文档库 最新最全的文档下载
当前位置:文档库 › 有机电致发光材料及器件导论(精)

有机电致发光材料及器件导论(精)

有机电致发光材料及器件导论(精)
有机电致发光材料及器件导论(精)

1. 电致发光(EL):发光材料在电场作用下,受到电流和电场的激发而发光的现象,是一个将电能直接转化为光能的一种发光过程(非热转换即不是通过热辐射实现的)。

2. FED,PDP,LCD都存在问题,不能满足时代需求,所以研究更为高效的有机电致发光器件(OLED)。OLED特点:材料选择有机物,高分子,因而选择范围宽;驱动电压低;发光亮度和发光效率高,发光视角宽,相应速度快;器件可弯曲,不受尺寸限制,分辨率高等。

3. 基态:分子的稳定态即能量最低状态;激发态:被激发后,分子的电子排布不遵循构造原理。激发态分子内的物理失活:辐射跃迁和非辐射跃迁。而辐射跃迁:释放光子而从高能激发态失活到低能基态的过程。导致电子运动轨道界面减少;在势能面上跃迁是垂直发生的。

4. 有机半导体:在外电场作用下,电子和空穴在LUMO和HOMO间的跳跃产生电流。而掺杂半导体中的载流子浓度大于本征半导体(电子和空穴浓度相同),所以导电性更好

5. 直流注入式有机电致发光:在有机EL器件的两端电机上加上直流电源,通电后发光器件受电激发的作用而发光的现象。过程:载流子注入,载流子传输,电子和空穴碰撞形成激子(激子是彼此束缚在一起的电子和空穴对),激子辐射退激发发出光子。

6. 单线态激子是总自旋为0的激发状态;注入的电子和空穴形成的单线态和三线态激子的比例正比于其状态数,有机电致发光的量子效率最大为25%;Forster能量转移:能量从主体向掺杂材料的传递方式,能在较远距离内实现,为单线态激子;Dexter能量转移:只能在紧邻分子间实现,为三线态激子。

7. 单层器件:单层有机薄膜被夹在ITO阴极和金属极之间,形成的是单层有机电致发光器件。但是单层器件的载流子的注入不平衡,器件发光效率低。三层器件是目前OLED中最常用的一种。在实际的器件中,在发光层往往采用掺杂的方式提高器件性能

8. 器件制备过程:刻蚀好的ITO玻璃—清洗—臭氧/氧等离子体处理—基片置于真空腔体—抽真空—蒸发沉积有机薄膜和阴极—取出器件并封装—测试表征

9. 有机小分子发光器件通常用真空蒸发沉积的方法制备构成器件的薄膜,整个过程要在真空腔内完成(真空度高于10^-4Pa)。共聚物发光器件主要是通过涂璇的方法制备的,涂璇过程中要精确的控制加速,转速。但涂璇浪费材料且不能全彩显示,而喷墨打印则弥补此缺点。

10. 在OLED贮存和工作器件受到化学反应的影响,所以要选择阻隔性好的封装材料。有刚性封装材料(玻璃和聚合物,玻璃可形成密闭空腔,聚合物可满足显示器

大屏化);柔性封装材料(玻璃和聚合物);边缘缝隙封装材料(紫外固化得聚合物黏结剂)

11. 有机电致发光器件封装材料的高阻隔性可通过在聚合物薄膜上沉积小分子图层形成复合薄膜获得,多层复合薄膜可使粗糙的器件表面光滑化,保证无机层的完整,以致渗透分子的传导受阻更好,也可在封装中加捕捉剂来提高阻隔性。

12. 器件发光效率:量子效率(器件向外发射的光子数与注入电子空穴对数之比。内量子数ηint指器件产生的所有光子数与注入电子空穴对数之比;外量子数ηext 指器件在全空间发射的光子数Np与注入的电子空穴对数量Nc之比);流明效率(ηl=AL/Ioled,A为器件有效面积,L为器件发光亮度,Ioled为有机发光器件发光亮度为L时的工作电流);功率效率(ηp=Lp/IoledV,ηp为光功率效率,Lp为器件前方发射出来的光功率,IoledV是驱动电压V驱动下的器件总电功率)

13. 有机电致发光器件效率可以用积分球光度计测量。但这是一个理想模型,要对测量结果进行修正;发光效率用积分球光度计加光谱仪的方法测量。

14. 亮度,Lv为发光亮度,Km为光功当量,Le. λ为辐射亮度,V(λ)为明视觉光谱光视效率。Lθ=Iθ/d a cosθ,Lθ为某方向发光功率,Iθ为改方向上的光强,da为一个发光表面。发光亮度一般用各种亮度计测量,测量被测光源表面的像在光电器件表面所产生的光照度,则该像表面的照度正比于光源的亮度,不随光度计与光体之间的距离而变化。

15. 色度测量通常用光谱辐射计,如PR-705;有机电致发光器件的电流-电压曲线则可用普通的伏安法测量。亮度-电压曲线表现器件光电性质;发射光谱测量:使荧光或者磷光通过单色器后照射于检测器上,扫描发射单色器并检测各种波长下相应的发光强度,然后记录仪记录发光强度对发射波长的单色曲线,从而得到发射光谱;器件的寿命是指器件发光亮度下降至原始亮度的50%所经历的时间,但由于器件寿命很长,测量工作不会持续那么长时间,所以通过对测得的亮度-时间-电压曲线分析计算就可得到器件寿命

16. 提高器件性能:材料提纯;材料掺杂(在有机发光层掺杂荧光效率高的有机染料;在电荷传输层掺入迁移效率高的有机材料);有机/无机界面光滑化,提高平滑界面层能带的连续性,加强界面层的连接;选择电极(阳极为高功函数的透明金属,透明导电聚合物和ITO导电玻璃;阴极为低功函数的金属,合金阴极,复合型阴极;掺杂有低功函数金属的有机层夹在阴极和有机发光层之间);改变基地结构,减少光的耦合损失,提高光输出;

17. 有机半导体只能靠从外部注入到导带中的电子和注入到价带中的空穴来导电。电子电流:I=neν(n为电子浓度,ν为电子平均飘逸速度,e为一个电子携带的能量),I=Q/t(Q为单价面积注入的电荷,t为为从阳极渡越到阴极的时间),

Q=neL(L为阳极到阴极的距离),Q=CV(C为单位面积电容,C0=2ε/Leh,

Leh=L/2,I=ενV/L2,ν=μE=μV/L得I=εμ(V2/L3)这是理想绝缘体的空间电荷限

制电流公式。Poole-FrenKel公式,其中

μ0,θ,γ气材料相关的因子,k为Boltzmann,T为绝对温度,E为电场强度。产生载流子迁移率对电场强度和温度的Poole-FrenKel形式的依赖性的原因是载流子跳跃式导电机制

18. 改善空穴注入能力:用氧等离子体处理和紫外线臭氧处理;插入一些空穴注入材料;将空穴传输材料部分氧化;阳极界面处理(ITO电极经含硅的三胺空穴传输材料自组装;无机物插层:含聚合物EL器件在ITO上自组装一层PEDOT-PSS作空穴注入和传输层,二价过度金属化合物及相应的氧化物可作为ITO阳极的修饰材料和电子阻挡层)

19. 空穴传输材料:芳香族三胺类化合物(此类化合物具有低的电离能,在传递过程中所客服的结构重组能量较低,有利于空穴传输,但其玻化转变温度低。所以近年来一般采用熔点高和玻化转变温度高的空穴传输材料,具有成对偶联,星形,螺形和枝化等特定空间构型的化合物可以提高玻化转变温度,成膜性好,空穴传输能力高);含三芳胺单元的共轭聚合物(具有很高的玻化转变温度);咔唑类化合物(特定拓扑结构的此类化合物具有很高的空穴传输能力);有机硅空穴传输材料(在ITO上形成的薄膜有效的改善了电极平整度);有机金属配合物。

20. 电子传输材料:具有大共轭结构的平面芳香族化合物(较好的接受电子能力,在一定的正向偏压下又可以有效的传输电子);金属配合物(Alq3,高Ea和Ip及好的热稳定性和成膜性。对其进行化学修饰合成一系列化合物具有更好的的性能);恶二唑类化合物(有机小分子恶二唑类,高Ea,高电子迁移率;星状恶二唑类,高玻化转变温度,高Ea,Ip;恶二唑类聚合物,高Tg,不易结晶易进行掺杂,易溶解于有机溶液中);含氮五元、六元杂环;含氰基和亚胺的电子传输材料;全氟化得电子传输材料,有机硼电子传输材料;噻吩寡聚合物。

21. 空穴阻挡材料要求:具有较低的HOMO能级,有效的阻止空穴的传输,使激子复合区在发光层;具有大的电子亲和势和高的电子迁移率;稳定性好,能形成统一致密的薄膜。常用的空穴阻挡材料:BCP,用于OLED中,有阻挡激子/空穴传输到电子传输层的作用;TPBI,低Ea,高Ip,比BCP有很大的改善;还有有机硼空穴阻挡材料(TBB,FTBB,TFBD,TFPB与一些具有空穴传输能力的化合物

F2PA,TPD等组成具有多层结构的EL器件,有效的将空穴阻挡在发光层,但器件发射蓝紫色光

22. 发光材料要求:高量子效率的荧光特性;良好的半导体特性;良好的成膜性和热稳定性。蓝光材料要求材料化合物结构有一定程度的共轭结构,但分子的偶极矩不能太大。

23. 蓝光材料:只含碳和氢两种元素的芳香性蓝光材料(1,在双(2-甲基-8-羟基喹啉)(对苯基苯酚铝)掺杂TBPE形成的物质;2,芳基取代蒽类材料,AND中掺

杂Tbpe具有很好的蓝光发射,还有NPN和AND为主体,PPVBi为客体混合制成EL器件,其寿命明显加大;螺芴与蒽形成共轭化合物制成EL器件,效果最为理想。3,芴类蓝光材料,如芳香取代的三芴,玻化转变温度高,成膜性好。4,二苯乙烯基芳基蓝光材料,如芳胺取代的二苯乙烯基芳基材料CDSA-amine。5,还有如TPCP,BTP都可作为蓝光材料);芳胺类蓝光材料(这类材料具有电子传输和空穴传输能力,如1,电子给体-共轭体系D-π蓝光材料具有高荧光量子,2,D-π-D蓝光材料具有偶极矩小,发光峰在蓝光区域。其中线型的有NPN,CBP,星形的有TPBI。3,D-πA蓝光材料,但其偶极矩大,易红移。4,含氮杂环蓝光材料,当取代基为电子给体时,器件效率高);有机硅类蓝光材料(发射峰在蓝光区且玻化转变温度高,在PPSPP中又激基复合物发光现象);有机硼类蓝光材料(玻化转变温度高,有很好的电子传输特性)

24. 纯有机小分子绿光材料:香豆素染料(C-545TBT C-4位引入一个甲基,将其掺杂至Alq3中作OLED的绿色发光材料);喹吖啶酮类绿光材料(用RN=代替

NN=基团,器件寿命加长);具有载流子传输性能的绿光材料(1,咔唑衍生物,将载流子传输基团和发光基团构建在同一个分子上。2,二胺基蒽类衍生物作为空穴传输层,与空穴注入层和电子传输层适当组合可获得高效OLED);其他有机小分子绿光材料(1,具有一定共轭长度的有机硅化合物;2,喹喔环的下位上引入二烷基胺形成分子内电荷转移态)

25. 纯有机小分子红光材料:DCM系列掺杂红光材料(DCM衍生物掺杂在Alq3中,用于有机EL器件,但易发生浓度淬灭,而DCJTB则极大的改善了DCM型染料的热稳定性,有利于OLED制作);“辅助掺杂”类红光材料(1,红荧烯可作为辅助掺杂和DCJ同时掺杂在Alq3中,则可获得满意的红光器件。2,喹吖啶酮也可作为辅助掺杂剂来提高器件的性能);其他DCM衍生物掺杂红光材料(如非对称D-πA结构的DCM衍生物,对称的D-A-D或A-D-A结构DCM衍生物但效果不是很理想);其他掺杂型红光材料,但是大多不能得到很纯很好的红光

26. 主体发光的非掺杂型红光材料:具有D-πD结构的芳香胺类化合物(ACENs化合物,通常载流子不在红色发光复合层,就要引入TPBI或BCP,但降低了器件的效率);具有D-π-A-π-D芳香胺类化合物(BAM,抑制固态时荧光浓度淬灭;寡聚苯乙烯类化合物可实现红光发射);具有V字形的D-π-A-π-D芳香胺类化合物(这些结构能加强电荷转移吸收和相应荧光发射强度,由有利于材料的空穴电子传输平衡);齐聚物发光材料(联寡吩类齐聚物,但要在分子中引入多个取代基)

27. 金属配合物电致发光材料:8-羟基喹啉类配合物(8-羟基喹啉铝,高Tg,具有电子传输性,成膜性好。而经修饰后的8-羟基喹啉铝荧光彩色从蓝光到红光可调。Caq3,Inq3则是更好的电致发光材料);10-羟基苯并喹啉类配合物

(BeBq2,但Be是贵金属且有毒);羟基苯并寡唑类配合物(Zn(BTZ)2,Zn (NBT)2等);2-C2-羟基苯基吡啶类配合物(BePP2,蓝光材料由可作DCM主体使用);Schiff碱类金属配合物(对Alq3修饰使其发蓝光,金属亚甲胺系列配合物);羟基黄酮类配合物((BeC5Fla)2,低亮起电压)

28. 高分子电致发光材料优点:实现能带调控,得到全色发光;可设计具有特定功能的器件;避免晶体析出;可通过掺杂或改变化学结构控制其性能;具有良好的稳定性,易成型,器件响应速度快

29. 高分子电致发光材料:聚苯撑乙烯类电致发光材料(将PPV作发光层制成聚合物电致发光材料PLED;在苯环上引入增加溶解性的基团,增加其溶解性;引入给/吸电子团,提高空穴电子传输/平衡注入能力,提高发光效率);引入大体积单元或刚性液晶单元减小链与链之间的相互作用力,防止电子在链间传递而引起的荧光淬灭,提高发光效率,同时提高聚合物的热转变温度和稳定性)聚乙炔类电致发光材料(烷基和芳香基取代氢原子的方法制备这类聚合物,烷基中π-π*带间传输随链长度增大而增大,激子淬灭点散射速率随链与链之间距离增大而减小。芳香基稳定性高);聚对苯类电致发光材料(可用Yamamo to反应和Suzuki偶联反应合成可溶性芳香类聚合物,但会产生扭转角。若制成梯形结构,引入增溶作用的基团可提高溶解性);聚寡吩类电致发光材料(取代基不同对光电性质影响很大。

P3DDT—在侧基上引入杂原子可以提高发光效率,还有用结构规整数目可控的齐聚噻吩,在共轭主链上引入其他基团如硅等原子。聚噻吩与其他共轭聚合物共混提高器件性质);聚芴类电致发光材料(PFs有较高光和热稳定性,但发射的光饱和度和纯度不高。目前主要制备小分子发光材料,在芴上引入不同的侧基后聚合制备芴均聚,芴单体与其他单体共聚物以及制备由芴衍生而来的超支化聚合物等。如芴与炔交替的发光材料,含有联苯侧基的芴均聚物等引入侧基或基团的聚合物,聚芴及具有P-n型双嵌段的芴聚物都是发光效率高,性能好的器件);还有聚吡啶类电致发光材料(较强的电子亲和力,抗氧化性,电子传输能力);聚恶唑类电致发光材料(溶解性好,发光效率高);聚呋喃类发光材料(良好的机械性能和热稳定性)

30. 早期用PtoEP作磷光发光体,磷光掺杂的有机电致发光器件可以充分利用激发三重态的分数,提高器件的外量子效率

31. 磷光电致发光器件:1,金属铀引入小时环后,提高了圈旋和轨道的肥合,缩短了磷光的寿命,使原有的三重态增加了某些单重念酌特件,增加了系间审越的能力,导致禁阻的三重态向基态跃迁变为局部允许,使磷光得以顺利发射。2,PtoEp (客体磷光材料)掺杂到Alq3(主体材料中去,A1q的荧光发射峰位于530 nm,高于PtOEP的磷光发射峰580nm,这杆A1q3所吸收的能量才能顺利转移到PtOEP 中,使PtoFP的发射得以顺利进行。

32. 磷光敏化剂指将一种或多种磷光物质均合适的荧光工作物质,掺入到高分子或小分子主体中,这种磷光物质可以大大提高荧光工作物质的量子效率。实验表明,当重原子铂加入后,势的自旋-轨道耦合作用.使金属到配体的电荷转移单重态与配体的π-π*跃迁的三重态混合,从而使禁阻的辐射弛豫有效发生,但另一方面,当发射能垃增加时〔短波万向,室温下的量子效率及寿命都有所降低。含二胺类的铂配合物无论是是在固态还是溶液中,无论是室温还是低温都能发射磷光,Pt

(L1),Pt(L3)由于易升华,具有相对短的

33. 射寿命和高量子效率,适合作为电致磷光掺杂剂。大多数含芳基-2,2’-联吡啶三齿配体σ-炔基的铂配合物可以发射磷光且量子效率高,良好的热稳定性及挥发性。

34. 铱配合物:绿色磷光材料2-苯基吡啶铱配合物的电致发光(量子率高,发光效率高,亮起电压低);含有吡啶衍生物或苯并含氮五元杂环配体和辅助配体β-双酮的三元铱配合物的磷光电致发光(通过修饰配体,磷光光谱在很大范围类可调制);基于吡嗪或喹啉衍生物的铱配合物的磷光电致发光(实验表明以Ir (DBQ)2和Ir(MDQ2为材料组成的器件都有很好的EL特性),为了减小浓度淬灭,基本都是将金属配合物掺杂到主体材料中以达到较高的亮度和效率;基于苯并咪唑衍生物铱配合物磷光电致发光

35. 俄配合物:基于联吡啶或邻菲罗林及其衍生物的俄配合物磷光电致发光(好的磷光效率和短的激发态寿命适用于OLED制作,用俄配合物作三重态容体掺杂,可以提高器件效率和亮度);基于吡啶-吡唑基的俄配合物的磷光电致发光(配体吸电子能力强,器件效率高);铼配合物的磷光电致发光(室温磷光量子效率高激发态寿命短,稳定性好等。改变共轭长度和配体取代基,可调节荧光发射波长,配体重存在吸电子基团以及配体的双极性对器件性能影响很大);铜配合物的磷光电致发光(具有较高的载流子传输能力)

36. 有机电致磷光方法是实现有机电致白光的最有效的方法

37. 有机电致白光器件:多层发射WOLED,该方法是将边一种磷光物质掺杂在个同居的主体材料构成多种磷光客体的多层发光层的器件结构。通过控制科有机层复合电流,可以平衡红、绿和蓝光发射层的发射,从而得到理想色纯度的白光。主要是借助真空蒸镀技术。通过改变掺杂层的厚度和掺杂度可以调节WOLED的发光颜色,但是操作电压高,制作复杂;多重掺杂单发层WOLED(产生白光几个掺杂剂掺杂在同一种主体材料中。三线态激子的形成有利于操作电压的降低和ηp的升高,三重掺杂器件可以防止电子从发射层逃逸还可以有效阻挡空穴通过界面层,在器件寿命中,白光颜色不变);单掺杂单发射层WOLED(将一种磷光物质掺杂在一种主体材料中构成一种磷光客体,一种主体的白光器件如磷光发光体Ir(ppy3为敏化剂实现高效的有机电致白光器件由于磷光材料可以将其激发态能量转移到荧光材料的单线态从而得到高效的白光器件);基于激基缔合物和激基复合物发射的WOLED(要求一种激发态的彼函数能够与相邻的不同类型分于的波函数发比重叠。将Firpic和Fpt1掺杂在CBP中,当电流密度较低时,得到很好的白光发光器件);基于溶液处理的白光器件(将红色铼配合物Ir(HFP)3作为磷光发光体掺如PFO中,通过涂璇得到两个单层白光器件,这两种器件的白光都接近理想的白光);另外还有垂直堆叠OLED,并排排列的OLED等。

38. EOLED存在的问题:成本高,操作时间长且步骤繁琐;当杂质含量低于0.1%时,有机材料的纯度无法检测;

39. 镧铈扎采用组态,镥采用组态,其他元素采用

组态。稀土元素一个共同点就是形成正三价La3+,且有复杂的吸收和辐射跃迁。稀土离子的吸收光谱是一系列的现状光谱(铈,镱除外)

40. 稀土配合物电致发光优点:光色纯度高;发光效率高;修饰配体不影响发光颜色。

41. 铕配合物的电致发光:由于铕的荧光发射,高光致发光效率,属窄带发射。可从铕的荧光配合物中得到纯正的红光。提高铕配合物的电致发光:1,改善EL器件的结构(1掺杂技术可以优化固体状态下的能量传递,改善载流于传输作用;稀释激子浓度避免三重态的自淬灭;改善成膜性。2在器件中加空穴阻挡层,使发光度增加);2,改善材料性质(1中心配体修饰,提高器件效率和亮度;2,β-双酮的优化,提高载流子的传输能力及成膜性溶解性)

42. 铽配合物的光致发光是由于4f-4f的电子跃迁产生的。电致发光:1,乙酰丙酮及其衍生物形成的配合物作为发光材料,但效果不是很好;2,吡唑啉酮体系及其铽的配合物作发光材料(吡唑啉酮与铽能形成很好饿荧光工作物质。电致发光时要提高载流子注入平衡化来改善器件性能。不同的中性配体对光致和电致发光有很大影响,如增加TPPO使光致强度加强,增加Phen使光致强度减弱。而电致发光的最大亮度和流明亮度则相差很大)

43. 稀有元素的4f电子跃迁带正好在红光区,使他们在红光区有优良的荧光发射性质。像铷,镨,铒镱配合物的电致发光主要是f-f的电子跃迁落在红光区,使得他们在红光区有很好的发射光谱。

44. 对于钇,镧,钆,镥,他们的电子处于稳定结构,没有4f电子跃迁或者跃迁需要很大能量,所以发射光在紫外区。但是他们与适当的配体配成配合物,在光激发下也能发出荧光。

有机电致发光材料与器件

有机电致发光材料与器件 有机电致发光器件发展及展望综述 有机电致发光器件发展及展望综述 中文摘要 有机电致发光器件(organic light-emitting device, OLED)目前已成为平板信息显示领域的一个研究热点。OLED具有平板化、自发光、色彩丰富、响应快、视野宽及易于实现超薄轻便等优点,被认为是未来最有可能替代液晶显示器和等离子显示器的一种新技术,同时可以用做照明和背光源。但是,其制作成本高、良品率低等不足有待解决。OLED显示技术与传统的LCD显示方式不同,无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。而且OLED显示屏幕可以做得更轻更薄,可视角度更大,并且能够显著节省电能。 为了形像说明OLED构造,可以将每个OLED单元比做一块汉堡包,发光材料就是夹在中间的蔬菜。每个OLED的显示单元都能受控制地产生三种不同颜色的光。OLED与LCD一样,也有主动式和被动式之分。被动方式下由行列地址选中的单元被点亮。主动方式下,OLED单元后有一个薄膜晶体管(TFT),发光单元在TFT驱动下点亮。主动式的OLED比较省电,但被动式的OLED显示性能更佳。 关键词有机电致发光器件器件性能结构优化空穴阻挡 - I -

Organic Light-Emitting Devices Performance Overview tianjia (Class0413 Grade2006 in College of Information&Technology,Jilin Normal University, Jilin Siping 136000) Directive Teacher: jiang wen long(professor) Abstract Electroluminescent devices (organic light-emitting device, OLED) flat panel information display has become a hot topic in the field. OLED technology has a flat, self-luminous, rich colors, fast response, wide horizons and easy to implement the advantages of ultra-thin light, is considered the next best possible alternative to liquid crystal displays and plasma displays, a new technology while can be used as lighting and backlight. However, its high production cost, low rate of less than good product to be resolved. OLED display technology with the traditional LCD display in different ways, no backlight, with a very thin coating of organic materials and glass substrate, when a current is passed, these organic materials will be light. OLED display screen can be done but lighter and thinner, larger viewing angle, and can significantly save power. To image shows OLED structure, each OLED element can be likened to a hamburger, light-emitting material is sandwiched in between

有机电致发光显示器件基本原理与进展

有机电致发光显示器件基本原理与进展 副标题:有机电致发光显示器件基本原理与进展 发表日期: 2006-2-14 21:33:35 作者:佚名点击数5224 摘要: 本文对有机电致发光显示器件的发展历史,器件结构、工作特征、获得彩色显示的方法以及所具有的优缺点、发展现状和趋势等都做了简要的概括。详细比较了小分子OLED与聚合物PLED、OLED与LCD性质上的比较,对OLED显示的发光机理进行了详细的综述。此外,对获得彩色显示的无源驱动电路和有源驱动电路的结构进行了总结,认为有源驱动将是最终发展趋势。最后总结了国内外OLED技术的发展状况。 关键词:小分子有机电致发光有机聚合物电致发光无源驱动有源驱动 (作者:姚华文,上海华嘉光电技术有限公司,上海市嘉定区招贤路928号,201821) 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 1.发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的He eger探索了合成金属[1]。1987年Kodak公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OL ED器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个高分子EL(PLED)(PPV作为发光层),更为有机电致发光显示器件实用化进一步奠定了基础。1997年单色有机电致发光显示器件首先在日本产品化,1999年月,日本先锋公司率先推出了为汽车音视通信设备而设计的多彩有机电致发光显示器面板,并开始量产,同年9月,使用了先锋公司多色有机电致发光显示器件的摩托罗拉手机大批量上市[3]。这一切都表明,OLED技术正在逐步实用化,显示

有机电致发光器件OLED的结构和发光机理

摘要 OLED 具有全固态、主动发光、高对比度、超薄、低功耗、无视角限制、响应速度快、低电压直流驱动、工作温度范围宽、易于实现柔性显示和3D 显示等诸多优点,将成为未来20 年最具“钱景”的新型显示技术。同时,由于OLED 具有可大面积成膜、功耗低以及其它优良特性,因此还是一种理想的平面光源,在未来的节能环保型照明领域也具有广泛的应用前景。本文将系统介绍OLED的发展背景、发展史、制备及应用,介绍了有机电致发光器件(OLED) 的结构和发光机理。 典型的传统OLED是生长在透明的阳极例如ITO玻璃上的,发射出来的光是由最底层衬底透出,这使得它与其他电子元件如硅基显示驱动器的集成变得非常复杂。因此,理想的做法是研发一种OLED,其光的发射由器件顶部的透明电极透出。重点介绍一种具有阴极作为底层接触层,阳极ITO薄膜作为顶部电极的表面发射型或者说有机“反转”的LED(OILED)。介绍了该器件的制备工艺,对该OILED的I 一V特性及EL谱进行了测试,发现与传统的OLED相类似,而工作电压有所升高,效率一定程度上降低。为了进一步改善器件性能,我们对器件增加了保护层(PL),研究了PL对OILED器件性能的影响。最后概述了器件的技术进展和应用前景, 并展望了未来OLED 发展的方向。 关键词: 有机电致发光器件,有机反转电致发光器件,发光机理,保护层(PL),阳极ITO 薄膜

Abstract OLED has a solid state, self-luminous, high contrast, ultra-thin, low power consumption, viewing angle, fast response, low-voltage DC drive, the operating temperature range, easy to implement many of the advantages of flexible displays and 3D displays will become the future20 years of the most "money scene" of the new display because OLED has a large-area film, low power consumption, and other fine features, so an ideal plane light source, also has broad application prospects in the future of energy saving lighting in the area. In this paper, the systematic introduction of OLED development background, history of the development, preparation and application, the structure of the organic electroluminescent devices (OLED) and the luminescence mechanism. Typical traditional OLED is growth in transparent anode ITO glass, for example, the light is emitted by bottom gives fully substrate, this makes it and other electronic components such as that the integration of the silica based drive become very complex. Therefore, the ideal way is developing a OLED, its light emission from the top of the device gives fully transparent electrodes. Focuses on a cathode as the bottom contact layer, the anode of ITO films as the top electrode surface emission or organic LED of the "reverse" (OILED). Of the device preparation process, the OILED I-V characteristics and EL spectra of the test, found that similar to the conventional OLED, the working voltage was increased efficiency to a certain extent on the lower. To further improve the device performance of the device to increase the protective layer (PL), PL OILED device performance. Finally an overview of the technical progress and prospects of the device, and looked to the future OLED, the direction of development. Keywords: Organic Electroluminescent Devices,Organic reverse electroluminescent devices,Luminescence mechanism,Protective layer (PL), the anode of ITO

有机电致发光材料的新进展

有机电致发光材料的新进展 唐杰 (湖南工程学院化学化工学院,湘潭,411101) 摘要:介绍了有机电致发光材料的最新进展,对有机电致发光材料进行分类和评述,重点介绍载流子传输材料和发光材料(小分子发光材料,金属配合物发光材料和聚合物发光材料)的国内外研究现状,并对有机电致发光材料的应用前景进行评述。 关键词:有机电致发光;发光材料;有机小分子;金属配合物;聚合物 Abstract:The recent progress of organic electroluminescent materials was introduced. Various kinds of organic molecular materials and polymer materials used for organic electroluminescence at present were mainly described. The future application of the materials was described. Key words:organic electroluminescence;luminescent material;small organic molecule;organometallic complex;polymer 前言 有机电致发光(organic electro-luminescence ),也叫有机发光二极管(organic light-emitting diode),简称为OLED[1],是指有机物在电场作用下,受到电流电压的激发而发光的现象,是一种直接将电能转化光能的过程。该类材料具有低成本、制作简单、驱动电压低、体积小、响应时间短、重量轻、高导电性、良好的成膜性、视角宽、可大面积使用、柔韧性及可塑性好、自身可发光等显著优点,能够满足照明和显示技术高的需求,已经吸引了科学界和商业界的高度关注。目前国内外对OLED的研究主要集中在发光材料的研究,器件的制作和产品研发上。 在20世纪30年代的时候,人类就开始对有机电致发光材料进行研究了。最初的是1936年Destriau发现的,他将化合物不集中在聚合物中制备了薄膜。1963年,Pope、Lohmann、Helfrich和Willams等人都接连研究了稠环芳香族的蒽、萘等化合物,但大都由于诸多因素而使其发展受到限制。1982年,美国柯达集团的Vincett[2]等人,用真空沉积有机薄膜的这样方法得到有机电致发光材料。从此,对有机发光材料研究的帷幕拉开了。1987年,C.W.Tang[2,3]利用超薄薄膜技术,得到了有机电致发光的材料这一进展对有机发光材料研究的影响很大,全世界都

顶发射有机电致发光器件 3

顶发射有机电致发光器件 摘要 有机电致发光器件(OLED)由于其自身具有能耗低、自发光、视角宽、成本低、温度范围宽、响应速度快、发光颜色连续可调、可实现柔性显示、工艺比较简单等优点而吸引了全世界信息显示技术研究领域的专家学者们的目光,它成为了最有可能取代液晶显示器件的希望之星。有机电致发光器件的研究始于1963年,近年内,越来越多的研究人员从事到有机电致发光器件的研究中来,关于利用新材料、新结构制作有机电致发光器件的报道层出不穷,有机电致发光技术也得到了飞速的发展。 有机电致发光器件按照光从器件出射方向的不同,可以分为两种结构:一种是底发射型器件(BEOLED),另一种是顶发射型器件(OLED)。由于顶发射型器件所发出的光是从器件的顶部出射,这就不受器件底部驱动面板的影响从而能有效的提高开口率,有利于器件与底部驱动电路的集成。同时顶发射型器件还具有提高器件效率、窄化光谱和提高色纯度等诸多方面的优点,因此顶发射型器件具有非常良好的发展前景。而对于顶发射型器件来说,它的有机层结构与底发射型器件的结构基本一致,所以对于顶发射型器件电极的研究具有非常重要的意义。 关键词:电致发光顶发射 Abstract Organic light-emitting diode (OLED), due to its low energy consumption, self-luminous, wide viewing angle, low cost, wide temperature range, fast response, continuously adjustable, luminous colors, flexible display, the process is relatively simple, to attract the attention of experts and scholars in display researching field all over the world. It became the star of hope which most likely to replace liquid crystal display. Researching of the organic light-emitting diode began in 1963, and in recent years, more and more researchers come to research the organic light-emitting diode. New materials, new structures of organic light-emitting diode reported in an endless stream. OLED technology has been rapid development. According to the different directions of the light emitting from the device, we can divide the OLED into two kinds. The one is bottom-emitting type device (BEOLED) and the other is top-emitting device (TEOLED). As the light emitting from the top of the TEOLED, it can ignore the effect of the bottom driving panel, so that it can effectively improve the opening rate, conducive to the integration of the device with the driving circuit. Top-emitting device can also improve the efficiency of the device, narrowing the spectrum and improve the color purity, so it has a good prospect for development. For top-emitting device, the organic layer structure and is basically the same with the bottom-emitting type device, so it has very important significance to study the electrodes of the top-emitting device.

有机电致发光材料与技术试题

选择 1、有机电致发光材料应具备哪些性质(ABCD) A 在固态或溶液中,在可见光区要有较高效率的光发射现象 B 具有较高的导电率,呈现良好的半导体特性 C 具有良好的成膜特性,在几纳米甚至几十纳米的薄膜内基本无针孔 D 稳定性强,一般具有良好的机械加工性能 2、1963年Pope等人报道了哪种材料的电致发光现象(D) A 苯 B 菲 C Alq3 D 蒽 3、下面哪些发光现象是OLED中经常出现的(ABD) A 磷光 B 荧光 C 上转换发光 D 激基复合物发光 4、1987年C.W.Tang等人利用Alq3成功制备出(B)OLED器件 A 单层 B 双层 C 三层 D 四层 5、高分子材料可以利用以下哪种方式制备薄膜(BC) A 热蒸镀法 B 溶液旋涂法 C 喷墨打印法 D 真空升华法 填空 6、OLED内量子效率是指器件中产生的所有(光子)的总数与注入(电子空穴对)数量之比 7、可以利用LiF等无机绝缘材料作为OLED的()层,是利用了电子的()效应 8、在有机电致发光材料中,噁二唑基团有(电子传输)性质,而咔唑基团具有(空穴)传输性质 9、如何实施()的有效注入,降低器件()是实现高效聚合物电致发光的关键 10、配合物发光材料主要有()发光()发光和电荷转移跃迁发光三种发光机制 判断 11、(错)发光是电子从高能态向低能态产生跃迁释放能量的过程 12、()有光辐射必然有热辐射 13、()一个发光物质有几种发光中心,他们的激发光谱都一致 14、(错)红光的发光波长比蓝光的发光波长长,所以红光光的辐射能量高 15、()有机电致发光器件必须具有多层结构或者是掺杂结构 简答 16、OLED用ITO基片最常用的清洗方法 先用普通或专用清洁剂和中等硬度的刷子或百洁布刷洗,并用清水冲洗干净;将ITO基片置于丙酮中超声清洗,再换用清洁的丙酮,反复超声多次,再把丙酮换成乙醇.也反复超声清洗多次.再用去离子水反复超声清洗多次:然后用高速喷出的N2吹干基片上的去离子水。 17、还有一个或者多个乙稀基或者乙炔基不饱和基团的可交联硅氧烷作为刚性封装材料有哪些优点? (1) 允许封装剂覆盖发光部分,聚硅氧烷及硅氧烷衍生物对OLED的寿命和行为没有损害作用; (2)封装剂直接接触器件,可以阻隔性.隔绝水、溶剂、灰尘等外部污染; (3)封装剂不与OLED在高热条件下反应,有很好的强度; (4) 直接接触OLED,没有空气、溶剂和水封在器件中。 18、理想的小分子空穴传输材料应当具有哪些性质 (1)具有高的热稳定性; (2)与阳极形成小的势垒; (3)能真空蒸镀形成无针孔的薄膜

有机电致发光综述

有机电致发光综述 本文对有机电致发光显示器件的发展历史,器件结构、工作特征、获得彩色显示的方法以及所具有的优缺点、发展现状和趋势等都做了简要的概括。详细比较了小分子OLED与聚合物PLED、OLED与LCD性质上的比较,对OLED显示的发光机理进行了详细的综述。此外,对获得彩色显示的无源驱动电路和有源驱动电路的结构进行了总结,认为有源驱动将是最终发展趋势。最后总结了国内外OLED技术的发展状况。 关键词:小分子有机电致发光有机聚合物电致发光无源驱动有源驱动 (作者:姚华文,上海华嘉光电技术有限公司,上海市嘉定区招贤路928号,201821) 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 1.发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。 20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的Heeger 探索了合成金属[1]。1987年Kodak公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OLED器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个高分子EL(PLED)(PPV作为发光层),更为有机电致发光显示器件实用化进一步奠定了基础。1997年单色有机电致发光显示器件首先在日本产品化,1999年月,日本先锋公司率先推出了为汽车音视通信设备而设计的多彩有机电致发光显示器面板,并开始量产,同年9月,使用了先锋公司多色有机电致发光显示器件的摩托罗拉手机大批量上市[3]。这一切都表明,OLED技术正在逐步实用化,显示技术又将面临新的革命[4]。 2.器件分类 按照组件所使用的载流子传输层和发光层有机薄膜材料的不同,OLED可区分为两种不同的技术类型。 一是以有机染料和颜料等为发光材料的小分子基OLED,典型的小分子发光材料为Alq(8-羟基喹啉铝);另一种是以共轭高分子为发光材料的高分子基OLED,简称为PLED,典型的高分子发光材料为PPV(聚苯撑乙烯及其衍生物[5]。 3.基本结构和发光机理 OLED是基于有机材料的一种电流型半导体发光器件。其典型结构是在ITO玻璃上制作一层几十纳米厚的有机发光材料作发光层,发光层上方有一层低功函数的金属电极。当电极上

有机电致发光材料研究现状

<有机化学进展>结课论文 题目:有机电致发光材料的研究现状 院系: 专业: 班级: 学号: 姓名:

有机电致发光材料的研究现状 摘要:本文对有机电致发光显示器件的发展历史,器件结构、工作特征、发光器件(OLED)的优点、发展现状和趋势等都做了简要的概括。详细介绍了有机发光材料的研究状况,包括小分子发光材料、高分子(聚合物)发光材料,以及新材料的开发。最后总结了国内外OLED 技术的发展状况。 关键词:小分子有机电致发光有机高分子聚合物电致发光 Research and development of organic electroluminescent materials Abstract Organic light-emitting diodes (OLEDs), having excellent properties of low driving voltage and brightemission, have been extensively studied due to their possible applications for flat panel color displays.At the same time, or-ganic electroluminescent materials have been made with an outstanding progress.And thestatus of organic electrolumi-nescent materials(including evaporated molecules and polymers)were reported in this paper. Key words OLED, organic luminescent materials, evaporated molecules and polymers 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 一、发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的Heeger探索了合成金属[1]。1987年Kodak 公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OLED 器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个

粉末电致发光材料晶体生长和发光特性(精)

粉末电致发光材料晶体生长和发光特性 本论文研究了Cu~+对ZnS:Cu电致发光材料发光特性的影响;讨论了晶体生长过程中灼烧温度、助熔剂的作用及对发光材料结构、粒度、发光特性的影响;采取相变技术和采用掺入两种激活剂的方法较大地提高了粉末电致发光材料的发光性能。研究表明,随着Cu+掺入量的增加,材料发光亮度随之增加,Cu+掺入浓度为0.15%时,发光材料的亮度达到最大,但发光亮度并不会随着Cu+掺杂浓度的增加一直增大。同时借助光致发光光谱进一步研究了ZnS:Cu的发光机理及发光特性,Cu+浓度小于0.15%时,光致发光光谱的峰值随Cu+浓度增加而逐渐增大,当Cu+浓度为0.15%时,光致发光光谱的峰值达到最大, Cu+浓度大于0.15%时,光致发光光谱的峰值开始迅速下降。通过改变灼烧温度及灼烧气氛达到改变晶体粒度的大小,随着焙烧温度的提高,ZnS:Cu的平均粒度增大,在800℃到1250℃之间可以获得平均粒度在5/μm-22/μm的发光材料,发光材料的亮度也呈增大的趋势。虽然助熔剂Br-、Cl-的加入对发光材料的粒度影响较小,但Br-、C1-起电荷补偿作用,可增加Cu+在晶体中的溶解度。我们采用晶体相变技术,获得了以立方相结构为主、结晶好、亮度高的绿色发光材料。本文提出在ZnS基质材料中同时掺入Cu+、Au+两种激活剂,通过改变掺杂比例来探索提高粉末电致发光材料发光性能的方法,在ZnS晶体中它们以一价阳离子形式进入ZnS晶格中,形成更多的发光中心。通过在基质ZnS材料中掺入Cu+和Au+两种不同浓度的激活剂,在不影响材料颜色的前提下,较大地提高了电致发光材料的亮度。论文的完成对改善绿色交流粉末电致发光材料ZnS:Cu的发光特性,获得优质的ZnS:Cu绿色发光材料及拓宽材料的应用领域有着重要的经济和现实意义。 同主题文章 [1]. Aron ,Vecht ,朱自熙. 八十年代粉末电致发光(EL)技术' [J]. 发光学报. 1981.(03) [2]. 近期外文资料索引' [J]. 液晶与显示. 1986.(06) [3]. 周连祥. 一种研究粉末电致发光(EL)器件频率特性的新方法' [J]. 发光学报. 1992.(01) [4]. 王金忠,杜国同,王新强,闫玮,马燕,姜秀英,杨树人,高鼎 三,Chang ,R ,P ,H. 退火对ZnO薄膜结构及发光特性的影响' [J]. 光学学报. 2002.(02) [5]. 谢伦军,陈光德,竹有章,汪,屿. ZnO薄膜表面和边缘的发光特性(英文)' [J]. 发光学报. 2006.(06)

有机光电材料综述

有机小分子电致发光材料在OLED的发展与应用的综述电致发光(electroluminescence,EL),指发光材料在电场的作用下,受到电流或电场激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。能够产生这种电致发光的物质有很多种,但目前研究较多而且已经达到实际应用水平的,主要还是无机半导体材料,无机 EL 器件的制作成本较高,制作工艺困难,发光效率低,发光颜色不易实现全色显示,而且由于很难实现大面积的平板显示,使得这种材料的进一步发展具有很严峻的局限性。由于现有的显示技术无法满足我们生产生活的需要,因此促使人们不断地寻求制备工艺成本更低、性能更好的发光材料。有机电致发光材料(organic light-emitting device,OLED)逐渐的进入了人们的视野,人们发现它是一种很有前途的、新型的发光器件。有机电致发光就是指有机材料在电流或电场的激发作用下发光的现象。根据所使用的有机材料的不同,我们将有机小分子发光材料制成的器件称为有机电致发光材料,即 OLED;而将高分子作为电致发光材料制成的器件称为高分子电致发光材料,即 PLED。不过,通常人们将两者笼统的简称为有机电致发光材料 OLED。 一.原理部分 与无机发光材料相比,有机电致发光材料具有很多优点:光程范围大、易得到蓝光、亮度大、效率高、驱动电压低、耗能少、制作工艺简单以及成本低。综上所述,有机电致发光材料在薄膜晶体管、

太阳能电池、非线性发光材料、聚合物发光二极管等方面存在巨大的需求,显示出广泛的应用前景,因而成为目前科学界和产业界十分热门的科研课题之一。虽然,世界上众多国家投入巨资致力于有机平板显示器件的研究与开发,但其产业化进程还远远低于人们的期望,主要原因是器件寿命短、效率低等。目前有很多关键问题没有解决:1. 光电材料分子结构、电子结构和电子能级与发光行为之间的关系,这是解决材料合成的可能性、调控材料发光颜色、色纯度、载流子平衡及能级匹配等关键问题的理论和实验依据; 2. 光电材料和器件的退化机制、器件结构与性能之间的关系、器件中的界面物理和界面工程等,这是提高器件稳定性和使用寿命的理论和实验基础,也是实现产业化、工业化的根本依据。 1.基态与激发态 “基态”在光物理和光化学中指的是分子的稳定态,即能量最低的状态。如果一个分子受到光或电的辐射使其能量达到一个更高的数值后,分子中的电子排布不完全遵从构造原理,这时这个分子即处于“激发态”,它的能量要高于基态。基态和激发态的不同并不仅仅在于能量的高低上,而是表现在多方多面,例如分子的构型、构象、极性、酸碱性等。在构型上主要表现在键长和二面角方面,与基态相比,激发态的一个电子从成键轨道或非成键轨道跃迁到反键轨道上,使得键长增长、键能级降低;同时,由于激发后共轭性也发生了变化,所以二面角即分子的平面性也发生了明显的改变。 2.吸收和发射

有机电致发光器件OLED的结构

有机电致发光器件OLED的结构、材料及制作工艺 关键词:有机发光;有机小分子;聚合物;有机发光器件 随着信息技术的发展,显示器件在信息科学的各个方面得到广泛的应用。显示器件的研究涉及多学科交叉的综合技术,是生命力非常强的一门学科。信息显示主要方式有两大类,即CRT显示和FPD 显示。二十一世纪将是显示器件进入百花齐放的时期,但总趋势是CRT缓慢下降,而平板显示器件(FPD)产量上升较快。平面显示器发光技术是现阶段的一个研究热门,有机发光器件或称有机发光二极管(OLED)是一种低电压、低功耗、高亮度、高光效、宽视角、全固化、全彩显、重量轻、价格低的电致发光器件。OLED已成为当今显示器件研究的热门中的热点。 有机电致发光现象的研究始于二十世纪六十年代,在有机物蒽的单晶上首次发现有机物的电致发光现象。1987年美国E.Kodak 公司的,有机小分子AlQ3既是电子传输层又作发光层,TPD作为空穴传输层,镁银合金作为阴极注入电子的有机发光器件。该器件的发光亮度达到1000cd/m2,发光效率达1.51m/w,驱动电压为10V。这是研究OLED的一个重要里程碑,使OLED进入划时代的发展期,随后日本C.Adachi等人又提出发光效率高的夹层式多层结构有机发光器件。1989年,使发光内量子效率(发射光子数/注入电子数)达到2.5%。

1977年首次报道了聚合物掺杂具有导电性,从此导电聚合物的研究得到飞速发展。1990年英国剑桥大学的,用旋涂方法制备出聚合物电致发光器件。提高了OLED的寿命,从而使OLED的研究向纵深发展,并成为世界的研究热点。 目前世界各国的科学家在不断地研究OLED的发光机理,从而合成了大量性能优良的有机发光材料,制备出各种结构合理、高光效的有机发光器件。目前这一领域的研究主要集中在如何提高器件的发光效率、增加器件的稳定性,延长器件的使用寿命、实现全色显示等方面。本文对OLED的结构、材料、发光机理及性能的目前研究状况进行了评述。 1 、OLED的结构及材料 1.1 结构 有机发光器件的结构一般属于夹层式结构。即发光层被两侧电极夹着并且至少一侧为透明电极以便获得面发光。已制备出的OLED 有多种形式,最简单的是单层结构,发光层ELL两侧加阴阳极,如图l(a)所示;最典型的是三层结构,即空穴传输层HTL、发光层ELL、电子传输层ETL各行其职,如图l(b)所示。有的器件中ELL可兼作HTL或EFL;为提高OLED发光效率和寿命,有的器件采取了多层结构,即在电极内侧加缓冲层。目前出现许多多成分分散复合膜,即把低分子分散到高分子的单层膜中,制备多功能单层膜的OLED。特别是以聚合物为基质掺杂的有机发光器件,兼备了小分子效率高,高分子制

有机电致发光发展历程及TADF材料的发展进展

有机电致发光发展历程及TADF材料的发展进展 1.1引言 有机光电材料(Organic Optoelectronic Materials),是具有光子和电子的产生、转换和传输等特性的有机材料。目前,有机光电材料可控的光电性能已应用于有机发光二极管(Organic Light-Emitting Diode,OLED)[1,2,3],有机太阳能电池(Organic Photovoltage,OPV)[4,5,6],有机场效应晶体管(Organic Field Effect Transistor,OFET)[7,8,9],生物/化学/光传感器[10,11,12],储存器[13,14,15],甚至是有机激光器[16,17]。和传统的无机导体和半导体不同,有机小分子和聚合物可以由不同的有机和高分子化学方法合成,从而可制备出大量多样的有机半导体材料,这对于提高有机电子器件的性能有十分重要的意义。 其中,有机电致发光近十几年来受到了人们极大的关注。有机电致发光主要有两个应用:一是信息显示,二是固体照明。在信息显示方面,目前市面上主流的显示产品是液晶显示器(Liquid Crystal Display,LCD),它基本在这个世纪初取代了阴极射线管显示,被广泛应用于各种信息显示,如电脑屏幕,电视,手机,以及数码照相机等。但是,液晶显示器也有其特有的缺点,比如响应速度慢,需要背光源,能耗高,视角小,工作温度范围窄等。所以人们也迫切需要寻求一种新的显示技术来改变这种局面。有机发光二级管显示器(OLED)被认为极有可能成为下一代显示器。因为其是主动发光,相对于液晶显示器有着能耗低,响应速度快,可视角广,器件结构可以做的更薄,低温特性出众,甚至可以做成柔性显示屏等优势。但是,有机发光显示技术目前还有许多瓶颈需要解决,尤其是在蓝光显示上,还需要面对蓝光显示的色度不纯,效率不高,材料寿命短的挑战。目前,有机发光二极管显示的发展显示出研究,开发和产业化起头并进的局面。 本论文的主要工作是合成新型有机发光材料并研究其光电性能,本章将介绍有机电致发光的发展历程,以及有机材料的发光机制,最后提出本论文的设计思路。 1.2 有机电致发光发展历程 Destriau于1936年首次观察到了电致发光现象[18],而有机电致发光现象要追溯到

有机电致发光器件工作原理

有机电致发光器件工作原理 1.1 有机材料的电子跃迁过程 有机电致发光的发光机理:在外电场作用下,空穴和电子分别注入到有机材料中,在有机层中相遇复合形成激子,释放出能量,同时将能量传递给有机发光材料的分子,使其从基态跃迁到激发态,由于激发态很不稳定,受激分子发生辐射跃迁从激发态回到基态产生发光现象。 一般将有机物质分子的状态分为基态与激发态。基态是指分子的稳定态,即能量最低状态,其分子中的电子的排布完全遵从能量最低原理,泡利不相容原理和洪特规则。激发态是指物质分子受到光或其他的辐射使其能量达到一个更高的值时,变为一个不稳定的状态,被激发后称分子处于激发态。通常将分子的不稳定的存在状态用单重态S表示,基态单重态用S0表示,三重激发态用T1表示。当有机分子被激发时,分子处于激发单重态,依据它们能量的高低表示为S1、S2、S3。在电致发光的过程中,单重态激子和三重态激子被认为是同时产生的。其中荧光是电子从最低单重激发态到基态的跃迁发光,这种现象又称为电致荧光。电子从最低三重态回到基态的跃迁产生的发光称为磷光。但在室温下,从最低三重激发态回到基态的电子跃迁产生的发光是极微弱的,其能量绝大部分以热的形式损失掉了,所以这个过程被认为是无辐射过程。 图1.1为有机材料分子内部电子的主要跃迁过程: a过程:从S0—S1、S2是在外界激励下发生跃迁; f过程:从S1—S0是以辐射的形式发射了光子产生了荧光; P过程:从T1—S0是一个辐射跃迁的磷光发光; 从S2—S1是通过内转换过程(IC); 从S1—T1是通过系间内转换过程(ISC),且S1发生了自旋反转; 从S2—S0是辐射跃迁的荧光发光。

有机电致发光器件(OLED)材料的发展(精)

有机电致发光器件(OLED)材料的发展 MG0424065 颜黎均 一、引言 1987年,美国柯达公司的C. T. Wang等人以8-羟基喹啉铝(Alq3)作为发光层,得到了有实用工业化价值的高亮度有机电致发光器件。在过去的15年中,有机电致发光显示技术得到了长足的发展。各种发光材料也陆续研制出来,包括了有机小分子,比如Tang等将有机小分子DCM掺杂到Alq3中首次实现了红色有机电致发光;有机金属配合物,最典型的就是Alq3;高分子聚合物,1993年,Friend等合成CN-PPV。 O NC CN N DCM N O Al N O N O Alq3 NC * C6H13O OC6H13 OC6H13 C6H13O CN * n CN-PPV Scheme 1 二、基本结构及发光原理 由于有机材料多数都是绝缘的,造成只能有极小的电流能够通过。这个电流量可以用空间电荷的限制(space-charge-limited,SCL)电流来表征。 有机电致发光器件的最简单的结构就是将有机发光体夹在两个能射入电流的电极中间;为了能够在较低的电压下得到足够大的SCL电流,就需要器件结构尽量的薄,一般使用真空蒸镀法将有机材料在真空环境下蒸镀成厚度为10-0.1微米的有机薄膜。 最常见的有机电致发光器件是由柯达公司最先提出的基本的二层结构

(Device-A ),这里镁银合金作为整个器件的负极,金属氧化物(ITO )作为正极,中间夹有电子传输层和空穴传输层;发光体能够输送电子,可以将发光体蒸镀到电子传输层中。这样,器件从上到下依次为玻璃/ITO/空穴传输层/电子传输层(发光体)/Mg-Ag 。电子从镁银合金处进入电子传输层,同时正电荷从ITO 进入空穴传输层,电子传输层与空穴传输层的交界处偏向电子传输层的界面(图中虚线范围内)上结合为激子,激子的能量转移到发光体分子,使得发光体分子中的电子被激发到激发态,电子往低能级跃迁时就可以发光。这里空穴传输层由于不能传输电子,对于阻碍电子也起到了一定作用。相反,对于不能有效传输电子、但是可以传输正电荷的发光体可以使用Device-B 这样的器件结构。与Device-A 中电激发光局限在一定的环带内不同的是,Device-B 中当电子与正电荷在有机接触层附近结合时所产生的激发光可以扩散到整个空穴传输层,表现为整个空穴传输层均在发光。 Scheme 2 OLED 的基本发光机理其实就是上面所形成的激子的能量转移到发光分子中,使得发光分子的电子被激发至不稳定激发态,在电子的去激过程中就能发出可见光。但是根据电子自旋规则的要求,在电子从激发态跃迁至基态的过程中,只有单重态到单重态的跃迁(S 1→S 0、S 2→S 0)才是允许的;只有有机分子的单重态部分能够通过辐射跃迁发射荧光,而这部分能量只是空穴与电子合成的激子传给有机分子的能量的一小部分,大部分的能量通过振动驰豫、热效应等形式耗 ITO 玻璃Mg/Ag 电子传输层空穴传输层发光体 Device-B ITO 玻璃Mg/Ag 电子传输层空穴传输层发光体Device-A

相关文档
相关文档 最新文档