文档库 最新最全的文档下载
当前位置:文档库 › TM Surface-Wave Power Combining by a Planar Active-Lens Amplifier

TM Surface-Wave Power Combining by a Planar Active-Lens Amplifier

TM Surface-Wave Power Combining by a Planar Active-Lens Amplifier
TM Surface-Wave Power Combining by a Planar Active-Lens Amplifier

TM Surface-Wave Power Combining by a Planar Active-Lens Ampli?er Alfred Richard Perkons,Yongxi Qian,Member,IEEE,and Tatsuo Itoh,Fellow,IEEE

Abstract—Power combining of TM surface waves by a planar active-lens ampli?er is the subject of this paper.An ampli?er gain of11dB at8.25GHz with a3-dB bandwidth of0.65GHz has been demonstrated.Gain is measured from input to output connector to facilitate comparisons with more conventional ampli?ers.Mea-surements of output power versus input power are also presented. The ampli?er behaved in a linear manner and no problems with spurious oscillations were encountered.Construction of the ampli?er is compatible with planar fabrication technologies.A key component of the combiner is a microstrip-fed Yagi–Uda slot-array antenna for TM surface-wave excitation of a thick dielectric slab.Design and optimization guidelines for the antenna are presented as well as detailed spectral-domain and?nite-difference time-domain(FDTD)analysis results.Measured and simulation results show an input return loss and front-to-back ratio better than10dB over a5%bandwidth.Calculated and measured results for the?elds radiated by the antenna con?rm forward radiation of the dominant TM mode in the thick dielectric slab. Integration of the computed radiated?elds shows the antenna has a surface-wave launching ef?ciency of85%.

Index Terms—Active antennas,active arrays,FDTD method, lens antennas,microstrip antennas,MMIC,quasi-optical ampli-?ers,spatial power combining,spectral-domain methods,surface waves.

I.I NTRODUCTION

Q UASI-OPTICAL ampli?ers have the potential for ef?-cient power combining of large numbers of solid-state devices.Most previous work has focused on three-dimensional(3-D)approaches,such as the wave–beam type [1],grid type[2],microstrip coupling type[3],lens type [4],and waveguide-based type[5].A quasi-optical structure based on the dielectric slab–beam waveguide(DSBW)[6] is two-dimensional(2-D)and,therefore,more amenable to planar fabrication technologies.Heat sinking of such structures should be straightforward as linear arrays of active devices are employed.An oscillator[7]and several ampli?ers[8]–[11] based on the DSBW have been reported.These structures excited an electric?eld parallel to the slab ground plane. Such a mode has very low attenuation since the?elds are zero at the ground plane and there is no conductor loss,but is dif?cult to excite cleanly with no perturbation or scattering loss.Dielectric lenses were used to focus and constrain the guided waves in[8]–[10].In this paper,Yagi–Uda slot antenna

Manuscript received October15,1997;revised March4,1998.This work was supported by the U.S.Army Research Of?ce under Contract DAA04-94-G-0139.

The authors are with the Electrical Engineering Department,University of California,Los Angeles,Los Angeles,CA90024USA.

Publisher Item Identi?er S

0018-9480(98)04040-X.

Fig.1.A ten-element PDQ power combiner using Yagi–Uda slot-array

antennas.

arrays fed by microstrip lines are used to ef?ciently excite the

dominant DSBW mode with the electric?eld normal to the

slab ground plane.Microstrip delay lines are used to focus

the guided waves in a manner similar to that reported in[4].

Delay-line length is analogous to thickness of a conventional

dielectric https://www.wendangku.net/doc/ee10677549.html,mercial gain blocks are used to amplify the

RF signals.Measurements of ampli?er gain and output power

versus input power are presented.At8.25GHz,an ampli?er

gain of11dB,measured from input to output connector,

has been achieved[12].The ampli?er3-dB bandwidth is

0.65GHz.

One of the most important components of a quasi-optical

ampli?er is the radiating element.Bandwidth,ef?ciency,me-

chanical robustness,and heat-sinking capability of the com-

biner are primarily determined by the radiating element.A

microstrip-fed Yagi–Uda slot-array antenna is used to excite

surface waves in a thick dielectric slab in the work reported

here.The thick dielectric slab provides thermal management

and mechanical support of the ampli?er array.The antenna has

an input return loss and front-to-back ratio better than10dB

over a5%bandwidth.Measured results place a lower bound

of80%on the antenna surface-wave launching ef?ciency.

Spectral-domain simulation results predict an ef?ciency of

85%.

II.D ESIGN

A diagram of the planar dielectric quasi-optical(PDQ)

power combiner is shown in Fig.1.Microstrip lines and gain

blocks are on the top side of a thin substrate,on top of a thick

dielectric slab.Microstrip-fed Yagi–Uda slot antenna arrays on 0018–9480/98$10.00?1998IEEE

Fig.2.Photograph of top side of PDQ power combiner.

the common ground plane are used to either receive or transmit slab–beam modes.A feed element illuminates a ten-element slab–beam active lens,which both ampli?es and focuses the signal onto a collector element.Microstrip delay-line lengths are such that the total phase delay from feed to collector element is identical for each lens element.The dielectric slab and thin substrate on top of it are RT/Duroid6010(

PERKONS et al.:TM SURFACE-WA VE POWER COMBINING BY PLANAR ACTIVE-LENS AMPLIFIER 777

plane separating the slab and microstrip substrates,and the driving slot is fed by a

50-

?rst resonance length in slot;

2)re?ector slot

length

;

4)element

spacing

is the wavelength of the dominant TM surface-wave mode in the slab;5)slot

width

;

7)open-stub

length

feed line since the slot has very high input impedance

when fed at its center.Coupling into the DSBW substrate was maximized by choosing the thickness to be such that the center operating frequency corresponds to 90%of the cutoff frequency of the second-order TM mode;slot excitation of the ?rst-order TE mode is negligible.Material with a high dielectric constant was selected for the thin substrate to keep the design compatible with eventual MMIC fabrication.The microstrip substrate and slab use the same dielectric material

(RT/Duroid

6010,

),and their thicknesses are 0.02in and 0.2in,respectively.

Optimal performance of the surface-wave launcher was arrived at through experimental optimization of the parameters discussed above.For a good front-to-back ratio,the relative lengths and separations of the driven,director,and re?ector slots must be maintained.Parameters adjusted experimentally for best impedance match were the driven slot length,feed off-set position,and microstrip open-stub length.Final dimensions for

the

in,

.Mutual coupling was

not considered in the linear array design since slots spaced end to end should not couple strongly.The number of lens

elements is 10

()

is

i n h a d 6.7-d B i n s e r t i o n l o s s .T h e

l e n g t h t o d i a m e t e r r a t i o i

s

a n

d

30d B o v e r t h e e n t i r e

f r e q u e n c y r a n

g e m e a s u r e d .P e a k r e s p o n s e o w a s

778IEEE TRANSACTIONS ON MICROWA VE THEORY AND TECHNIQUES,VOL.46,NO.6,JUNE

1998

Fig.4.Slab–beam lens ampli?er gain versus frequency.The peak is 11dB at 8.25GHz.The 3-dB gain bandwidth is 0.65GHz.Insertion loss of a passive lens is included for

reference.

Fig.5.Yagi–Uda slot-array input return loss versus frequency.Return loss is better than 010dB over a 0.68-GHz bandwidth centered at 8.3GHz.The antenna element passband matches that of the slab–beam lens ampli?er (see Fig.4).

Ef?ciency of the Yagi–Uda slot-array antenna can be esti-mated from the insertion loss (6.7dB)measured for the passive

lens.Measured microstrip line attenuation was 0.3dB/in.Average microstrip line length from the combiner input to output is 8.0in.Microstrip transmission-line losses are 2.4dB (8.0

in

0.15dB/in).Losses due

to microstrip transmission-line and surface-wave attenuation total 2.9dB.This leaves 3.8dB of loss due to lens spillover and phase errors,undesired radiation,mutual coupling,and input impedance mismatch.Direct measurement or calculation of each of the losses mentioned above is dif?cult.However,assigning all of the loss to the Yagi–Uda antenna results in a lower bound on its ef?ciency.A signal passing through

the

Fig.6.Output power at 8.25GHz plotted against input power.Output power at 1-dB gain compression is 16

dBm.

Fig.7.Ampli?er group delay as a function of frequency.Group delay is ?at over the ampli?er passband.

passive version of the PDQ ampli?er encounters the Yagi–Uda antenna four times.Therefore,the loss due to a single antenna

is less

than

dB

PERKONS et al.:TM SURFACE-WA VE POWER COMBINING BY PLANAR ACTIVE-LENS AMPLIFIER

779

(a)

(b)

Fig.8.(a)FDTD and spectral-domain simulated input return loss.(b)Measured results,obtained by applying gating to the data of Fig.5,for the experimentally optimized microstrip-fed Yagi–Uda slot array.

of-thumb and rapid experimental iteration.It was anticipated the antenna would be an ef?cient surface-wave launcher.Experimental results for the PDQ ampli?er and passive lens con?rmed this and provided motivation to perform further measurements and perform detailed analysis of the Yagi–Uda antenna [17],[18].Finite-difference time-domain (FDTD)simulations were carried out for

the

GHz)was applied

to the microstrip feed line and the ?elds radiated into the slab were simulated by the FDTD method.The steady-state time variation of all six electromagnetic-?eld components was recorded at point A [see Fig.3(b)]inside the dielectric slab and directly in front

(

780IEEE TRANSACTIONS ON MICROWA VE THEORY AND TECHNIQUES,VOL.46,NO.6,JUNE

1998

Fig.10.Yagi–Uda slot-array antenna far-?eld surface-wave power pat-terns.Power patterns are calculated from asymptotic expressions from spec-tral-domain analysis.Power is normalized to unity at the TM pattern maximum at =90 .Vertical position for the calculations is the air side of the air–slab interface (see Fig.

3).

Fig.11.Vertical TM power pattern at =90 .Majority of power is con?ned to the dielectric slab.Ground plane is at z =0.Slab–air interface is at z =200mil.Dielectric substrate–air interface is at z =020mil (see Fig.

3).

Fig.12.Vertical TM and TE power pro?les at =43 (see Fig.3).Power pro?les are normalized to the TM power maximum at =0.Excitation of TE surface waves occurs,but is minor.

computed in the near ?eld.Waves propagating in the slab near ?eld may eventually give rise to far-?eld free-space radiation.In the spectral-domain approach,in?nite slab and

microstrip

Fig.13.Yagi–Uda slot-array antenna test circuit.Microstrip lines are on the top side of a thin substrate on top of dielectric slab.Slots are on the common ground

plane.

Fig.14.FDTD and spectral-domain simulation and measured results of the Gaussian-like slab–beam pro?le along the transverse direction (x )in the front side of the Yagi–Uda slot array.Distance is from the center of the front array of Fig.13.

substrates are assumed.Asymptotic expansions were carried out to obtain expressions for the far-zone surface-wave and free-space radiation.One can clearly identify and differentiate between the different modes of far-?eld radiation:free space,TM surface wave,and TE surface-wave radiation.

Calculated surface-wave radiation patterns of the Yagi–Uda slot-array antenna are shown plotted as a function

of

.

Minor asymmetry of the TM pattern is observed.Asymmetry

PERKONS et al.:TM SURFACE-WA VE POWER COMBINING BY PLANAR ACTIVE-LENS AMPLIFIER

781

(a)

(b)

(c)

Fig.15.(a)FDTD simulation results.(b)Spectral-domain simulation results.(c)Measured data of the front-to-back ratio of the X-band prototype Yagi–Uda slot-array antenna.

of the TE pattern is more marked,but is of no consequence

since radiation of this mode is regarded as a loss.

The computed vertical TM surface-wave power pro?le,

along the vertical

(

24.2dB just before the slab–air interface.

Decay in the air region is exponential as expected.A jump

in power level at the slab–air interface is expected and is due

the boundary condition

that

25

)were measured and simulated by

FDTD.The front-to-back ratio was simply a deduction of these

two coupling coef?cients,and is shown in Fig.15,together

with the measured data.Front-to-back ratio peak was17.5dB

by FDTD and14.7dB by https://www.wendangku.net/doc/ee10677549.html,ually,the front-to-

back ratio is calculated as the ratio of the power intensity

directly in front of and behind the antenna.Another approach

is to integrate the forward and backward radiation lobes and

then take a ratio to obtain the so-called integrated front-to-back

ratio.Results for both methods were computed using spectral-

domain asymptotic expressions and are plotted in Fig.15.Peak

front-to-back ratios are11.8and12.6dB for the usual and

integrated methods,respectively.Again,there is a slight shift

in the center frequency between theory and measurement.The

782IEEE TRANSACTIONS ON MICROWA VE THEORY AND TECHNIQUES,VOL.46,NO.6,JUNE

1998

Fig.16.Percentage of total power radiated as TM surface waves in the slab forward direction 0< <180 .Peak percentage is 85%.Almost all the power is con?ned to the dielectric slab.

TABLE I

P ERCENTAGE OF P OWER R ADIATED INTO V ARIOUS M ODES BY THE Y AGI –U DA S LOT -A RRAY A NTENNA OF F IG .3.P ERCENTAGES ARE C ALCULATED BY THE S PECTRAL -D OMAIN M ETHOD AT 8.9

GHz

good correspondence between the center frequency for peak front-to-back ratio and minimum return loss in both simulation and experiment,however,reveals that the Yagi–Uda slot array has been designed properly and works well as a unidirectional surface-wave launcher for the PDQ power combiner.

Several different types of radiation from the Yagi–Uda slot-array antenna element of Fig.3are possible.Forward radiation of a TM surface wave in the thick dielectric slab is the desired mode.Undesired radiation modes are as follows:backward dielectric-slab TM surface waves,dielectric-slab TE surface waves,dielectric-substrate TM surface waves,and free-space radiation.Asymptotic expressions for the radiated far ?elds were obtained from a spectral-domain analysis of the antenna.Integration of the expressions was performed to obtain the percentage of power radiated into each of the modes discussed above.The results are listed in Table I.Percentage of power radiated as forward TM surface waves in the thick dielectric slab is plotted as a function of frequency in Fig.16.Maximum computed launching ef?ciency for the antenna is 85%.

A ?nal concern was mutual coupling between neighboring channels of Yagi–Uda slot arrays and their possible in?uence on the power-combiner performance.For this purpose,

the

Fig.17.FDTD simulation results of the mutual coupling (S 21)between two neighboring channels of Yagi–Uda slot array.

FDTD method was used to compute the coupling coef?cient

()between two neighboring Yagi–Uda slot-array antennas located in parallel,as shown in Fig.1.The channel spacing was 0.325in.As can be seen from the simulation results,shown in Fig.17,the in-band (return

loss

15dB.The input return loss is almost

identical to that of an isolated Yagi–Uda slot-array antenna (see Fig.8),indicating that mutual coupling between neighboring channels is not a major problem in the design of the PDQ power combiner.

V.C ONCLUSION

A 2-D slab–beam lens ampli?er has been demonstrated

at

-band.Ampli?er 3-dB bandwidth is 0.65GHz or 7.9%.Fabrication of the slab-based lens ampli?er is compatible with planar fabrication techniques.

Comprehensive measurements and simulations of the Yagi–Uda slot array have been carried out and con?rm the design philosophy of the PDQ structure proposed for millimeter-wave power combining.The FDTD method also proved itself as a very powerful and ef?cient computer-aided design (CAD)tool for practical design and optimization of this new type of quasi-optical structure,which is important since experimentation at millimeter wavelengths is both costly and time consuming.Measured results indicate a surface-wave launching ef?ciency of at least 80%.Computed ef?ciency is 85%.

A CKNOWLEDGMENT

The authors would like to thank Mr.M.Espiau of the UCLA Center for High Frequency Electronics,for fabrication,measurement,and trouble-shooting assistance.

R EFERENCES

[1]J.W.Mink,“Quasi-optical power combining of solid-state millimeter-wave sources,”IEEE Trans.Microwave Theory Tech.,vol.MTT-34,pp.273–279,Feb.1986.

PERKONS et al.:TM SURFACE-WA VE POWER COMBINING BY PLANAR ACTIVE-LENS AMPLIFIER783 [2]Z.B.Popovic,R.M.Weikle,M.Kim,and D.B.Rutledge,“A100-

MESFET planar grid oscillator,”IEEE Trans.Microwave Theory Tech.,

vol.39,pp.193–200,Feb.1991.

[3]N.J.Kolias and https://www.wendangku.net/doc/ee10677549.html,pton,“A monopole-probe-based quasi-optical

ampli?er array,”IEEE Trans.Microwave Theory Tech.,vol.45,pp.

1204–1207,Aug.1997.

[4]J.S.H.Schoenberg,S.C.Bundy,and Z.B.Popovic,“Two-level power

combining using a lens ampli?er,”IEEE Trans.Microwave Theory Tech.,

vol.42,pp.2480–2485,Dec.1994.

[5] A.Alexanian and R.A.York,“Broad-band waveguide-based spatial

combiners,”in IEEE MTT-S Int.Microwave Symp.Dig.,Denver,CO,

June1997,pp.1139–1142.

[6]J.W.Mink and F.K.Schwering,“A hybrid dielectric slab–beam

waveguide for the sub-millimeter wave region,”IEEE Trans.Microwave

Theory Tech.,vol.41,pp.1720–1729,Oct.1993.

[7] F.Poegel,S.Irrgang,S.Zeisberg,A.Schuenemann,G.P.Monahan,

H.Hwang,M.B.Steer,J.W.Mink,F.K.Schwering,A.Paollela,and

J.Harvey,“Demonstration of an oscillating quasi-optical slab power

combiner,”in IEEE MTT-S Int.Microwave Symp.Dig.,Orlando,FL,

May1995,pp.917–920.

[8]H.Hwang,G.P.Monahan,M. B.Steer,J.W.Mink,J.Harvey,

A.Paollela,and F.K.Schwering,“A dielectric slab waveguide with

four planar power ampli?ers,”in IEEE MTT-S Int.Microwave Symp.

Dig.,Orlando,FL,May1995,pp.921–924.

[9]H.Hwang,T.W.Nuteson,M. B.Steer,J.W.Mink,J.Harvey,

A.Paollela,and F.K.Schwering,“Quasi-optical power combining in a

dielectric substrate,”URSI Int.Symp.Signals,Syst.,Electron.Dig.,San

Francisco,CA,Oct.1995,pp.89–92.

[10],“Two-dimensional quasi-optical power combining system per-

formance and component design,”in IEEE MTT-S Int.Microwave Symp.

Dig.,San Francisco,CA,June1996,pp.927–930.

[11] A.R.Perkons and T.Itoh,“TE surface wave power combining by a

planar10-element active lens ampli?er,”in IEEE MTT-S Int.Microwave

Symp.Dig.,Denver,CO,June1997,pp.691–694.

[12],“A10-element active lens ampli?er on a dielectric slab,”in IEEE

MTT-S Int.Microwave Symp.Dig.,San Francisco,CA,June1996,pp.

1119–1122.

[13]N.J.Kolias and https://www.wendangku.net/doc/ee10677549.html,pton,“Thermal management for high-power

active ampli?er arrays,”IEEE Trans.Microwave Theory Tech.,vol.45,

pp.1204–1207,Aug.1997.

[14]Y.Shih,J.Rivera,and T.Itoh,“Directive planar excitation of an image-

guide,”in IEEE MTT-S Int.Microwave Symp.Dig.,Los Angeles,CA,

June1981,pp.5–7.

[15]H.Gent,“The boot lace aerial,”Royal Radar Establishment J.,no.40,

pp.47–58,Oct.1957.

[16]W.Rotman and R.F.Turner,“Wide-angle microwave lens for line

source applications,”IEEE Trans.Antennas Propagat.,vol.AP-11,pp.

623–632,Nov.1963.

[17] A.R.Perkons and T.Itoh,“Surface-wave excitation of a dielectric slab

by a Yagi–Uda slot array antenna,”in26th European Microwave Conf.,

Prague,Czech Republic,Sept.1996,pp.625–628.

[18]Y.Qian,A.R.Perkons,and T.Itoh,“Surface-wave excitation of a

dielectric slab by a Yagi–Uda slot array antenna—FDTD simulation

and measurement,”in TSMMW’97Proc.,Shonan,Japan,July1997.

[19]S.S.Attwood,“Surface wave propagation over a coated plane conduc-

tor,”J.Appl.Phys.,vol.22,pp.504–509,Apr.

1954.

Alfred Richard Perkons was born in Anaheim,

CA,on October25,1960.He received the B.S.E.

degree in electrical engineering from the University

of California at Los Angeles(UCLA),in1983,the

M.S.E.E.degree from the University of Southern

California,Los Angeles,in1987,and is currently

working toward the Ph.D.degree at UCLA.

From1983to1994,he worked for Rockwell In-

ternational.His current research interests are the de-

sign and development of quasi-optical power com-

biners.

Mr.Perkons was the recipient of a Student Paper Award at the1997IEEE MTT International

Symposium.

Yongxi Qian(S’91–M’93)was born in Shanghai,

China,in1965.He received the B.E.degree from

Tsinghua University,Beijing,China,in1987,and

the M.E.and Ph.D.degrees from the University

of Electro-Communications,Tokyo,Japan,in1990

and1993,respectively,all in electrical engineering.

From1993to1996,he worked as an As-

sistant Professor at the University of Electro-

Communications.He is currently a Post-Doctoral

Researcher at the Electrical Engineering Depart-

ment,University of California at Los Angeles. He has worked on various numerical techniques for microwave and millimeter-wave circuits and antennas,ultrashort electrical pulse technology, crosstalk problems in high-density MMIC’s,miniature circuits for mobile communications,and millimeter-wave imaging arrays.His current research interests include high-ef?ciency microwave ampli?ers,millimeter-wave quasi-optical power combining techniques,photonic band-gap(PBG)structures, active integrated antennas for multimedia communications and imaging arrays,as well as high-power broad-band RF photonic devices for millimeter and submillimeter-wave photodetection and photomixing.He has co-authored one book,authored a chapter for two books,and has published over60journal and conference papers within the above research

areas.

Tatsuo Itoh(S’69–M’69–SM’74–F’82)received

the Ph.D.degree in electrical engineering from

the University of Illinois at Urbana-Champaign,in

1969.

From1966to1976,he was with the Electrical

Engineering Department,University of Illinois at

Urbana-Champaign.From1976to1977,he was

a Senior Research Engineer in the Radio Physics

Laboratory,SRI International,Menlo Park,CA.

From1977to1978,he was an Associate Professor

at the University of Kentucky,Lexington.In1978, he joined the faculty at The University of Texas at Austin,where he became a Professor of electrical engineering in1981,and Director of the Electrical Engineering Research Laboratory in1984.During the summer of1979,he was a Guest Researcher at AEG-Telefunken,Ulm,Germany.In1983,he was selected to hold the Hayden Head Centennial Professorship of Engineering at The University of Texas.In1984,he was appointed Associate Chairman for Research and Planning of the Electrical and Computer Engineering Department,The University of Texas.In J1991,he joined the University of California at Los Angeles(UCLA),as Professor of electrical engineering and Holder of the TRW Endowed Chair in Microwave and Millimeter Wave Electronics.He is currently Director of Joint Services Electronics Program (JSEP),and Director of the Multidisciplinary University Research Initiative (MURI)program at UCLA.He was an Honorary Visiting Professor at Nanjin Institute of Technology,China,and at the Japan Defense Academy.In1994, he was appointed as Adjunct Research Of?cer for the Communications Research Laboratory,Ministry of Post and Telecommunication,Japan.He currently holds a Visiting Professorship at the University of Leeds,Leeds, U.K.He was the chairman of USNC/URSI Commission D(1988–1990),the vice chairman of Commission D of the International URSI(1991–1993),and is currently chairman of the same Commission.He serves on advisory boards and committees of a number of organizations including the National Research Council and the Institute of Mobile and Satellite Communication,Germany. Dr.Itoh is an Honorary Life Member of the IEEE Microwave Theory and Techniques Society,and a member of the Institute of Electronics and Communication Engineers(IEICE),Japan,and Commissions B and D of USNC/URSI.He has served as the editor of IEEE T RANSACTIONS ON M ICROWA VE T HEORY AND T ECHNIQUES(1983–1985).He serves on the Administrative Committee of IEEE Microwave Theory and Techniques Society.He was Vice President of the Microwave Theory and Techniques Society in1989and President in1990.He was the Editor-in-Chief of IEEE M ICROWA VE AND G UIDED W A VE L ETTERS(1991–1994).

斑马GKT条码打印机设置指南

斑马G K T条码打印机 设置指南 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

斑马G K888T条码打印机设置一:安装驱动程序 因无法读光驱,官网找到驱动程序安装 解压缩安装 确定 选Unzip,注意此时的C:\ZD2667在识别硬件时手动选择此路径安装驱动 确定后弹出如下界面 点击下一步选安装打印机如下图: 点击安装打印机后如下图: 在右边选择框中选择ZSesignerGK888t之后点击下一步,因为用户已有关个USB设备,故选了usb0003如下图: 选择语言:简体中文。下一步,如下图: 点击完成后如下图: 点击确定后如下图: 点击下一步、下一步、下一步、下一步如下图: 驱动安装完成。 二、打印设置 1、点击电脑屏幕左下角的开始---打印机和传真,如图 将ZDesignerGK888t设置为默认打印机 2、右键点击选择属性,如下图: 3、点击如下图: 在选项中:标签格式选择---毫米、纵向、旋转180

大小:宽度97.5.00高度131.3.00 非打印区域---左5.00 完成以上设置后点击 4、在高级设置中选择撕纸、热敏、Web检测 完成以上设置后点击 5、完成以上设置后点击,此时打印机会自动对打印纸进行校正。 6、关闭打印机电源,开启打印机电源(重启打印机) 7、斑马打印机GK888t设置完成。 三、大客户发件平台设置 1、从顺丰官网下载顺丰大客户发件管理系统,安装并打开 2.选择“设置打印方式”选择“Zabar专用” 之后可以正常使用。 如果在使用过程中遇到其它问题欢迎与我们联系! 天津区IT服务部

条码打印机安装说明

TSC TTP-244 Pro条码打印机 安装使用方法及常见问题 1.安装驱动 1.1 打开光盘内Driver目录,运行安装驱动程序: 1.2安装驱动要选择USB端口。 { 产品说明书里有详细的安装步骤} 标签纸:50 x 20mm 双排铜板不干胶标签纸 碳带:110mm热转印碳带 2.安装碳带 2.1 将碳带回卷轴插入空的碳带纸轴中。并将其安装入碳带回收轴的位置。 2.2 请注意碳带回收轴较大的那边是装在碳带机构的右边位置。 2.3 依相同方法将碳带卷轴插入碳带轴中。并将其安装入碳带供应轴的位置。

2.4 将印字头座架释放杆往上拉,打开印字头座架。 2.5 拉住碳带前端向后拉,经由印字头座架下方( ↓RIBBON贴纸处)往前拉到碳带回卷轴上方。用胶带将碳带前端的透明部份平整地贴附于碳带回卷轴上的纸轴上。 2.6 以顺时针方向卷动碳带回滚动条,使碳带前端的透明部份平整地依附在回滚动条上,直到看见黑色碳带为止。

2.7 卷紧碳带使碳带上没有任何皱折(否则打印出的条码不清晰)。 3.标签纸的安装 3.1 打开打印机的上盖。 3.2 按下印字头座架释放杆打开印字头座架。 3.3 将卷标滚动条插入卷标卷﹝印字面向外卷﹞之中心孔内。将固定片接到标签滚动条上。将卷标卷平稳地放置于标签架的凹槽中。

3.4 依底座印有的Label↓的箭头指示方向,将标签卷之前端从印字头座架下,经由压杆上方,再向前经过标签出口拉出。 3.5 标签纸从电路板下方穿过;依照纸卷之宽度调整导纸器,使其与标签卷宽度相符并保证居中位置。 3.6 压下印字头座架。 3.7 将卷标卷往反方向卷紧,使标签纸保持张紧的状态。 3.8 关闭打印机上盖。 4.机器初始化操作 机器初始化(恢复机器出厂设置)步骤: 4.1将机器关机; 4.2 在关机状态下,同时按住FEED进纸键和PAUSE暂停键不要松开;

斑马条码打印机使用手册x.docx

Zebra 105SE/SL中文使用手册 1、打印机的参数 斑马公司推出的105SE/SL打印机是一款经济实用的条码条印机,它具有较 多的打分辨率选择,除了应用最广的203dpi标准配置外,还有152dpi打印头,特 别适用于打印UPC码和EAU码,它可以达到令人满意的100%放大率,当需要在一 张标签上打印很多信息时,可以选择300dpi的打印头,特别适用于打印高密度条 码和明快的图像以及小字号的文字。 Zebra 105SL热传感打印机为一种工业级,金属壳条形码打印机,它是斑马 公司经典机型105SE的换代机型.在105SE 基础上增加了液晶面板控 制,ZebraLink网络连接以及更大的内容空间等多项功能。105SL适用于任何场 合的标签打印,如:钢厂的金属卷、码头上的货盘、锯木场中的木材/工厂的零 件以及仓贮打印标签。 .全金属外壳,可长时间工作。 .特有的后备电池(选件)可以使打印机关机后仍能将图文长时间保存下来。 .内置回绕器(选件)可以将直径8英寸的标签回卷,以防沾染灰尘。 .32位RISC微处理器,当需要打印尺寸且有复杂图形的标签时,内存可扩至1MB。 .快速的32位微处理器,配以简单易用的ZPII编程语言,可以做到一边打印一边排版,令您在很短的时间内.打印出更多的标签。 .自动测纸、可升级字体、彩色可操作部件、Zebra的E3打印元件控制技术、反射式传感器。 1.1 Zebra 105SL打印机参数表 .打印机规格打印方式: 热转/热敏方式(不用碳带) 最大打印宽度:104mm最大打印长度:(203dpi)2692mm或(300dpi)165mm(标准内存) 分辨率:203dpi(8点/mm);300dpi(12点/mm)打印速度:(203dpi)203mm/秒或(300dpi)203mm/秒.物理特性: 长度:495mm 宽度:283mm 高度:394mm 结构:全金属结构,大视窗净重:25kg .产品特性: 标准内存:3MB DRAM 750K FLASH;扩展内存到8Mb 32位RISC微处理器自动测纸可升级字体 彩色可操作部件 Zebra 的E3打印元件控制技术 穿透式传感器选配:回卷器、切刀、底纸剥离器 .软件: ZPL II 编程语言 .使用环境: 操作温度:5—40度存储温度:-40—60度 操作湿度:20%—80% 存储湿度:5%—85% .其它参数: .电气参数: 内置自动转换电源90V/265V 48—62Hz 最大电流5A .通迅接口: RS232/422/485 接口及标准并口:IEEE1284双向并口准并口 .标签:

TSC TTP-244ME Plus条码打印机操作手册

TSC TTP-244ME Plus 说明书 用户手册 操作手册 操作说明 它采用铁制外壳,, 是一部稳定耐用的中型工业级条码列印机。。它采用铁制外壳TSC TTP-244ME Plus是一部稳定耐用的中型工业级条码列印机 我们特别设计透明视窗,,方便您随时检查碳 于机器上方,,我们特别设计透明视窗 适用于各种不同条件的工作环境。。于机器上方 适用于各种不同条件的工作环境 带及纸张的使用情形。

TSC TTP-244ME Plus操作简单,配备中文化LCD控制面板,可以显示关于条码机的各种讯息及功能,例如列印标签张数、纸张用尽、碳带用尽、打印头未关、切刀控制等。它还可以模拟其他品牌程式语言,为您创造一个最佳化的软体相容环境。 TSC TTP-244ME Plus规格优越,采用32位元中央微处理器(CPU);标准记忆体内建2MB DRAM/2MB Flash ROM;每秒4英吋列印速度(203DPI);提供Centronics Parallel和Serial RS-232C两种通讯介面;具备自动测纸功能,节省您每次开机使用时的作业时间与纸张成本。 TSC TTP-244ME Plus特点: ◆203dpi解析度,每秒4英寸打印速度 ◆32位中央微处理器(CPU) ◆内建2MB DRAM/2MB Flash ROM记忆卡,最大可扩展至6MB Flash ROM(选购) ◆内建100-240V电压自动切换电源供应器 ◆标签剥离功能 ◆自动切刀(选购)可裁切厚度达0.25mm的各式标签 ◆世界级条码标签编辑软件,可支持数据库打印,Windows驱动程序可支持Win95,98,ME,2000,XP,Vista等操作系统 TSC TTP-244ME Plus应用范围:电子、家电、通讯产品的规格标签、生鲜冷冻食品标签、外箱标签、票务收据、服饰业吊牌、吊贴等各种中英文字、数字、条码、图形、框线的打印需求 选购配件:自动切刀/时间日期计数器(RTC)/标签剥离装置/外部以太网打印服务器/1MB-4MB Flash记忆卡/扫描器/单机操作键盘 TSC TTP-244ME详细参数: 列印模式:热转式/热敏式 解析度:203dpi(8dots/mm) 最大列印速度:每秒4〞(101.6mm) 最大列印宽度:104mm 最大列印长度:1016mm(40〞) 机壳:金属结构含透明视窗 打印机尺寸:360mm(W)×295mm(H)×220mm(D) 打印机重量:11.2KG 可容卷纸尺寸:178mm(7〞)外径 碳带:300公尺,内卷式和外卷式碳带皆适用 碳带宽度:25.4mm-110mm 碳带轴心:25.4mm 中央处理器:32-bit RISC CPU 记忆体:2MB FLASH Memory,2MB DRAM 通讯接口:标配RS232串口、并口 电源规格:内建电压自动切换电源供应器,交流输入:100-240V,50/60Hz,交流输出:24V,3.75A

SATO LM412e条码打印机操作手册

SATO LM412e条码打印机操作手册 1、SATO LM412e条码打印机各部位介绍 1.1 碳带回卷轴/碳带供给轴/操作面板/打印头/打印部件/打印辊轴/介质挡板/打印头锁闩/折叠纸进纸口/介质架 1.2 LCD液晶屏/功能键/电位器/LED指示灯/拨位开关

LM412e控制面板描述表:

2、SATO LM412e条码打印机安装说明 2.1 标签或吊牌的安装 ① 向上掀起侧盖 ② 逆时针旋转打印头开合机构,打开打印头机构 ③ 把介质卡位向外推,以达到最大介质宽度,然后旋转下压 ④ 把标签或吊牌卷放入介质供给架,然后沿着介质路径装入标签或吊牌 ⑤ 把介质卡位旋转复位,然后推到标签外侧(轻靠) 2.2 碳带的安装

① 向上掀起侧盖 ② 逆时针旋转打印头开合机构,打开打印头机构 ③ 把碳带卷插入碳带供应轴内(有碳面朝下),碳带拉动穿过打印头机构 ④ 将一个空纸轴插入碳带回卷轴,然后将碳带用粘带粘贴到空纸轴上,如图示旋转碳带回卷轴 ⑤ 标签和碳带安装完毕后,如图所示 ⑥ 顺时针旋转打印头开合机构,标签和碳带安装完毕 2.3 打印机操作模式选择 每次打印前首选需要确认打印机的操作模式 ①从标签的识别来确认,主要有连续纸模式、间隔定位模式、黑标定位模式。

◆连续纸模式:需调调整设置菜单里的“MOVE MODE”为CONT,“PITCH SENSOR”为OFF ◆间隔定位模式:需调整设置菜单里的“MOVE MODE”为TEAR,“PITCH SENSOR”为ON,DSW2=OFF ◆黑标定位模式:需调整设置菜单里的“MOVE MODE”为TEAR,“PITCH SENSOR”为ON,DSW2=ON ②从标签的打印方式来确认,主要有热转印模式、热敏模式 ◆热转印模式:需调调整DSW1为OFF ◆热敏模式:需调调整DSW1为ON ③ 根据标签的定位方式来确认标签传感器的位置,在制作标签时需要参考其定位最小尺寸,LM408e标签传感器的识别位置如图所示 2.4 打印机接口选择 ●RS232C高速串口

DATAMAX条码打印机的使用说明

DATAMAX 条码打印机的使用说明 以DATAMAX DMX-I-4208 连接及耗材安装为例: 一、连接打印机 1. 关闭打印机和计算机的电源 2. 将串行/并行线缆的一端连接到计算机的串/并行口,另一端连接到打印机的串行/并行打印端口。 3. 连接好电源电缆并打开电源开关。 注意:请注意,在打印机电源开启的情况下,禁止插拔打印电缆线。 二、安装标签纸 该打印机可以安装内径为1.5或3英寸的标签纸卷,当安装1.5英寸(38毫米)的标签纸卷是,需要将3英寸(76毫米)的安装轴套拔出。安装纸卷的最大外径可以203毫米,安装标签纸的步骤如下: 1. 打开打印机右边的翻盖。 2. 旋转打印头锁定扳手(PRINTHEAD LATCH),从而升起打印头。 3. 将标签挡板(MEDIA EDGE GUIDE)滑到外侧,并旋转到水平位置。 4. 将标签套在标签轴(MEDIA HUB)上,注意纸面向上,推到最里面,将标签从导纸杆(MEDIA IDLER)的下方并通过标签检测器(MEDIA SENSOR)引出,压在打印头的下面。 5. 将标签挡板推至标签的边缘,并旋转至垂直位置。 6. 滑动标签检测器,使其检测孔处于标签纸的宽度范围之内。 7. 压下打印头并锁定。 三、安装碳带 1. 旋转打印头锁定扳手(PRINTHEAD LATCH),从而升起打印头。 2. 将色带卷插入碳带安装轴(RIBBON SUPPLY HUB),安装时应注意根据碳带碳层的朝向,保证碳层是面向标签纸的。 3. 将碳带引出,按打印机指示方向从碳带辊(RIBBON ROLLER)的下面饶过打印头,卷到碳带回收轴(RIBBON TAKE-UP HUB)上。注意不要将碳带穿过标签纸检测器的中间。 打印机的基本操作: 该面板为DATAMAX DMX-I-4208的打印机操作面板。打印机的各种设置的更改皆通过上述面板的按键操作

条码打印机操作标准培训教程 完

条码打印机操作标准培训教程 在数月前的我对条码打印机的操作一无所知,感觉有点难以操作与控制,特别是那 种一个Label的Width与Height极小的贴纸,那精度实在是难认控制。通过数月接触, 终于熟练的操作条码打印机。有一些人认为,竟然花了几个月的时间才清楚弄明白,那 学习也不怎么容易,其实不然,因为没有相关学习资料,所以摸索了大量时间,所以本 人做了此培训教程,让不知者很快掌握这一些知识与技能。我制定了初学部份、进阶部 份、高级技巧三方面进行讲解。 一、初学部份 在要学会打印前,必需要知道在条码打印方面用到的一些专用名词: 1、贴纸:要实现被打印,用于主要目的一种介质,像文档打印中的A4纸一样。 它又分为:黑标贴纸、间隙贴纸。 防刮贴纸 黑标贴纸 贴纸普通贴纸各种尺寸的贴纸 防刮贴纸 间隙贴纸 普通贴纸 2、黑标贴纸:此种贴纸不借助于碳带即能直接打印,打印纸张后面有黑标标记。 3、间隙贴纸:此种贴纸必须借于碳带才能打印,打印纸张之间有等距间隙。 4、碳带:与贴纸配合,是贴纸上色料的载体。主要是用于间隙贴纸。 普通碳带 碳带 防刮碳带 5、探测器:是条码打印机上必备部份,主要用来识别贴纸,来控制贴纸的进纸。 它又分为:间隙探测器、黑标探测器。 6、间隙探测器:能够识别间隙贴纸。 7、黑标探测器:能够识别黑标贴纸。 8、打印模块:条码打印机上负责把我们编辑的模版进行打印的器件。

9、滚筒:负责把碳带或贴纸缠绕起来,用于支撑作用。 10、滚轴:打印机器件上的一部份,用于支撑滚筒。 11、定位卡:打印机器件上的一部分,用于固定贴纸左右位置的卡子。 12、进纸(Feed):移动一张纸,它是从打印机中向外移动,不会打印。 13、常量:在打印中,数据不变化的量,即所见即所得。 14、变量:在打印中,数据有序变化的量,打印批量有序的流水号与MAC就是变量。 15、步长:数值数据变动的浮度,第二次要打印的数据与第一次要打印的数据的 差(只针对整数。) 16、Label:在一卷贴纸中,它是一个最小单位,是我们使用最基本的成份,用宽度(Width)、高度(Height)来描述。 17、PageSize:也是由宽度(Width)、高度(Height)来描述。宽度为单行所有Label 的宽度和它们的间距之和。高度为N行(N>=1)Label的Height与N行之间隙之和。 18、数据结构:用于描述事物的属性。 19、记录:对数据进行筛选后的内容。 20、表:由数据结构与记录组成。 21、数据库:管理数据的仓库,内由表构成。 22、底纸:打印使用贴纸下面的一层纸。 有了上面的一些基本知识,后提到它,就应该知道它指代什么。 下面就介绍条码打印机的常见部份,条码打印机都类似,这里讲解其中一种,见 图。 此处接数据通信线,负 责与主机进行通信。 此处接电源 线,为此机 供电。 图1 开关按 扭

条码打印机碳带安装步骤

北洋BTP-2100E/2200E/2300E系列是热敏/热转印桌面型标签打印机中的经典机型,该产品采用大容量耗材结构设计,可容纳长度为300m的碳带和直径为127mm的纸卷,除此之外,在关键件可靠性及人机界面方面也有它的独到之处。针对很多客户咨询北洋打印机安装碳带的问题,深圳市互信恒科技整体出如下条码打印机碳带安装9个步骤,希望对广大用户起到实际用处! 1、取出碳带芯轴和碳带,按照下图所示方向,将碳带芯轴插入碳带轴心中;碳带绕向如下右图所示; 2、按照图示箭头方向双手推动打印机上该并向上翻,打开打印机的上盖;

3、向下按动打印头抬起按键,抬起碳带支撑架(30°左右的角度,听到轻微的“啪”提示声,碳带支撑架将保持此位置不动); 4、将碳带发放轴处的手动拉轴套向外轻拉,将碳带发放轴芯轴左侧插入发放轴拨轮的六角形凸台中; 注意:碳带发放轴左侧凹槽必须要和发放轴拨轮的六角形凸台啮合好,否则打印机可能会报警缺色带。

5、将碳带发放轴右侧对准手动拉轴套的堵头,松开手动拉轴套,发放轴碳带安装完毕; 6、取出另一个碳带芯轴和碳带回收纸轴,按照下图所示,将碳带芯轴插入碳带回收纸轴中; 7、将碳带回收轴处的手动拉轴套向外轻拉,将碳带回收轴左侧插入回收轴拨轮的六角形凸

台;将碳带回收轴右侧对准手动拉轴套的堵头,松开手动拉轴套,碳带回收轴安装完毕; 8、从已安装好的碳带发放轴上取下碳带前端,将碳带前端从打印头组件下方绕过,然后将碳带前端部分粘贴到已安装好的碳带回收轴的纸轴上; 9、拨动碳带转动拨轮,使碳带缠绕在碳带回收轴上并使碳带绷紧,至此,碳带安装完毕。

条码打印机使用说明

条码打印机使用手册 1.打印机卷纸安装 (1)打开打印机上盖,露出卷支仓。 (2)取出纸卷架。 (3)把纸卷由左置右套入纸卷架。 (4)把纸卷托架连同纸卷一起放回纸卷仓。 (5)将纸卷向左端靠齐。 (6)将托架上的挡板向左靠紧纸卷。 (7)打开打印头模组。 (8)一手托住打印头摸组避免掉落,将标签穿过打印头摸组下,另一只手从标签引导器中拉出标签。 (9)让标签从滚轴上方穿过。 (10)向下合上打印头摸组,直到听到“喀嚓”的一声。 (11)合上顶盖,打开电源开关,若打印机电源已接通,直接按下FEED键 2.打印机碳带安装 (1)打开打印机上盖,露出卷支仓。 (2)按下在打印机两侧的释放钮,打开打印头摸组。 (3)向上打开打印头摸组露出碳带供应端。 (4)拆开碳带包装,取出碳带和空卷芯 (5)将碳带前端少量连接到空卷芯上。 (6)将碳带安装到碳带供应端(先卡左端在压入右端)

(7)关上打印头摸组在将空卷芯在碳带回收端(先卡左端在压入右端)。 (8)转动打印头摸组左端的齿轮,确定碳带卷紧。 (9)同时向下按压打印头摸组两侧,直到听到“咔哒”一声。 3.连接打印机 (1)连接电源线,USB打印线。 (2)打开电源开关,放入随机光盘安装驱动。 4.驱动的安装 (1)把光盘放入光驱中,点自动播放会出现如下图示,点“GO” (图1) (图1) (2)选择条码打印机产品中的驱动下载

(3)出现windows printerdriver 提示时,选取“接受”,在点“ 下 一 步 ” 。

(4)指定SEAGULL驱动程序的安装目录 (5)按一下,完成。

条码打印机常见打印问题汇总

条码打印机常见打印问题汇总 东莞邦越条码 【常见打印问题汇总】 ——————————————————————————————————————— 把握原则:1.先检查安装的标签和碳带是否到位,排除人为→ 2.通过肉眼观察碳带标签的表面情况是否有异常情况→ 3.看打印机参数设定是否改动;设置及相应打印软件设置是否正确→ 3.再从打印机调整角度思考→ 4.最后从标签碳带耗材着手判断,是否属产品质量问题,进行退换货操作 建议方法:用替换法操作比较简单易行。 注:此章问题集可适用于所有的碳带和标签的打印判断。——————————————————————————————————————— 问题罗列:并且按①②③④等步骤跟客户讲解,依次进行有思路判断; 如:电话中反映的问题按如下步骤在第①步就解决那最好,如不行则进行②③④等判断。 1.打印出来的标签整体内容看上去不清晰,颜色偏白,有毛糙等现象? ①拿起目前打印的碳带,肉眼观察碳带的涂层(或理解成膜面、面层)是否均匀; ②拿工业酒精和棉花清洁打印头和滚轴,擦除灰尘;(不清楚可联系金迅技术部) ③加高打印温度,减慢打印速度,看看是否理想; ④调整打印机的整体压力,看是否解决; ⑤标签和碳带是否匹配,打印的兼容性是否理想; ⑥打印机的分辨率过低,建议更换高清晰打印头,或打印机; ⑦碳带的供应轴或回卷轴拉力不准确需调整到合适大小; ⑧其它如:也可以换个第三方打印软件codesoft,及第三方驱动试试,效果可能就出来了。 2.打印的标签效果,一边清楚,一边偏淡,怎么回事? ①确认一下偏淡这边的打印头按钮是否压紧,排除人为(类似北洋2200E等机器是这样的) ②清洁偏淡的这边打印头和滚轴部分,说不定有灰尘和厚的碳带堆积,清除不彻底; ③碳带的膜面是否均匀,是否有不良的的情况; ④打印偏淡这边,肉眼观察滚轴磨损严重,建议换新滚轴; ⑤打印偏淡这边,肉眼观察打印头磨损严重,建议换新打印头; ⑥打印头两边压力不平衡,需增加打印机偏淡的这边打印头压力; ⑦调整打印机偏淡这边打印头的前后位置,调到打印头和滚轴位于水平面的最高点;3.打印出来的标签上面有白色的皱条,斜条现象,怎么回事? ①打印温度过高,建议降低打印温度; ②打印机的左右压力,说不定有一边调得过大,建议调到合适的位置;

条码打印机如何安装和使用

条码打印机的使用不同于普通的激光打印机。很多人拿到条码打印机后首先想到是怎么安装,怎么使用,怎么打印条码和标签。下面深圳市互信恒科技为您解答。条码打印机更多的被用在商业用途以及管理用途上,同时因为其工作方式与一般打印机不同,且涉及到条码相关的知识,这就让操作使用人需要经过一定的学习方能完全掌握。这里以博思得G-3106条码打印机为例,为大家分步介绍拿到一台新的条码打印机后的操作步骤,相信能给初用者起到一定的帮助和指引作用。 一、驱动安装 博思得POSTEK条码打印机驱动为例,博思得将打印机驱动安装设计得非常简便,将驱动打包至一个可执行文件,运行它就能自动跳出驱动安装向导,用户根据向导提示,一步一步点击即可完成驱动安装,假设该驱动为海鸥驱动,安装方法如下:

二、打印机设置 1、一般情况下,用户进行页面设置后,但是打印的时候经常也会发现内容随着打印数量的增加,每一张标签依次跑偏,下面介绍怎样设置条码打印机,要先选择相应的条码打印机: 2、设置打印速度、打印温度、可以根据实际打印的情况进行多次设置,以认为的最好质量为准。 3、设置打印方式,如果是打印的是热敏纸则打印方式为“热敏”,其余的为热转印,纸张一般分为三种:有间距的标签纸、连续纸、有标记的标签(标签底纸有黑线的),在此假设标签纸为铜版纸,纸张类型则选择为“有间距的标签”,间距假设为2mm(也可能3mm),打印后的操作选择"撕去",这样打印结束后,最后一张纸会自动走到撕纸的位置,方便用户撕纸。

4、排版打印 根据标签打印需求,在编辑软件中进行排版,通常排版分为几个步骤: a)用尺量出标签的高和宽,这步很重要,软件中各项设置都应依据标签实际尺寸来做。 b)设置页面、标签尺寸,刚刚量出来的值,都设置在软件相应的地方。

z4m条码打印机操作手册

斑马Z4M打印机使用手册 一、打印机电源 电源开头位于打印机后面,打印机电源是交流电压90V至265V自适应的。安装打印机时,请确保供电电压和打印机电压相符,同时检查供电电源是否安全接地。 按住面板的某些按键,再打开电源开关,即进行特定用途的自检。 [千万注意]在插拔任何连线时,都应该关闭微机和打印机的电源。否则易损坏打印机和微机的主板!某些外界的影响,如闪电,电源或信号线上的噪声也会使打印机出现误操作。关掉打印机,再重新打开,可使打印机恢复正常。 二、打印机结构 (图1)

(图2) 三、安装标签和色带的注意事项 打印机可打印的最小标签为20mm(Length)X13mm(Width); 标签之间最小间隙为2mm,建议为3mm。 1、安装标签和色带时,按照安装机内指示图安装即可。 注意:色带安装时,要分清色带的绕向,千万不能装反,否则会损害打印机的组件,安装时须将色带推到底,安装过程中色带尽量平整。ZEBRA打印机只可用外向色带。 标签安装时,要将标签挡片和挡纸片挡好。 2、安装标签和色带时,注意不要划伤打印头。比如戒指、工具等物品。色带及标签勿沾 有泥沙、灰尘等杂物。 3、当第一次安装新的标签时,请做MEDIA CALIBRTION的工作。 方法如下:装好标签和色带,合上打印头,按SETUP/EXIT进入打印机选项设置,按“+”或“-”键到选项MANUAL CALIBRTION。选择YES键进行标签测试,此时打印机会连续走多张纸,自动完成对标签长度的试别和存储(对不连续标签有效)。注意:测试完成之后,每按一次FEED键,都将走出一张标签,如果不然表明标签测试不成功。请检查标签传感器是否有灰尘等杂物阻塞正确。

标签打印机安装和操作说明

标签打印机安装和操作说明 1、打开打印机后盖,连接上碳带(黑色比较薄的那卷),将扯出来的碳带,经过 打印头,连接到上边的那个滚轮上 2、连接上打印纸(白色很厚的那卷)注意一下纸的朝向,将扯出来的打印纸, 连接到下边带滚轮的能转动的滚轮(那个滚轮上有一个凹槽,可以将打印纸掐在那里) 3、合上后盖,连接电源,打开打印机后面的开关,进行标签打印机基本设置(打 印配置设置好后,以后就不用修改了) ①设置语言为中文:点击setup按钮,点击+、-按钮进行选择,找到language 这个选项,按下select这个按键,点击+、-按钮进行选择语言,找到“简体中文”,点击select按钮,然后点击setup按钮,此时提示是否永久保存,再次点击setup按钮,将语言选项永久保存下来 这是标签打印机启动后的界面 这是点击setup按钮后的界面

点击减号(-)找到Language选项 点击select键,进入选择界面

点击减号(-)选择简体中文 点击setup确认保存

再次点击setup保存配置 ②设置打印密度:点击setup按钮,点击+、-按钮,找到“密度”这个选项,, 按下select这个按键,点击+、-按钮进行选择密度,我们一般设置为+20,点击select按钮,然后点击setup按钮,此时提示是否永久保存,再次点击setup

按钮,将打印密度选项永久保存下来 ③设置打印模式:点击setup按钮,点击+、-按钮,找到“打印模式”这个选项,, 按下select这个按键,点击+、-按钮进行选择模式,我们一般设置为剥下,点击select按钮,然后点击setup按钮,此时提示是否永久保存,再次点击setup 按钮,将打印模式选项永久保存下来 这里将②③和在一起了,详细见图: 点击setup后点击select,对密度进行设置 点击加号(+)将密度调整到+20

条码打印机安装说明

4 TSC TTP-244 Pro 条码打印 机 安装使用方法及常见问题 标签纸:50 x 20mm 双排铜板不干胶标签纸 碳带:110mm 热转印碳带 2.安装碳带 2.1将碳带回卷轴插入空的碳带纸轴中。并将其安装入碳带回收轴的位置。 2.2r 1. 安装驱动 打开光盘内Drive 』口「曲 安装驱动要选择USB 端口。 {产品说明书里有详细的安装步骤 } 1.1 1.2 目录,运行安装驱动程序: k DriverWizard.exe L 二 r

2.3依相同方法将碳带卷轴插入碳带轴中。并将其安装入碳带供应轴的位置。

2.5拉住碳带前端向后拉,经由印字头座架下方( 到碳带回卷轴上方。用胶带将碳带前端的透明部份平整地 贴附于碳带回卷轴上的纸轴上。 2.6以顺时针方向卷动碳带回滚动条,使碳带前端的透明部份平整地依附在回滚动 条上,直到看见黑色碳带为止。 ;RIBBON贴纸处)往前拉 2.4将印字头座架释放杆往上拉,打开印字头座架。 1 I RIBBON

卷紧碳带使碳带上没有任何皱折(否则打印出的条码不清晰) 打开打印机的上盖。 按下印字头座架释放杆打开印字头座架。 3.3 签滚动条上。将卷标卷平稳地放置于标签架的凹槽中。2.7 3. 标签纸的安装 3.1 3.2 r I;' 将卷标滚动条插入卷标卷〔印字面向外卷〕之中心孔内。将固定片接到标 — ?

3.4依底座印有的Label J 的箭头指示方向,将标签卷之前端从印字头座架下, 经 由压杆上方,再向前经过标签出口拉出。 3.5标签纸从电路板下方穿过;依照纸卷之宽度调整导纸器,使其与标签卷宽 度相 符并保证居中位置。 压下印字头座架。 将卷标卷往反方向卷紧,使标签纸保持张紧的状态。 关闭打印机上盖。 机器初始化操作 机器初始化(恢复机器出厂设置)步骤: 4.1将机器关机; 4.2在关机状态下,同时按住F EED I 讲纸键和I PAUSE I 暂停键不要松开; 4.3然后开启机器电源,观察机器上的指示灯,当绿色指示灯和红色指示灯依 次闪烁2遍1 3.6 3.7 3.8 4.

条码打印机的驱动安装以及标签的打印

条码打印机的驱动安装以及标签的打印 一、打印驱动的安装 可以按以下操作: 点击[开始] ] 如上图,依次点击[开始]→[设置]→[打印机Array ] 点击[添加打印机

可选本地 打印机 点击[下一步] 如您选择打印信 号线为并口,则选 “LPT1”;如您选 择打印信号线为 串口,则选 “COM1”; 本打印机可采用三种打印信号线,即并口、串口、USB口。包装箱中,我们提供了二种打印信号线,并口和USB口,如您选择打印信号线为并口,则选“LPT1”;如您选择打印信号线为串口(该打印信号线需用户自行到市场上购买)或USB口,则选“COM2”(“COM1最好预留,供以后条码扫描终端传输数据用”),确定后,点击[下一步]。 点击此处点击[从磁盘安装]。

点击[浏览]。 选光盘驱动器。 选“software”文件夹。 点击此处选光盘驱动器 选此文件夹

选此文件选“interDrv”文件夹。 选此文件 根据您当前计算机安装的系统平台如:windows XP、windows 2000、windows 98选定文件夹,如您当前计算机安装的系统平台是windows XP、windows 2000、windows 98,则选择“95 98 Me 2000 XP”文件夹. 选此文件选“Intermec.inf”文件,然后点击[打开]

点击[确定]。 选“EasyCoder PC4 (203 dpi)”启动程序,然后点击[下一步]。 打印机名可以默认原有的,点击[下一步]。选此启动程序

点击[下一步]。 点击[下一步]。 点击[完成]。 二、定义条码标签大小 可以按以下操作:

相关文档
相关文档 最新文档