶体,是由无数细微的电畴组成。电畴具有自己极化方向。经过极化过的压电陶瓷才具有压电效应。 8.压电陶瓷的压电常数比石英晶体大得多。但石英晶体具有很多优点,尤其是其它压电材料无法比的。 9.压电式传感器具有体积小、结构简单等优点,但不能测量频率小的被测量。特别不能测量静态量。 10.霍尔效应是导体中的载流子在磁场中受洛伦茨力作用发生位移的结果。 11.霍尔元件是N型半导体制成扁平长方体,扁平边缘的两对侧面各引出一对电极。一对叫激励电极用于引入激励电流;另一对叫霍尔电极,用于引出霍尔电势。 12.减小霍尔元件温度误差的措施有:(1)利用输入回路的串联电阻减小由输入电阻随温度变化;引起的误差。(2)激励电极采用恒流源,减小由于灵敏度随温度变化引起的误差。 13.霍尔式传感器基本上包括两部分:一部分是弹性元件,将感受的非电量转换成磁物理量的变化;另一部分是霍尔元件和测量电路。 14.磁电式传感器是利用霍尔效应原理将磁参量转换成感应电动势信号输出。 15.变磁通磁电式传感器,通常将齿轮的齿(槽)作为磁路的一部分。当齿轮转动时,引起磁路中,线圈感应电动势输出。 16.热敏电阻正是利用半导体的数目随着温度变化而变化的特性制成的热敏感元件。 17.热敏电阻与金属热电阻的差别在于,它是利用半导体的电阻随温度变化阻值变化的特点制成的一种热敏元件。 18.热敏电阻的阻值与温度之间的关系称为热敏电阻的。它是热敏电阻测温的基础。 19.热敏电阻的基本类型有:负温度系数缓变型、正温度系数剧变型、临界温度型。 20.正温度系数剧变型和临界温度型热敏电阻不能用于温度范围的温度控制,而在某一温度范围内的温度控制中却是十分优良的。 21.正温度系数剧变型和临界温度型热敏电阻属于型,适用于温度监测和温度控制。

传感器原理及应用试题库

一:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件, 测量电路三个部分组成。 2.半导体应变计应用较普遍的有体型、薄膜型、扩散型、外延型等。 3.光电式传感器是将光信号转换为电信号的光敏元件,根据光电效应可以分为 外光电效应,光电效应,热释电效应三种。 4.亮电流与暗电流之差称为光电流。 5.光电管的工作点应选在光电流与阳极电压无关的饱和区域。 6.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式应变计 和箔式应变计结构。 7.反射式光纤位移传感器在位移-输出曲线的前坡区呈线性关系,在后坡区与 距离的平方成反比关系。 8.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感 器。 9.画出达林顿光电三极管部接线方式: U CE 10.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示k(x)=Δy/Δx 。 11.线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端基线性度、独立线性度、最小二乘法线性度等。最常用的是最

小二乘法线性度。 12.根据敏感元件材料的不同,将应变计分为金属式和半导体式两大 类。 13.利用热效应的光电传感器包含光---热、热---电两个阶段的信息变换过程。 14.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿 法、计算机补偿法、应变计补偿法、热敏电阻补偿法。 15.应变式传感器一般是由电阻应变片和测量电路两部分组成。 16.传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 17.在光照射下,电子逸出物体表面向外发射的现象称为外光电效应,入 射光强改变物质导电率的物理现象称为光电效应。 18.光电管是一个装有光电阴极和阳极的真空玻璃管。 19.光电管的频率响应是指一定频率的调制光照射时光电输出的电流随频率变 化的关系,与其物理结构、工作状态、负载以及入射光波长等因素有关。多数光电器件灵敏度与调制频率的关系为Sr(f)=Sr。/(1+4π2f2τ2) 20.光电效应可分为光电导效应和光生伏特效应。 21.国家标准GB 7665--87对传感器下的定义是:能够感受规定的被测量并按照 一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。 22.传感器按输出量是模拟量还是数字量,可分为模拟量传感器和数字量传感器 23.传感器静态特性的灵敏度用公式表示为:k(x)=输出量的变化值/输入量的变 化值=△y/△x 24.应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

传感器原理与应用习题解答周真苑惠娟

第1章传感器的技术基础 1.传感器的定义是什么? 答:传感器最早来自于“sensor”一词,就是感觉的意思。随着传感器技术的发展,在工程技术领域中,传感器被认为是生物体的工程模拟物。而且要求传感器不但要对被测量敏感,还要就有把它对被测量的响应传送出去的功能,也就是说真正实现能“感”到,会“传”到的功能。 传感器是获取信息的一种装置,其定义可分为广义和狭义两种。广义定义的传感器是指那些能感受外界信息并按一定规律转换成某种可用信号输出的器件和装置,以满足信息的传输、处理、记录、显示和控制等要求。这里的“可用信号”是指便于处理、传输的信号,一般为电信号,如电压、电流、电阻、电容、频率等。狭义定义的传感器是指将外界信息按一定规律转换成电量的装置才叫传感器。 按照国家标准GB7665—87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成”。 国际电工委员会(IEC)将传感器定义为:传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号。美国测量协会又将传感器定义为“对应于特定被测量提供有效电信号输出的器件”。传感器也称为变换器、换能器或探测器。如前所述.感受被测量、并将被测量转换为易于测量、传输和处理的信号的装置或器件称为传感器。 2.简述传感器的主要分类方法。 答:(1)据传感器与外界信息和变换效应的工作原理,可分为物理传感器、化学传感器和生物传感器三大类。 (2)按输入信息分类。传感器按输入量分类有力敏传感器、位置传感器、液面传感器、能耗传感器、速度传感器、热敏传感器、振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器等。这种分类对传感器的应用很方便。

(完整版)传感器原理及应用试题库(已做)

:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件 测量电路三个部分组成。 2.金属丝应变传感器设计过程中为了减少横向效应,可米用直线栅式应变计 和箔式应变计结构。 3. 根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感器 4. 灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示 k (x)=△ y△ x。 5. 线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端 基线性度、独立线性度、最小二乘法线性度等。最常用的是最小二乘法线性 度。 6. 根据敏感元件材料的不同,将应变计分为金属式和半导体式两大类。 7. 应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿法、 计算机补偿法、应变计补偿法、热敏电阻补偿法。 8. 应变式传感器一般是由电阻应变片和测量电路两部分组成。 9. 传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 10. 国家标准GB7665--87对传感器下的定义是:能够感受规定的被测量并按照一定 的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。11. 传感器按输出量是模拟量还是数字量, 可分为模拟量传感器和数字量传感器12. 传感器静态特性的灵敏度用公式表示为:心)=输出量的变化值/输入量的变化 值=△ y/ △ x 13. 应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;蠕 变小;机械滞后小;耐疲劳性好;具有足够的稳定性能:对弹性元件和应变计不产生化学腐蚀作用;有适当的储存期;应有较大的温度适用范围。 14. 根据传感器感知外界信息所依据的基本校园,可以将传感器分成三大类:物理传 感器,化学传感器,生物传感器。

传感器原理与应用习题及答案

《第一章传感器的一般特性》 1 试绘制转速和输出电压的关系曲线,并确定: 1)该测速发电机的灵敏度。 2)该测速发电机的线性度。 2.已知一热电偶的时间常数τ=10s,若用它来测量一台炉子的温度,炉内温度在540οC和500οC 之间按近似正弦曲线波动,周期为80s,静态灵敏度k=1,试求该热电偶输出的最大值和最小值,以及输入与输出信号之间的相位差和滞后时间。 3.用一只时间常数为0.355s 的一阶传感器去测量周期分别为1s、2s和3s的正弦信号,问幅值误差为多少? 4.若用一阶传感器作100Hz正弦信号的测试,如幅值误差要求限制在5%以内,则时间常数应取多少?若在该时间常数下,同一传感器作50Hz正弦信号的测试,这时的幅值误差和相角有多大? 5.已知某二阶系统传感器的固有频率f0=10kHz,阻尼比ξ=0.1,若要求传感器的输出幅值误差小于3%,试确定该传感器的工作频率范围。 6.某压力传感器属于二阶系统,其固有频率为1000Hz,阻尼比为临界值的50%,当500Hz的简谐压力输入后,试求其幅值误差和相位滞后。 《第二章应变式传感器》 1.假设某电阻应变计在输入应变为5000με时电阻变化为1%,试确定该应变计的灵敏系数。又若在使用该应变计的过程中,采用的灵敏系数为 1.9,试确定由此而产生的测量误差的正负和大小。 2.如下图所示的系统中:①当F=0和热源移开时,R l=R2=R3=R4,及U0=0;②各应变片的灵敏系数皆为+2.0,且其电阻温度系数为正值;③梁的弹性模量随温度增加而减小;④应变片的热膨胀系数比梁的大;⑤假定应变片的温度和紧接在它下面的梁的温度一样。 在时间t=0时,在梁的自由端加上一向上的力,然后维持不变,在振荡消失之后,在一稍后的时间t1打开辐射源,然后就一直开着,试简要绘出U0和t的关系曲线的一般形状,并通过仔细推理说明你给出这种曲线形状的理由。

传感器技术及应用教学大纲

传感器及应用教学大纲 一、课程说明 课程性质:专业核心课 课程描述: “传感器技术”是电子、机电与自动控制类专业的专业核心课,是必修课。通过本课程的学习,学生能了解传感器的基本概念、传感器的构成、传感器工作的有关定律、传感器的作用、传感器和现代检测技术发展的趋势。其作用是通过本课程的学习,培养学生利用现代电子技术、传感器技术和计算机技术解决生产实际中信息采集与处理问题的能力,为工业测控系统的设计与开发奠定基础。知识目标:掌握主要传感器的原理、特性,各种应用条件下传感器的选用原则和应用电路设计。 技能目标:独立分析、解决传感器方面问题的能力;利用网络、数据手册、厂商名录等获取和查阅传感器技术资料的能力。 素质目标:具有较强的专业素质,不断进行创新。 教学重点与难点: 课程重点:电阻式、电感式传感器的原理与应用,霍尔式传感器,电流、电压传感器。 课程难点:各种传感器的温度误差与补偿,电容式传感器的屏蔽技术,光纤传感器的原理。 适用专业:机电一体化、电气自动化专业 学时数:80学时 二、教学目的与内容 1 传感器技术基础(2学时) 教学目的与要求: 明确“传感器技术”在专业培养计划中的地位,课程的性质、任务和大体内容,传感器在现代生产、生活中的作用。了解检测技术与传感器的定义、组成、作用和分类,了解传感器的静、动态特性,掌握传感器常用的技术指标。 教学重点与难点: 教学重点:传感器的定义、组成和作用 教学难点:传感器的技术指标 教学内容: 1)传感器简介 (1)传感器的定义

(2)传感器的组成与作用 2)传感器的分类 (1)按工作原理分 (2)按被测量分 (3)按输出信号性质分 3)传感器的特性及主要技术指标 (1)静态特性和动态特性 (2)主要技术指标 2 电阻式传感器(6学时) 教学目的与要求: 理解电阻式传感器的组成和基本原理,了解电阻式传感器的常用类型。掌握应变片式传感器的形式、特点、应用方法和转换电路。 教学重点与难点: 教学重点:电阻式传感器的组成和基本原理 教学难点:电阻应变片的工作原理 教学内容: 1)电位器式传感器(2学时) (1)电位器式传感器的基本工作原理 (2)电位器式传感器的输出特性 (3)电位器式传感器的特性 (4)电位器式位移传感器 2)应变式传感器(2学时) (1)电阻应变片的结构和工作原理 (2)电阻应变片的特性 (3)测量电路 (4)温度误差与补偿 3)压阻式传感器(2学时) (1)压阻效应 (2)结构与特性 (3)固态压阻传感器测量电路 (4)温度补偿 3 变磁阻式传感器(4学时) 教学目的与要求: 掌握三种变磁阻式传感器(电感式传感器、差分变压器式传感器、电涡流式传感器)的基本结构和工作原理,了解上述传感器将非电量信号转换成电信号的过程,了解三种变磁阻式传感器的特点、

传感器原理设计与应用重点总结

本文档根据老师最后一次课上课时所说的相关内容并根据我自己的个人情况简要整理,相对简洁,和大家分享一下。考虑到老师说的内容和考试内容相比,可能不够完整;而且个人水平有限,不可能把握的很准确,所以只是参考而已。。。建议大家根据自己的理解补充完善~ 第一章:传感器概论 1、传感器的定义:传感器(或敏感元件)基于一定的变换原理/规律将被测量(主要是非电量的测量,可采用非电量电测技术)转换成电量信号。变换原理/规律涉及到物理、化学、生物学、材料学等学科。 2、传感器的组成:传感器一般由敏感元件(将非电量变成某一中间量)、转换元件(将中间量转换成电量)、测量电路(将转换元件输出的电量变换成可直接利用的电信号)三部分组成,有的传感器还需加上辅助电源。 3、传感器的分类 按变换原理分类——>利用不同的效应构成物理型、化学型、生物型等传感器。 按构成原理分类: 结构型:依靠机械结构参数变化来实现变换。 物性型:利用材料本身的物理性质来实现变换。 按输入量的不同分类——>温度、压力、位移、流量、速度等传感器 按变换工作原理分类: 电路参数型:电阻型、电容型、电感型传感器 按参电量如:Q(电量)、I、U、E 等分类:磁电型、热电型、压电型、霍尔型、光电式传感器 4、传感器技术的发展动向: 教材表述:发现新现象、开发新材料、采用微细加工技术、研制多功能集成传感器、智能化传感器、新一代航天传感器、仿生传感器 老师表述:微型化、集成化、廉价。 第二章:传感器的一般特性 1、静态特性 检测系统的四种典型静态特性 线性度:传感器的输出与输入之间的线性程度。传感器的理想输出-输入特性是线性的。 灵敏度:系统在静态工作的条件下,其单位输入所产生的输出,实为拟合曲线上某点的斜率。 即S N=输入量的变化/输出量的变化=dy/dx 迟滞性:特性表明传感器在正(输入量增大)反(输入量减小)行程期间输出-输入特性曲线不重合的程度。 (产生的原因:传感器机械部分存在的不可避免的缺陷。) 重复性:重复性表示传感器在输入量按同一方向作全量程多次测量时所得特性曲线不一致程度。曲线的重复性好,误差也小。产生的原因与迟滞性类似。 精确度. 测量范围和量程. 零漂和温漂. 2、动态特性:(传感器对激励(输入)的响应(输出)特性) 动态误差:输出信号不与输入信号具有完全相同的时间函数,它们之间的差异。包括:稳态动态误差、暂态动态误差

人教版高中物理选修3-2知识点整理及重点题型梳理] 传感器(原理及典型应用)

人教版高中物理选修3-2 知识点梳理 重点题型(常考知识点)巩固练习 传感器(原理及典型应用) 【学习目标】 1.知道什么是传感器,常见的传感器有哪些。 2.了解一些传感器的工作原理和实际应用。 3.了解传感器的应用模式,能够运用这一模式去理解传感器的实际运用。 4.了解传感器在生活、科技中的运用和发挥的巨大作用。 【要点梳理】 要点一、传感器 1.现代技术中,传感器是指这样一类元件:它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转化为电路的通断。把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。 2.传感器原理 传感器感受的通常是非电学量,如压力、温度、位移、浓度、速度、酸碱度等,而它输出的通常是电学量,如电压值、电流值、电荷量等,这些输出信号是非常微弱的,通常要经过放大后,再送给控制系统产生各种控制动作。传感器原理如下图所示。 3.传感器的分类 常用传感器是利用某些物理、化学或生物效应进行工作的。根据测量目的不同,可将传感器分为物理型、化学型和生物型三类。 物理型传感器是利用被测量物质的某些物理性质(如电阻、电压、电容、磁场等)发生明显变化的特性制成的,如光电传感器、力学传感器等。 化学型传感器是利用能把化学物质的成分、浓度等化学量转换成为电学量的敏感元件制成的。 生物型传感器是利用各种生物或生物物质的特性做成的,用以检测与识别生物体内化学成分的传感器,生物或生物物质主要是指各种酶、微生物、抗体等,分别对应酶传感器、微生物传感器、免疫传感器等等。 要点二、光敏电阻 光敏电阻能够把光照强弱这个光学量转换为电阻大小这个电学量,一般随光照的增强电阻值减小。 要点诠释:光敏电阻是用半导体材料制成的,硫化镉在无光时,载流子(导电电荷)极少,导电性能不好,随着光照的增强,载流子增多,导电性能变好。

传感器原理及应用

《传感器原理及应用》 实 验 指 导 书 测控技术实验室

实验一金属箔式应变片----单臂、半臂、全桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂、半臂、全电桥工 作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化, 这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为:ΔR/R电阻丝电阻相对变化, K为应变灵敏系数, ε=ΔL/L为电阻丝长度相对变化, 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部件受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压Uο1=Ek?/4。在半桥性能实验中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压Uο2=Ek?/2。在全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,当应变片初始阻力值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压Uο3=Ek?。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。 三、实验设备:应变式传感器实验模板、应变式传感器、砝码、数显表、 ±15V、±4V直流电源、万用表。 四、实验方法和要求: 1、根据电子电路知识,实验前设计出实验电路连线图。 2、独力完成实验电路连线。 3、找出这三种电桥输出电压与加负载重量之间的关系,并作出V o=F(m) 的关系曲线。

4、分析、计算三种不同桥路的系统灵敏度S=ΔU/ΔW(ΔU输出电压变化 量,ΔW重量变化量)和非线性误差:δf1=Δm/yF·s×100%式中Δm为 输出值(多次测量时为平均值)与拟合直线的最大偏差:yF·s满量程 输出平均值,此处为200g。 五、思考题 1、单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2) 负(受压)应变片(3)正、负应变片均可以。 2、半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1) 对边(2)邻边。 3、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3, R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。

相关文档
相关文档 最新文档