文档库 最新最全的文档下载
当前位置:文档库 › 大跨径连续刚构桥施工监控技术

大跨径连续刚构桥施工监控技术

大跨径连续刚构桥施工监控技术
大跨径连续刚构桥施工监控技术

1工程概况

扬州市文昌大桥主桥采用78m +126m +78m

变高度预应力混凝土连续刚构结构,主桥全长282m ,桥面宽45.6m ,横向由2个单箱双室断面组成。单幅桥采用单箱双室直腹板截面,顶板宽度22.3m ,底板宽度15.3m ,翼缘板悬臂分别长3.5m 。由腹板不等高形成1.5%的顶板横坡,单箱梁中轴线处梁高由2.7m (跨中)变至6.7m (支点中)。梁底下缘采用

R =384.2m 圆曲线变化。箱梁顶板厚28cm ,底板厚

从28cm 变化到80cm ,边跨直线段从边支点附近

5.12m 范围内从58cm 变至28cm 。跨中箱梁腹板厚45cm 。在两端支点、中跨跨中、两桥墩薄臂处共设置7道横隔梁。

主桥主墩采用双薄臂墩,横桥向宽度1526cm ,顺桥向宽度100cm 。两薄臂墩间距离320cm ,承台尺寸400cm ×1340cm ×1990cm ,单幅桥每个桥墩基

础由11根直径2000mm 的钻孔灌注桩组成。

主桥施工采用悬臂现浇法,共有4个悬臂T 构同时进行,每个T 构两侧均有16个悬浇节段,悬浇完成后通过合龙施工将悬臂体系转换为连续体系,合龙方式采用先顶推、后边跨合龙、最后中跨合龙。在整个施工过程中,主梁高程处于动态变化中,同时随着悬臂的伸长其根部截面的应力也不断增大,因此施工监控的主要目标就是:将主梁变形控制在允许范围内,成桥状态主梁高程达到设计要求;跟踪监测关键截面的应力状况,提供及时预警,保障施工安全。

2监控方法

目前,桥梁的施工控制方法主要可以归纳为3

类:开环控制、反馈控制和自适应控制[1]。根据本项目的实际情况选用目前在桥梁监控中应用较为广

大跨径连续刚构桥施工监控技术

郁1,谢鉴云1,承

宇2,段洪杰2

(1.扬州市市政建设处,江苏扬州225002;

2.江苏省交通科学研究院长大桥梁健康检测与诊断技术交通行业重点实验室,江苏南京211112)

要:为了保障施工过程的安全,在文昌大桥的施工过程中,在主桥控制截面布设了应变计,对施工过程中结

构的应力变化进行跟踪监测,为桥梁施工提供安全预警;为了保证成桥线形满足设计要求,对悬浇过程中的主梁挠度进行跟踪监测与控制,为施工提供立模标高,并通过合理设置预拱度来控制梁体线形。关键词:连续刚构桥;应力监测;位移监测;预拱度;应变计中图分类号:U448.23

文献标识码:A

文章编号:1672-9889(2010)02-0037-03

Construction Monitoring Techniques for Long -span Continuous Rigid Frame

Bridge

Yu Yu 1,Xie Jianyun 1,Cheng Yu 2,Duan Hongjie 2

(1.Yangzhou Municipal Construction Department ,Yangzhou 225002,China ;

2.Key Laboratory of Large -span Bridge Health Inspection &Diagnosis Technology Ministry of Communications ,

Jiangsu Transportation Research Institute ,Nanjing 210017,China )

Abstract :This article discussed and summarized the stress control and displacement control method of this bridge.The construction control team installed strain transducer in the control sections to monitor the stress changes during the construction and provide the safety warning service.We also montiored the girder deflection during the casting periond to provide elevation ,and set reasonable camber to control the girder alignment.

Key words :continuous rigid frame bridge ;stress monitoring ;strain transducer ;displacement monitoring ;camber

作者简介:余郁(1970-),女,江苏扬州人,高级工程师,主要研究方向为交通运输规划与管理。

第7卷第2期2010年4月

Vol.7No.2Apr.2010

现代交通技术

Modern Transportation Technology

现代交通技术2010年

泛的自适应控制方法,自适应控制法也称为参数识别修正法,其基本原理是通过施工过程反馈的测量数据不断更新用于施工控制的跟踪分析程序的相关参数,然后根据桥梁结构变形、应力等方面的实测结果与按照参数的初步估计值的理论计算结果的反复比较,来逐步逼近结构设计计算参数的真实值,使计算分析程序较准确地反映实际施工过程,最后以计算分析结果指导下一步施工,使实际输出与目标值逼近,从而实现控制意图[2]。图1所示为自适应施工控制流程。

图1自适应控制方法流程图

连续刚构桥施工监控是一个“施工→量测→识别→修正→预告→施工”的循环过程,在控制过程中需综合考虑变形、内力和稳定性。在施工中采取如下的控制策略:全桥控制截面应力和主梁挠度应在施工过程中实时监测并反馈,整个施工过程中以主梁标高作为主要控制指标,即以变形控制为主,应力为辅,最终确保结构成桥线形和设计线形相一致,并使全桥控制截面应力在安全范围内。

3变形监控[3]3.1

变形计算

施工监控变形计算分析采用正装计算法,较好

地模拟了桥梁结构的实际施工历程,砼收缩、徐变等时间效应在各个施工阶段可逐步计入。本项目采用“桥梁博士”建立平面杆系模型进行计算。建模采用变截面梁单元,计算时考虑混凝土箱梁收缩、徐变和几何非线性的影响,施工阶段的划分按设计图纸预定的施工步骤进行。主桥施工阶段的模拟为T 构悬臂施工,然后先合龙边跨,最后同时合龙中跨。分析计算采用的材料参数如表1所示。全桥合龙、并完成二期恒载后,各单元节点的累计竖向位移曲线见图2。

表1

材料特性表

图2

成桥后各节点累计竖向位移曲线

3.2预拱度设置

连续刚构桥主梁施工过程中的变形控制主要

通过混凝土浇筑前立模标高的调整来实现,而立模标高并不等于设计中桥梁建成后的标高,需要设置一定的预拱度,以抵消施工过程中产生的各种变形(挠度)。因此立模标高的确定如下:

H li =H si +∑f 1i +∑f 2i +f 3i +f 4i +f 5i +f gl

(1)式中:H li 为i 节段立模标高;H si 为i 节段设计标高;∑f 1i 为由i 节段自重及以后各梁段自重在i 节段产生的挠度总和;∑f 2i 为由i 节段预应力及以后各节段预应力在i 节段产生的挠度总和;f 3i 为砼收缩、徐变在i 节段产生的挠度总和;f 4i 为施工临时荷载在i 节段引起的挠度;f 5i 为使用荷载在i 节段引起的挠度;f gl 为挂篮变形值。

通过计算得到的各节点累计竖向位移已包含了∑f 1i 、∑f 2i 、f 3i 、f 4i 、f 5i 这几项因素的作用效应,在立模时考虑预加一个反向的位移以抵消累计竖向位移,即为理论计算预拱度。最终立模标高=设计高程

+理论计算预拱度+挂篮变形量+调整值。挂篮变

形量根据挂篮静载试验值确定,调整值则是根据实际测量结果给出的修正值。

3.3变形监测

梁段变形监测主要通过采用精密水准仪进行

主梁控制点标高的测量实现:测出砼浇筑前立模底标高,再测出后续工况梁顶控制点标高变化量,最终得出各工况梁段控制点绝对标高。为消除日照温差引起的梁体的不规则变化,位移测量选择在温度变化小、气候稳定的时间段进行,并尽可能缩短测量工作持续的时间。悬浇节段标高测点如图3所示。

图3悬浇节段标高测点

在悬臂施工过程中,为监测两端悬臂是否发生不平衡施工状况,在0#块中心处设置纵向位移观测点,采用全站仪进行不定期观测。此外,还对箱梁轴

材料

使用部位容重/(kN ·m 3

)弹性模

量/MPa

线胀

系数

标准抗压强度/MPa 标准抗

拉强度/MPa C50混

凝土主梁26 3.5×1041×105353薄壁墩26 3.5×10

41×10

5

35

3

钢铰线

主梁

78.5

1.95×105

1×10

5

1860

38··

第2期

线偏位进行监测,主要测量已施工节段的中线点相对于桥轴线的偏位,和挠度监测同步进行。位移测试时间要求严格安排在清晨(5:00~8:00)时间段内完成。

3.4监控结果

主梁整个施工过程中,通过跟踪监测主桥T构在悬臂施工过程中的累计挠度,同时根据实测值和理论计算值的比较,不断调整立模标高,最终实现主梁变形的控制。

从实测结果来看,主梁变形监控效果较好:成桥后结构的整体线形良好,各悬浇块段之间衔接顺畅;主桥合龙时,左幅中跨合龙段的高差为8mm,右幅中跨合龙段的高差为2mm;最终成桥后的桥面线形平顺,无明显沉降和下挠现象,和设计线形基本一致(见图4、图5)。

图4左幅桥梁底标高实测图5左幅主桥成桥整体与设计对比线形

4应力监控[3]

4.1应力监测

本桥施工周期长,监控中考虑要适合长期施工过程观测并能保证足够的精度,选用长期性、稳定性较好,精度较高的振弦式砼应变计和配套的振弦式读数仪进行应力测试。

根据3跨连续刚构桥的受力特点和施工控制的目的,确定全桥正应力监测断面18个,单幅桥应力测点72个,应力监测断面选取在双薄壁墩根部、主梁根部、主梁1/4跨处、主梁跨中,其中主梁根部截面在悬浇过程中处于最不利受力状态,需进行重点关注。主梁应力测试截面布置如图6所示。

图6主梁、主墩应力测试截面布设示意图(单位:cm)

混凝土在浇注后的一段时间内,其收缩变形相当大,因此应力测量一般安排在混凝土完成这一初始变形后进行,要求在混凝土浇注完成48h后的夜间或清晨(0:00~8:00)时间段内完成应力初始值的测量;预应力束张拉后,预应力需要一段时间才能逐渐施加到整个结构上,因此张拉主梁内预应力后的工况,要求在张拉完成6h后的清晨(5:00~7:00)时间段内完成应力测量。

4.2监控成果

应力是结构受力是否安全的重要指标。在整个施工过程中,通过应力的跟踪测量为桥梁的安全施工提供了有力保障:定期报告各阶段监控测点的应力变化数据及趋势,并和理论计算值进行比较。

以主桥右幅6#墩处主梁根部截面的应力变化为例,其实测应力变化曲线见图7。从图中可以看到,主梁悬臂浇筑的整个施工过程中,根部截面都处于全截面受压状态,且压应力随着浇筑梁段增加明显变大,压应力增幅均匀,实测应力分布曲线基本符合理论分析的应力曲线分布趋势,在监控过程中未发现异常情况。应力实测值与理论值吻合较好,存在的偏差主要是由于未剥离的徐变引起的虚应变使应变传感器发生了非受力变形引起,因此主要从实测应力分布状况和应力增幅来判断结构受力是否安全。

图7主梁6#墩根部截面实测应力变化曲线

5结语

本文总结了文昌大桥的施工监控技术,包括采用的监控方法及流程、监控计算方法、现场监测技术、监测数据分析等。施工监控作为桥梁施工的重要保障环节,需要将现场跟踪测量与计算分析紧密结合起来,用实测数据来调整分析模型,用分析结果来指导桥梁施工,对保证桥梁施工始终处于安全可控的状态具有重要意义。

参考文献

[1]马土岩,于卫云,陈秀云.大跨度桥梁结构的施工监控与发展趋势[J].中州建设,2005,(7):62-63.

[2]李宏亮.大跨度桥梁施工监控综述[J].山西建筑,2005,31(6):233-234.

[3]江苏省交通科学研究院.扬州市文昌大桥施工监控方案[R].2007,3.

[4]蒋伟平,李亚东.预应力温凝土梁式桥悬臂施工控制的探讨[J].四川建筑,2003,23(1):38-40.

[5]刘黎明,宁平华,熊正元.主跨138m预应力混凝土连续梁桥的施工控制[J].城市道桥与防洪,2002,(1):53-58.

(收稿日期:2009-07-06)

余郁,等:大跨径连续刚构桥施工监控技术39

··

大跨径预应力混凝土连续刚构桥

大跨径预应力混凝土连续刚构桥 的现状和发展趋势 周军生楼庄鸿 摘要:阐述了连续刚构桥是大跨径梁桥发展的必然趋势,以及要解决的防止过大温度应力及防止船撞的措施;收集和分析了国内外大跨径连续刚构桥的数据和资料,论述了上部构造轻型化和取消落地支架合拢边跨等趋势。 关键词:连续刚构;双壁墩身;上部构造轻型化 分类号:U448.23文献标识码:A 文章编号:1001-7372(2000)01-0031-07 The status quo and developing trends of large-span prestressed concrete bridges with continuous rigid frame structure ZHOU Jun-sheng LOU Zhuang-hong (Beijing Jianda Road & Bridge Consulting Company, Beijing 100101, China) Abstract:Adopting the structure of continuous rigid frame in construction of large-span beam bridge is an inevitable developing trend. The measures for decreasing temperature stress and protecting piers from vessel impacting are described. The data from some of domestic and overseas large-span beam bridges with continuous rigid frame structure are given and analyzed. The superstruture-lightening and non-drop-construction for closing-up of side span are discussed in the paper. Key words:continuous rigid fram; pier with double wall; superstructure-lightening 1 大跨径混凝土梁式桥的发展趋势 随着高速交通的迅速发展,要求行车平顺舒适,多伸缩缝的T型刚构也不能很好满足要求,因此连续梁得到了迅速的发展。悬臂施工时,梁墩临时固结,合拢后梁墩处改设支座,转换体系而成连续梁。连续梁除两端外其他无伸缩缝,有利于行车,但需梁墩临时固结和转换体系;同时需设大吨位盆式支座,费用高,养护工作量大。于是连续刚构应运而生,近年来得到较快的发展。其结构特点是梁体连续、梁墩固结,既保持了连续梁无伸缩缝、行车平顺的优点,又保持了T型刚构不设支座、不需转换体系的优点,方便施工,且有很大的顺桥向抗弯刚度和横向抗扭刚度,能满足特大跨径桥梁的受力要求。国内外一些大跨径的连续刚

高墩大跨超长联连续刚构桥设计

第33卷,第4期2008年8月 公路工程 H ighway Engi n eering V o.l 33,N o .4Aug.,2008 [收稿日期]2008)05)10 [作者简介]曾照亮(1971)),男,湖北钟祥人,硕士,高级工程师,主要从事公路与桥梁研究设计工作。 高墩大跨超长联连续刚构桥设计 曾照亮,王 勇,张安国 (中交第二公路勘察设计研究院有限公司,湖北武汉 430056) [摘 要]以贵州镇(宁)胜(境关)高速公路虎跳河特大桥主桥设计为背景,重点介绍高墩大跨超长联连续刚构的设计特点,如设计时考虑主墩截面特殊设计、合拢时顶推方法解决主梁位移较大及其产生的边主墩较大内力等问题。 [关键词]镇胜高速;虎跳河;高墩;大跨;超长联;连续刚构[中图分类号]U 442.5 [文献标识码]B [文章编号]1002)1205(2008)04)0103)02 Design of Conti nuous R igid Fra m e Bri dge wit h H igh pier , Long Span and Overlong Unit ZENG Zhaoliang ,WANG Yong ,ZHANG Anguo (Cccc Second H i g hw ay Consu ltan ts C o .Ltd ,W uhan ,H ube i 430056,China) [K ey words]zhensheng h i g hw ay ;huti a o river ;high pier ;l o ng span;overl o ng continuous un i;t continuous rig i d fra m e bridge 目前连续刚构以其跨越能力大、经济性较好等优势广泛运用于公路、城市桥梁,特别是高速公路进入山区后更是成为了跨越沟谷最常见的大跨度桥梁,以下结合虎跳河特大桥主桥的设计讨论联长较长的刚构桥设计。 1 概述 虎跳河特大桥为适应河流及地形特点,主桥桥 跨布置为120m +4@225m +120m 六跨一联的预应力混凝土连续刚构桥(见图1),长1140m ,为目前国内最长联的连续刚构桥。主墩均为薄壁墩,高度较高的6、7号桥墩(高度分别为106、150m )下部分采用整体(双幅)箱形断面。镇宁、胜境关两岸各设一交界墩,镇宁岸引桥为5@50m 先简支后连续的预应力T 梁,胜境关岸为5@50+6@50m 先简支后连续的预应力T 梁。全桥总长1957.74m 。 图1 虎跳河特大桥主桥布置图(单位:c m ) 连续刚构除两端外无其他伸缩缝,有利于行车。但是对于较长的连续刚构,由于主梁混凝土收缩徐 变及体系温差产生的主梁位移较大,从而引起边主墩位移过大,因此要设计较长的连续刚构必须解决主梁位移较大及其产生的边主墩较大内力问题。 2 设计特点 2.1 适当减小边、中跨比 主桥半幅桥宽采用单箱单室,C 50混凝土,三向预应力,箱底宽 6.7m,翼板悬臂2.65m ,全宽

6010060m连续刚构桥监控方案

沪通长江大桥工程陆域铁路南引桥(60+100+60)m连续刚构桥 施工监控方案 山东广信工程试验检测集团有限公司二0一五年六月

目录 1.工程概况 (1) 2.施工监控的依据 (2) 3.施工监控概述 (3) 3.1 施工监控的目的 (3) 3.2 施工监控的意义 (3) 3.3 施工监控一般原则 (4) 3.4 施工监控控制方法 (5) 4.施工监控主要内容 (8) 5.施工监控实施细则 (9) 5.1 施工仿真计算 (9) 5.2 施工监控有关的基础资料试验数据的收集 (11) 5.3 施工监控测量参数 (11) 5.4 施工监控测试工况 (18) 6.施工控制的精度、原则与总体要求 (19) 6.1控制精度和原则 (19) 6.2实施中的总体要求 (20) 7.施工监控数据管理程序 (21) 附录:施工控制表格样本 (22)

1.工程概况 沪通铁路是我国铁路网沿海通道中的重要组成部分,是鲁东、苏北与苏南、上海、浙东地区间最便捷的铁路运输通道,也是长三角地区快速轨道交通网的重要组成部分。线路北起江苏省南通市平东站,经过南通西站,在通沙汽渡处越过长江,向南经过张家港、常熟、太仓站后接入京沪铁路安亭站,全长137km。 沪通长江大桥为沪通铁路的控制性工程,位于江阴长江大桥下游45km、苏通长江大桥上游40km,与通苏嘉城际铁路、锡通高速公路共通道建设。 项目地理位置如图1.1所示。 图1.1 沪通长江大桥地理位置 沪通长江大桥全长11.072km,大桥北岸为南通市,南岸为张家港。其中,陆域铁路南引桥(60+100+60)m连续刚构为跨越沿江公路的三跨连续刚构梁桥。具体桥型布置示意如图1.2所示。 此连续刚构桥采用直腹板单箱单室箱型截面,梁体下缘按圆曲线变化。箱梁跨中梁高4m,支点梁高8m。主梁顶宽12.2m,顶板厚0.3m;底宽6.2m,底板厚0.5m~0.9m;腹板厚分为0.5m~1.0m。全联梁共设7道横隔板,边支点横隔板厚1.5m,中支点横隔板厚2×1.3m,中跨跨中横隔板厚0.8m。主梁0号块梁段长14m,中跨合龙段长2m,边跨现浇直线

大跨度连续刚构桥线型控制qc

大跨度连续刚构桥线型控制 重庆鱼洞长江大桥 发表人:侯圣慧 中国铁建二十三局集团第六工程有限公司重庆鱼洞长江大桥二期项目经理部 2010年12月16日

目录 一、工程概况 (1) 二、小组概况 (1) 三、选题理由 (2) 四、现状调查 (2) 五、设定目标 (3) 六、原因分析 (4) 七、要因分析 (4) 八、制定对策 (5) 九、对策实施 (8) 十、效果检验 (11) 十一、巩固措施 (14) 十二、总结和今后打算 (15)

大跨度连续刚构桥线型控制 一、工程概况 重庆渔洞长江大桥正桥工程,起于大渡口区建胜水厂西侧,跨越长江后上穿巴南区滨江路,止于渔洞绢纺厂东侧,起讫里程K23+384.12~K24+925.72,全长1541.6m。桥跨布置为12×40连续箱梁(北岸引桥)+145.32+2×260+145.32(主桥连续刚构)+6×40连续箱梁(南岸引桥)。在0号桥台及6、12、16、22号桥墩和上游幅桥20号墩接南桥立交匝道处设置伸缩缝。全桥共分四联,即0号桥台至6号墩为第一联,6号墩至12号墩为第二联,12号墩至16号墩为第三联,16号墩至22号墩为第四联。全桥共设一个桥台,即0号桥台,采用重力式U型桥台,22号墩为交界墩。桥面总宽41.6m,单幅宽20.3m,箱宽12.9m,最大悬臂4.8m 根部梁高15.1m,跨中梁高4.6m,箱梁高均以外腹板外侧边缘为准,箱梁高度从合拢段中心到悬臂端根部按1.8次抛物线变化。 本桥主跨跨径达260m,合拢(刚成桥)时的线形与服务一定年限(一般为混凝土收缩、徐变终止的年限)后的线形差异明显,实现最终设计目标的难度大,对线形控制的要求高。二、小组概况 本小组成立于2010年10月1日,针对连续刚构桥线型展开活动。

大跨径连续刚构桥施工监控管理办法

大跨径连续刚构桥施工监控管理办法

大跨径连续刚构桥施工监控管理办法 1、监控的目的、原则与方法 1.1监控目的 为确保连续刚构桥主桥在施工过程中,结构受力和变形始终处于安全可控范围内,且成桥后主梁线形符合设计要求,结构恒载内力状态接近设计期望,在主桥施工过程中应进行监控。 施工监控是根据施工监测所得的结构参数真实值,进行施工阶段模拟仿真计算、确定每个悬浇节段的立模标高,并在施工过程中根据施工监测的成果对误差进行分析、预测和对下一立模标高进行调整,以此来保证成桥后桥面线形、合拢段两悬臂端标高的相对偏差不大于规定值以及结构内力状态符合设计要求。 在大跨径桥梁的悬臂施工中,累计挠度的计算和分析处理是极为重要的一环,它不仅影响到桥梁合拢的精度,而且影响到成桥线形与设计线形的吻合程度。一般来讲,箱梁悬臂施工中影响挠度大小的因素主要有混凝土容重、弹性模量、收缩徐变、日照和温度变化、预应力大小、结构体系转换、挂篮变形、施工荷载和桥墩变位等因素。 设计中各项参数的设定值与实际施工状态值不可能一致,加上计算理论的不完善(主要指混凝土收缩徐变)导致箱梁计算挠度与实测挠度有较大偏差,而且对挠度偏差的控制随悬臂跨径增大,难度也越大。采取科学有效的措施对箱梁挠度实施监控,预测分析、实时调整,以达到大桥实际合拢线形尽可能地吻合目标线形,这是施工监测的主要目的。 通过施工过程的数据采集、分析和严格控制,确保结构的安全性、稳定性和可控性,保证结构受力合理和线形平顺,减小施工误差的影响,尽可能减少调整工作量,为大桥安全顺利建成和正常运营提供技术保障。 1.2 监控原则

监控是要对成桥目标进行有效控制,修正在施工过程中各种影响成桥目标的参数误差,确保成桥后结构受力和线形满足设计要求。 (1)受力要求 反映连续刚构桥受力的因素主要是主梁的截面内力(或应力)状况。通常起控制作用的是主梁的上、下缘正应力。不论是在成桥状态还是在施工状态,要确保各截面应力的最大值在允许范围之内。 应力监控监测主要包括两部分内容:桥墩结构的应力监测和上部箱梁结构的应力监测。应力监控监测的目的是保证大桥安全施工,并为今后运营阶段的长期健康监测提供基础资料。 (2)线形要求 施工线形监控监测主要指箱梁高程线形和箱梁平面线形的监控监测。线形监控监测的目的是通过数据处理、预测分析和实时调整,以达到大桥实际成桥线形尽可能地吻合目标线形。线形监控监测中高程线形监控监测是重点。 (3)调控手段 监控要采用预测控制法。 对于主梁内力(或应力)的调整,通过严格控制预应力束张拉力实现。 对于主梁线形的调整,通过调整立模标高实现。将参数误差以及其他因素引起的主梁标高的变化通过立模标高的调整予以修正。 1.3 控制方法 为了消除因设计参数取值的不确切所引起的施工中设计与实际的不一致性,在施工过程中对参数应进行识别和预测。对于重大的设计参数误差,提请设计单位进行理论设计值的修改,对于常规的参数误差,通过优化进行调整。 (1)设计参数识别 通过在典型施工状态下对状态变量(位移和应力应变)实测值与理论值的比较,以及设计参数影响分析,识别出设计参数误差量。

浅析高墩大跨连续刚构桥施工技术

浅析高墩大跨连续刚构桥施工技术 发表时间:2018-08-23T13:41:08.753Z 来源:《建筑学研究前沿》2018年第10期作者:黄镇平 [导读] 预应力混凝土连续连续刚构桥是近几十年来新兴起的一种桥梁型式。 广东省南粤交通投资建设有限公司广东广州 510000 摘要:预应力混凝土连续刚构桥具有经济美观、跨越能力强、施工简便快捷的优势,在大跨度桥梁中具有广泛的应用。本文以广东省龙怀高速大埠河大桥预应力混凝土高墩大跨连续刚构桥为工程实例,浅析了高墩大跨连续刚构桥主墩和主梁的施工技术。 关键词:桥梁工程;高墩大跨;连续刚构桥;施工技术 引言 预应力混凝土连续连续刚构桥是近几十年来新兴起的一种桥梁型式,其具有经济美观、跨越能力强、施工简便快捷等优点[1],使之成为预应力混凝土大跨度梁式桥的主要桥型之一。 我国于上世纪80年代引进预应力混凝土连续刚构桥型,在高墩修建过程中,随着翻模施工、滑模施工等施工技术的发展,使得高墩尤其是超高墩的修建成为可能。随着我国“西部大开发”、“一带一路”以及“亚洲基础设施投资银行”等国家重大战略的相继实施,新一轮的交通基础设施建设热潮已经开始,高墩大跨连续刚构桥也迎来新的建设高峰。 1 工程概况 大埠河大桥位于汕头至昆明高速公路龙川至怀集段上,地处广东省连平县元善镇境内。大桥主桥为跨径82+150+82m的连续刚构桥,桥梁总体布置图如图1所示,主桥采用预应力混凝土箱梁形式,上下行分幅布置,箱梁顶板宽12.5m、底板宽6.2m。 图1大埠河大桥桥型布置图(单位:cm) 该桥设置三向预应力钢束,纵向预应力钢束:顶板束为15-25的高强预应力钢绞线、腹板束为腹板束为15-22、中跨合拢束为15-22高强预应力钢绞线、边跨束为15-17高强预应力钢绞线;横向预应力钢束:箱梁桥面板横向预应力采用15-2高强预应力钢绞线,纵向布置间距1.0m,单端交错整体张拉,管道成孔采用扁形塑料波纹管,固定端采用P 型锚具。竖向预应力钢束:采用15-3高强预应力钢绞线。横断面每道腹板内布2根,锚垫板下设置螺旋筋,管道成孔采用内径50mm的塑料波纹管。 主墩采用箱型墩,平面尺寸为5.0×6.2m(横桥向×顺桥向),壁厚1m,墩底8m、墩顶3m范围内为实心墩,1/2 墩高位置,设置1m高隔板。墩高67.35m至71.98m不等。 2 主梁施工技术 连续刚构桥主梁的施工主要有以下几种方法:悬臂施工法、支架现浇法、顶推法、缆索吊装法、旋转施工法、大型浮吊法及移动模架法等[2]。高墩大跨连续刚构桥由于其主墩较高,地形条件复杂,施工环境较差,采用对场地要求比较小的悬臂施工法进行施工。 悬臂浇筑法又称为无支架平衡伸臂法或挂篮法,它是以已经完成的墩顶节段(0#块)为起点,通过挂篮的前移对称的向两侧跨中逐段浇筑混凝土,并施加预应力的悬出循环作业法,我国已经建成的多数大跨混凝土桥梁大多采用此种方法。主要程序为移动挂篮位置、绑扎钢筋及预应力管道、浇筑混凝土、张拉预应力、移动挂篮,循环依次进行,直到达到最大悬臂块段,悬臂浇筑流程图如下图2所示。 图2悬臂浇筑施工工艺流程 3 主墩施工技术 3.1 主要施工技术概述 高墩大跨连续刚构桥主墩通常采用双薄壁墩、单薄壁空心墩及上部为双薄壁、下部为单薄壁空心墩的组合式桥墩形式[3-4],一般采用滑模、爬模、翻模三种方式进行施工[5]。 3.1.1 翻模施工 翻模施工墩身模板采用组合型大型钢模板,每个墩柱使用3套钢模板,每套模板高度为2.5m,一次翻模浇筑高度为4.5m。当浇注完混凝土达到拆模强度时后,拆除底下两层模板,上层一节模板不动,作为下一节墩柱模板的持力点,拆除的模板用钢丝绳或手拉葫芦直接吊在上层模板上,清除掉板面上的混凝土、涂刷脱模剂。当钢筋绑扎完毕后,用塔吊将模板安放到位,进入下道工序,以上是翻模施工的一

浅谈连续刚构桥的发展及主要存在的问题

浅谈连续刚构桥的发展及主要存在的问题 摘要::随着我国交通建设的迅速发展,连续刚构桥施工技术趋于成熟,但连续刚构桥成桥后也普遍存在“跨中挠度过大”、“混凝土开裂”等质量问题,综合分析研究我国连续刚构桥发展现状,探讨连续刚构桥建设的优化和更新,并提出相应的对策。 关键词:连续刚构桥;发展;问题 一、连续刚构桥的发展 随着我国科学技术的发展,传统的工业水平的提高,桥梁建筑技术发展很快。一座座跨江大桥,现代公路天桥,城市高架桥,以及更长的跨海大桥和轻轨交通高架桥,像一条条的“彩虹”使得天堑变通途。并逐步建成了一个综合运输网络,大大提高了交通现状,拉动了我国国民经济的发展,方便了人们的生活。在这些桥梁中不仅有华丽富贵的斜拉桥;华丽富贵气势雄伟的悬索桥;体形优美,历史悠久的拱桥;也有简洁美观的外表,且适应性强、施工方便、投资小、效率高的大跨度连续刚构桥。 刚构桥是什么呢?传统的桥梁施工多用费时、费工的满堂支架法,这种方法对于中、小跨径的桥梁尚能适应,但对于大跨径及特大高度、水深较深的桥梁施工显然不适应。1953年原联邦德国建成的沃伦姆斯桥,主跨114.2米,施工时引进了悬臂施工法,基本解决了施工中的难题,而且发展了预应力混凝土结构T 形刚构,对其他桥梁产生了深远的影响。1964年联邦德国又建成了主跨为208m的本道夫桥,不仅显示出悬臂施工法的优越性,而且在结构上又有创新,形成了连续刚构体系。80年代后世界各国建造了多座不带铰的连续刚构体系,发展了连续刚构体系,其中以1985年澳大利亚建成的主跨260m的门道桥,挪威1998年底建成的主跨为298m的Ralf Sundet桥最为著名。 在我国,1988年由我国设计的第一座主跨180m大跨径连续刚构桥—广东洛溪大桥建成通车后,连续刚构的突出优点使得这种桥型在我国得到了广泛应用与推广。1997年我国建成了主跨为270m的虎门大桥辅航道桥将连续刚构—连续体的跨越能力体现到极致。 二、连续刚构桥要解决的常见问题 在我国连续刚构桥的数量日趋增多,目前部分桥梁设计师对连续刚构桥设计思想、连续刚构桥施工质量的制约及长期处于超限运输状态等原因,导致连续刚构桥出现问题数量较多,通过对国内已建成的大跨径连续刚构桥梁调查的来看,我国建成的大跨径连续刚构桥梁中,出现的问题主要有以下几种:(1) 箱梁腹板、底板产生裂缝;(2) 墩顶0 # 梁段开裂;(3) 桥墩墩身裂缝;(4) 跨中挠度过大。

连续刚构桥施工工艺

连续刚构桥施工工艺 1. 连续梁桥、连续刚构桥概念 两跨或两跨以上连续梁桥,属超静定体系。连续梁在恒活载作用下,产生支点负弯距对跨中正弯距有卸载作用,使内力状态比较均匀合理。连续梁在连续梁与墩之间设有支座,连续刚构将主梁做成连续梁体与薄臂桥墩固结而成。 2. 梁体悬浇施工 预应力混凝土连续梁桥、连续刚构桥采用悬臂施工的方法,需要施工中进行体系转换。即在悬臂浇注混凝土施工时,结构受力状态呈T形刚构、悬臂梁,待主梁合拢后形成连续刚构或连续梁。 预应力混凝土悬臂梁桥、连续梁桥墩梁是铰接(设置支座),不能承受弯距,在悬臂浇注时需采取措施,设置临时支座将墩梁固结,待悬臂施工至合拢状态后才能拆除临时支座形成连续梁桥。T型刚构、连续刚构桥墩梁是固结的,采用悬臂浇注施工时,结构本身已具有承受悬臂梁体重量的抗弯能力,可根据设计和施工要求设置临时托架和挂篮进行悬臂施工。 2.1. 悬臂梁体分段 悬臂浇筑施工时,梁体一般要分四大部分浇筑,0#段(即墩顶段)、0#段两侧对称分段悬臂浇注部分和不平衡梁段、边孔在支架上浇注部分、中跨和边跨合拢部分。 2.2. 悬浇程序(墩梁铰接) 1、在墩梁间设置临时固结系统,然后在托架上浇注0#段。 2、在0#段上安装悬臂挂篮,向两侧依次浇注对称梁段和不平衡梁段。 3、在临时支架上浇注边跨梁段。 4、在挂篮上浇注中跨和边跨合拢段。 2.3. 施工工艺 2.3.1. 0#段施工 0#段结构复杂,预埋件、钢筋、各向预应力钢束及其孔道、锚具密集交错,梁面有纵横坡度,端面与待浇段密切相连,要精心施工。混凝土浇注顺序先底板、再腹板、后顶板。 施工程序如下: (1)安装墩顶托架平台(如梁底距离地面较小,可立钢管支架,如距离较大,则墩顶预埋型钢作为牛腿支架); (2)浇注支座垫石及临时支座; (3)安装永久盆式橡胶支座; (5)安装底板部分堵头模板; (6)托架平台试压。 (7)调整模板位置及标高; (8)绑扎底板和腹板的伸入钢筋; (9)安装底板上的竖向预应力管道和预应力筋; (10)绑扎腹板、横隔板钢筋及管道定位筋; (11)安装腹板纵向预应力管道及预应力钢筋。 (12)安装全套模板。 (13)绑扎顶板底层钢筋网及管道定位筋。 (14)安装顶板纵向预应力管道及横向预应力管道和预应力筋。 (15)安装顶板上层钢筋网。 (16)浇注梁体混凝土。 (17)拆模,两端混凝土连接面凿毛。

高墩大跨径连续刚构桥

特高墩大跨径连续刚构桥 施工监控软件操作手册 特高墩大跨径连续刚构桥研究课题组 2004年5月

施工监控使用说明 一、监控内容和方法 施工监控包括挠度监控和应力监控两部分。 1、挠度监控利用现场测量数据识别系统状态,提前预报 悬浇过程中的变形,通过调整立模高度,克 服或减少施工中不确定因素影响,使成桥达 到设计形态。 2、应力监控通过大梁根部埋设的应力传感器监测根部应 力,判断根部索力,避免卡索、断索或张拉力 不均,保证每根(对)索预应力都达到设计状 态。 二、程序安装 开始——设置——控制面板——安装/删除程序——安装 具体按照提示逐步完成。 三、数据结构 程序中使用的数据集中存放在Bridge 子目录中。名称编 排如下:

每个梁系(桥墩)有五个文件。记录结构、计划、仪表、测量和预报数据。前四个要预先输入,预报数据自动建立。分述如下。 1、结构(受力)数据(Construct.txt )文件由五个表组成。各 表项的含义见以下图表: a、桥墩数据表 b、桥梁数据表

c、一类顶板索 d、二类顶板索 说明:无某类索时,其Frop=0。Soktpst.txt 表中( x,y) 也取零。 e、腹板索

附图: 2、索孔与传感器位置(soktpst.txt)

3、施工计划表(workproj.txt) 间。即ts

连续刚构桥施工监控计算要点分析

连续刚构桥施工监控计算要点分析 发表时间:2014-11-26T15:13:04.500Z 来源:《价值工程》2014年第9月上旬供稿作者:康玉强 [导读] 连续刚构桥具有刚度均匀,高墩大跨、造价低、施工速度快等优点,在山区公路中修建较多。 Calculation Points for Construction Monitoring of Continuous Rigid Frame Bridge康玉强KANG Yu-qiang(四川建筑职业技术学院交通与市政工程系,德阳418000)(Department of Traffic and Municipal Engineering,Sichuan College of Architectural Technology,Deyang 418000,China) 摘要院连续刚构桥一般采用挂篮悬臂施工,在施工阶段随着节段的增加和挂篮的移动,各截面的内力和位移不断变化。在施工期间布置位移、应力、温度测点,监控桥梁状态,设置合理的预拱度确保使用期间的性能。以某预应力混凝土连续刚桥为实例,建立有限元模型,综合考虑挂篮、收缩徐变、预应力张拉、温度变化等多种因素的作用,对该桥在施工阶段的内力位、移作了分析,计算得到了桥梁施工阶段立模标高及成桥预拱度,通过和施工监控测试数据做比较分析,指导施工顺利实施。 Abstract: Basket cantilever construction is commonly used in the construction of continuous rigid frame bridge. The internal forces anddisplacements of each section are constantly changing with segment increasing and basket shifting. During the construction measurementpoints for displacement, stress, and temperature are applied to monitor the state of the bridge, meanwhile a reasonable camber is required toensure performance during service. A prestressed concrete continuous rigid bridge is taken as an example, so the finite element model isapplied to analyze the internal forces and deflection, considering the basket, shrinkage, creep, prestress, temperature and other factors. Thebridge elevation in construction phase and camber during service is got. The comparative analysis of monitoring and test data is helpful tosuccessful implementation and construction. 关键词院薄壁高墩;连续刚构;预拱度;施工监控;悬臂施工Key words: thin-wall and high-pier;continuous rigid frame bridge;camber;construction monitoring;cantilever construction中图分类号院U448 文献标识码院A 文章编号院1006-4311(2014)25-0142-03 0 引言 连续刚构桥具有刚度均匀,高墩大跨、造价低、施工速度快等优点,在山区公路中修建较多。一般来说,在沟壑地区大多数连续刚构桥均采用挂篮悬臂施工,此工艺成熟,效率高,速度快,施工质量稳定可靠,已被我国工程界掌握[1]。 在施工过程中,结构为静定,无多余约束,且高墩刚度小,荷载种类多且不断变化,故在施工时桥梁的内力状态也是变化的;另外根据已有的实测资料表明连续刚构桥投入使用后下挠过大,偏离设计线型,导致行车不舒适。如1997年建成的重庆江津长江大桥到2007 年跨中下挠31.7cm,肉眼已经能明显分辨出跨中下凹[2]。综上因素,施工期间埋设仪器监控桥梁的受力状态,将实测数据和模型计算结果比较,及时纠正施工中存在的偏差,使桥梁合龙时达到预想的状态,设置足够的预拱度,保证营运期间有良好的工作性能。 1 测点布置 1.1 应力测点布置截面应力不能直接测试得到,一般通过应变仪测试得到,再乘以弹性模量得到应力(混凝土弹性模量的测定一般由施工单位实验室完成)。施工期间的截面横向测点布置见图1,测点布置根据箱梁的宽度确定,对于宽箱为了考虑剪力滞后的影响,横向应增加测点数量。应力计按预定的测试方向固定在主筋上,测试导线引至混凝土表面。施工过程中注意对应力计和引出导线的保护[3]。 1.2 挠度测点桥梁悬臂施工的每一个阶段均要做线形测量,在每个块件对称布置三个以上的测点,不仅测试挠度的同时,还可以观察是否出现扭转,各个测点之间也可以相互校核。挂篮就位后,对每个节段混凝土浇筑前后、预应力钢筋张拉前后均要做高程测量,并和计算模型的结果比较,修正控制模型,保证线形在可控范围内。在具体实施时高程控制点布置在离块件前端一定距离处(10~15cm),采用钢筋垂直方向与顶板的上下层钢筋点焊牢并要求竖直,钢筋露出箱梁混凝土表面一定高度(2~5cm),测点磨平并用红油漆标记(图2)。 1.3 温度测点施工和使用期间温度的变化都将影响桥梁的线形,温度的影响包括年温差和温度梯度。年温差表现为桥梁的整体伸缩,会在结构中引起温度次内力,对结构的影响(挠度和应力)可以较准确的计算;日温变化比较复杂,温度场沿截面高度产生的温度差,使主梁产生挠曲,同时截面上下层纤维之间会有错动,产生温度自应力。 在实际测试过程中,可选在晚上无日照的时间测得年温差,温度梯度的测试应沿着截面的横向和竖向布置(图3)传感器测得。根据实测数据,可以很方便的计算出温度对结构挠度和应力的影响,在施工监控时对立模标高做相应的调整。 2 预拱度计算 2.1 计算方法及荷载桥梁施工控制的计算方法有正装分析、倒拆分析方法和无应力状态法,正装分析方法是按照桥梁实际的施工顺序安装单元计入相关荷载,直到桥梁合龙;倒拆分析是以成桥状态为起点,逐步卸载和拆除结构单元。由于收缩徐变的影响这两种算法的计算结果是不闭合的,所以在施工过程中通常采用正算和倒拆结合,倒拆过程中考虑收缩徐变的影响,此过程交互迭代知道计算闭合。 在仿真模拟过程中,要考虑施工过程中桥梁可能的各种荷载。如结构自重、桥面二期恒载、挂篮荷载、施工过程临时荷载、结构预应力、混凝土收缩徐变、结构临时支撑、结构体系转换等。另外,还应考虑季节温度、日照温差和结构各部位不均匀的温度场等的影响。 2.2 计算方法及荷载在桥梁悬臂施工过程中,桥梁线形的控制主要通过立模标高来控制。随着施工的进行,每一个阶段的受力都不一样,结构的挠度在施工过程中也是不断变化的,故先期施工的节段要计入后期施工荷载的影响,先期施工的块件要设置足够的预拱度,保

连续钢构施工方案设计

氏河特大桥主跨160m连续刚构施工组织设计 一、工程概况 (一)简介 氏河特大桥跨氏河90+160×4+90m预应力混凝土连续梁,一联全长820m;桥梁双幅总宽为34.5米,单幅宽17.25米,0.5米(防护栏)+15.25米(行车道)+3.0(防护栏)+15.25米(行车道)+0.5米(防护栏)。 单幅桥面总宽16.9m,梁部截面为单箱双室、变截面结构,箱底外宽11.4m;中支点处梁高10m,梁端及跨中梁高3.5m。顶板厚30~50cm,腹板厚从45cm 变化到80cm,底板厚从30cm变化至120cm。箱梁采用三向预应力体系,梁部采用C50聚丙烯纤维混凝土。 主梁采用挂蓝悬臂现浇法施工。各单“T”除0号块外分为22对梁端,其纵向分段长度为5×2.5m+5×3m+6×3.5m+6×4m,对于边跨梁,增加了一段(4m)不对称段施工。0#块总长13m,中跨、边跨合拢段长度均为2m,边跨现浇段为4.6m。悬臂现浇梁段最大重量为228吨,挂篮自重按120吨考虑。 桥面铺装层为10cm厚的沥青混凝土+8cm厚的C40混凝土,混凝土铺装掺加聚丙烯纤维。桥面横坡为双向2%,由箱梁顶面形成,箱梁底板横向保持水平。 氏河特大桥主跨160m连续梁基本数据统计表表1 1、技术含量高,施工复杂 氏河特大桥连续梁为单箱双室结构,采用三项预应力体系,聚丙烯纤维混凝土,最大跨度为160m,技术含量高,施工过程控制困难。 2、施工安全要求高

160m连续梁由于墩高均在86m以上,施工时,对于安全及安全防护要求高,时刻监督检查施工中存在的安全隐患。 二、施工计划安排 (一)总体施工计划安排 氏河特大桥90+160×4+90m连续梁2009年11月1日开始施工,到2011年03月31日结束(包括底板拉完成),计划13月的时间。 (二)各主要分项工程施工计划安排表表2 三、总体施工方案 该连续梁的主要施工工序和关键技术包括:0#梁段支架的设计与搭设、0#梁段混凝土浇筑施工、挂篮设计拼装、连续梁悬臂灌注、合拢段施工、预应力施工、边孔现浇段施工、边孔不均衡段施工。该连续梁的总体施工方案为: 主墩施工完成后在墩顶上搭设型钢托架,支护0#梁段模板、绑扎钢筋,

高墩大跨连续刚构桥线形控制实用方法

王艳:高墩大跨连续刚构桥线形控制实用方法 高墩大跨连续刚构桥线形控制实用方法 王艳 (甘肃省交通规划勘察设计院有限责任公司,兰州730030) 【摘要】桥梁施工控制是确保桥梁施工宏观质量的关键。衡量一座桥梁的施工宏观质量标准就是其成桥状态的线形以及受力情况符合设计要求。本文提出了基于桥梁博士作为结构分析软件的实用标高计算公式,总结出影响结构变形的主要因素并作适当误差分析,对高墩大跨连续刚构桥的施工监控具有一定的指导作用。 【关键词】高墩大跨连续刚构桥;控制;标高;误差调整 【中图分类号】TU375【文献标识码】B【文章编号】1001-6864(2012)11-0079-03 随着交通事业发展的需要,大量的公路需要建 设,这其中必然产生大量的大跨度桥梁。大跨度桥梁 作为一个系统工程,不仅设计的难度大,受各种因素 的影响,施工期间的风险也是不可预见的,很难实现 结构的实际状态与结构理想状态一致,甚至会出现难 以接受的事故,给社会造成经济和人员损失。为了确 保桥梁施工期间结构的状态与理想状态的误差在可 控范围内,避免不可预见的悲剧发生,需对桥梁施工 阶段的变形、应力进行监控并适时调整可能出现的误 差,以实现桥梁的顺利竣工。 1线形控制 大跨径连续刚构桥悬臂浇筑施工中挠度控制至 关重要,而施工挠度受梁体自重、预应力、混凝土徐 变、施工荷载、温度等诸多因素影响,精确计算施工挠 度是非常困难的。目前梁桥结构分析计算通常采用 平面杆系程序(如桥梁博士),该类分析软件用于连续 梁、连续刚构桥整体计算无疑是一种简单而有效的方 法。以桥梁博士作为结构分析软件对连续刚构桥的 施工过程进行模拟,各梁段立模高程主要按下式确定: H 1=H +f 1 +f 2 +f 3 +f 4 +f 5 -f 6 +T(q)(1) 式中,H 1为待浇箱梁段前端顶面立模标高;H 为 待浇箱梁段前端顶面设计标高;f 1 为考虑经历10年收 缩徐变,由永久作用,可变作用产生的累计效应值;f 2 为桥墩变形的修正值;f 3 为挂篮弹性变形对该施工段 的影响值;f 4为节段自重产生的挠度影响值;f 5 为附加 预拱度(由经验确定);f 6 为节段预应力影响值;T(q)为前一节段标高误差调整值;T为误差调整函数。 箱梁阶段施工需进行立模、混凝土浇筑前后、钢筋张拉前后的标高测量,测量应选择在一天之中温度比较稳定的时刻进行,以日出前为宜。各阶段的标高计算应根据立模标高进行推算,张拉后的目标标高可以用下式进行计算: H=H 1-f 2 -f 3 -f 4 +f 6 -T(q)(2) 式中,H为节段张拉后前端顶面标高目标值(没考 虑节段混凝土收缩徐变短期效应及温度变化影响)。 在施工过程中,采用高程跟踪测量管理,应用高 程逼近法来控制各段的标高,并结合设计部门提供的 理论数据及以往修建大桥积累的经验,比较恰当地控 制最后合拢时两侧梁体相对高差及成桥后的标高。为 了最大限度的减小合龙高差和使成桥后的标高与理 想线形逼近,就必须对引起标高误差的因素进行分析。 2误差分析 误差被认为是实测变形与理论变形的差值,受理 论计算、施工技术、温度及混凝土物理力学性能参数 等因素的影响,确定误差大小及其产生原因是施工监 控的难点,下面将影响结构变形的一些主要误差、误 差的严重程度以及解决方法分析如下。 (1)理论计算误差。仿真分析是施工监控的必 备手段,通过施工阶段的正装、倒装分析能够获得各 种工况下的理想状态。施工挠度的计算与荷载P、结构 刚度EI直接相关,如何考虑混凝土的物理力学性能参 数、长索预应力效应、及温度场的模拟问题等均会使 计算产生误差,同时还应考虑环境等外部因素的影响。 通过合理选取仿真模型物理、几何、环境参数可 使理论计算误差减小到能接受的范围,并适时根据施 工条件变化进行参数修正,并把参数的影响结果作为 修正值对结构下一阶段的状态进行调整。 (2)施工误差。受施工技术、管理水平的限制, 施工过程中结构变形会产生偏离理论变形的误差,导 致误差的原因包括结构尺寸偏差、临时荷载影响、挂 篮及模板定位及变形误差、预应力钢束张拉等方面。 结构尺寸偏差直接影响结构的刚度和自重,进而 影响结构的变形;临时荷载包括施工垃圾、临时设备、 材料等,因在结构上作用的时间较短,会对结构某一 个或几个阶段的结构变形产生影响,可将其影响的结 果算出,作为修正值在现场对结构的状态进行调整。 对于宽桥时,挂蓝的横向变形可能引起较大的误 97

T型连续刚构桥施工技术

T型连续刚构桥施工技术 2007年8月刊(总第96期) -------------------------------------------------------------------------------- 农远学 (广西南宁市江南公路局,广西南宁530021) 【摘要】文章介绍T型连续刚构桥悬浇施工方案,包括:0#块施工,挂篮设计及预压,悬臂块段的浇筑,合拢段施工。 【关键词】连续刚构桥;施工 【中图分类号】U445【文献标识码】C【文章编号】1008-1151(2007)08-0037-03 T型连续刚构桥跨度大,需要施工场地少,下构一般都是桩基础,薄壁墩身,T构箱梁多为单箱单室结构。挂篮安装完后,工作面均在桥上,近年来大量使用这种桥型。优点是工艺成熟,可做成较大跨径,减少桥墩;适合于深沟河谷,山高坡陡,施工场地狭窄的地形。 (一)箱梁0#块施工 1.施工托架 (1)如贵州XX桥超大型0#块的托架,在墩身顶浇注的最后一节,预埋支承托架钢板,将托架贝雷梁挂在预埋的钢板上。托架顺桥向每边放2片贝雷梁,横桥向中间范围架设6片贝雷梁,贝雷梁之间用撑架连成整体,然后在上面铺10#槽钢,在槽钢上铺底模板,底模下面放置卸落木楔。 (2)翼板在托架上搭钢管架支承。顶板模在箱内搭钢管架支承;两内侧模之间用钢管架将内模顶紧。 (3)托架是固定在墩身上以承担0#块支架、模板、砼和施工荷载的重要受力结构,具有足够的刚度。墩身砼浇筑要按图纸尺寸事先预埋好支承托架的钢板。 (4)先将单片贝雷梁在地面上拼装成整片,先安装纵桥向,再安横桥向,托架就位后连成整体。 2.托架受力分析 (1)0#块砼分二次浇筑成型,第一次浇筑底板和部分腹板(0#块高度一半),第二次浇筑剩余腹板及顶板。

连续刚构施工方案

连续刚构施工方案 一、工程概况 琼江河大桥主桥上部结构为48m+80m+48m预应力混凝土连续刚构,梁体为单箱单室变高度变截面箱形截面。箱梁为三向预应力混凝土结构,采用全预应力;箱梁顶板宽度为12m,底板宽度6m,顶面设置2.0%的单向排水坡。 琼江河大桥主桥(0#~3#台)为三跨连续刚构体系,在两个主墩上按“T构”用挂篮分段对称悬臂浇筑的梁段、吊架上浇筑的跨中合拢段及落地支架上浇筑的边跨现浇段组成。墩顶0#块长为9.0m,两个“T构”的悬臂各分为9个块件,其梁段数及梁段长度从根部至跨中各为:3×3.5m、6×4m,共有一个2.0m长的主跨跨中合拢段和两个2.0m长的边跨合拢段,两个7.0m长的边跨现浇段。墩顶0#梁段梁高4.5m(梁高为裸梁箱梁边缘线处竖直距离计),底板厚度从0#块~9#块为从90cm~30cm渐变,跨中合拢段及边跨合拢段、现浇段梁高为2.2m,底板厚度为30cm,其余梁底下缘及底板厚度按抛物线变化;0#中部箱梁顶板厚度在墩顶为62cm,0#块边缘至9#块合拢段以及边跨现浇段为42cm;腹板厚度0#块中部为80cm,0#块边缘~5#块为60cm,6#~9#块、合拢段、现浇段为40cm。 80m刚构主墩顶箱梁综合考虑受力和变形要求在箱梁内设横隔板,为了满足施工和管理需要在主墩墩顶横隔板处设置人洞,另外在边跨现浇段底板亦设置了人洞。在每个梁段的两侧腹板中间各设置一个直径10cm的通气孔,以减少箱内外温差。梁体全部采用 C50混凝土。 悬臂浇筑段最大混凝土量为44.23m3, 重量为115T。 主桥纵向预应力钢束均设置顶板束、中跨底板束和边跨底板束共三种,采用两端张拉方式。纵向钢束均采用ASTMA4167-97标准270级标准强度为1860MPa的15.24-15型低松弛钢铰线,张拉控制力为2929.5KN,相应锚具均采用OVM15-15型锚具。合拢束均采用ASTMA416-92标准270级标准强度为1860MPa的15.24-12型低松弛钢铰线,张拉控制力为2343.6KN,相应锚具均采用OVM15-12型锚具。顶板预留4个备用孔道,底板跨中预留2个备用孔道,底板边跨预留2个备用孔道。

大跨度连续刚构桥的研究和发展

大跨度连续刚构桥的研究和发展 (所属杂志:此文章来自原稿)发布时间:2008-07-16 已阅读:1290 张伟,胡守增,韩红春,张勇 (西南交通大学土木工程学院桥梁系,四川成都610031) 摘要:介绍大跨度连续刚构桥的桥型特点,分析了连续刚构桥的结构受力特点,以及应用和发展现状,并以武汉军山长江公路大桥为例对其进行探讨;同时介绍了对连续刚构桥设计,施工控制等方面的创新方面的内容。 关键词:大跨径;连续刚构桥;桥型特点;受力特点 中图分类号:U448.23 文献标识码:A 就当代技术水平而言,大跨度、特大跨度桥梁无论是在设计理论、施工方法、建桥材料等方面都存在自身固有的特点和困难,这些问题解决的合理程度,不仅直接影响着大跨度桥梁的发展,制约着大跨度桥梁建设的经济效益,而且影响着交通事业的发展以及人类征服自然的历史进程。 在大跨径桥型方案比选中,连续梁桥型仍具有很强的竞争力。连续梁桥型在结构体系上通常可分为连续梁桥、连续刚构桥和刚构—连续组合梁桥。后者是前两者的结合,通常是在一联连续梁的中部一孔或数孔采用墩梁固结的刚构,边部数孔解除墩梁固结代之以设置支座的连续结构。 连续刚构是将连续梁的桥墩与梁部固结,以减小支座处的负弯矩和增

强结构的整体性。由于墩属小偏压构件,故与连续梁的桥墩相比配筋并不增加很多,而梁体受力则更为合理,因而在同等条件下连续刚构要比连续梁更为经济。此外,墩梁固结也在一定程度上克服了大吨位支座设计与制造的困难,也省去了连续梁施工过程中墩梁临时固结、合拢后再行调整的这一施工环节。 1连续刚构桥的结构受力特点、应用及现状 1.1 结构受力特点 连续刚构桥由于墩身与主梁形成刚架承受上部结构的荷载,一方面主梁受力合理,另一方面墩身在结构上充分发挥了潜能,因此该桥型在我国得到迅速的应用和发展:具有一个主孔的单孔跨径已达 270m,具有多个主孔的单孔跨径也达250m,最大联长达1060m。随着新材料的开发和应用、设计和施工技术的进步,具有一个主孔的单孔跨径有望突破300m的潜力。而对于多跨一联的连续刚构是不是也能在联长上有更大的发展呢?众所周知,墩身内力与其顺桥向抗推刚度和距主梁顺桥向水平位移变形零点的距离密切相关。抗推刚度小的薄壁式墩身能有效地降低其内力,但随着联长的加大,墩身距主梁顺桥向水平位移变形零点的距离亦将加大,在温度、混凝土收缩徐变等荷载的作用下,墩顶与主梁一道产生很大的顺桥向水平和转角位移,墩身剪力和弯矩将迅速增大,同时产生不可忽视的附加弯矩,致使刚构方案无法成立。在结构上将墩身与主梁的团结约束解除而代之以顺桥向水平和转角位移自由的支座,这样就变成刚构—连续组合梁的结构形式。于是边主墩墩身强度问题得以解决,且在一定条件下联长可相对延长。可见,刚构—连续组合梁是连续梁和连续刚构的组合,它兼顾了两者的优点而扬弃各自的缺点,在结构受力、使用功能和适应环境等方面均具

相关文档
相关文档 最新文档