文档库 最新最全的文档下载
当前位置:文档库 › 特高压组塔专用塔式起重机的研究

特高压组塔专用塔式起重机的研究

特高压组塔专用塔式起重机的研究
特高压组塔专用塔式起重机的研究

特高压组塔专用塔式起重机的研究

缪谦,江明

(中国电力科学研究院,北京市 100055)

摘要:随着我国电力工业的发展,建设特高压骨干电网、提高电网输送能力成为我国能源优化配置的必然。特高压工程铁塔高度高、尺寸大、重量重、施工难度大、施工危险因素多。常规施工技术及施工设备、配套工器具很难甚至无法满足施工要求。中国电科院自主创新、发明研制了我国首台电网建设组塔专用塔式起重机,并成功应用于特高压交流试验示范工程中。为我国特高压电网安全、高效施工建设提供了技术支撑。通过形成系列化、标准化的塔机组塔施工工艺及装备,对提升我国电网建设水平具有促进作用。

关键词:特高压工程;铁塔组立;组塔专用塔式起重机;塔机组塔施工技术

0 前言

随着我国电力工业的发展,我国将建设以特高压为骨干网架的国家电网,建设安全、环保、节约、高效的特高压电网,促进我国电网科技进步,提高电网输送能力成为我国能源优化配置的必然。特高压输电线路工程铁塔具有高度高、结构尺寸大、重量重、施工精度和安全质量要求严等特点,施工难度大、危险因素多,造成常规的施工技术及装备、配套工器具很难甚至无法满足施工要求,对组塔施工技术、施工设备及配套工器具提出了新的要求。根据国内、外铁塔组立施工技术及装备等发展现状,国外在塔式起重机[1]、直升机进行输电线路铁塔组立施工方面具有一定的经验,而国内相关技术比较落后,在特高压工程中尚未有过研究和应用。国内各施工单位主要还是依靠传统的施工抱杆、角磨等设备。

输变电施工抱杆与塔式起重机属于两种完全不同类型的起重设备,在相关设计、制造、检验、安装、使用、管理等方面执行和依据的国务院令、国家标准、规程规范均不相同。抱杆属于一种非标准的轻小型起重设备,操作时人工参与因素多,施工安全可靠性差、危险因素较多、施工技术水平较低。随着工程施工技术水平的进步、施工安全的强化、工程质量要求的提高,个别施工单位在抱杆基础上增加了部分起重机的功能,委托制造了具有塔式起重机部分功能与特点的落地摇臂抱杆,丰富了我国输变电施工抱杆品种系列,但不是严格意义上的塔式起重机。

1 塔式起重机概要

2003年6月1日颁布施行了中华人民共和国国务院令第373号《特种设备安全监察条例》[2]。条例中对从事特种设备生产、使用、检验检测及其监督检查等方面进行了明确严格的规定。塔式起重机属于涉及生命安全、危险性较大的特种设备,因此在设计、制造、检验、安装、使用等各个方面进行了严格的规定。塔式起重机的研制必须取得国务院特种设备安全监督管理部门的许可,由具有设计资质的单位进行研制开发,设计时严格遵守GB5144《塔式起重机安全规程》[3]、GB/T 13752《塔式起重机设计规范》[4]等一系列有关的国家标准;在设计、制造、安装使用、型式检验、监督检验等方面均必须遵守相关技术要求和管理规定,取得全部国家级认可证书后才能成为真正意义的塔式起重机,具备合法投入使用的条件。

2007年,中国电力科学研究院严格按照国家特种设备有关技术和管理的规定,创新研发了我国首台特高压组塔专用塔式起重机以及配套组塔施工技术。该项施工技术及装备的发明填补了国内此领域的空白,使我国塔机组塔施工方面中取得重大突破。为我国首台和首个在特高压工程建设中应用的组塔专用塔式起重机。

2 组塔塔式起重机及特高压工程应用简介

2006年8月,国家电网公司组织开展特高压施工技术创新工作以来,中国电科院组织了多次技术研讨会、方案论证和审查会,结合特高压塔型特点与参数,按照相关规范开展了设计研制工作,并依据国家有关规定,通过了国家质量监督检验检疫总局授权的塔式起重机型式试验、技术监督局的监督检验、安全保护装置型式试验、特种设备制造评审等,成为了我国一种新型塔式起重机,已经申请和获得了多项国家发明和实用新型专利技术。

根据工程要求,组塔专用塔式起重机首次用于1000kV晋东南~荆门交流特高压试验示范工程11标段JDT1D铁塔的组立。该塔全高75.3m,呼称高48m,根开20.1m,总重193.4 t,为特高压工程中比较典型的干字型转角塔。从2008年2月26日开始安装组塔专用塔式起重机至2008年3月22日完成铁塔最后一吊,总共历时26天完成了铁塔的全部吊装。组塔专用塔式起重机在独立工况时完成了铁塔7~14段的吊装,两道附着工况下,完成了铁塔1~6段的吊装。其中内角横担地线支架重3.8吨,采用整体吊装(图4),其余部分拆成为不超过4t 的塔片,分解吊装。

3 组塔塔式起重机基本参数

图1为S64L4组塔专用塔式起重机独立工况总图,其工作级别为A4,最大起重量4t,最大起重力矩64t?m,最大独立高度为51m,最大起升高度为100m,最上一道附着高度为80m。起升、变幅、回转机构均采用电力驱动,顶升机构采用液压驱动。设置短路及过流保护、欠压、过压及失压保护、零位保护、电源错相及断相保护,并配备起重力矩限制器、幅度限制器、起升高度限制器、行程限位、断绳保护、风速仪等全面的安全保护装置。

1)最大起重量Q:4t。

2)最大幅度L及最大起重力矩M:结合特高压铁塔根开尺寸,在满足铁塔吊装的要求下,定为在18m处起吊3t,在16m以内起吊4t,最大起重力矩为64t?m。

3)独立高度H及附着间距。

为了避免对铁塔结构的影响,塔机与铁塔的附着点应设置在铁塔节点上。第一道附着设置在铁塔27m节点处,塔机第一道附着以上起升节、顶升节、标准节等高度为24m,因此最大独立高度设计为51m,附着间距一般为独立高度的0.7倍。考虑到钢丝绳弹性附着的影响,附着间距取10m~25m,最多可设置三道附着,最大起升高度为100m,满足特高压工程铁塔吊装的需要。塔机作用于铁塔的附着方案经过电建院详细计算、校核并得到铁塔设计单位确认,铁塔自身强度完全满足施工要求,不需要对铁塔做任何加固。

4 组塔塔式起重机的创新设计

为了最大限度减少铁塔设计、加工等工作量,节约成本和时间,塔机采取内附着型式,通过特殊

图1组塔专用塔式起重机总图

的软附着墙与铁塔连接。铁塔组立完毕,塔机依靠自身功能拆除,从铁塔顶部的窗口退出。而为了满足特高压干字形转角塔底部根开大,顶部窗口尺寸较小的特殊施工要求,必须在塔机的整体结构形式、机构布置、标准节等各个方面采取创新性设计,是与常规塔式起重机显著区别的特点。

4.1 附着形式

特高压铁塔的高度一般都在70m以上,塔式起重机自身超出一定的独立高度,出于稳定性要求必须进行附着支撑。在铁塔组立施工中,塔式起重机的附着形式有两种,分为铁塔外附着和铁塔内附着。由于铁塔一般都是根开大,顶部小,如果采用铁塔外附着,则顶部附着杆过长,不但不利于塔机附着的整体稳定性,且对铁塔自身的抗扭性能要求很高,一般还要对铁塔进行加固或者单独设计,给设计、施工均增加了难度和工作量,且安全可靠性较低,经济性也不合理。采用内附着方案,通过选用4套钢丝绳构件组成的软附着墙与铁塔节点对称连接,不仅对塔机与铁塔受力均有利,且易于设计、安装施工,安全可靠性高,经济合理。

4.2 平衡臂形式

塔式起重机出于抗倾覆要求,一般采用平衡臂加配重方式抵抗部分倾覆力矩。根据特高压工程铁塔施工情况,如采取常规设计,平衡臂长一般最少也要3m以上。组塔专用塔式起重机由于工程实施对象的特殊性与铁塔尺寸结构的限制,为此发明了国内首创的无平衡臂塔机设计方案,通过加强塔身自身强度和地面基础来抵抗倾覆力矩。完全取消了高空作业,降低了施工难度,大幅提高了施工安全性和提高了施工效率。

工厂的加工难度,更是大幅提高了工厂加工和现场施工效率,而且山地分解运输轻巧方便,降低了劳动强度。

4.5 可搬起的吊臂形式

创新设计了可搬起式的塔机吊臂。根据铁塔窗口最大截面宽度以及塔机自身结构尺寸限制,设计要求塔机的吊臂仰起到最大角度时,整个塔机自身最大截面尺寸必须小于窗口截面尺寸即不能超过2800 mm×2800mm,以便塔机整体通过铁塔的窗口自由下降和拆除。因此,设计时将整机的吊臂最大仰起角度确定为88度,吊臂的顶部距离塔机中心的水平距离限制在1400mm以内,可顺利通过铁塔窗口。

4.6 自拆卸形式

常规塔式起重机在拆卸时是利用自身吊钩,通过回转来拆除塔身自身的标准节。而专用组塔塔机由于拆除时受到铁塔空间限制,其自身的吊钩不能回转拆卸自身的标准节。为了解决这个技术难题,和载荷作为主要工作状态验算,并计算自立状态和不同附着状态非工作工况。各工况中,分别考虑吊臂沿塔身正前方和斜对角方向布置两种情况。自重冲击系数取1.1,起升动载系数取1.1,工作状态下计算风压取q = 250N/m2,非工作状态下风压取q = 1000N/m2。并考虑了吊重在受风和惯性力作用下产生4°的偏摆。

为了确保组塔塔机的安全并进行结构优化,项目组根据组塔塔机的实际结构尺寸进行了建模,并对四种工况组合进行了计算:组合1为吊臂起升平面内偏摆工况,组合2为吊臂起升平面外偏摆工况,组合3为非工作状态工况,组合4为超载25%工况。经计算,吊臂在载荷组合4工况,最大幅度时吊臂根部应力最大,最大应力值为222MPa;塔身在组合3工况时,塔身最上一道附着处应力最大,最大应力值为257MPa,均小于许用应力值。整台起重机的结构强度均能满足要求,设计合理。下图为组塔塔机的计算模型图。

(a)最大幅度计算模型(b)最小幅度计算模型

图3组塔塔机计算模型图

6 组塔塔式起重机的施工流程

1)首先按照塔机的使用说明浇制混凝土,埋入预埋件,达到养护周期后,开始安装塔机。

2)采用一台25t汽车吊依次安装底部标准节,内塔节,起升专用节,回转平台,塔顶撑杆,吊臂及各机构,安装完毕后进行电气调试。

3)采用其自身的顶升装置及自身吊钩,安装

标准节至最大独立高度51m。

4)在地面将塔材组装成不超过4t的塔片,开始吊装。塔机在吊装过程中,严禁斜拉。在吊重时,起吊钢丝绳垂直方向偏角不超过3度。

5)使用塔机组立铁塔至45m高度,在塔机塔身27m处设置第一道附着,向上顶升7节标准节,设置第二道附着设置在45m处。此时塔机高68m,再向上顶升3节,塔机高77m,高于铁塔的设计高度75.3m,张紧附着钢丝绳后,组立铁塔。

6)铁塔组立完成之后,准备拆除塔机,将吊臂完全仰起到88度。

7)利用液压顶升装置往下落塔机,下落3m后拆开一节塔身标准节,利用塔机自身的吊钩和设置在铁塔上的吊点,将标准节落到地面。

8)到第二道附着时,先拆去附着,再重复上一步骤,直至内塔节接近地面。

9)在铁塔上相应处挂吊点,并通过汽车吊辅助,将吊臂、撑杆、内塔身等上部结构依次拆到地面。

10

)塔机转场。

(a) 组立下部塔材(b) 组立上部塔材(c) 横担吊装(d) 铁塔组立完成(e) 塔机拆除

图4

塔机组立铁塔施工图

图5塔式起重机组立JDT1D铁塔施工工艺流程图

7 结束语

2008年3月,国内自主创新、发明研制的首台组塔专用塔式起重机在特高压工程铁塔组立现场首次应用,取得圆满成功。证明了该塔机设计合理、安全可靠、有很强的创新性。塔式起重机组塔施工具有安全可靠、安装就位平稳、施工效率高、高空作业量小、自动化程度高、人工劳动强度低等多方面优点,比传统抱杆组塔施工具有明显的优势,为我国特高压电网建设安全、高效施工提供了可靠的技术支撑。通过今后不断形成的系列化、标准化的组塔施工技术及装备,为提升我国电网建设水平奠定了基础。

参考文献

[1] Q/GDW155-2006.国家电网公司企业标准.1000KV架空输电线路

铁塔组立施工工艺导则.

[2] 中华人民共和国国务院令第373号《特种设备安全监察条例》.

[3] GB/T

13752-92,塔式起重机设计规范[S].

[4] GB

5144-2006,塔式起重机安全规程[S].

[5] K. J. Bathe. Finite Element Procedures. PRENTICE HALL 1996

[6] Yukio Hayase, Tadatoshi Kamiya. Wind Load for Tower Type

Crawler Crane During Halting.住友重机械技报/Techincal Review.

2001,(4):61-64.

[7] Thomas K.L. GA-ANN model for optimizing the locations of tower

crane and supply points for high-rise public housing construction Tong. Construction Management and Economics. 2003,4(5):257~

266.

[8] Bradford J.A. Special purpose simulation modeling of tower cranes

Appleton. Winter Simulation Conference Proceedings. 2002: 1709~

1715.

[9] Alekseev, V.A. Gutarev, Yu.A. Zelenov, I.B. Koloskov, V.N. Kostrov,

V.I. Safe methods of tower crane operation. Promyshlennoe i Grazhdanskoe Stroitel'stvo. 2001:33~34.

[10] 李志国,梁彦昌,塔式起重机附着系统柔度对附着力的影响. 建筑

机械化. 2001.(3):11~12.

[11] 钟晓沧,吴晗磊. 塔式起重机附着方式. 建筑机械. 1995,(8):41~

42.

作者简介:

缪谦(1973-),男,北京人,高级工程师,主要从事电力建设、电力生产运行领域技术及装备的研究应用;

江明(1981-),男,江苏东台人,工程师,主要从事电力建设施工技术研究。

塔机附墙设计计算说明书

塔机附墙设计计算说明书 一、工程概述 本工程位于惠南镇中心位置,东南面临南汇中学体育场,在体育场的西北角有一信号塔,距小区5号楼南外墙皮约20米左右,东北面临近复旦大学太平洋金融学院,南侧临拱北路,西侧临观海路。 本项目总用地面积55103.4平方米,总建筑面积133288.98平方米(含保温建筑面积)。地上总建筑面积101191.19平方米(含保温建筑面积),包含4栋15层高层住宅,5栋16层高层住宅,2栋11层高层住宅,1栋5层多层住宅,3栋6层的多层住宅,1栋2层的商业配套用房及高层住宅群房的配套公建,地下总建筑面积32097.79平米。 本工程8#楼和9#楼合用安装一台南通惠尔建设机械有限公司出厂的QTZ63型(5510型)塔式起重机,臂长为58米,塔吊设置在9号楼东侧,(图1)安装高度超过使用说明书规定的最大独立高度,需进行附墙锚固,楼层高度为45.6m,塔机最大安装高度约为53m,设置有2道附墙,如图2所示。生产厂家在使用说明书中标明了建筑物外墙与塔吊中心的距离在4.0m左右,但由于该工程建筑物表面结构及工程施工工艺等因素的影响,塔吊安装后,塔吊中心距离建筑物外墙8.997m。所采用的附墙杆件的长度以及与建筑物间的夹角,与原说明书的规定有所不同。为了保证塔吊安全使用,我们对附墙杆件及其连接件作了稳定性及强度验算。 图1 22号楼1#塔吊布置图 图2 塔吊附墙示意图

二、编制依据 本方案编制主要依据为:GB/T 13752-1992《塔式起重机设计规范》、GB 50017《钢结构设计规范》、GB/T 3811-2008 《起重机设计规范》和永发QTZ63型塔式起重机使用说明书。 三、设计方案 1.原说明书要求 按照产品安装使用说明书:附着架由四根撑杆和一套环梁等组成,它主要是把塔机固定在建筑物的柱子上,起着依附作用。(见图3) 图3 原附着架示意图 2.改进设计方案 根据现场实际情况,塔机中心到连接点距离为8.997米。设计方案如图4所示。 图4 塔吊附墙杆设置图 四、计算说明 1.计算附墙架对塔身的支反力 假设塔身为一连续梁结构(见图5),以此进行结构的受力分析,可用力法求出附墙受力。实际使用中,塔机最上面的一道附墙受力最大,因为该道附墙节点力除由M引起的附墙受力外,还有承受由塔机悬臂端风

塔吊基础知识设计计算

塔式起重机方形独立基础的设计计算 余世章余婷媛 《内容提要》文章通过对天然基础的塔吊基础设计,详细论述整个基础的设计过程,经济适用,安全可靠、结构合理,思路清晰,论述精辟有据;在现场施工中,有着十分重要的指导意义。 关键词:塔机、偏心距、工况、一元三次方程、核心区、基底压力。 一、序言 随着建筑业迅猛发展,塔式起重机(简称塔机)在建筑市场中是必不可少的一项重要垂直运输机械设备;塔机基础设计,在建筑行业中是属于重大危险源的范畴,正因为如此,塔机基础设计得到各使用单位的高度重视;本人通过网络查阅过许多塔机基础设计方案,除采用桩基外,塔基按独立基础所设计的方形基础,绝大部分都按厂家说明书所提供的基础尺寸进行配筋,按规范设计计算的为数不多,厂家所提供基础大小数据有些是不满足规范要求,而塔机基础配筋绝大多数情况是配筋过大,浪费较为严重;厂家说明书所提供数据表明,地基承载力特征值小的基础外形尺寸就较大,承载力特征值较大,基础尺寸就相应的小点,似乎看起来这种做法是正确的,其实并非如此。 塔机基础型式方形等截面最为普遍,下面通过一些规范限定的条件,对方形截面独立基础规范化的设计,很有参考和实用价值。下面举例采用中联重科的塔吊类型进行论述和阐明。 二、塔吊基础设计步骤 2.1、确定塔吊型号

首先根据施工总平面图,根据建筑物外形尺寸(长、宽、高)、及材料堆放场地和钢筋加工场地,根据塔机覆盖率情况,按塔机说明书中的主要参数确定塔机型号。 2.2、根据塔机型号确定荷载 厂家说明书中都有荷载说明,按塔吊自由独立高度条件提供两组数据(中联重科),一组为工作状态(工况)荷载,另一组为非工作状态(非工况)荷载,确定出一组最不利的工况荷载。 2.3、确定塔吊基础厚度h 根据说明书中塔机安装说明,基础固定塔基及有两种形式,一种是地脚螺栓,另一种是埋入固定支腿式;因此根据塔机地脚螺栓锚固长度和支腿的埋深,可以确定塔机基础厚度h。 2.4、基础外形尺寸的确定 根据荷载大小和基础厚度h,确定独立方形基础的边长尺寸。 2.5、基础配筋计算 求出内力进行基础配筋计算,并根据《规范》的构造要求进行配筋和验算。 2.6、基础冲切、螺杆(支腿)受拉或局部受压的验算 三、方形独立基础尺寸的确定 3.1方形基础宽度B的上限值 根据上面塔机基础计算步骤可以看出,塔机基础尺寸的确定是方形基础的计算关键。利用偏心距限定条件,可求出基础最小截面尺寸。根据偏心距e(荷载按标准组合):

大型塔式起重机现状及发展趋势

大型塔式起重机现状及发展趋势 大型塔式起重机现状及发展趋势 (一) 国外大型塔式起重机的现状 国外大型塔式起重机以Favellefavco 、POTAIN 、LIEBHERR 为代表,无论设计理念和制造工艺都比国内产品略胜一筹。表1-6为Favellefavco 大型塔式起重机系列产品,表1-7为POTAIN 大型塔式起重机系列产品,表1-8为LIEBHERR 大型塔式起重机系列产品。 表1-6 Favellefavco 大型塔式起重机系列产品 规格型号 最大起重量 臂架端部起重量 备注 M440D 50t×10.0m 2.7t×65.0m 发动机作为动力、液压驱动的动臂变幅塔机 M600D 50t×15.0m 3.0t×70.0m M760D 64t×10.0m 4.4t×70.0m M900D 64t×15.0m 6.3t×70.0m M1050D 96t×12.5m 18.9t×52.5m M1280D 100t×25.0m 13.0t×80.0m M1680D 200t×15.0m 16t×80.0m M2480 275t×12.0m 9t×90.0m MK440D 50t×10.0m 2.7t×65.0m 电力驱动的 动臂变幅塔机 MK600D 50t×15.0m 3.0t×70.0m MK760D 64t×10.0m 4.4t×70.0m MK900D 64t×15.0m 6.3t×70.0m MK1050D 96t×12.5m 18.9t×52.5m MK1280D 100t×25.0m 13.0t×80.0m MK1680D 200t×15.0m 16t×80.0m 表1-7 POTAIN 大型塔式起重机系列产品 规格型号 最大起重量 臂架端部起重量 最大起升高度 备注 MD 560B M32 40 t 4 t × 80 m 89.9 m 小车变幅 MD 650 32T 32 t 5.5t × 80 m 80.2 m MD 650 40T 40 t 5.5t × 80 m 80.2 m MD 1100 32T 32 t 10t × 80 m 104.7 m MD 1100 40T 40 t 10t × 80 m 104.7 m MD 1100 50T 50 t 9.5t × 80 m 103.3 m MD 2200 32T 32 t 22.8t × 80 m 105.9 m MD 2200 50T 50 t 21.5t × 80 m 104.5 m MD 2200 64T 64 t 23.5t × 80 m 104.5 m MD 3200 64 t 26t × 80 m 101 m 表1-8 LIEBHERR 大型塔式起重机系列产品 规格型号 最大起重量 臂架端部起重量 备注 550EC-H40 40t× 15 m 9.7t × 50 m 小车变幅 630EC-H40 40t× 15 m 5.5t × 70 m 630EC-H50 45.6t× 15 m 10.8t × 48 m 800 HC 40 40t× 20 m 14.3t × 50.5 m

固定式塔式起重机基础设计

固定式塔式起重机桩基础的设计 中天建设集团有限公司 徐荣华 在高层房屋建筑施工中,为解决建筑材料和物件的垂直运输和水平运输,固定式塔式起重机得到了广泛的应用。根据《塔式起重机设计规范》GB/T13752——92第4.6.3条规定:固定式塔式起重机基础的设计应满足抗倾翻稳定性和地基承载力的条件。塔机在独立高度、在非工作工况受到暴风突袭时,基础所受的载荷最大,此状态最为不利,按此状态计算混凝土基础的抗倾翻稳定性(见下图一): 图一: 基础抗倾翻稳定性分析图 3 b G F h F M e K K hK K ≤ +?+= (1) 地基承载力按下列公式计算: ][) 2( 3)(23) (2max B K K K K K P e b b G F bl G F P ≤-+= += (2) 式中e ——偏心距,即地面反力的合力至基础中心的距离; M K ——荷载效应标准组合下作用在基础顶面上的弯矩标准值; F K ——荷载效应标准组合下作用在基础顶面上的垂直载荷标准

值; F hK ——荷载效应标准组合下作用在基础顶面上的水平载荷标准值; G K ——相应于荷载效应标准组合时,混凝土基础的重力标准值; P kmax ——荷载效应标准组合下基础底面边缘的最大压应力; [P B ]——地面许用压应力,由实地勘探和基础处理情况确定,一般取P B =200~300KPa 。 按照现行《建筑地基基础设计规范》GB50007——2002,上述[P B ]=1.2f a ,f a 为修正后的地基承载力特征值。 上式(1)与抗倾翻稳定性安全系数K =1.5是等同的,推导如下: 抗倾翻稳定性安全系数K=抗倾翻力矩/倾翻力矩= 5.13 )(2)(2)(=? +?+≥ +?+b G F b G F h F M b G F K K K K hk K K K (对图一中A 点取矩) 如果地基承载力不满足要求,则应对地基进行处理,当承载力高的土层埋置深度较浅时,可采用换填处理,当承载力高的土层埋置深度较深时,采用桩基础。下面是塔机桩基础设计内容和一个设计实例。 一. 塔机桩基础及承台(基础)计算 1. 桩基竖向承载力计算 应同时满足下列两式: 平均竖向力标准值N K = R n G F K K ≤+

建筑塔式起重机事故分析及其预防示范文本

建筑塔式起重机事故分析及其预防示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

建筑塔式起重机事故分析及其预防示范 文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 近年来,随着城市建设的快速发展和高层建筑物的增 加,塔式起重机(以下简称塔机)的使用越来越普遍,重大伤 害事故的发生率也在不断提高。因此,针对起重机械使用 安全状况包括建筑工程建设工地使用的起重机械安全状 况,各有关单位联合对在用的塔机进行了全面的检验检 查,对存在的问题、隐患和已发生的事故进行全面的总结 和分析,提出相应的补救或预防措施,以供参考。 1 塔式起重机事故或隐患的分类及预防 1.1制造质量的问题 (1)结构的材质质量和焊接质量问题结构件的质量问题 包括构件的材料质量与焊接质量。

①起重机材料质量问题包括材质的正确选用及材料质量保证(材质宏观质量和化学成份微观质量),特别是起重机金属结构的关键件用材,比如:平衡臂架、起重臂架、塔身标准件、拉杆、转台、小车架和底架等。20xx年某台QqZ25型塔式起重机在其塔身主弦杆断裂处取样检验的材料质量分析中,其角钢的厚度测量有多处未达到材料厚度标准的规定,且金相检验表明,其材料存在大量硅酸盐、氧化物夹杂。当这些缺陷遇热影响区、高应变速率及高应力集中等特定因素时,这些因素对内在缺陷的扩展直至材料破坏起到了重要的作用。20xx年某台塔机,从塔身标准件主肢角钢折断的断口分析中,发现角钢的材质存在严重问题:所用材质冶金质量太差,夹杂物多、杂质元素过多、存在夹层和明显的纵向裂纹。由于多次刷涂油漆,安装人员和检验人员在安装、检验的宏观目测过程中很难发现缺陷。

大型设备(塔吊

大型设备(塔吊

目录 第一章机械设备管理办法 (1) 第二章关于小型施工机具管理办法 (2) 第三章设备检修管理办法 (3) 第四章设备的使用和维护保养规定 (4) 第五章大型设备管理制度 (5) 第一节大型设备拆装管理制度 (5) 第二节大型设备(塔吊、施工电梯)安全管理制度 (7) 第三节大型设备(塔吊、施工电梯)拆装岗位责任制 (9) 第四节大型设备(塔吊、施工电梯)拆装作业规程 (11) 第六章机械设备技术档案管理制度 (14) 第七章设备租赁管理制度 (17) 附:挖掘机、压路机、装载机租赁使用管理规定 (20) 第八章华远公司班组使用机具、设备管理暂行规定 (21) 第九章机械设备安全技术操作规程 (25) 第十章机操工等级制度 (32)

第一章机械设备管理办法 为了加强机械管理,理顺管理关系,增强企业活力,提高经济效益,制订如下管理办法。 一、机械设备的管理体制,管理机构和人员配备。 1.根据机构设备管理体制既要方便生产,又要充分利用机械设备,发挥设备投资效果的原则,实行把机械设备直接装备到各项目经理部,由公司器材部统一调度(包括租赁和调拔)。 2.根据统一领导分级管理的原则,在公司经理统一领导下,器材部负责公司范围内机械设备管理和维修保养及考评工作。考评与安全科检查考评同步进行。 3.器材部负责各项目设备租赁管理和对外租赁的业务工作。 4.项目经理部机电人员属公司器材部派出人员,实行工长负责制,受器材部和项目经理部双重领导,其工资待遇由公司按技术等级予以评定,由经理部支付,并与经济效益挂钩。 二、机械设备固定资产管理。 1.同时具备以下两个条件的机械设备(包括自制设备)都应列入固定资产。 (1)使用年限在一年以上。 (2)单机价值在2500元以上。 2.凡要购置固定资产机械设备应由项目经理部编制计划,经公司经理审批后,由器材部统一购置,并进行统一编号。 1.凡新添置的固定资产的生产设备由设备科统一编号,录入总 台帐,负责归集资料建档,调入项目的由项目录入分台帐,并对其使用维护建档完善,实行设备分级管理。 2.设备由设备科统一标识,标识应固定在机器上易于察看处。 5.器材部对机械设备资产进行租赁使用,2500元以下小型机械及手动工具由项目部提出计划,由器材部调拨或由器材部授权项目部自行购买,具体规定见(HY/ZYS/GL 04-1999)《关于小型机具管理办法》。 三、设备转移、安装、验收及报废 1.设备转移由器材部设备科按规定开具调拨单后方可执行。 2.大型设备(指塔吊、物料提升机、施工电梯等)由设备科组 织编制安装方案及实施,并办理转移手续,由设备科与安全科及总工共同验收。 3.中小型设备由设备科指导项目自行安装,由设备科、安全科 共同验收。 4.设备超过使用年限,或不堪使用且无维修价值,由使用单位 或维修单位提出书面申请,由设备科鉴定,报总经理许可后方可办理报废手续。 四、设备租赁范围及有关费用的划分: 1.设备租赁范围:价值在2500元以上,使用期限超过一年的大中型设备均属租赁范围,小型机械及手动工具由器材部统一配置或由器材部授权购买。 2.器材部负责设备调配,安装或安装指导及租赁手续,租赁费用由财务部按月计入成本,设备进出场费则由项目经理部承担(附租赁单)。

塔式起重机安装基础设计

塔式起重机安装基础设计 摘要:塔式起重机械是建筑施工中广泛使用的起重设备,其安装基础的设计制 作将直接影响到机械的使用安全,本文针对此情况进行了塔式起重机基础的设计,以期对今后的塔机安装施工提供借鉴。 关键词:塔式起重机安装;基础;设计 1 概述 固定式塔式起重机都需要安装在基础上,基础是将塔机所承载的载荷力和自 身自重及风载力等传递到地基上的连接部分,基础的设计合理性以及施工质量直 接关系到塔机的安全使用。塔机基础一般分为带压重和不带压重两种,其中带压 重的基础中不预埋任何构件,塔机底座直接放置于基础平面上(如FZQ2000Z型 附着式塔式起重机),在底架上安放压重,满足抗倾覆稳定的要求,固定基础只 承受水平剪力、水平扭矩和垂直压力,基础和连接件都可较小。不带压重基础分 为三种,固定脚式塔机基础(如STT293平臂式塔式起重机),将四个固定脚直 接浇筑到基础中;地脚螺栓式塔机基础(如QTZ80塔式起重机),将地脚螺栓事先 浇筑在基础中,上面与十字梁或固定脚依靠高强螺母连接;预埋节式塔机基础 (如ZSC60300平臂式塔式起重机),将预埋节事先浇筑到基础中,上面通过销 轴与基础节连接。不用压重的基础,塔身与预埋在基础里的连接件连接,则基础 不仅要承受水平剪力、水平扭矩和垂直压力,还要承受较大的弯矩。因此为承受 这些载荷,基础要做得大些。 2 基础所承受载荷的计算、分析 塔式起重机基础的设计要求必须满足塔机的稳定性、基础的强度要求和基础 均匀沉降要求三个方面。 塔机稳定性是指塔机在能保持整机的稳定而不致倾翻的特性,它是保证塔机 安全使用的重要因素之一。它由稳定性系数M稳/M倾来表示,M稳为塔机的自重、基础重和平衡重所产生的保持塔机稳定的力矩;M倾为起着倾翻塔机作用的 外力产生的力矩。稳定系数随着工况的变化而变化,稳定系数越大表示塔机的稳 定性越好。塔机在设计时以考虑到各种不同工况下稳定性的要求,在设计塔机基 础时其尺寸和质量必须满足稳定性要求。 塔机基础内部的结构应具有足够的强度,即能够承受各种工况下作用于基础 上的垂直力、水平力及倾覆力矩。 塔机基础在长时间的使用过程中所受的载荷一直在不断的变化,如果地基沉 降不均匀可致使塔机垂直的偏差增大,从而影响塔机的稳定性,因此要求地基沉 降均匀。 塔吊基础的设计要根据塔机自重、风载荷、倾覆弯矩和起重臂回转启动刹车 或大风吹来时产生的扭矩等因素综合考虑。同时要考虑工作状态和非工作状态两 种情况。 塔吊附墙(附着)装置只承担风载荷等水平载荷及弯矩、扭矩,不承担自重 等竖向载荷,将塔身、附墙(附着)简化为多跨连续梁受力模型,通过受力分析,可以得出结论:塔吊在独立高度状态下,所承受的风载荷等水平载荷及各种弯矩、扭矩对底座即对基础产生的载荷最大。安装附墙(附着)装置以后,各种水平载 荷及弯矩、扭矩等主要由附墙(附着)承担。塔吊上升到最大高度以后,对基础 的载荷与独立高度相比仅多了标准接的重量,而其所传递的风载荷要小得多。故 下面以某厂生产的5015塔吊为例(见图3-2 塔机稳定性计算简图),根据《塔

建筑力学-塔吊分析

建筑力学作业 平面一般力系实际工程的应用——塔吊分析 1.塔吊介绍 塔吊,即塔式起重机。机身 很高,像塔,有长臂,轨道上 有小车,可在轨道上移动,工 作面很大,主要用于建筑工地 等处。塔吊一般用于建筑施工、 货物搬运、部分事故现场处理 等场合,主要作为材料、货物 等的高空运输或质量较大物体 的运送的工具。 塔吊一般由外套架、回转轴承、塔冒、平衡臂、平衡臂拉杆、起重臂(吊臂)、起重臂拉杆、电源、支架、变幅小车,起重吊钩、驾驶室等几部分组成。 塔吊一般用于建筑施工、货物搬运、部分事故现场处理等场合,主要作为材料、货物等的高空运输或质量较大物体的运送的工具。

如下图,塔吊可简化为所示主体结构模型 塔吊主体结构模型 塔吊结构图 根据塔吊的组成、用处及发展历程,我们可以对塔吊的结构有一个更加深入的了解。如下图1-2塔吊的主体结构模型图所示,塔吊的各个部分均已经标出在图上。

2.塔吊静力学分析 对塔吊整体为研究对象. 要保证机身满载是平衡而不向右倾倒,则必须 ∑M B=0, W2(a+b)-F A b-W1-W max l max=0; 限制条件F A≥0. 再考虑空载时的情形,这时W=0. 要保证机身空载时平衡而不向左倾倒,则必须满足平衡方程: ∑M A=0, W2 a+F B b-W1(b+e)=0; 限制条件F B≥0.

1)对塔吊的平衡臂,由平衡条件得: ∑F x =0, F 1cos θ=F x ; ∑F y =0, F 1sin θ+F y =W 2+m 1g ; ∑M=0, (F 1sin θ-W 2)l 1=m 1gl 2; 2)如左图塔吊吊臂,由平衡条件得 ∑Fx=0, F x =F 2cos α+F 3cos β; ∑F y =0, F 2sin α+F 2sin β+F `y =m 2g+W ; ∑M=0, F 2sin αl 3+F 3sin βl 4=m 2gl 5+Wl . 3)如右图塔吊吊帽与拉杆的受力情况,则由共点力的平衡条件可得平衡方程如下: ∑Fx=0, F 1cos α= F 2cos β+ F 3cos γ ∑F y =0, F 1sin α+F 2sin β+ F 3sin γ=F L 1

塔吊基础计算

塔吊基础方案 一、工程概况 1、本工程位于松江区九亭镇,地块南临蒲汇塘河,东临沪亭路,西临横泾河,北临沪松公路并与地铁9#线车站一墙之隔,与9#线车站物业开发管理为一个整体。地块面积41162㎡,由3#、4#、5#、6#、7#、8#公寓楼及9#酒店、10#办公楼组成。 2、因地块面积巨大,根据塔吊平面布置应最大程度满足施工区域吊装需要,尽可能减少吊装盲区的原则,以及地下室工程施工中能充分利用塔吊来满足施工需要,按照施工组织总设计要求拟搭设6台附墙式塔吊,其中QTZ80B(工作幅度60M,额定起重力矩800KN.M)2台,QTZ80A(工作幅度55M,额定起重力矩800KN.M)4台,平面位置详附图。 3、拟建建筑物高度及层数 4、根据建筑物高度,1#塔吊位于3#楼西北侧位置,搭设高度为86M;2#塔吊位于9#楼南侧位置,搭设高度为114M;3#塔吊位于5#楼西北侧位置,搭设高度为77M,设水平限位装置;4#塔吊位于10#楼东南侧位置,搭设高度为114M;5#塔吊位于6#楼西北侧位置,搭设高度为100M,6#塔吊位于8#楼西北侧位置,搭设高度为100M。其中5#、6#塔吊为QTZ80B,其余4台为QTZ80A。 5、塔吊应在土方开挖前安装完毕,故采用型钢格构式非塔吊标准节插入钻孔灌注桩内,以保障塔吊安全、稳定和牢固可靠,且不妨碍地下室顶板混凝土的整体浇筑施工,有利于加快施工进度和确保工程质量。 6、本工程采用钻孔灌注桩筏板基础,基坑底标高为-8.000、-8.800、-9.100,本工程±0.000相当于绝对标高6.150M,自然地坪标高相对于绝对标高-1.45M。

7、根据本工程地质勘察报告,各土层极限摩阻力、端阻力标准值指标见下表: 8、塔式起重机主要技术性能表 二、塔吊布置原则 本工程作业面积大,综合考虑塔吊的作用半径、起吊重量、基础工程桩位布置、围檩支撑结构设计、房屋结构设计、经济性比较后,作出以下布置原则。

塔式起重机最大起重力矩

塔式起重机最大起重力矩 一、QTZ6015型 1、图片(见图一) 2、性能:最大起重力矩1250kn.m,最大起升高度162.5m,最大工作幅度60m 3、产品报价:76万元/台(标塔) 二、QTZ5012型 1、图片(见图二) 2、性能:最大起重力矩630kn.m,最大起升高度123m,最大工作幅度50m 3、产品报价:41万元/台(标塔) 三、QTZ4010型 1、图片(见图三) 2、性能:最大起重力矩400kn.m,最大工作幅度40.75m 3、产品报价:28万元/台(标塔) 钢筋加工机械 一、钢筋切断机: 下列各型钢筋切断机连续三次(九年)被评为“满意产品”,“售后服务满意单位”。 1、GQ40型 1)、图片(见图四) 2)、性能:公称剪切力440kw,适用于建筑工程、机械制造等行业的圆钢、螺纹钢、方钢、角钢、扁钢的剪切。 3)、报价:0.5万元/台 2、GQ50型 1)、图片(见图五) 2)、性能:公称剪切力690kw,适用于汽车、摩托车、拖拉机、机械制造等行业的批量下料,可剪切圆钢、螺纹钢、方钢、角钢、扁钢。 3)、报价:0.9万元/台 3、GQ65型 1)、图片(见图六) 2)、性能:公称剪切力1200kw,适用于剪切圆钢、螺纹钢、方钢、角钢、扁钢等 3)、报价:2.2万元/台 4、GQ85型 1)、图片(见图七) 2)、性能:公称剪切力2000kw,适用于汽车、摩托车、拖拉机、机械制造等行业的批量下料,可剪切圆钢、螺纹钢、方钢、角钢、扁钢 3)、报价:4.2万元/台 钢筋弯曲机: 1、型号:GW40B型 2、图片(见图八) 3、性能:弯曲直径φ6-40mm,工作盘直径φ350mm,工作盘转速4.6/min,17/min,电动机

浅析塔式起重机钢结构损坏原因及维修

浅析塔式起重机钢结构损坏原因及维修 [摘要]塔式起重机的现场安全生产管理极其重要,施工过程中发生钢结构损坏应及时修复,平时必须做好塔式起重机钢结构的维护保养工作,发现钢结构受损,必须排除事故隐患,确保安全生产顺利进行。 [关键词]塔式起重机;钢结构;损坏原因;维修 塔式起重机在建筑施工中已成为必不可少的施工机械设备,塔机在建筑施工中的现场安全生产管理工作中极其重要。长期以来,人们在维护塔机时只重视对传动及电气设备的养护,而忽视了对钢结构的检查及修复,给施工带来各种事故隐患。在此我们结合多年来的实际经验,谈谈塔机的钢结构在施工使用中的损坏原因及维修。 1 钢结构的损坏形式及原因 1.1表面锈蚀

塔机的工作环境比较恶劣,经常在含酸碱等腐蚀性气体灰尘下作业,加上运行过程中的碰撞及防锈油漆的自然老化、脱落,使表面失去保护,加上维护保养工作不及时,造成局部腐蚀氧化,不同程度地出现表面锈蚀现象,降低钢结构强度,久而久之使塔机的钢结构变形。 1.2裂纹 实践证明,虽然裂纹不一定导致断裂,发现裂纹不及时修复,塔机长期带患工作,往往是断裂的初期阶段,尤其是过渡性及危险性裂纹,具有进一步扩展的危险,及时发现并处理是很重要的。一般裂纹主要产生在焊接部位及应力集中的地方,如塔身下部、下支座、回转塔身、塔顶联接耳板等,通常在复合受力最大处。 如果机构启动和制动过猛、越级换速、反车作紧急制动,使塔机钢结构增大冲击力,过大的惯性可导致塔机钢结构的焊缝开裂,处理不及时,会引发较大的危险事故。在浙江某工地的qtz31.5塔机,由于司机操作不当,起升机构启动过猛,并且超载工作,使塔

机前后摆动很大,使塔机上支座内的筋板全部开裂,幸亏发现得早,及时处理,未发生重大事故。 1.3变形 包括局部弯曲变形和扭曲、偏心。根据金属结构检验要求,杆 件沿全长纵向轴线的直线度公差为1/750;使用中主弦杆变形量应 不大于3‰~5‰;腹杆变形量不大于2~4mm;杆件连接螺栓孔距误差不超过装配间隙的1/2;且螺孔的圆度误差不超过装配间隙的l /2;当超过上述范围即视为变形。变形原因有:①由于碰撞、敲打 等原因,造成钢结构局部弯曲变形;②由于连接螺栓松动,使得螺 孔磨损成椭圆,造成各节臂、杆件之间偏心产生附加弯曲力矩;③ 误动作造成钢结构意外碰撞变形.如操作机构失灵使吊臂失控后仰,与塔身相撞会引起严重变形;④长期超载使用,使钢结构产生屈服 变形(永久变形)。 如顶升时不注意调整上部结构的平衡,没有将顶起部份的重心 落在顶升油缸上,使顶部结构失去平衡乃至重心偏移较大,爬升架 的导轮对标准节主弦杆的压力太大,使塔身主弦杆发生弯曲变形, 塔机钢结构产生失稳而造成事故。

塔吊基础设计计算方法

塔吊基础设计计算方法 地基基础采用预应力混凝土管桩基础,设计等级教工宿舍C1C4、教工宿舍C15C16为丙级,教工宿舍C5C6为乙级。抗震设防烈度为6度,设计使用年限50年。 标签:塔吊基础;四桩;预应力管桩;承载力;倾覆力矩 1 工程概况 广东水利电力职业技术学院从化校区教工宿舍工程包括C1C4、C5C6、C15C16共3栋主体建安工程,二期精装修以及其他配套工程等。 三栋建筑由教工宿舍C1C4和教工宿舍C5C6、教工宿舍C15C16组成,总建筑面积:17782.82m2。其中教工宿舍C1C4地上6层;教工宿舍C5C6地上12层;教工宿舍C15C16地上6层,基地建筑面积2358.99m2(其中C1C4为862.89m2;C5C6为745.05m2;C15C16为751.05m2)。C1C4首层层高3m,二层~六层层高为3.0m,六层以上层高均为3.2m;C5C6首层层高4m,二层~十二层层高3m,十二层以上4.7m;C15C16首层层高3m,二层~六层层高3m,六层以上3.9m。C1C4、C15C16建筑结构类型为异形柱框架结构,C5C6建筑结构类型为剪力墙结构。 教工宿舍C1C4、教工宿舍C15C16建筑结构类型为异形柱框架结构,教工宿舍C5C6建筑结构类型为剪力墙结构。建筑安全等级为二级,抗震设防类型为丙类。地基基础采用预应力混凝土管桩基础,设计等级教工宿舍C1C4、教工宿舍C15C16为丙级,教工宿舍C5C6为乙级。抗震设防烈度为6度,设计使用年限50年。建筑防火类别为二类,耐火等级为二级;主体建筑屋面工程防水为2级。 根据施工现场场地条件及周边环境情况,安装1台塔式起重机负责建筑材料的垂直及水平运输。 2 塔吊基础(四桩)设计 2.1 计算参数 采用1台QTZ80塔式起重机,塔身尺寸1.60m,地下室开挖深度为0m;现场地面标高-0.60m,承台面标高-0.30m;采用预应力管桩基础,地下水位-2.90m。 2.1.1 塔吊基础受力情况 图1 塔吊基础受力示意图

塔式起重机抗倾覆计算及基础设计

塔式起重机抗倾覆计算 及基础设计 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

塔式起重机抗倾覆计算及基础设计 一、基础的设置:根据塔式起重机说明书基础设置要求的技术参数及对地基的要求 选用基础设计图,基础尺寸采用××,基础砼标号为C35(7天和28天期龄各一组), 要有砼检测报告,基础表面砼平整度要求≤1/1000,塔式起重机预埋螺栓材料选用40Cr 钢,承重板高出基础砼面5~8㎜左右,要有排水设施。 二、塔式起重机抗倾覆计算 ①、塔式起重机的地基为天然地基,必须稳妥可靠,在表面上平整夯实,夯实后的 基础的承压能力不小于200kPa,基础的总重量不得小于80T,砼标号不得小于 C35,砼的捣 制应密实,塔式起重机采用预埋螺栓固定式。 ②、参数信息:塔吊型号:QTZ5510,塔吊起升高度H:,塔身宽度B:,自重F K :453kN,基础承台厚度h:,最大起重荷载Q:60kN,基础承台宽度b:,混凝土强度等级:C35。 ③、塔式起重机在安装附着前,处于非工作状况时为最不利工况,按此工况进行设计计算。塔式起重机受力分析图如下: 根据《塔式起重机说明书》,作用在塔吊底座荷载标准值为:M K =1654kn·m, F K = 530KN,Fv K =,砼基础重量G K = 835KN ④、塔式起重机抗倾覆稳定性验算: 为防止塔机倾覆需满足下列条件: 式中e----- 偏心距,即地基反力的合力至基础中心的距离; M K ------ 相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值; Fv K ------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷载; F K -------塔机作用于基础顶面的竖向荷载标准值; h ---------基础的高度(h=); G K ----------基础自重; b---------矩形基础底面的短边长度。(b= 将上述塔式起重机各项数值M K 、Fv K 、F K 、h、G K 、b代入式①得: e =< b/3= 偏心距满足要求,抗倾覆满足要求。 三、塔式起重机地基承载力验算:根据岩土工程详细勘察报告资料,1#塔吊基础底板处承载力特征值为372Kpa。取塔式起重机基础底土层的承载力标准值为372Kpa,根据《TCT5613塔式起重机使用说明书》,采用塔式起重机基础:长×

大型起重机械(塔吊、施工升降机)委托管理办法

大型设备委托管理办法 为加强大型设备的管理,杜绝机械事故的发生,保证安全生产,经 研究决定,凡从外部市场租入集团公司项目部施工的大型设备(含塔式起重机及外用施工电梯),设备产权单位必须委托山西四建集团起重机械分公司(以下简称起重分公司)或山西四建集团材料供应站(以下简称材料供应站)管理,统一纳入集团公司管控。 一、委托管理程序及规定 1、基层单位外租设备条件及流程审批 各基层单位有大型起重机械需求的,塔吊首先与起重机械分公司联 系,施工升降机首先与材料供应站联系,坚持同等价格,同等付款条件,优先选择以上两个分公司的原则,因特殊情况采用外租设备时,按照《大型设备外租审批流程图》进行审批。 外租设备审批流程 2、签订委托管理协议

外租设备审批通过后,本着双方自愿和有偿服务的原则,产权单位 与起重机械分公司或材料供应站签订委托管理协议。 3、签订机械租赁合同所有项目大型设备(塔吊、施工升降机)的租赁合同,统一由分公司与起重机械分公司、材料供应站签订,并按照合同要求各自履行职责(租赁合同执行内部合同统一版本)。 二、产权单位及设备准入条件 1、设备的产权单位必须具有合法的经营手续,具有一定的经营规模(避免与小规模设备经营单位合作,不得与个体经营者合作),出租经营的设备为自有施工机械设备。 2、产权单位提供的设备必须是正规厂家生产的产品且符合国家、行业相关规定,技术状况良好(其中40 及以下塔吊的出厂年限不超过3年,50及以上塔吊的出厂年限不超过5年)。塔吊进场前必须进行检修、油漆、保养,安全装置(通常称:四限位、两保险)齐全有效,并在县级以上建设行政主管部门备案登记,不得提供国家明令淘汰的产品。 3、设备必须具有完整的档案资料,包括:设备产权登记证、特种设备制造许可证、产品合格证、制造监督检验证明、基础图、电路图、附墙资料、说明书等。在设备准入审批阶段提供以上资料原件核查,同时提供复印件加盖产权单位公章后留存托管单位。 4、外租的设备正常情况下必须由起重机械分公司或材料供应站负责安拆,特殊情况下(如外省项目)有约定的,且产权单位具备相应起重设备安装工程专业承包资质的,可由产权单位自行安拆,但设备安装后必须由起重机械分公司或材料供应站会同项目部验收合格后方可投入使用

塔吊基础设计及施工方案

塔吊基础施工方案 一、工程概况: 本工程位于深圳市皇岗口岸商住区,用地现为非耕地,建设用地:18672.88M2;总建筑面积:75122.24M2;结构类型:桩基础、框支剪力墙,由两层地下室及上盖4栋25-28层的塔楼组成,首层为架空层花园。建筑高度约94.20m。 施工工期480天。采用QTZ80、QTZ63塔吊各一台,塔吊位置布置详(附图)。 二、塔吊基础设计 (一)、塔式起重机技术性能参数说明: 塔吊型号:QTZ80、QTZ63自升式塔式起重机技术性能参数

概况:本方案以QTZ80进行验算,本塔吊为上回转自升式,有重、中、轻三档,最大起升速度达80.0米/分钟,最大起重量为8.0T,最大幅度处起重量为1.30T,起重臂长为56.0米,平衡臂长为12.0米。本次安装高度为110.0米。本机具有起升、变幅、回转机构,有起升高度限位,最大和最小幅度限位,回转限位,重量限位,力矩限位。操作简单,视野开阔。 (二)、现场地质情况: 据野外钻探揭露,地质观察和室内土工试验结果分析、拟建场地揭露的岩土层有:第四纪人工填土层(Qml)、第四纪海相沉积层(Qm)、第四纪冲洪积层(Qal+pl)、第四纪残积层(Qel)、燕山期粗粒花岗岩(Y53(1)),现从上至下分述如下: 1、第四纪人工填土层(Qml) ○1杂填土:褐灰、淡灰、褐红色,湿,松散状,主要由残积粘性土、砖块、砼块和碎块回填而成,含少量砂和块石。本层场地内各孔均有钻遇,揭露层厚3.60~6.20M。2、第四纪海相沉积层(Qm) ○2淤泥质土:黑、深灰色,湿~饱各,软~可塑状,手捏细腻,味臭,污手,含少量贝壳、有机质和细砂,岩芯呈土柱状,本层场地内除ZK2、5、8、10、15、16、19、22

塔式起重机的静力学分析

塔式起重机结构的静力学分析 摘要:强度和振动特性是设计塔式起重机的金属结构的重要指标。文章从有限元的基础理论出发,利用ANSYS软件,对塔式起重机进行静力学分析,获得了其应力应变结果,比较了三种典型的工况,指出了极限吊重情况下静态极限强度的位置,并分析了塔式起重机的振动频率和振型,为研究塔式起重机的其他动力响应提供了依据。

关键词:塔式起重机静力学分析有限元 ANSYS 引言:塔式起重机(tower crane)简称塔机,亦称塔吊,起源于西欧。动臂装在高耸塔身上部的旋转起重机。作业空间大,主要用于房屋建筑施工中物料的垂直和水平输送及建筑构件的安装。由金属结构、工作机构和电气系统三部分组成。当起重臂架绕塔式起重机的回转部分作360°回转、吊重载荷沿起重臂架运行并升降时以及由于驱动控制系统电机抖动等原因,都会使塔式起重机引起振动。在此情况下,吊重荷载等动荷载对塔式起重机结构所引起的内力和变形,要比同样大小的静荷载所引起的大,有时甚至大得多。由于塔式起重机结构及构件承受的动荷载一般都很大,而且加载次数较为频繁,更容易产生疲劳破坏。作为大型设备,塔机的工作特点是根据建筑需要将物品在很大空间内升降和搬运,属于危 险作业。目前,在建筑施工中,由塔机引起的人员伤亡和设备事故屡禁不止,重大事故发生率居高不下。 塔机的强度和振动频率是影响塔机寿命和稳定性的重要因素,因此对塔式起重机进行静力学和振动的研究是十分要必要的。本文利用有限元分析软件ANSYS对塔式起重机QTZ630进行建模,分析了三种加载在塔式起重机上的 典型的工况,得出了塔式起重机在三种工况下的静力学应力和应变云图,找出塔式起重机各个工况下的危险位置,为其塔机的改进提供参考。提取出塔机的前5阶振动模态,为其他动力学响应提供研究依据。 1.塔式起重机的结构及性能参数 1.1塔式起重机的结构 塔式起重机主要由机械部分、金属结构和电气三大部分组成。 机械部分主要是指起升机构、运行机构、变幅机构、回转机构、行走机构、架设机构等等,这些机构根据工作需要或有或无,但起升机构是必不可少的。 金属结构是构成起重机械的躯体,是安装各机构和支托它们全部重量的主体部分。金属结构主要由门架、塔身、其中避、塔顶与塔顶撑架、平衡臂、转台等组成,其中门架是起重机的基础,所有物机和压重均装于其上。门架由两个侧架和一个长方形平台组成。塔身结构也成为塔架,是塔式起重机结构的主题,主要指自底架以上的垂直塔桅部分,它支撑着塔式起重机上部结构的全部重量,并将其转至底架和台车,进而分布给轨道基础。 电气是起重机械动作的能源,各机构都是单独驱动的。 在结构的力学分析中,主要分析塔身、塔臂和塔顶的杆件受力。 1.2性能参数 起重能力:Rmax =50 m ,Q =1.2 t R=2~15.44 m ,Q=5 t 起升速度: 100/80/50/40/5 m/min 回转速度: 0.6/0.4 r/min 变幅速度: 45/16 m/min 2.创建塔式起重机的有限元模型 塔机的金属结构主要包括塔顶、起重臂架、平衡臂、变幅小车、吊钩以及上下转台等组成.根据塔机设计规范的规定,建立塔机结构几何模型过程中,忽略结构阻尼,不考虑非线性关系和过渡圆角.为了有限元建模更加合理,应考虑:模型能全面准确地反映塔机结构特点;模型受力应与塔机在工作时外载荷作用

塔式起重机基础知识汇总(整理版)

塔式起重机基础知识汇总 塔式起重机的技术性能是用各种参数表示的,其主要参数包括幅度、起重量、起重力矩、自由高度、最大高度等;其一般参数包括:各种速度、结构重量、尺寸、尾部尺寸及轨距轴距等,下面分别简述: 一、幅度: 幅度是从塔式起重机回转中心线至吊钩中心线的水平距离,通常称为回转半径式工作半径。 二、起重量 起重量是吊钩能吊起的重量,其中包括吊索、吊具及容器的重量,起重量因幅度的改变而改变,因此每台起重机都有自己本身的起重量与起重幅度的对应表,俗称工作曲线表。 起重量包括两个参数:即最大起重量及最大幅度起重量。 最大起重量由起重机的设计结构确定,主要包括其钢丝绳、吊钩、臂架、起重机构等。其吊点必须在幅度较小的位置。 最大幅度起重量除了与起重机设计结构有关,还与其倾翻力矩有关,是一个很重要的参数。 塔式起重机的起重量是随吊钩的滑轮组数不同而不同。一般两绳是单绳起重量的一倍,四绳是两绳起重量的一倍等等。可根据需要而进行变换。 为了防止塔式起重机起重超过其最大起重量,所有塔式起重机都安装有重量限制器,有的称测力环,重量限制器内装存有多个限制开关,除了限位塔机最大额定重量外,在高速起吊和中速起吊时,也可进行重量限制,高速时吊重最轻,中速时吊重中等,低速时吊重最重。. 三、起重力矩 起重量与相应幅度的乘积为起重力矩,过去的计量单位为TM,现行的计量单位为KNM,1TM等于10KNM。 额定起重力矩量是塔式起重机工作能力的最重要参数,它是防止塔机工作时重心偏移,而发生倾翻的关键参数。由于不同的幅度的起重力矩不均衡,幅度渐大,力矩渐小,因此常以各点幅度的平均力矩作为塔机的额定力矩。 塔式起重机的起重量随着幅度的增加而相应递减,因此,在各种幅度时都有额定的起重量,不同的幅度和相应的起重量连接起来,就绘制成起重机的性能曲线图,使操作人员一看明了不同幅度下的额定起重量,防止超载。 一般塔式起重机可以安装几种不同的臂长,每一种臂长的起重臂都有其特定的起重曲线,不过差别不大。 为了防止塔机工作时超力矩而发生安全事故,所有塔机都安装了力矩限位器,其工作原理是当力矩增大时,塔尖的主肢结构会发生弹性形变而触发限位开关动作,力矩

塔式起重机板式基础设计

浅谈塔式起重机板式基础设计 汪少波 (苏州中正建设工程有限公司) 【摘 要】: 板式塔式起重机基础作为最基本的基础形式被广泛应用于建设领域,几乎每个项目技术人员都会遇到板式塔吊基础的设计。本文对板式塔吊基础设计的规范及常见问题进行了分析,以期帮助技术人员更好的理解板式塔吊基础设计。 【关键词】:塔式起重机 板式基础 1引言 1.0.1 根据集团公司统计,近两年我们每年的塔吊安装台次近170余台,其中70%以上都采用了板式基础的形式,目前执行的主要规范依据为《塔式起重机混凝土基础工程技术规程》JGJ/T 187-2009,另外《建筑地基基础设计规范》GB50007-2011、《建筑施工塔式起重机安装、使用、拆卸安全技术规程》JGJ196-2010、《高耸结构设计规范》GB50135-2006、《塔式起重机设计规范》GB/T 13752-92都可以作为设计参考依据。 1.0.2 从技术部门对塔吊基础方案的审批反馈情况来看,方案的设计情况差异较大,过分依赖软件,对规范理解不够,考虑因素不全面,加之不同规范有不同的条文规定,因此本文对板式塔吊基础的设计参考规范及常见问题进行了分析,希望通过本文的分析,帮助技术人员更好理解目前几本发行的有效规范,在塔吊基础设计时能采用合理参数,使塔吊基础设计兼具安全与经济性。 1.0.3 板式塔吊基础的设计主要包含地基承载力特征值确定于修正、塔吊传递给基础的荷载、基础尺寸确定、板式基础偏心距、承载力验算及基础脱开面积校核、软弱下卧层验算、地基变形计算、地基稳定性计算、冲切验算与配筋计算。 1.0.4 本文的一些计算分析结论主要依据无锡巨神生产的QTZ5013塔式起重机参数,在同级别的塔式起重机中,无锡巨神QTZ5013塔吊说明书所提供的荷载参数偏大且最全面,具有代表性,这个级别的塔吊也是应用最广泛的塔式起重机。无锡巨神QTZ5013塔式起重机荷载参数及荷载示意图见表1.0.4、图1.0.4-1、图1.0.4-2所示。 表1.0.4 无锡巨神QTZ塔式起重机荷载参数表 吊钩高度固定 方式 混凝土基础承受的载荷 工作状态非工作状态H1 H2 M1 M2 M3 P H1 H2 M1 M2 M3 P 40.1m a / 27.8 564 996 170 513 40.1m a 24.5 / 1252 / 67 513 73.5 / 1796 / / 434 40.1m b 24.5 / 1211 / 67 513 66.2 / 1628 / / 434 注:表中中固定方式a为大臂沿塔身对角线方向,b为大臂与塔身平行方向。P为基础所受的垂直力(kN),H1、H2为基础所受水平力(kN),M1、M2为基础所受的倾覆力矩(kN·m),M3为基础所

相关文档
相关文档 最新文档