文档库 最新最全的文档下载
当前位置:文档库 › Removed_直流伺服电机实验报告

Removed_直流伺服电机实验报告

Removed_直流伺服电机实验报告
Removed_直流伺服电机实验报告

直流电机的特性测试

一、实验要求

在实验台上测试直流电机机械特性、工作特性、调速特性(空载)和动态特性,其中测试机械特性时分别测试电压、电流、转速和扭矩四个参数,根据测试结果拟合转速—转矩特性(机械特性),并以X 轴为电流,拟合电流—电压特性、电流—转速特性、电流—转矩特性,绘制电机输入功率、输出功率和效率曲线,即绘制电机综合特性曲线。然后在空载情况下测试电机的调速特性,即最低稳定转速和额定电压下的最高转速,即调速特性;最后测试不同负载和不同转速阶跃下电机的动态特性。

二、实验原理

1、直流电机的机械特性

直流电机在稳态运行下,有下列方程式:

电枢电动势 (1-1)e E C n =Φ电磁转矩

(1-2)e m T C I =Φ电压平衡方程

(1-3)

U E IR =+联立求解上述方程式,可以得到以下方程:

(1-4)

2e e e m U R

n T C C C =

-ΦΦ

式中 ——电枢回路总电阻R ——励磁磁通Φ ——电动势常数e C ——转矩常数

m C ——电枢电压

U ——电磁转矩

e T

——电机转速

n

在式(1-4)中,当输入电枢电压保持不变时,电机的转速随电磁转矩

U n 变化而变化的规律,称为直流电机的机械特性。

e T 2、直流电机的工作特性

因为直流电机的励磁恒定,由式(1-2)知,电枢电流正比于电磁转矩。另外,将式(1-2)代入式(1-4)后得到以下方程:

(1-5)

e e U R

n I C C =

-ΦΦ

由上式知,当输入电枢电压一定时,转速是随电枢电流的变化而线性变化

的。

3、直流电机的调速特性

直流电机的调速方法有三种:调节电枢电压、调节励磁磁通和改变电枢附加电阻。

本实验采取调节电枢电压的方法来实现直流电机的调速。当电磁转矩一定时,电机的稳态转速会随电枢电压的变化而线性变化,如式(1-4)中所示。

4、直流电机的动态特性

直流电机的启动存在一个过渡过程,在此过程中,电机的转速、电流及转矩等物理量随时间变化的规律,叫做直流电机的动态特性。本实验主要测量的是转速随时间的变化规律,如下式所示:

(1-6)

s m

dn

n n T dt

=-其中,——稳态转速s n

——机械时间常数

m T 本实验中,要求测试在不同负载和不同输入电枢电压(阶跃信号)下电机的动态特性。

5、传感器类型

本实验中,测量电机转速使用的是角位移传感器中的光电编码器;测量电

磁转矩使用的是扭矩传感器。

三、实验操作步骤

1、测量直流电机的机械特性和动态特性

①首先将负载旋钮逆时针拧至最小,然后将实验设备面板上的直流电机的电枢电压和电枢电流信号引出,分别接至计算机的采集数据端口上,打开计算

机中的测试软件,进入测试界面,设定每个通道的测量范围。

②系统上电。

③用计算机给定电机的电枢电压信号,逐渐增加负载(顺时针转动负载旋钮),选择记录下此过程中的20组数据,每组数据包括测量电枢电压、测量电

枢电流、电机转速和电磁转矩值。

④计算机停止给定电机的电枢电压信号,系统电源关闭。

2、测量直流电机的调速特性

本实验要求测量的是空载下的调速特性,测量额定电压下的最高转速和最

低稳定转速。步骤如下:

①首先将负载旋钮逆时针拧至最小,然后将实验设备面板上的直流电机的电枢电压信号引出,接至计算机的采集数据端口上,打开计算机中的测试软件,进入测试界面,设定通道的测量范围。

②利用式(1-7)计算电机额定电压(24V)对应的测量电压值,为

9.52V。

电机实际电压=(前面板测量电压-0.76)*2.75-0.1 (1-7)

③系统上电。

④不断改变计算机输出的电机电压信号,直至测量电压信号的值为

9.52V。记录下此时的转速值,即为额定电压下的最高稳定转速。

⑤不断减小计算机输出地电机电压信号,观察转速逐渐减小和稳定的情况,记录下最低稳定转速值。

⑥计算机停止给定电机的电枢电压信号,系统电源关闭。

3、测量直流电机的动态特性

按照测量在不同负载和不同输入电枢电压(阶跃信号)下电机的动态特性

的要求,本实验测量了在计算机给定电压信号(阶跃信号)分别为7V和4V时,4个不同负载大小下电机的动态特性。

①首先将负载旋钮逆时针拧至最小,然后将实验设备面板上的电机转速信号引出,接至计算机的采集数据端口上,打开计算机中的测试软件,进入测试

界面,设定通道的测量范围。

②系统上电。

③将计算机给定电压信号(阶跃信号)设为7V,顺时针转动负载旋钮,记录在4个不同负载下,电机转速的动态响应曲线。将负载旋钮旋至最小后,将

计算机给定电压信号(阶跃信号)设为4V,记录在4个不同负载下,电机转速的动态响应曲线。

④计算机停止给定电机的电枢电压信号,系统电源关闭。

四、实验测试结果及数据处理

1、直流电机的机械特性和动态特性

根据上述操作步骤,测量得到的20组数据如表1所示:

测量电流电磁转矩

T(N·m)

转速n(r/min)测量电压(V)

0.560.52148.80 0.610.62098.78

0.84 1.11988.70

1.11 1.51848.68 1.35 1.91728.62 1.54

2.11638.59 1.70 2.41588.51 1.75 2.61468.46 1.83 2.91408.42

1.98 3.11328.38

2.10

3.31268.35

2.24

3.51168.32

2.31

3.71108.30

2.47 4.0968.27

2.61 4.2918.25

2.86 4.6818.17

3.02

4.9668.14

3.17 5.2578.11

3.43 5.5428.03

3.52 6.0297.92

表1 测量数据

根据前面板测量值与电机实际值的换算公式:

电机实际电压=(前面板测量电压-0.76)*2.75-0.1

电机实际电流=(前面板测量电压-0.032)*2

计算电机的实际电枢电压和电枢电流值,如表2所示:

实际电流

I(A)电磁转矩

T(N·m)

转速

n(r/min)

实际电压

U(V)

1.0560.52142

2.01 1.1560.620921.955

1.616 1.119821.735

2.156 1.518421.68

2.636 1.917221.515

3.016 2.116321.432 3.336 2.415821.212 3.436 2.614621.075 3.596 2.914020.965

3.896 3.113220.855

4.136 3.312620.772 4.416 3.511620.69 4.556 3.711020.635

4.876 4.09620.552

5.156 4.29120.497 5.656 4.68120.278

5.976 4.96620.195

6.276 5.25720.112 6.796 5.54219.892

6.976 6.02919.59

表2 实际数据

根据实验原理和上述数据,利用matlab工具,选用最小二乘法中的多项式

拟合方法拟合电机的机械特性曲线、电流-电压特性曲线、电流-转速特性曲线、电流-转矩特性曲线、电机输入功率曲线、电机输出功率曲线和电机的效率曲线。

(1)拟合机械特性曲线

根据原理,机械特性曲线应是一条直线,所以选用最小二乘一次拟合多项

式来拟合机械特性曲线,拟合得到的图形如下图1所示:

图1:机械特性

(2)拟合电流-电压特性曲线

图2:电流-电压特性

从图2可以看出,尽管原理上电枢电压应该大小恒定,但是实际上,电枢电压会随着负载的逐渐增大而缓慢下降。

(3)拟合电流-转速特性曲线

图3:电流-转速特性

(4)拟合电流-转矩特性曲线

图4:电流-转矩特性

(5)拟合输入功率曲线

首先,根据公式计算输入功率:

(1-8)

i P U I =?因为实验过程的变化量是负载,而电机稳定运行时,电磁转矩与负载转矩大小

相等,所以选用电磁转矩作为x 轴绘制功率曲线。并用最小二乘二次多项式拟

合功率曲线,结果如下图所示:

图5:输入功率曲线

(6)拟合输出功率曲线

首先,根据公式计算输出功率:

(1-9)

9.55o P n T =?÷同理,以电磁转矩作为x 轴,并用最小二乘二次多项式拟合功率曲线,结果如

下图所示:

图6:输出功率曲线

(7)拟合输出功率曲线首先,根据公式计算功率比:

(1-10)

100%o

i

P P η=

?同理,以电磁转矩作为x 轴,并用最小二乘三次多项式拟合功率比曲线,结果

如下图所示:

图7:功率比变化曲线

2、直流电机的调速特性测量结果

按照上述测量步骤,得到空载情况下,直流电机在24V额定电压下的稳定转速为221r/min。最低稳定转速为18 r/min

3、直流电机的动态特性测量结果

在给定电压型号为7V时,直流电机转速在4个不同负载下的动态响应曲线如图8-图11所示:

图8 图9

图10 图11

在给定电压型号为4V时,直流电机转速在4个不同负载下的动态响应曲线如图12-图15所示:

图12 图13

图14 图15

直流伺服电机实验报告

实验六 直流伺服电机实验 一、实验设备及仪器 被测电机铭牌参数: P N =185W ,U N =220V ,I N =1.1A , 使用设备规格(编号): 1.MEL 系列电机系统教学实验台主控制屏(MEL-I 、MEL-IIA 、B ); 2.电机导轨及测功机、转速转矩测量(MEL-13); 3.直流并励电动机M03(作直流伺服电机); 4.220V 直流可调稳压电源(位于实验台主控制屏的下部); 5.三相可调电阻900Ω(MEL-03); 6.三相可调电阻90Ω(MEL-04); 7.直流电压、毫安、安培表(MEL-06); 二、实验目的 1.通过实验测出直流伺服电动机的参数r a 、e κ、T κ。 2.掌握直流伺服电动机的机械特性和调节特性的测量方法。 三、实验项目 1.用伏安法测出直流伺服电动机的电枢绕组电阻r a 。

2.保持U f=U fN=220V,分别测取U a =220V及U a=110V的机械特性n=f(T)。3.保持U f=U fN=220V,分别测取T2=0.8N.m及T2=0的调节特性n=f(Ua)。4.测直流伺服电动机的机电时间常数。 四、实验说明及操作步骤 1.用伏安法测电枢的直流电阻Ra

表中Ra=(R a1+R a2+R a3)/3; R aref=Ra*a ref θ θ + + 235 235 (3)计算基准工作温度时的电枢电阻 由实验测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温。按下式换算到基准工作温度时的电枢绕组电阻值: R aref=Ra a ref θ θ + + 235 235

约瑟夫环实验报告

一.需求分析 1.约瑟夫环(Joseph)问题的一种描述是:编号为1,2……,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。一开始任选一个正整数作为报数上限值m,从第一个人开始按顺时针方向自1开始顺序报数,报到m时停止报数。报m的人出列,将他的密码作为新的m值,从他在顺时针方向上的下一个人开始重新从1报数,如此下去,直至所有人全部出列为止。 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,有用户在键盘上输入演示程序中规定的运算命令,相应的输入数据和运算结果显示在其后。 3.程序执行的命令包括: 1)输入初始密码和人数2)输入所有人的密码3)显示输入的所有人的编号及相应的密码4)输出出列密码及编号5)结束 4.测试数据 (1)m=20, n=7, 7个人的密码依次为3,1,7,2,4,8,4 (2)m=20,n=1 (3)m=20,n=0 前面一组为常规数据,后面两组为边缘数据 二、概要设计 为实现上述功能,应以有序单向循环链表表示约瑟夫环。为此,需要有一个抽象数据类型。该抽象数据类型的定义为: ADT LinkList { 数据对象:D={ ai | ai ∈termset,i=1,2,……n,n>=0}, termset中每个元素包含编号,密码,和一个指向下一节点的指针数据关系:R1={ | ai-1, ai ∈D , i=2,……n} 基本操作: LinkList EvaluList(int n);//对单向循环链表进行尾插入赋值 int size(LinkList L);//求链表的节点个数 Status ScanList(LinkList L);//遍历单向循环链表 Status Joseph(LinkList &L,int m);//约瑟夫环的实现 } 此抽象数据类型中的一些常量如下:#define TRUE 1 #define FALSE 0 #define OK 1

约瑟夫环实验报告

课程实验报告 题目:2016.4.6 学生姓名:黄玲 学生学号:201408070105 专业班级:智能1401 指导老师:骆嘉伟 完成日期:2016.4.6

一.需求分析 1.本实验基本要求是用数组来实现线性表,再基于线性表的基本操作(插入、删除、修改等)来实现约瑟夫问题 2.由键盘输入总人数n和出列报数m 3.在DOS界面上显示依次出圈的人的编号和最后一个留下的人,在当前文件夹里生成一个文本文件,里面是相同的输出。 4.测试数据: 输入: 10,3 输出: 3 6 9 2 7 1 8 5 10 4//DOS 3 6 9 2 7 1 8 5 10 4//TXT 二.概要设计 §抽象数据类型 为实现上述程序的逻辑功能,应以整数存储用户的输入 用线性表实现,线性表定义如下: ADT LISt 数据对象:整数 基本操作: AList(100);//构建一个最大人数为100的顺序表(数组)来存储人 Next();//指向下一个人 moveStart();//回到第一个人继续数数 Length();//查看圈里还剩多少人 currPos();//查看当前数到人的编号 getValue();//查看当前编号的人是否还在圈内 §程序的流程 以书上的代码案例为参考,编写线性表的ADT在继承线性表的基础上编写顺序表(数组)的类文件编写主函数,创建类的对象,完成程序 三.详细设计 §物理数据类型 将大小为n的数组赋好值,其值为他本身的编号,即数组下标。 §程序思路的具体步骤实现 设一个标志点,在数组中移动,同时报数,当报到m时,当前人的值变为0,出圈,然后继续移动,重新数。当数到值为0的人时自动跳过(已出圈),当数

直流伺服电机实验报告

直流电机的特性测试 一、实验要求 在实验台上测试直流电机机械特性、工作特性、调速特性(空载)和动态特性,其中测试机械特性时分别测试电压、电流、转速和扭矩四个参数,根据测试结果拟合转速—转矩特性(机械特性),并以X 轴为电流,拟合电流—电压特性、电流—转速特性、电流—转矩特性,绘制电机输入功率、输出功率和效率曲线,即绘制电机综合特性曲线。然后在空载情况下测试电机的调速特性,即最低稳定转速和额定电压下的最高转速,即调速特性;最后测试不同负载和不同转速阶跃下电机的动态特性。 二、实验原理 1、直流电机的机械特性 直流电机在稳态运行下,有下列方程式: 电枢电动势 e E C n =Φ (1-1) 电磁转矩 e m T C I =Φ (1-2) 电压平衡方程 U E I R =+ (1-3) 联立求解上述方程式,可以得到以下方程: 2e e e m U R n T C C C = -ΦΦ (1-4) 式中 R ——电枢回路总电阻 Φ——励磁磁通 e C ——电动势常数 m C ——转矩常数 U ——电枢电压 e T ——电磁转矩 n ——电机转速

在式(1-4)中,当输入电枢电压U 保持不变时,电机的转速n 随电磁转矩e T 变化而变化的规律,称为直流电机的机械特性。 2、直流电机的工作特性 因为直流电机的励磁恒定,由式(1-2)知,电枢电流正比于电磁转矩。另外,将式(1-2)代入式(1-4)后得到以下方程: e e U R n I C C = -ΦΦ (1-5) 由上式知,当输入电枢电压一定时,转速是随电枢电流的变化而线性变化的。 3、直流电机的调速特性 直流电机的调速方法有三种:调节电枢电压、调节励磁磁通和改变电枢附加 电阻。 本实验采取调节电枢电压的方法来实现直流电机的调速。当电磁转矩一定 时,电机的稳态转速会随电枢电压的变化而线性变化,如式(1-4)中所示。 4、直流电机的动态特性 直流电机的启动存在一个过渡过程,在此过程中,电机的转速、电流及转矩 等物理量随时间变化的规律,叫做直流电机的动态特性。本实验主要测量的是转速随时间的变化规律,如下式所示: s m dn n n T dt =- (1-6) 其中,s n ——稳态转速 m T ——机械时间常数 本实验中,要求测试在不同负载和不同输入电枢电压(阶跃信号)下电机的 动态特性。 5、传感器类型 本实验中,测量电机转速使用的是角位移传感器中的光电编码器;测量电磁 转矩使用的是扭矩传感器。

约瑟夫环课程设计实验报告

《数据结构》 课程设计报告 课程名称:《数据结构》课程设计课程设计题目:joseph环 姓名: 院系:计算机学院 专业: 年级: 学号: 指导教师: 2011年12月18日

目录 1 课程设计的目的 (2) 2 需求分析 (2) 3 课程设计报告内容 (3) 1、概要设计 (3) 2、详细设计 (3) 3、调试分析 (x) 4、用户手册 (x) 5、测试结果 (6) 6、程序清单 (7) 4 小结 (10) 1、课程设计的目的 (1)熟练使用C++编写程序,解决实际问题; (2)了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力; (3)初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; (4)提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 2、需求分析 1、问题描述: 编号是1,2,……,n的n个人按照顺时针方向围坐一圈,每个人只有一个密码(正整数)。一开始任选一个正整数作为报数上限值m,从第一个仍开始顺时针方向自1开始顺序报数,报到m时停止报数。报m的人出列,将他的密码作为新的m值,从他在顺时针方向的下一个人开始重新从1报数,如此下去,直到所有人全部出列为止。设计一个程序来求出出列顺序。 2、要求: 利用不带表头结点的单向循环链表存储结构模拟此过程,按照出列的顺序输出各个人的编号。 3、测试数据: m的初值为20,n=7 ,7个人的密码依次为3,1,7,2,4,7,4,首先m=6,则正确的输出是什么? 输出形式:建立一个输出函数,将正确的输出序列

3、课程设计报告内容 概要设计: 在理解了题目后,我先想到的是我们所学的单链表,利用单链表先建立循环链表进行存贮,建立完循环链表后,我将所要编写的函数分为了两块,一块是经过学过的单链表改编的循环链表的基本操作函数,还有一块是运行约瑟夫环的函数。 详细设计: 我先建立一个结构体,与单链表一样,只是多了一个存密码的code域 struct LinkNode { int data; /删除的是尾结点时(不知道为什么我写程序里总是编译出现错误){ q->next=head; //重新链接 delete a; len--; return out; } else { q->next=a->next; delete a; len--; return out; } } } } 5、测试结果:

直流伺服电机的结构与分类

直流伺服电机的结构与分类 直流伺服电机的品种很多,根据磁场产生的方式,直流电机可分为他励式、永磁式、并励式、串励式和复励式五种。永磁式用氧化体、铝镍钴、稀土钴等软磁性材料建立激磁磁场。在结构上,直流伺服电机有一般电枢式、无槽电枢式、印刷电枢式、绕线盘式和空心杯电枢式等。为避免电刷换向器的接触,还有无刷直流伺服电机。根据控制方式,直流伺服电机可分为磁场控制方式和电枢控制方式。永磁直流伺服电机只能采用电枢控制方式,一般电磁式直流伺服电机大多也用电枢控制方式。 在数控机床中,进给系统常用的直流伺服电机主要有以下几种:1.小惯性直流伺服电机 小惯性直流伺服电机因转动惯量小而得名。这类电机一般为永磁式,电枢绕组有无槽电枢式、印刷电枢式和空心杯电枢式三种。因为小惯量直流电机最大限度地减小电枢的转动惯量,所以能获得最快的响应速度。在早期的数控机床上,这类伺服电机应用得比较多。 2.大惯量宽调速直流伺服电机 大惯量宽调速直流伺服电机又称直流力矩电机。一方面,由于它的转子直径较大,线圈绕组匝数增加,力矩大,转动惯量比较其他类型电机大,且能够在较大过载转矩时长时间地工作,因此可以直接与丝杠

相连,不需要中间传动装置。另一方面,由于它没有励磁回路的损耗,它的外型尺寸比类似的其他直流伺服电机小。它还有一个突出的特点,是能够在较低转速下实现平稳运行,最低转速可以达到1r/min,甚至0.1r/min。因此,这种伺服电机在数控机床上得到了广泛地应用。 3.无刷直流伺服电机 无刷直流伺服电机又叫无整流子电机。它没有换向器,由同步电机和逆变器组成,逆变器由装在转子上的转子位置传感器控制。它实质是一种交流调速电机,由于其调速性能可达到直流伺服发电机的水平,又取消了换向装置和电刷部件,大大地提高了电机的使用寿命。

数据结构实验报告(约瑟夫环)

《数据结构》课程实验 实验报告 题目:Joseph问题求解算法的设计与实现专业:计算机科学与技术 班级: 姓名: 学号: 完成日期:

一、试验内容 约瑟夫(Joseph)问题的一种描述是:编号为1,2,…,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。开始任选一个正整数作为报数上限值m,从第一个人开始按顺时针方向自1开始顺序报数,报到m时停止报数。报m的人出列,将他的密码作为新的m值,从他在顺时针方向上的下一个人开始重新从1报数,如此下去,直至所有人全部出列为止。试设计一个程序求出出列顺序。 二、试验目的 掌握链表的基本操作:插入、删除、查找等运算,能够灵活应用链表这种数据结构。 三、流程图 输入总人数n 创建并初始化 n个结点 输入第一个报 的数key n==0 报数过程 输出出列者 的编号及密 码 结束 n--

四、源程序代码 //Joseph问题求解算法的设计与实现 #include #include struct list { int num,code; struct list *next; }; void main() { printf("Joseph问题求解算法的设计与实现\n \n"); int i,j,m=1; int key; // 密码. int n; //人数 . list *p,*s,*head; head=(list *)malloc(sizeof(list)); //为头结点分配空间. p=head; printf("输入人的总个数:"); scanf("%d",&n); for(i=1;i<=n;i++) { key=rand() % 100; printf("第%d个人的密码:%d\n",i,key); s=p; p=(list *)malloc(sizeof(list)); //创建新的结点. s->next=p; p->num=i; p->code=key; } p->next=head->next; p=head; head=head->next; free(p); //释放头结点. p=head; do{ printf("\n第%d号成员的密码为:%d",p->num,p->code); //输出链表. p=p->next; }while(p!=head); printf("\n\n输入第一个报的数:\n"); scanf("%d",&key); printf("\n出列顺序为:\n"); do

数据结构实验报告(约瑟夫环)

基础成绩:82分《数据结构》课程实验 实验报告 题目:Joseph问题求解算法的设计与实现 专业:网络工程 班级:网络102 姓名:张晨曦 学号: 102534 完成日期:2012/6/20 一、试验内容

- 约瑟夫(Joseph)问题的一种描述是:编号为1,2,…,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。开始任选一个正整数作为报数上限值m,从第一个人开始按顺时针方向自1开始顺序报数,报到m时停止报数。报m的人出列,将他的密码作为新的m值,从他在顺时针方向上的下一个人开始重新从1报数,如此下去,直至所有人全部出列为止。试设计一个程序求出出列顺序。 二、试验目的 掌握链表的基本操作:插入、删除、查找等运算,能够灵活应用链表这种数据结构。 三、流程图 struct list {

- int num,code; struct list *next; }; void main() { printf("Joseph问题求解算法的设计与实现\n \n"); int i,j,m=1; int key; // 密码. int n; //人数. list *p,*s,*head; head=(list *)malloc(sizeof(list)); //为头结点分配空间. p=head; //使指针指向头节点 printf("输入人的总个数:"); scanf("%d",&n); for(i=1;i<=n;i++) { printf("第%d个人的密码:\n",i); scanf("%d",&key); s=p; p=(list *)malloc(sizeof(list)); //创建新的结点. s->next=p; p->num=i; p->code=key; } p->next=head->next; p=head; head=head->next; free(p); //释放头结点. p=head; printf("\n\n输入初始值:\n"); scanf("%d",&key); printf("\n出列顺序为:\n"); do { j=1; p=head; while(jnext;//使P指向下一结点 j++; } //报数过程. i=p->num; key=p->code; printf("%d\n",i); s->next=p->next;

交流伺服电机内部结构图及原理

一、交流伺服电机结构图 二、原理 交流伺服电机在定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。

交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无"自转"现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大, 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 2、运行范围较广. 3、无自转现象) 正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)交流伺服电动机的输出功率一般是0.1-100W。当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、26V、36V、115V等多种。 交流伺服电动机运行平稳、噪音小。但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W 的小功率控制系统。

数据结构实验报告 约瑟夫环问题

信息学院 数据结构实验报告 学号:姓名:班级 课程名称:数据结构实验名称:约瑟夫环 实验性质:①综合性实验√②设计性实验③验证性实验实验时间:2017.10 试验地点: 本实验所用设备:PC及VS2010 【数据结构】: typedef struct _RingNode { int pos; // 位置 struct _RingNode *next; }RingNode, *RingNodePtr; 【算法思想】: 以单链表实现约瑟夫环 用户输入M,N值,从1至N开始顺序循环数数,每数到M输出该数值,直至全部输出。(约瑟夫环问题Josephus)。以环状链表实现 【算法描述】: void CreateRing(RingNodePtr pHead, int count) { RingNodePtr pCurr = NULL, pPrev = NULL; int i = 1; pPrev = pHead; while(--count > 0) { pCurr = (RingNodePtr)malloc(sizeof(RingNode)); i++; pCurr->pos = i; pPrev->next = pCurr; pPrev = pCurr; } pCurr->next = pHead; // 构成环状链表 }

void PrintRing(RingNodePtr pHead) { RingNodePtr pCurr; printf("%d", pHead->pos); pCurr = pHead->next; while(pCurr != NULL) { if(pCurr->pos == 1) break; printf("\n%d", pCurr->pos); pCurr = pCurr->next; } } void KickFromRing(RingNodePtr pHead, int m) { RingNodePtr pCurr, pPrev; int i = 1; // 计数 pCurr = pPrev = pHead; while(pCurr != NULL) { if (i == m) { // 踢出环 printf("\n%d", pCurr->pos); // 显示出圈循序 pPrev->next = pCurr->next; free(pCurr); pCurr = pPrev->next; i = 1; } pPrev = pCurr; pCurr = pCurr->next; if (pPrev == pCurr) { // 最后一个 printf("\n%d", pCurr->pos); // 显示出圈循序 free(pCurr); break; } i++; } } int main()

数据结构实验报告—约瑟夫问题求解

《计算机软件技术基础》实验报告 I —数据结构 实验一、约瑟夫斯问题求解 一、问题描述 1.实验题目:编号 1,2,....,n的n个人顺时针围坐一圈,每人持有一个密码(正整数)。 开始选择一个正整数作为报数上限m,从第一个人开始顺时针自 1 报数,报到m的人出列,将他的密码作为新的m值,从他在顺时针方向下一个人开始重新从 1 报数,直至所有人全部出列。 2. 基本要求:利用单向循环链表存储结构模拟此过程,按照出列的顺序印出个人的编号。 3. 测试数据: n=7,7 个人的密码依次为:3,1,7,2,4,8, 4.m初值为6(正确的出列顺序 应为 6,1,4,77,2,3)。 二、需求分析 1. 本程序所能达到的基本可能: 该程序基于循环链表来解决约瑟夫问题。用循环链表来模拟n 个人围坐一圈,用链表 中的每一个结点代表一个人和他所代表的密码。在输入初始密码后m,对该链表进行遍历,直到第 m个结点,令该结点的密码值作为新的密码值,后删除该结点。重复上述过程,直至所有的结点被释放空间出列。 2. 输入输出形式及输入值范围: 程序运行后提示用户输入总人数。输入人数 n 后,程序显示提示信息,提示用户输入第 i个人的密码,在输入达到预定次数后自动跳出该循环。程序显示提示信息,提示用户输入 初始密码,密码须为正整数且不大于总人数。 3.输出形式 提示用户输入初始密码,程序执行结束后会输出相应的出列结点的顺序,亦即其编号。 用户输入完毕后,程序自动运行输出运行结果。 4.测试数据要求: 测试数据 n=7,7 个人的密码依次为:3, 1, 7, 2, 4, 8, 4。 m初值为 6(正确的出列 顺序应为6, 1, 4,7, 2, 3, 5)。 三、概要设计 为了实现上述功能,应用循环链表来模拟该过程,用结构体来存放其相应的编号和密码

伺服电机的工作原理图

伺服电机的工作原理图? 伺服电机工作原理——伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。 永磁交流伺服系统具有以下等优点:(1)电动机无电刷和换向器,工作可靠,维护和保养简单;(2)定子绕组散热快;(3)惯量小,易提高系统的快速性;(4)适应于高速大力矩工作状态;(5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2 交流永磁伺服系统的基本结构 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统的驱动系统所不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。

数据结构实验报告(实验二 约瑟夫环)

韶关学院 学生实验报告册 实验课程名称:数据结构与算法 实验项目名称:实验二线性表及其应用 约瑟夫环 实验类型(打√):(基础、综合、设计√) 院系:信息工程学院计算机系专业:***** 姓名:*** 学号:***** 指导老师:陈正铭 韶关学院教务处编制

一、实验预习报告内容

二、实验原始(数据)记录 实验时间:2007 年 4 月 4 日(星期三第7,8 节)实验同组人:

三、实验报告内容 2007年4 月5 日 注:1、如有个别实验的实验报告内容多,实验报告册页面不够写,或有识图,画图要求的,学生应根据实验指导老师要求另附相同规格的纸张并粘贴在相应的“实验报告册”中。 2、实验报告册属教学运行材料,院系(中心)应按有关规定归档保管。

【源程序】 #include "stdio.h" #include "conio.h" #include "stdlib.h" /* 设立无头结点的单循环链表*/ typedef struct LNode{ int id; /* 编号*/ int pw; /* 密码*/ struct LNode *next; }LNode,*LinkList; void main() { int m,n,pw,i=1,j=0; /* m为初始报数值,n 为参与人数,pw为密码临时保存变量,i、j 为循环变量*/ LinkList L,p,q; /* L为链表头指针,p、q为临时指针*/ printf("输入人数n(n>0):"); scanf("%d",&n); printf("输入第1 人密码:"); scanf("%d",&pw); L=(LinkList)malloc(sizeof(struct LNode)); L->id=i; L->pw=pw; L->next=L; /* 创建首结点*/ q=L; /* q指向尾结点*/ p=L; /* p指向待删除结点前驱*/ for(i=2;i<=n;i++) /* 依次输入第2……第n个参与者密码*/ { printf("输入第%d 人密码:",i); scanf("%d",&pw); p=(LinkList)malloc(sizeof(struct LNode)); p->id=i; p->pw=pw; /* 创建第i个参与者结点p */ q->next=p; /* 在尾结点q后插入新结点p */ q=p; /* 更新q指向新的尾结点p */ p->next=L; /* 新结点p的后继指针指向首结点*/ } printf("输入约瑟夫环的初始报数值m:"); scanf("%d",&m); printf("出列顺序为:"); for(i=1;i<=n;i++) /* n个参与者依次按规则出列*/ { for(j=1;jnext; /* p 指向待删除结点前驱*/ q=p->next; /* q指向待删除结点*/ p->next=q->next; /* 删除结点q */ printf("%d\t",q->id); /* 输出被删结点编号*/ m=q->pw; /* m更新为被删结点的密码值*/ free(q); /* 释放被删结点q */ } getch(); }

实验 交流伺服电动机实验1——实验报告样板

交流伺服电机实验 一、实验目的 1.了解交流伺服电机 2.掌握交流伺服电机控制方法 二、实验内容 1.测定交流伺服电机的机械特性 2.测定交流伺服电机的调速特性 3.观察交流伺服电机的“自转”现象 三、实验原理 伺服电机又称执行电机。其功能是将输入的电压控制信号转换为轴上输出的角位移和角速度,驱动控制对象。伺服电机可控性好,反应迅速。是自动控制系统和计算机外围设备中常用的执行元件。 交流伺服电机就是一台两相交流异步电机。它的定子上装有空间互差90 的两个绕组:励磁绕组和控制绕组。工作时两个绕组中产生的电流相位差近90o,因此便产生两相旋转磁场。在旋转磁场的作用下,转子便转动起来。加在控制绕组上的控制电压反相时(保持励磁电压不变),由于旋转磁场的旋转方向发生变化,使电动机转子反转。 交流伺服电动机的特点:在电动机运行时如果控制电压变为零,电动机立即停转。 四、实验步骤 1.测定交流伺服电机机械特性,并绘制n=f(T)曲线α=1 1)启动主电源,调节三相调压器,使Uc=U N=220V;

2)调节涡流测功机的给定调节,记录力矩和转速。 n=f(T)曲线 2. 测定交流伺服电机机械特性,并绘制n=f(T)曲线 α=0.75 1)启动主电源,调节三相调压器,使Uc=0.75U N =165V ; 2)调节涡流测功机的给定调节,记录力矩和转速。 U1 V1W1N

n=f(T)曲线 3.测定交流伺服电机的调速特性,并绘制n=f(Uc)曲线1)启动主电源,调节三相调压器,使Uc=U N=220V; 2)调节三相调压器,记录控制电压和转速。

n=f(Uc)曲线 4.观察交流伺服电机的“自转”现象 1)启动主电源,调节使Uc=220V, U f=117V,观察电机有没有“自转”现象; 2)调节使Uc=0V, U f=117V,观察电机有没有“自转”现象。 五、思考题 1. 分析步骤4中有无“自转”现象?若有“自转”现象,一般如何消除?若无“自转”现象,其原因是什么? 两种状态下,该交流伺服电机均未见“自转”现象。因为建立的正、反转旋转磁场分别切割笼型绕组(或杯形壁)并感应出大小相同,相位相反的电动势和电流(或涡流),这些电流分别与各自的磁场作用产生的力矩也大小相等、方向相反,合成力矩为零,伺服电机转子转不起来。当控制信号消失时,只有励磁绕组通入电流,伺服电机产生的磁场将是脉动磁场,转子很快地停下来。

直流伺服电机的基本特性

直流伺服电机的基本特性 网络 2010-08-01 01:50:12 网络 1、机械特性 在输入的电枢电压Ua保持不变时,电机的转速n随电磁转矩M变化而变化的规律,称直流电机的机械特性。 直流电机的机械特性曲线 K值大表示电磁转矩的变化引起电机转速的变化大,这种情况称直流电机的机械特性软;反之,斜率K值小,电机的机械特性硬。在直流伺服系统中,总是希望电机的机械特性硬一些,这样,当带动的负载变化时,引起的电机转速变化小,有利于提高重流电机的速度稳定性和工件的加工精度。功耗增大。 2、调节特性 直流电机在一定的电磁转矩M(或负载转矩)下电机的稳态转速n随电枢的控制电压U a 变化而变化的规律,被称为直流电机的调节特性。

直流电机的调节特性曲线 斜率K反映了电机转速n随控制电压U a的变化而变化快慢的关系,其值大小与负载大小无关,仅取决于电机本身的结构和技术参数。 3、动态特性 从原来的稳定状态到新的稳定状态,存在一个过渡过程,这就是直流电机的动态特性。 决定时间常数的主要因素有:惯性J的影响、电枢回路电阻R a的影响、机械特性硬度的影响。

直流伺服电机的种类和主要技术参数 1、按转动部分惯性大小来分: ?小惯量直流电机——印刷电路板的自动钻孔机 ?中惯量直流电机(宽调速直流电机)——数控机床的进给系统 ?大惯量直流电机——数控机床的主轴电机 ?特种形式的低惯量直流电机 2、主要技术参数:额定功率P e ?额定电压U e ?额定电流I e ?额定转速n e ?额定转矩M I e ?调速比D 直流伺服电机的选择,是根据被驱动机械的负载转矩、运动规律和控制要求来确定。 直流伺服电机结构和速度控制原理

直流伺服电机实验报告

实验六直流伺服电机实验 一、实验设备及仪器 被测电机铭牌参数: P N =185W ,U N =220V ,I N =1.1A ,μN =1600rpm 使用设备规格(编号): 1.MEL 系列电机系统教学实验台主控制屏(MEL-I 、MEL-IIA 、B ); 2.电机导轨及测功机、转速转矩测量(MEL-13); 3.直流并励电动机M03(作直流伺服电机); 4.220V 直流可调稳压电源(位于实验台主控制屏的下部); 5.三相可调电阻900Ω(MEL-03); 6.三相可调电阻90Ω(MEL-04); 7.直流电压、毫安、安培表(MEL-06); 二、实验目的 1.通过实验测出直流伺服电动机的参数r a 、e κ、T κ。

2.掌握直流伺服电动机的机械特性和调节特性的测量方法。 三、实验项目 1.用伏安法测出直流伺服电动机的电枢绕组电阻r a 。 2.保持U f=U fN=220V,分别测取U a =220V及U a=110V的机械特性n=f(T)。3.保持U f=U fN=220V,分别测取T2=0.8N.m及T2=0的调节特性n=f(Ua)。4.测直流伺服电动机的机电时间常数。 四、实验说明及操作步骤 1.用伏安法测电枢的直流电阻Ra

取三次测量的平均值作为实际冷态电阻值Ra=3 13 2a a a R R R ++。 表中Ra=(R a1+R a2+R a3)/3; R aref =Ra*a ref θ++235235 (3)计算基准工作温度时的电枢电阻 由实验测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温。按下式换算到基准工作温度时的电枢绕组电阻值: R aref =Ra a ref θθ++235235 式中R aref ——换算到基准工作温度时电枢绕组电阻。(Ω) R a ——电枢绕组的实际冷态电阻。(Ω) θref ——基准工作温度,对于E 级绝缘为75℃。 θa ——实际冷态时电枢绕组的温度。(℃) 2.测直流伺服电动机的机械特性

C语言实现约瑟夫环

《约瑟夫环》实验报告 专业:网络工程班级 学号姓名 一、问题描述: 约瑟夫问题的一种描述是:编号为1,2,……,n点的n个人按顺时针方向围坐一个圈,每人持有一个密码。一开始选一个正整数作为报数上限值m,从第一个人开始从顺时针方向自1开始报数,报到m时停止。报到m的人出列,将他的密码作为新的m值,从他在顺时针方向上的下一个人开始从新从1报数,如此下去,直达所有人出列。 基本要求:利用单向循环链表存储结构模拟此过程,按照出列的顺序输出各人的编号。 测试数据:m的初始值为20;n=7,7个人的密码依次是3,1,7,2,4,8,4,首先m的值为6(正确的出列顺序为6,1,4,7,2,3,5) 二、程序设计的基本思想,原理和算法描述: 采用结构体定义单链表,格式为:struct Lnode {int number; int password; struct Lnode*next; }Lnode,*p,*q,*head; 其中number是人的排列序号,password是各人所持有的密码值,next是节点指针。Lnode是节点变量,p、q是节点,head是头指针。 程序的代码:定义变量n,i,m,j 输入人的数量n If n<=0或n>30 重新输入n值 当0password 尾指针指向头指针,形成循环链表 输入初始报数上限值m 当1<=j<=n时 循环找出报m的节点p 输出报m节点的编号p->number 将p->password赋给m值 删除此节点 结束 三、源程序及注释: #include #include struct Lnode/*定义链表*/ {int number;

直流无刷伺服电机运动控制系统设计

直流无刷伺服电机运动控制系统设计 Motionchip是一种性能优异的专用运动控制芯片,扩展容易,使用方便。本文基于该芯片设计了一款可用于直流有刷/无刷伺服电机的智能伺服驱动器,并将该驱动器运用到加氢反应器超声检测成像系统中,上位机通过485总线分别控制直流有刷电机和无刷电机,取得了很好的控制效果,满足了该系统的高精度要求。 在传统的电机伺服控制装置中,一般采用一个或多个单片机作为伺服控制的核心处理器。由于这种伺服控制器外围电路复杂,计算速度慢,从而导致控制效果不理想。近年来,许多新的电机控制算法被研究并运用于电机控制系统中,如矢量控制、直接转矩控制等。随着这些控制算法的日益复杂,必须具备高速运算能力的处理器才能实现实时计算和控制。为了适应这种需要,国外许多公司开发了控制电机专用的高档单片机和数字信号处理器(DSP)。现在,通常使用的伺服控制器的控制核心部分大都由DSP和大规模可编程逻辑器件组成,这种方案可以根据不同需要,灵活的设计出性能很好的专用伺服控制器,但是一般研制周期都比较长。 MotionChip的特点 MotionChip是瑞士Technosoft公司开发的一种高性能且易于使用的电机运动控制芯片,它是基于TMS320C240的DSP,外围设置了许多电机伺服控制专用的可编程配置管脚。TMS320C240是美国TI公司推出的电机控制专用16位定点数字信号处理器,其具有高速的运算能力和专为电机控制设计的外围接口电路。MotionChip很好的利用了该DSP的优点,并集成多种电机控制算法于一身,以简化用户设计难度为目的,设计成为一种新颖的电机专用控制芯片。MotionChip有着集成全部必要的配置功能在一块芯片的优点,它是一种为各种电机类型进行快速和低投入设计全数字、智能驱动器的理想核心处理器。具有如下特点: ?可用于控制5种电机类型:直流有刷/无刷电机、交流永磁同步电机、交流感应电机和步进电机,且易于嵌入到用户的硬件结构中; ?可以选择独立或主从方式工作,并可根据需要,设置成通过网络接口进行多伺服控制器协同工作; ?全数字控制环的实现,包括电流/转矩控制环、速度控制环、位置控制环; ?可实现各种命令结构:开环、转矩、速度、位置或外环控制,步进电机的微步进控制,并可实现控制结构的配置,其中包括交流矢量控制; ?可以配置使用各种运动和保护传感器(位置、速度、电流、转矩、电压、温度等); ?使用各种通讯接口,可以实现RS232/RS485通讯、CAN总线通讯; ?基于Windows95/98/2000/ME/NT/XP平台,强大功能的IPM Motion Studio 高级图形编程调试软件:可通过RS232快速设置,调整各参数与编程运动控制程序。其功能强大的运动语言包括:34种运动模式、判决、函数调用,事件驱动运动控制、中断。因此便于开发和使用。 ?可以通过动态链接库TMLlib,利用VC/VB实现PC机控制;也可以与Labview和PLC无缝连接,通过动态链接库,用户可以在上层开发电机的控制程序,研究控制策略。 运动控制系统设计

直流伺服电机

题目: 机器人某关节由直流伺服电动机驱动,电机参数如下: 4422min max 0.04322/0.058108.1510/(/)100, 1.035,0.010.0215/(/) 1.426,9.58()a a m a b K N m A J Kg m B N m rad s L mH R n K V rad s J Kg m J Kg m Jeff --==?=?==Ω==== 系统的结构角频率为25/rad s ,试设计控制系统并求出位置控制系统的阶跃 响应。 解答: 电枢绕组电压平衡方程为: a a a b a Ri dt di L k u +=-θ 电机轴的转矩平衡方程为: L m m m m a m n B J J τθθτ+++= )( 负载轴的转矩平衡方程为: L L L L L B J θθτ += 电动机输出转矩为: a a m K ττ= 联立可得传递函数为: ] )([) () (2b a eff a eff a eff a a eff a a m K K B R J R f L s L J s s K s U s ++++= θ 由于电机的电气时间常数远远小于其机械时间常数且电机的电感一般很小(10mH ), 电阻约1 Ω,所以可以忽略电枢电感La 的影响,上式可简化为: ) 1()()()(+= ++=s T s K K K B R J sR s K s U s m b a eff a eff a a a m θ 单位位置控制系统的闭环控制框图为:

单位反馈位置控制未引入速度反馈系统闭环传递函数: a p b a eff a eff a a p d L K nK s K K B R s J R K K s s +++=)()() (2θθ 式中: 无阻尼自然频率为: eff a a p n J R K nK = ω 阻尼比为: eff a a p b a eff a J R K nK K K B R 2+= ξ 引入速度反馈后,闭环系统传递函数为: a p v b a eff a a p d L K nK s nK K K s J R K nK s s +++=)()() (2θθ 式中: 为了安全起见,希望系统具有临界阻尼或过阻尼,即ξ≥ 1, 2 22 2n n n s s ωξωω++=2 22 2n n n w s w s w ++=ξeff a a p n J R K nK = ωeff a a p v b a eff a J R K nK nK K K B R 2)(++= ξ

相关文档