文档库 最新最全的文档下载
当前位置:文档库 › 梅涅劳斯定理的证明

梅涅劳斯定理的证明

梅涅劳斯定理的证明

证明:X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1
证明一
过点A作AG∥BC交DF的延长线于G, 则AF/FB=AG/BD , CE/EA=DC/AG。 三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1
证明二
过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF 所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1
证明三
连接BF。 (AD:DB)·(BE:EC)·(CF:FA) =(S△ADF:S△BDF)·(S△BEF:S△CEF)·(S△BCF:S△BAF) =(S△ADF:S△BDF)·(S△BDF:S△CDF)·(S△CDF:S△ADF) =1
证明四
过三顶点作直线DEF的垂线,AA‘,BB',CC' 有AD:DB=AA’:BB' 另外两个类似, 三式相乘得1 得证。如百科名片中图。 充分性证明: △ABC中,BC,CA,AB上的分点分别为D,E,F。 连接DF交CA于E',则由充分性可得,(AF/FB)×(BD/DC)×(CE'/E'A)=1 又∵(AF/FB)×(BD/DC)×(CE/EA)=1 ∴有CE/EA=CE'/E'A,两点重合。所以DEF共线 推论 在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。于是AL、BM、CN三线交于一点的充要条件是λμν=-1。(注意与塞瓦定理相区分,那里是λμν=1
2 第一角元形式的梅涅劳斯定理
如图:若E,F,D三点共线,则 (sin∠ACF/sin∠FCB)(sin∠BAD/sin∠DAC)(sin∠CBE/sin∠ABE)=1 即图中的蓝角正弦值之积等于红角正弦值之积 该形式的梅涅劳斯定理也很实用 证明:可用面积法推出:第一角元形式的梅氏定理与顶分顶形式的梅氏定理等价。 第二角元形式的梅涅劳斯定理 在平面上任取一点O,且EDF共线,则(sin∠AOF/sin∠FOB)(sin∠BOD/sin∠DOC)(sin∠COA/sin∠AOE)=1。(O不与点A、B、C重合)


数学意义 使用梅涅劳斯定理可以进行直线形中线段长度比例的计算,其逆定理还是可以用来解决三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基本定理,具有重要的作用。梅涅劳斯定理的对偶定理是塞瓦定理。

相关文档