文档库 最新最全的文档下载
当前位置:文档库 › 脑电神经元网络的信号采集与提取探究

脑电神经元网络的信号采集与提取探究

脑电神经元网络的信号采集与提取探究
脑电神经元网络的信号采集与提取探究

脑电神经元网络的信号采集与提取探究

本文作者:教育论文360期刊网网址:https://www.wendangku.net/doc/ec10976613.html,/ 摘要:运用神经微电极进行电刺激的方法正被用于治疗小儿麻痹症、帕金森综合症、失明、耳聋、顽固性慢性疼痛和癫痫病等顽固性疾病,而医生也需要获得真实的神经信号为临床诊断提供依据。神经硅微电极的神经刺激与神经记录系统,基于DSP系统实现对信号的采集、处理和存储,并通过外围电路与DSP协同产生神经刺激信号。脑电神经信号采集与提取研究的最终目标是将其运用到临床的诊断中,为医生诊断提供切实可靠的神经信号数据资料。

关键词:脑电神经信号神经硅微电极

1.课题背景

目前,神经元网络的研究引起了人们极大的兴趣;为了更好地理解中枢神经系统神经元之间复杂的相互关系,和为开发实用的神经假体提供所需的高度保真的知觉和控制信息,这就需要具备一种有选择且具有良好空间分辨率,能记录和控制神经组织行为的能力。这对正确理解脑组织和感官知觉的过程十分重要。而这方面的发展,与微电极技术的发展息息相关。它要求微电极能够传输高质量和稳定的刺激信号,同时又能够长时间记录大量的神经束的电信息[4]。通过对神经系统的理解,更好地治疗与中枢神经系统有关的疾病变得更为切实可行。更好地理解神经图谱和对感知过程的理解,为感觉或运动受损的患者设计假体装置,使其恢复正常的功能,变的更加容易。

医学的发展,为失去身体正常功能或感觉的患者提高了生活质量。尽管在医学领域,随着新的医学方法的不断发展,这些疾病得以治疗;但仍然有很多疾病,在医学上无法得到有效的治疗。比如帕金森综合症,一些患者通过药物能得到较为成功的治疗,但仍然有很多患者,无法通过药物治疗获得好的治疗结果。有很多与中枢神经系统有关的疾病,仍然没有获得一个满意的治疗方法,包括小儿麻痹症、帕金森综合症、失明、耳聋、顽固性慢性疼痛和癫痫病。尽管如此,电刺激的方法正被用于治疗这些疾病。这种治疗方法的发展,将提高很多人的生活质量。

按照世界卫生组织的报告,全球大约有2亿5千万人有听力障碍[5],他们中的许多人通过义耳移植得到治疗,但有许多耳疾患者,比如患神经纤维瘤病患者,义耳移植对他们没有任何帮助。神经纤维瘤病是一种遗传病,在新生儿中发生的比例为1∶40000。这种病的特征是在两边的耳神经上有肿瘤,尽管通过外科手术可以根除,但通常会导致听力的完全丧失。目前,一些医学工作者通过在义耳核表面安装22个微电极去刺激神经。由于刺激电流仅作用在核的表面,结果没有通常义耳移植那样所期望的效果,但先进的穿刺电极可能会有更好的效果。

另外,世界卫生组织估计有1亿6千万的人有不同程度的视力障碍,其中有4千到4千5百万人在没有帮助下,不能行走。有很多患者存在视力障碍,不是因为感觉神经缺陷,而是由于与年龄有关的疾病,比如白内障和视网膜色点。通过在视网膜上或下植入电极阵列,刺激神经节以治疗这些疾病,科研人员正在为此而付出极大努力[6~9]。

关于癫痫病和脊柱损伤疾病,通过电刺激方法获得治疗的例子不断得到报道[10,11]。总之,随着神经微电极的发展,将会极大提高人们的生活质量,降低医药消费。使用电子设备取代原有的组织,永远不可能获得原有肢体的感知或控制,尽管如此,它为那些先天就没有或由于偶然事故不再有自然能力的人(比如截肢等),提供了替代自然肢体的功能。

2.技术现状

直到现在,金属微电极和玻璃微吸管技术仍在不断发展,神经生理学家仍然在使用这两种电极作为神经刺激和记录生物电位[12]。人们逐渐认识到,由于这两种电极内在的缺点,给更深入理解复杂的中枢神经系统的本质造成了巨大的障碍。生理学家获得单个神经元的电位是不够的,因为单个神经元不能解码整个神经信息。有时,信息是按照多个并行且携带信息的神经纤维的整体来解码的[13]。这两种电极的主要缺点是:它们是通过手工制造的,因此,其产量低而且价格也很高,更为重要的是这些传统的电极,由于其制造技术的缺陷,使其很难得到广泛的应用。首先,由于不能对其几何尺寸进行很好的控制,这些电极的物理和电学特性的重复性差;其次,这种电极组装起来体积大,而且不灵活,在外科植入过程中会造成大量的组织损伤。因此,有充足的理由来发展其它类型的电极,以克服传统电极的不足。

世界各地的研究人员正努力开发更好的电极。每个不同的设计都有其不同的特定用途。在设计微电极时,在不能满足理想电极的所有要求下,以满足特定电极主要用途为首要设计宗旨。一个理想的微电极应该具有如下的特征:①电极材料与组织不仅要有高度的机械生物相容性,还要有生物相似性;②高度的柔韧性,以免随着机体软组织的活动而发生断裂;③能够良好的固定于神经而不发生移动,并能保证与神经的紧密连接;④能够受组织液的长期腐蚀,而不引发组织的不良反应或机械损伤;⑤能通过简单易行的手术植入神经束内,因此体积要小,而且容易定位;⑥神经刺激和神经纪录电路必须有良好的特性;⑦电极的物理和电学特性有高度的可重复性;⑧测点的位置,形状和间距精密地受到控制;⑨操作方便,安全;⑩制造经济。

3.近期的探针材料

Lee用液晶聚合物材料作衬底,制造了微电极[23]。Takeuchi用形状记忆合金制作了微电极[24]。尽管他们都得到了质量高的神经信号,但这两种材料与生物的兼容性,能否作为长期移植的材料,还有待实验检验。同时,在这两种材料上制造集成电路非常困难,甚至不可能实现。

Rousche等重新用聚酰亚胺做衬底,制造了微电极[25]。聚酰亚胺的特性使其能够作为长期移植的材料。也没有以前所报道的渗透水的情况,这可能是生产聚酰亚胺的技术提高的原因。如果真是这种情况,那么,这项技术将会很具潜力,尽管在这种材料上制造集成电路仍然很困难。

密西根大学探针经过不懈的努力,密西根大学制造了可以说至今最为先进的微电极,因为在电极上集成了电子线路,灵活的带状导线和微流体通道。在选择的区域可做到15微米而且可形成任意的二维平面形状,电极使用二氧化硅和四氮化三硅作为钝化和绝缘层;制作过程和电极的特性在文献里有较为详细的描述。制造了许多二维[26],甚至三维的微电极[27~29],包括用做信号记录和刺激的集成电路[30],也有很多成功的活体实验报告,尽管很多数据使用无源微电极采集,密西根电极开始作为神经信号记录,但一直也被作为神经刺激来用。

4国内发展状况

国内未见有源微电极的报道和文献,至于无源微电极,在维普数据库中查到只有复旦大学的郑修军等的文章[31],他们用2根长10厘米的铂铱合金丝,两端分别在酒精等的外焰烧灼以去掉绝缘层,近端暴露约1毫米,远端暴露10毫米。铂铱丝穿过一长10毫米的硅胶柱,电极的远端距硅胶柱的远端约15毫米。将电极与硅胶柱用瞬康医用胶粘合而成。因此,这是单点测量微电极,由于手工制作,

机械和电子特性的重复性很难保证。体积大,对神经组织易造成损伤。

二十世纪四十年代,随着技术和各种测量仪器的发展,科研人员能够从活体神经元中记录细胞内的电信号。神经微电极能够传输高质量和稳定的刺激信号,同时又能够长时间记录大量的神经束的电信息。因此可以利用神经微电极来获取神经信号,为医生诊断提供切实可靠的神经信号数据资料。DSP数字系统控制神经信号调理电路和神经信号刺激电路,以实现对神经信号的采集和神经细胞的电信号刺激。将电路与神经电极配合,构成完整的神经电极采集与刺激系统。通过此套系统可以简便的将神经信号数字化、存储、与上位机通讯并最后通过液晶屏显示波形,因此有着重要的应用价值。

趋势分析之深度神经网络

趋势分析之深度神经网络 深度神经网络(Deepl Neural Networks, DNN)从字面上理解就是深层次的神经网络。自从Hinton和Salakhutdinov在《Science》上发表的论文解决了多层神经网络训练的难题后,随着研究的深入,各种深度神经网络模型如雨后春笋般涌现出来。 2012年Krizhevsky等人设计的包含5个卷积层和3个全连接层的AlexNet,并将卷积网络分为两个部分在双CPU上进行训练;2014年Google研发团队设计的22层GoogleNet;同年牛津大学的Simonyan和Zisserman设计出深度为16-19层的VGG网络;2015年微软亚洲研究院的何凯明等人提出了152层的深度残差网络ResNet,最新改进后的ResNet网络深度可达1202层;2016年生成式对抗网络GAN获得广泛关注。 深度神经网络热度变化图 下面我们将用Trend analysis分析深度神经网络领域内的研究热点。 (点击链接即可进入Deep Neural Networks Trend Analysis: https://https://www.wendangku.net/doc/ec10976613.html,/topic/trend?query=Deep%20Neural%20Network%20) 通过Trend analysis的分析挖掘结果我们可以看到,当前该领域的热点研究话题有feature

extraction、speech recognition、face recognition、information retrieval、object recognition、cell cycle等。近年来,深度神经网络由于优异的算法性能,已经广泛应用于图像分析、语音识别、目标检测、语义分割、人脸识别、自动驾驶、生物医学等领域,而根据分析结果可知语音识别是该领域热门研究话题top 1。 深度神经网络在工业界也得到了广泛的应用,Google、Facebook、Microsoft、IBM、百度、阿里巴巴、腾讯、科大讯飞等互联网巨头也纷纷开展深度神经网络的研究工作,并且成功应用于谷歌Now、微软OneNote手写识别、Cortana语音助手、讯飞语音输入法等。 附一. 深度神经网络领域5位代表学者 Dong Yu (俞栋) Tara N. Sainath

多聚合过程神经元网络及其学习算法研究

第30卷第1期计算机学报v01.30No.12007年1月CHINESEJOURNAL0FCOMPUTERSJan.2007 多聚合过程神经元网络及其学习算法研究 许少华"’2’何新贵" 1’(北京大学信息科学技术学院视觉听觉智能信息处理国家实验室北京100871) 2’(大庆石油学院计算机与信息技术学院黑龙江大庆163318) 摘要针对系统输入为多元过程函数以及多维过程信号的信息处理问题,提出了多聚合过程神经元和多聚合过程神经元网络模型.多聚合过程神经元的输入和连接权均可以是多元过程函数,其聚合运算包括对多个输入函数的空间加权聚集和对多维过程效应的累积,可同时反映多个多元过程输入信号在多维空间上的共同作用影响以及过程效应的累积结果.多聚合过程神经元网络是由多聚合过程神经元和其它类型的神经元按照一定的结构关系组成的网络模型,按照输出是否为多元过程函数建立了前馈多聚合过程神经元网络的一般模型和输入输出均为过程函数的多聚合过程神经元网络模型,具有对多元过程信号输入输出关系的直接映射和建模能力.文中给出了一种基于多元函数基展开的梯度下降与数值计算相结合的学习算法,仿真实验结果表明了模型和算法对多元过程信号分类和多维动态过程模拟问题的适应性. 关键词多聚合过程神经元;多聚合过程神经元网络;模型;学习算法;仿真实验 中豳法分类号TPl8 TheMulti—AggregationProcessNeuralNetwOrksandLearningAlgOrithm XUShao—Hual’,2’HEXin—Guil’ 1’(N口£fo懈ZL口60m幻删。竹M口如f”PPPM印£曲竹,Sc^D0zo,E胁加n觚E增{n卯一馏口以CD唧“舸Sc渤cP,P矗抽g‰i御‘si£y,B8巧i"g100871)2’(C。№邸∥c赫p“£盯日材如,0"撇£io雄乃f^加如删,眈gf竹gn£rD£e玷mh皿i£“据,眈西”g,胁i£册酊i盘增163318) AbstractAimedattheinformationprocessproblemthatthesysteminputsaremultivariate functionsandmulti—dimensionprocesssignals,thispaperproposesakindofthemulti—process aggregationprocessneuronandthemulti—aggregationprocessneuralnetworksmodel.Theinputsandconnectionweightsofmulti~aggregationprocessneuronallcanbemultivariateprocessfunc—tions,anditsaggregationoperationsincludespaceweightcongregationtomanyinputfunctionsandthecumulationofmulti—dimensionprocesseffect,cansimultaneityreflectmanymultivariateprocessinputsignalsthateffecttogetherinmulti—dimensionspaceandthecumulationresultofprocesseffect.1订ulti—aggregationprocessneuralnetworksarecomposedofmulti—aggregation andothertypeneuronsaccordingtocertainstructureconnection,inthelightofprocessneurons whethertheoutputsaremultivariateprocessfunctionsornot,thegeneralmodeloffeedbackmulti—aggregationprocessneuralnetworksandmulti—aggregationprocessneuralnetworksmodelwhichinputsandoutputsareallprocessfunctionsarefounded,havethedirectmappingandmod—ellingabilitytotheinput/outputconnectionofmultivariateprocesssignals.Akindoflearningal—gorithmbasedonthegradsdescendingwithnumericalcomputationintegratingwhichbasesonmultivariatefunctionbaseexpandingisproposedinthispaper,andthesimuIationexperimentsre—sultsshowtheadaptabilityofmodelsandalgorithmstothemultivariateprocesssignalclassifica—tionandthesimulationproblemsofmulti—dimensiondynamicprocess. K9ywordsmulti—aggregationprocessneuron;multi—aggregationprocessneuralnetworks;model; learningalgorithm;simulationexperiment 收稿日期:2005一07一15;修改稿收到日期:2006一06—18.本课题得到国家自然科学基金(60373102,60473051)和教育部博士点基金(20030001701)资助.许少华,男,1962年生,博士后,教授,研究领域为模式识别、神经网络、智能信息处理.Dmail:xush62@163.com.何新费,男,1938年生,教授,博士生导师,中国工程院院士,研究领域为模糊逻辑、神经网络、进化计算、数据库理论.  万方数据

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

语音信号特征的提取

语音信号特征的提取 摘要 随着计算机技术的发展,语音交互已经成为人机交互的必要手段,语音特征参数的精确度直接影响着语音合成的音质和语音识别的准确率。因此语音信号参数提取是语音信号处理研究中一项非常有意义的工作。 本文采用Matlab软件提取语音信号特征参数,首先对语音信号进行数字化处理,其次,进行预处理,包括预加重、加窗和分帧,本文讨论了预处理中各种参数的选择,以使信号特征提取更加准确。第三,讨论了各种时域特征参数的算法,包括短时能量、短时过零率等。 关键词:语音信号, 特征参数, 提取, Matlab 目录 第一章绪论 1.1语音信号特征提取概况 1.1.1研究意义 语音处理技术广泛应用于语音通信系统、声控电话交换、数据查询、计算机控制、工业控制等领域,带有语音功能的计算机也将很快成为大众化产品,语音将可能取代键盘和鼠标成为计算机的主要输入手段,为用户界面带来一次飞跃。 语音信号特征的提取是语音信号处理的前提和基础,只有分析出可表示语音信号本质特征的参数,才有可能利用这些参数进行高效的语音通信和准确的语音识别,才能建立语音合成的语音库。因此语音信号参数提取是语音信号处理研究中一项非常有意义的工作。 1.1.2 发展现状 语音信号处理是一门综合性的学科,包括计算机科学、语音学、语言学、声学和数学等诸多领域的内容。它的发展过程中,有过两次飞跃。第一次飞跃是1907年电子管的发明和1920年无线电广播的出现,电子管放大器使很微弱的声

音也可以放大和定量测量,从而使电声学和语言声学的一些研究成果扩展到通信和广播部门;第二次飞跃是在20世纪70年代初,电子计算机和数字信号处理的发展使声音信号特别是语音信号,可以通过模数转换器(A/D)采样和量化转换为数字信号,这样就可以用数字计算方法对语音信号进行处理和加工,提高了语音信号处理的准确性和高效性。 语音信号处理在现代信息科学中的地位举足轻重,但它仍有些基础的理论问题和技术问题有待解决,这些难题如听觉器官的物理模型和数学表示及语音增强的技术理论等,目前还有待发展。 1.2 本课题研究内容 本文主要介绍语音信号处理的理论及Matlab的相关内容,然后从Matlab仿真角度验证了录音、预处理、提取语音信号时域特征参数,主要讨论了预处理中各种参数的选择,以使信号特征提取更加准确。再次讨论了各种时域特征参数的算法,包括短时能量、短时过零率等,介绍了各环节的不同软件实现方法。最后对基于Matlab的语音信号特征参数提取进行总结。 第二章Matlab简介 MATLAB是国际上仿真领域最权威、最实用的计算机工具。它是MathWork 公司于1984年推出,它以强大的科学计算与可视化功能、简单易用、开放式可扩展环境,特别是所附带的30多种面向不同领域的工具箱支持,使得它在许多科学领域中成为计算机辅助设计和分析、算法研究和应用开发的基本工具和首选平台。 2.1 发展概况 Matlab是Matrix Laboratory(矩阵实验室的缩写),最初由美国Cleve Moler 博士在70年代末讲授矩阵理论和数据分析等课程时编写的软件包Linpack与Eispack组成,旨在使应用人员免去大量经常重复的矩阵运算和基本数学运算等繁琐的编程工作。1984年成立的Math Works公司正式把Matlab推向市场,并从事Matlab的研究和开发。1990年,该公司推出了以框图为基础的控制系统仿真工具Simulink,它方便了系统的研究与开发,使控制工程师可以直接构造系统框图进行仿真,并提供了控制系统中常用的各种环节的模块库。1993年,Math Works 公司推出的Matlab4.0版在原来的基础上又作了较大改进,并推出了Windows版,

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.wendangku.net/doc/ec10976613.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

语音信号特征参数提取方法

语音信号特征参数提取方法 阮雄飞微电子学与固体电子学 摘要:在语音技术的发展过程中使用了大量的语音信号特征参数, 好的语音信号特征参数能对语音识别起至关重要的作用。本文对语音信号特征参数提取方法以及国内外研究现状进行了介绍,最后介绍了Hilbert-Huang 这一新兴理论成果以及在特征提取中的应用。 关键词:语音技术特征提取HHT 1 引言 语音信号是一种短时平稳信号,即时变的,十分复杂,携带很多有用的信息,这些信息包括语义、个人特征等,其特征参数的准确性和唯一性将直接影响语音识别率的高低,并且这也是语音识别的基础[1]。特征参数应该能够比较准确地表达语音信号的特征具有一定的唯一性。 上世纪40年代,potter等人提出了“visiblespeech”的概念,指出语谱图对语音信号有很强的描述能力,并且试着用语谱信息进行语音识别,这就形成了最早的语音特征,直到现在仍有很多的人用语谱特征来进行语音识别[2]。后来,人们发现利用语音信号的时域特征可以从语音波形中提取某些反映语音特性的参数,比如:幅度、短时帧平均能量、短时帧过零率、短时自相关系数、平均幅度差函数等。这些参数不但能减小模板数目运算量及存储量而且还可以滤除语音信号中无用的冗余信息。语音信号特征参数是分帧提取的, 每帧特征参数一般构成一个矢量, 所以语音信号特征是一个矢量序列。我们将语音信号切成一帧一帧, 每帧大小大约是20-30ms。帧太大就不能得到语音信号随时间变化的特性, 帧太小就不能提取出语音信号的特征, 每帧语音信号中包含数个语音信号的基本周期。有时希望相邻帧之间的变化不是太大, 帧之间就要有重叠, 帧叠往往是帧长的1/2或1/3。帧叠大, 相应的计算量也大[3]。随着语音识别技术的不断发展时域特征参数的种种不足逐渐暴露出来,如这些特征参数缺乏较好稳定性且区分能力不好。于是频域参数开始作为语音信号的特征比如频谱共振峰等。经典的特征提取方法主要有LPCC(线性预测倒谱系数)、MFCC(美尔频率倒谱系数)、HMM(隐马尔科夫模型)、DTW(动态时间规整)等。 2 语音信号特征参数提取方法

深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(DeepNeural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

结合深度神经网络和决策树的完美方案

结合深度神经网络和决策树的完美方案 UCL、帝国理工和微软的研究人员合作,将神经网络与决策树结合在一起,提出了一种新的自适应神经树模型ANT,打破往局限,可以基于BP算法做训练,在MNIST 和CIFAR-10数据集上的准确率高达到99%和90%。 将神经网络和决策树结合在一起的自适应神经树 神经网络的成功关键在于其表示学习的能力。但是随着网络深度的增加,模型的容量和复杂度也不断提高,训练和调参耗时耗力。 另一方面,决策树模型通过学习数据的分层结构,可以根据数据集的性质调整模型的复杂度。决策树的可解释性更高,无论是大数据还是小数据表现都很好。 如何借鉴两者的优缺点,设计新的深度学习模型,是目前学术界关心的课题之一。 举例来说,去年南大周志华教授等人提出“深度森林”,最初采用多层级联决策树结构(gcForest),探索深度神经网络以外的深度模型。如今,深度深林系列已经发表了三篇论文,第三篇提出了可做表示学习的多层GBDT森林(mGBDT),在很多神经网络不适合的应用领域中具有巨大的潜力。 日前,UCL、帝国理工和微软的研究人员合作,提出了另一种新的思路,他们将决策树和神经网络结合到一起,生成了一种完全可微分的决策树(由transformer、router和solver 组成)。 他们将这种新的模型称为“自适应神经树”(Adaptive Neural Trees,ANT),这种新模型能够根据验证误差,或者加深或者分叉。在推断过程中,整个模型都可以作为一种较慢的分层混合专家系统,也可以是快速的决策树模型。 自适应神经树结合了神经网络和决策树的优点,尤其在处理分层数据结构方面,在CIFAR-10数据集上分类取得了99%的准确率。 在refinement 之前(a)和之后(b),ANT各个节点处的类别分布(红色)和路径概率(蓝

神经网络基本概念

二.神经网络控制 §2.1 神经网络基本概念 一. 生物神经元模型:<1>P7 生物神经元,也称作神经细胞,是构成神经系统的基本功能单元。虽然神经元的形态有极大差异,但基本结构相似。本目从信息处理和生物控制的角度,简述其结构和功能。 1.神经元结构 神经元结构如图2-1所示 图2-1

1) 细胞体:由细胞核、细胞质和细胞膜等组成。 2) 树突:胞体上短而多分支的突起,相当于神经元的输入端,接收传入的神经冲 动。 3) 轴突:胞体上最长枝的突起,也称神经纤维。端部有很多神经末梢,传出神经 冲动。 4) 突触:是神经元之间的连接接口,每一个神经元约有104~106 个突触,前一个 神经元的轴突末梢称为突触的前膜,而后一个神经元的树突称为突触的后膜。一个神经元通过其轴突的神经末梢经突触,与另一个神经元的树突连接,以实现信息传递。由于突触的信息传递是特性可变的,随着神经冲动传递方式的变化,传递作用强弱不同,形成了神经元之间连接的柔性,称为结构的可塑性。 5) 细胞膜电位:神经细胞在受到电的、化学的、机械的刺激后能产生兴奋,此时细胞膜内外由电位差,称为膜电位。其电位膜内为正,膜外为负。 2. 神经元功能 1) 兴奋与抑制:传入神经元的冲动经整和后使细胞膜电位提高,超过动作电 位的阈值时即为兴奋状态,产生神经冲动,由轴突经神经末梢传出。传入神经元的冲动经整和后使细胞膜电位降低,低于阈值时即为抑制状态,不产生神经冲动。 2) 学习与遗忘:由于神经元结构的可塑性,突触的传递作用可增强与减弱, 因此神经元具有学习与遗忘的功能。 二.人工神经元模型 ,<2>P96 人工神经元是对生物神经元的一种模拟与简化。它是神经网络的基本处理单元。图2-2显示了一种简化的人工神经元结构。它是一个多输入单输出的非线形元件。 图2-2 其输入、输出的关系可描述为 =-= n j i j ji i Q X W I 1 2-1 )I (f y i i = 其中i X (j=1、2、……、n)是从其他神经元传来的输入信号;

基于S变换的信号瞬时频率特征提取

基于S 变换的信号瞬时频率特征提取 摘要: S 变换是一种优越的时频分析方法,能够清晰表达信号瞬时频率的变化特征。与传统时频分析方法相对比,S 变换的抗噪性较强,无交叉项干扰。本文提出了采用S 变换来提取调制信号的瞬时频率。仿真实验结果表明,S 变换时频谱能够清晰表示出不同信号的瞬时频率特征。 关键词:时频分析;S 变换;时频图;调制信号;瞬时频率 1 引言 信号的瞬时频率特征可以反映信号在不同时刻的频率变化规律。与传统的时频分析方法相比较,S 变换的时频分析方法具有频率分辨率高、抗噪性强、无交叉项干扰等优点,这使得S 变换能够准确提取信号的瞬时频率。 2S 变换的基本原理 2.1S 变换的提出 S 变换由短时傅里叶变换发展而来,借鉴了短时傅里叶变换加窗的思想。将短时傅里叶变换中的高斯窗函数进行相关伸缩和平移,从而使信号的频率分辨率具备随频率的适应性。这个特点使得S 变换在信号的时频分析中具有明显的优势。 S 变换[1]是由地球物理学家Stockwell 于1996年首次提出的。它可由短时傅里叶变换推导而来,对于连续信号()h t 的短时傅里叶变换为: 2(,)()()j ft STFT f x t w t e dt π+∞ --∞τ=-τ?(1) 其中, 22()t t -δω= (2) 若窗函数为归一化的高斯函数,且对窗函数进行依赖频率的伸缩和平移,那么 22()2(,)t f t f τ τ--ω-= (3) 这样就得到了连续信号()h t 的S 变换定义式: 22()22(,)(f t i ft ST f h t e dt πτ-+∞---∞τ=? (4) 其中,τ为时移因子。 利用S 变换与傅里叶变换之间的紧密联系,可实现信号从S 变换中的无损恢复。S 变换的逆变换形式如式(5)所示: {} 2()(,)j ft h t S f d e df πττ+∞ +∞-∞-∞=?? (5) S 变换还可以看成是信号的小波变换与相位因子的乘积。它采用平移、伸缩的局部高斯窗函数作为母小波,具有频率分辨率高、抗噪性强的优点,且不需满足小波变换的容许性条件。因此,S 变换并不是严格意义上的小波变换,但可以看成是小波变换的一种扩展。 2.2S 变换的瞬时频率表达 由于S 变换为复数,包含实部和虚部,所以S 变换可以表示为: (,)(,)(,)j f S f A f e τττΦ= (6) 其中(,)A f τ为振幅谱,(,)f τΦ为相位谱: (,)f τA =[][]Im (,)(,)arctan Re (,)S f f S f τττ????Φ=?????? (8)

过程神经元与过程神经网络模型

过程神经元与过程神经网络模型 1 过程神经元的定义 过程神经元是由过程输入信号加权,时间、空间二维聚合和阈值激励输出等四部分运算组成。与传统神经元M-P 模型不同之处在于过程神经元的输入和连接权都可以是时变函数,过程神经元增加了一个对于时间的聚合算子,从而其聚合运算既包含对输入信号的空间加权聚集,亦有对时间过程效应的累积。过程神经元模型的结构如图3.1所示。 图3.1 过程神经元一般模型 图3.1中,)(),...,(),(21t x t x t x n 为过程神经元的时变输入函数;)(),...,(),(21t w t w t w n 为相 应的连接权函数;)(?K 为过程神经元的聚合核函数;f (·)为激励函数,可取线性函数、Sigmoid 函数、Gauss 型函数等等。 按照空间聚合与时间聚合顺序的不同,过程神经元可分为两类基本数学描述模型,其输入与输出之间的关系分别为: 模型Ⅰ: )))))(,)(((((θ-=∑?t X t W K f y (3.1) 其中,)(t X 为输入函数向量,)(t W 为相应的连接权函数向量,y 为输出,θ为激活阈限,“∑”表示某种空间聚合运算(例如,加权和),“∫”表示某种时间聚合运算(例如,对t 积分)。 式(3.1)表示的过程神经元对外部时变输入信号先进行时间加权聚合,即先分别考虑各个时变输入信号对系统输出的加权时间累积效应,然后再考虑这些时间累积效应的空间聚合作用,最后通过激励函数的计算输出结果。其结构如图3.2所示。 图3.2 过程神经元模型Ⅰ 模型Ⅱ: y (1t x (2t x (t x n y (1t x (2t x (t x n

脑电信号特征提取及分类

脑电信号特征提取及分类

第 1 章绪论 1.1引言 大脑又称端脑,是脊椎动物脑的高级的主要部分,由左右两半球组成及连接两个半球的中间部分,即第三脑室前端的终板组成。它是控制运动、产生感觉及实现高级脑功能的高级神经中枢[1]。大脑是人的身体中高级神经活动中枢,控制着人体这个复杂而精密的系统,对人脑神经机制及高级功能进行多层次、多学科的综合研究已经成为当代脑科学发展的热点方向之一。 人的思维、语言、感知和运动能力都是通过大脑对人体器官和相应肌肉群的有效控制来实现的[2]。人的大脑由大约1011个互相连接的单元体组成,其中每个单元体有大约104个连接,这些单元体称做神经元。在生物学中,神经元是由三个部分组成:树突、轴突和细胞体。神经元的树突和其他神经元的轴突相连,连接部分称为突触。神经元之间的信号传递就是通过这些突触进行的。生物电信号的本质是离子跨膜流动而不是电子的流动。每有一个足够大的刺激去极化神经元细胞时,可以记录到一个持续1-2ERP的沿轴突波形传导的峰形电位-动作电位。动作电位上升到顶端后开始下降,产生一些小的超极化波动后恢复到静息电位(静息电位(Resting Potential,RP)是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差)。人的神经细胞的静息电位为-70mV(就是膜内比膜外电位低70mV)。这个变化过程的电位是局部电位。局部电位是神经系统分析整合信息的基础。细胞膜的电特性决定着神经元的电活动[3]。当神经元受到外界刺激时,神经细胞膜内外两侧的电位差被降低从而提高了膜的兴奋性,当兴奋性超过特定阈值时就会产生神经冲动或兴奋,神经冲动或兴奋通过突触传递给下一个神经元。由上述可知,膜电位是神经组织实现正常功能的基本条件,是兴奋产生的本质。膜电位使神经元能够接收刺激信号并将这一刺激信号沿神经束传递下去。在神经元内部,树突的外形就像树根一样发散,由很多细小的神经纤维丝组成,可以接收电信号,然后传递给细胞体。如果说树突是树根的话,那么细胞体就是树桩,对树突传递进来的信号进行处理,如果信号超过特定的阈值,细胞体就把信号继续传递给轴突。轴突的形状像树干,是一根细长的纤维体,它把细胞体传递过来的信号通过突触发送给相邻神经元的树突。突触的连接强度和神经元的排列方式都影响着神经组织的输出结果。而正是这种错综复杂的神经组织结构和复杂的信息处理机制,才使得人脑拥有高度的智慧。我们的大脑无时无刻不在产生着脑电波,对脑来说,脑细胞就像是脑内一个个“微小的发电站”。早在1857年,英国的青年生理科学工作者卡通(R.Caton)就在猴脑和兔脑上记录

神经网络详解

一前言 让我们来看一个经典的神经网络。这是一个包含三个层次的神经网络。红色的是输入层,绿色的是输出层,紫色的是中间层(也叫隐藏层)。输入层有3个输入单元,隐藏层有4个单元,输出层有2个单元。后文中,我们统一使用这种颜色来表达神经网络的结构。 图1神经网络结构图 设计一个神经网络时,输入层与输出层的节点数往往是固定的,中间层则可以自由指定; 神经网络结构图中的拓扑与箭头代表着预测过程时数据的流向,跟训练时的数据流有一定的区别; 结构图里的关键不是圆圈(代表“神经元”),而是连接线(代表“神经元”之间的连接)。每个连接线对应一个不同的权重(其值称为权值),这是需要训练得到的。 除了从左到右的形式表达的结构图,还有一种常见的表达形式是从下到上来

表示一个神经网络。这时候,输入层在图的最下方。输出层则在图的最上方,如下图: 图2从下到上的神经网络结构图 二神经元 2.结构 神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出可以类比为神经元的轴突,计算则可以类比为细胞核。 下图是一个典型的神经元模型:包含有3个输入,1个输出,以及2个计算功能。 注意中间的箭头线。这些线称为“连接”。每个上有一个“权值”。

图3神经元模型 连接是神经元中最重要的东西。每一个连接上都有一个权重。 一个神经网络的训练算法就是让权重的值调整到最佳,以使得整个网络的预测效果最好。 我们使用a来表示输入,用w来表示权值。一个表示连接的有向箭头可以这样理解: 在初端,传递的信号大小仍然是a,端中间有加权参数w,经过这个加权后的信号会变成a*w,因此在连接的末端,信号的大小就变成了a*w。 在其他绘图模型里,有向箭头可能表示的是值的不变传递。而在神经元模型里,每个有向箭头表示的是值的加权传递。 图4连接(connection) 如果我们将神经元图中的所有变量用符号表示,并且写出输出的计算公式的话,就是下图。

波长变换的信号特征研究论文

波长变换的信号特征研究论文 摘要:通过对小波变换所进行的理论分析和计算机模拟发现,利用小波变换具有的高低频分离的特点,可在不丢失原信号重要信息成分的前提下,将原光谱信号的边缘部分进行滤化处理,消除了噪音信息,重构出更加清晰的光谱特征图形,从而提高了信号的清晰度,为信号的预处理提供了更加方便的条件。该信号特征提取的方法,与傅氏变换相比较,具有多项明显的优点,在实际工程应用中具有重要的意义。 关键词小波变换傅氏变换;信号 一、引言 在当今科技飞速发展的信息时代,信息资源中的信号应用日益广泛,信号的结构越来越复杂,为了更加清楚地分析和研究实际工程信号的有用信息,对信号进行预处理是至关重要的。例如,对于环境的监测,其中对空气成分的检测已经成为必不可少的环节,其方法是将空气中的某一成分(例如丁烯)进行特征的提取,提取的信息中仍然会存在着由一系列高频信号构成的噪音信号。由于这些边缘部分的存在,使原信号的基本特征在光谱信号中不能完全清晰地呈现,导致某些信息的细微环节部分难以识别,致使研究目的无法实现。 本文通过对小波变换所进行的理论分析和计算机模拟发现,利用小波变换具有的高低频分离的特点,可在不丢失原信号重要信息成分的前提下,将原光谱信号的边缘部分进行滤化处理,消除了噪音信息,重构出更加清晰的光谱特征图形,从而提高了信号的清晰度,为信号的预处理提供了更加方便的条件。 二、傅氏变换与小波变换 近年来,小渡变换已经成为对信号、图像等进行分析不可或缺的实用工具之一,其实质是对原始信号的滤波过程。与傅氏变换相比较,小波变换的优势在于,对分析信号可进行任意的放大平移并对其特征进行提取。对复杂信号作小波变换,进行多分辨率分析,在信号图象分析领域已占据着相当重要的地位。 已有的科研成果表明,物质的荧光光谱取决于物质的原子分子结构,所以不同的物质具有不同的荧光光谱。非线性荧光光谱是利用大功率超短激光脉冲和气体的非线性作用得到的;对于这种非线性荧光光谱的研究,主要集中在形成原理、

神经网络的基本原理

神经网络的基本原理 在神经网络系统中,其知识是以大量神经元互连和各互连的权值表示。神经网络映射辨识方法主要通过大量的样本进行训练,经过网络内部自适应算法不断调整其权值,以达到目的。状态识别器就隐含在网络中,具体就在互连形式与权值上。在网络的使用过程中,对于特定的输入模式,神经网络通过前向计算,产生一输出模式,通过对输出信号的比较和分析可以得到特定解。目前,神经网络有近40多种类型,其中BP 网络是最常用和比较重要的网络之一,本文就应用BP 网络进行齿轮计算中相应数据图表的识别映射。 BP 网络模型处理信息的基本原理是:输入信号X i 通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Y k ,网络训练的每个样本包括输入向量X 和期望输出量t ,网络输出值Y 与期望输出值t 之间的偏差,通过调整输入节点与隐层节点的联接强度取值W ij 和隐层节点与输出节点之间的联接强度T jk 以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 BP 网络的学习过程是通过多层误差修正梯度下降法进行的,称为误差逆传播学习算法。误差逆传播学习通过一个使误差平方和最小化过程完成输入到输出的映射。在网络训练时,每一个输入、输出模式集在网络中经过两遍传递计算:一遍向前传播计算,从输入层开始,传播到各层并经过处理后,产生一个输出,并得到一个该实际输出和所需输出之差的差错矢量;一遍反向传播计算,从输出层至输入层,利用差错矢量对连接权值和阀值,进行逐层修改。 经过训练好的BP 网络即可付诸应用。学习后的网络,其连接权值和阀值均已确定。此时,BP 模型就建立起来了。网络在回想时使用正向传播公式即可。 BP 网络由输入层结点,输出层结点和隐含层结点构成,相连层用全互连结构。图1为典型的三层结构网络模型。 图1 三层网络结构图 神经网络的工作过程主要分为两个阶段:一个是学习期,通过样本学习修改各权值,达到一稳定状态;一个是工作期,权值不变,计算网络输出。 BP 网络的学习过程由正向传播和反向传播两部分组成。在正向传播过程中,输入信息从输入层经隐含层单元逐层处理,并传向输出层,每一层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的路径返回,通过修改各层神经元的权值,使得误差信号最小。当给定一输入模式 12(,,...,)m X x x x =和希望输出模式12(,,...,)n Y y y y = 时,网络的实际输出和实际误差,可用下列公式求出:

深度神经网络的关键技术及其在自动驾驶领域的应用

ISSN 1674-8484 CN 11-5904/U 汽车安全与节能学报, 第10卷第2期, 2019年 J Automotive Safety and Energy, Vol. 10 No. 2, 2019 1/13 119—145 深度神经网络的关键技术及其在自动驾驶领域的应用 李升波1,关?阳1,侯?廉1,高洪波1,段京良2,梁?爽3,汪?玉3,成?波1, 李克强1,任?伟4,李?骏1 (1. 清华大学车辆与运载学院,北京100084,中国;2. 加州大学伯克利分校机械系,加州 94720,美国; 3. 清华大学电子工程系,北京100084,中国; 4. 加州大学河滨分校电子计算机系,加州92521,美国) 摘?要:?智能化是汽车的三大变革技术之一,深度学习具有拟合能力优、表征能力强和适用范围广的 特点,是进一步提升汽车智能性的重要途径。该文系统性总结了用于自动驾驶汽车的深度神经网络(DNN)技术,包括发展历史、主流算法以及感知、决策与控制技术应用。回顾了神经网络的历史及现状, 总结DNN的“神经元-层-网络”3级结构,重点介绍卷积网络和循环网络的特点以及代表性模型; 阐述了以反向传播(BP)为核心的深度网络训练算法,列举用于深度学习的常用数据集与开源框架,概 括了网络计算平台和模型优化设计技术;讨论DNN在自动驾驶汽车的环境感知、自主决策和运动控 制3大方向的应用现状及其优缺点,具体包括物体检测和语义分割、分层式和端到端决策、汽车纵 横向运动控制等;针对用于自动驾驶汽车的DNN技术,指明了不同问题的适用方法以及关键问题的 未来发展方向。 关键词:?智能汽车;自动驾驶;深度神经网络(DNN);深度学习;环境感知;自主决策;运动控制 中图分类号:?TP 18;U 463.6 文献标志码:?A DOI:?10.3969/j.issn.1674-8484.2019.02.001 Key technique of deep neural network and its applications in autonomous driving LI Shengbo1, GUAN Yang1, HOU Lian1, GAO Hongbo1, DUAN Jingliang2, LIANG Shuang3, WANG Yu3, CHENG Bo1, LI Keqiang1, REN Wei4, LI Jun1 (1. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China; 2. Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA; 3. Electronic Engineering, Tsinghua University, Beijing 100084, China; 4. Electrical and Computer Engineering, University of California Riverside, Riverside, CA 92521, USA) Abstract: Autonomous driving is one of the three major innovations in automotive industry. Deep learning is a crucial method to improve automotive intelligence due to its outstanding abilities of data fitting, feature representation and model generalization. This paper reviewed the technologies of deep neural network (DNN) 收稿日期?/?Received?:?2019-01-19。 基金项目?/?Supported?by?: “十三五”国家重点研发计划(2016YFB0100906);国家自然科学基金面上项目(51575293);国家自然科学基金优秀青年科学基金项目(U1664263);国家自然科学基金重点项目(51622504);北京市自然科学基金杰出青 年科学基金项目(JQ18010);汽车安全与节能国家重点实验室开放基金课题(KF1828)。 第一作者?/?First?author?:?李升波(1982—),男(汉),山东,副教授。E-mail: lishbo@https://www.wendangku.net/doc/ec10976613.html,。

相关文档