文档库 最新最全的文档下载
当前位置:文档库 › 超短及超强脉冲激光研究进展

超短及超强脉冲激光研究进展

超短及超强脉冲激光研究进展
超短及超强脉冲激光研究进展

超短脉冲激光精密时—频域控制

超短脉冲激光精密时—频域控制 【摘要】:超短脉冲激光技术提供了高时间分辨率,高频率精度的测量手段,极大的提高了人类探索自然界规律的能力,成为探索、揭示微观世界规律的前沿科学与高新技术的基点和关键。本论文主要围绕超短脉冲激光的时-频域精密控制开展研究工作。在激光时域控制上,探索了锁模超短脉冲激光器的原理与结构,研制了超短脉冲飞秒光纤激光器,获得了超短脉冲激光源,为精密时-频域控制提供了种子源。在时域同步控制上,探索了基于非线性交叉相位调制的超短脉冲全光同步技术,完成了谐波锁模激光,多波长锁模激光,纳秒方波锁模激光与超短脉冲激光之间的同步,并研究了同步锁模超短脉冲激光应用于单光子频率上转换探测实验的相关问题。在激光频域控制上,研制了50W平均输出功率载波包络偏移频率稳定的超短脉冲激光系统,为紫外光学频率梳的产生奠定了基础。本学位论文的主要成果包括:1.时域上,超短脉冲激光产生是开展精密时-频域控制的基础。基于激光锁模原理,首先完成了超短飞秒脉冲光纤激光器的研制工作。1)利用光纤内的非线性偏振旋转效应,完成了超短脉冲锁模掺铒光纤激光器的研制。当腔内的色散为负值时,激光腔内的脉冲光以孤子波方式运转,脉冲的峰值功率被限制,脉冲宽度较宽。当引入色散管理手段后,通过展宽脉冲锁模方式,获得了宽度为92fs的超短脉冲激光输出。2)完成了非线性偏振旋转锁模掺镱光纤激光器的研制工作,提出了在腔内插入掺铒光纤方式提供附加饱和吸收的方案,有效的抑制了激光腔内的脉冲分

裂,得到了41fs单脉冲运转的超短脉冲激光输出。2.当不同波长的两束激光在同一光纤内传输时,由于交叉相位调制作用,一束光会使另一束光的非线性折射率发生变化,导致非线性偏振旋转。在此现象基础上,开展了时域上脉冲激光的精密同步工作。1)利用主-从模式的腔结构,完成了谐波锁模的掺铒光纤激光器与锁模Yb:GSO激光器的同步。同步激光器腔长失匹长度达14mm,有效的抑制了外界扰动对同步系统的干扰。并且在腔长失匹较大的情况下,脉冲呈现堆积展宽现象。利用该现象可应用于超短脉冲整形,光参量啁啾脉冲放大等领域的工作。2)利用部分光谱放大和交叉相位调制技术完成了800nm,1030nm,1550nm三波段飞秒超短脉冲激光同步。800nm,1030nm脉冲之间的时间抖动为0.55fs,1030nm,1550nm脉冲之间的抖动为8.3fs。3)利用长腔激光器中的峰值功率钳位效应,获得了脉冲宽度为5.5ns的方波脉冲锁模掺铒光纤激光器。并利用交叉相位调制技术,以全光方式实现其与超短脉冲锁模掺镱光纤激光器的同步。同步激光器腔长最大失匹为2.6mm,脉冲之间的时间抖动为4.3ps。 4)利用同步超短脉冲锁模掺铒、掺镱光纤激光器,完成了高速脉冲泵浦方式的单光子频率上转换探测实验,单光子转换效率达31.2%。3.在精密频域控制上,开展了高功率、高重复频率超短脉冲激光的载波包络偏移频率稳定工作。通过双包层光子晶体光纤放大技术,获得了50W 平均功率输出的超短脉冲激光。利用交叉参考的拍频方式,完成了超短脉冲的载波包络偏移频率探测,并通过锁相环电子反馈电路,实现了偏移频率的精密锁定。锁定后的开环偏移频率线宽为 2.27mHz,脉冲

超短脉冲激光技术(钱列加老师)

5.6 (3) 一.概述 (3) 1.飞秒激光脉冲的特性 (3) 2.飞秒脉冲的传输 (5) 3.光束空间传输 (6) 4.脉冲传输的数值模拟 (6) 5.时空效应 (9) 5.1自相位调制 (10) 5.2相位调制对有限光束的影响——自聚焦 (11) 二.飞秒光学 (13) 1.简介 (13) 2.色散元件 (13) 2.1 膜层色散 (13) 2.2 材料体色散 (13) 2.3 角色散元件 (14) 3.群速度色散的补偿及控制 (14) 4.聚焦元件 (16) 4.1 透镜的色差 (16) 4.2 脉冲畸变与PTD效应 (16) 三.飞秒激光器 (18) 1.锁模简介 (18) 2.克尔透镜锁模 (18) 3.飞秒激光振荡器 (20) 4.光纤孤子激光器 (21) 四.飞秒脉冲的放大与压缩 (23) 1.简介 (23) 2.飞秒脉冲放大的困难 (25) 3.啁啾脉冲放大技术 (26) 4.CP A放大器的设计 (27) 4.1 CP A激光系统的工作脉宽 (27) 4.2 高增益的前置放大器 (27) 4.3 装置的色散控制 (28) 4.4 设计多程CP A放大器的理论模型 (31) 五.脉冲整形 (34) 1.脉冲整形 (34) 2.飞秒光脉冲整形的物理基础 (34) (1)线性滤波 (34) (2)脉冲整形装置 (35) (3)脉冲整形的控制 (38) 3.几种典型的空间光调制器 (39) (1)可编程液晶空间光调制器(LC SLM) (39) A.电寻址方式 (39) B.光寻址方式 (40) (2)声光调制器 (41)

(3)变形镜 (41) 4.脉冲压缩 (42) 2.1 波导介质中的SPM (42) 2.2 级联非线性压缩脉冲 (43) 六.脉冲时间诊断技术 (45) 1.强度相关 (45) (1) 多次平均测量 (45) (2) 单次工作方式 (47) (3) 三次相关法 (48) 2.干涉相关 (49) 3.脉冲振幅与位相的重建 (50) 七.大口径高功率激光装置 (53) 1.高能量的PW钛宝石/钕玻璃混合系统 (55) 2.关键技术问题 (56) 2.1 高阶色散 (57) 2.2 光谱窄化和漂移引起的光谱畸变 (57) 2.3 非线性自位相调制SPM (58) 2.4 自发辐射放大ASE (58) 3.光参量啁啾脉冲放大(OPCPA) (58) 3.1 大口径高能钕玻璃泵浦的OPCPA 系统 (62) 3.2 小口径低能量高重复率OPCPA 系统 (63) 4.展望 (64) 4.1 峰值功率的理论极限 (64) 4.2 光学元件的限制 (65) 4.3 非线性B积分的限制 (65)

超短脉冲激光提升微加工的速度与效率

超短脉冲激光提升微加工的速度与效率 在微加工领域,短脉冲、尤其是超短脉冲激光器正在取代传统的加工方法。对于超短脉冲激光器,得益于其冷烧蚀特性,因此其对所要加工的材料几乎没有任何限制。 在冷烧蚀过程中,材料的去除本质上只能通过化学键断裂来实现,因此其产生的热影响仅限于几微米的区域,并且相应的变形也最小。不幸的是,超短脉冲激光器的烧蚀速率仍然非常低,进而限制了其在工业领域的广泛应用。 金属材料的烧蚀阈值在0.2J/cm2的范围内,而玻璃和陶瓷的烧蚀阈值则在几个J/cm2的范围内。为了提高去除速率,可以使用具有较大聚焦口径的高脉冲能量,以在更大的区域内工作。在诸如玻璃或聚合物等透明材料加工应用中,可通过非线性效应(如多光子过程)来提高去除速率。此外,也可以提高重复频率。重复频率可以从100kHz到几兆赫兹,目前正在进行重复频率超过10MHz的研究。 FIGURE 1. 德国3D-Micromac公司举办的“ISL 2010激光微加工国际研讨会”现场 尽管传统的光纤激光器已经在工业环境中植根多年,但是飞秒光纤激光器在市场上仍然属于新事物。德国耶拿大学的Jens Limpert博士使用的超快光纤激光器,平均功率接近1kW,峰值功率在GW量级,重复频率在kHz到MHz的范围内。虽然超快光纤激光器已经能够达到上述较高的性能,但是其仍然具有很大的发展潜力。 除了单脉冲之外,另一种提高烧蚀速度的方式是采用所谓的脉冲猝发(burst)。以50MHz的脉冲序列为例,重复频率为500kHz的脉冲被提取出来并被放大。

“烧蚀效果与脉冲能量成对数关系。通过这种方式,可以将相同的总能量分配到几个脉冲中,然后通过脉冲叠加来达到更高的去除量。”Lumera Laser公司的Dirk Müller介绍说。实验已经证明5~10个脉冲的脉冲猝发是有效的,并且约为20ns的脉冲间隔也已被证明是有效的。然而,最终获得的去除质量在很大程度上依赖于所要处理的材料。 微结构的高效生产 在微加工领域享有盛名的方法包括EDM(放电加工)、微模压加工和光刻技术。EDM只适用于导电材料,并且速度缓慢;冲压模的制造成本较高;而光刻则需要高精密掩模,并且后续的刻蚀过程还对环境有很大的污染。相比之下,激光冷烧蚀加工不但能够实现与上述方法类似的加工精度,而且更具成本效益,同时也非常环保。最精细结构的冲压使得金属板材的加工更加容易,金属板材结构由模压辊制成。德国夫琅和费激光技术研究所(Fraunhofer-ILT)已经利用功率为100W、重复频率为3MHz 的皮秒激光器,获得了最佳的精细结构加工效果。 “在整个激光微加工过程中,CAD数据得到了精确的再现,没有熔化物飞溅以及其他废弃物,并且表面粗糙度小于0.5μm。”Fraun hofer-ILT烧蚀与焊接部门主管Arnold Gillner博士说(见图2和图3)。为了获得更好的加工效果,脉冲之间必须有10%~15%的重合,两条脉冲的刻线间则必须有10%的重合。 图2:由超快脉冲激光器加工的一个工具的局部图

超短脉冲激光和钛宝石飞秒激光器

第23卷第1期2007年8月 山西大同大学学报(自然学科版) Journal of Shanxi Datong University(Natural Science) Vol.23.No.1 Aug.2007超短脉冲激光和钛宝石飞秒激光器 郭玉洁,帕力哈提?米吉提 (新疆大学物理科学与技术学院,新疆乌鲁木齐830046) 摘 要:该文介绍了飞秒激光的特点、应用以及钛宝石激光器的相关理论。 关键词:飞秒激光 钛宝石激光器 自聚焦 中图分类号:TN248.4 文献标识码:A 文章编号:167420874(2007)0120058203 飞秒激光技术是一项能协助多种学科在更深层次上认识客观世界,增强人类改造世界能力的技术.它是目前人类观察微观世界,揭示超快运动过程的重要手段.科学家预测飞秒激光将为未来新能源的产生发挥重要作用. 1 超短脉冲激光及其应用 1.1超短脉冲激光的特点 自从脉冲激光问世以来,激光脉冲的峰值功率及脉冲宽度已经有了前所未有的快速发展.1981年Fork等人利用碰撞锁模技术从染料激光器中首次获得了飞秒激光脉冲[1],从而使人类进入了超短脉冲激光技术时代.超短脉冲激光有两个显著特点:一是脉冲宽度极短,达到了飞秒(10215s)量级,阿秒(10218s)量级;二是经过放大后,脉冲峰值功率极高,可以达到太瓦(1012W)甚至拍瓦(1015W)量级.脉冲持续时间如此之短,峰值功率如此之高,且能聚焦到比头发直径还要小的空间区域,使得聚焦后的光功率密度可以达到1020W/cm2量级以上.这些独有的特点使超短脉冲激光具有广泛而特殊的用途,它将对社会经济的发展起到巨大的带动作用. 1.2飞秒激光的用途 超短脉冲激光的发展直接带动了物理、化学、生物、材料与信息科学等的发展,并开创了一些全新的研究领域,如飞秒化学、量子控制化学、半导体相干光谱、超高强度科学与技术等. 1.2.1飞秒激光在超快领域内的应用 飞秒激光在超快现象研究领域中起的是快速过程诊断的作用.飞秒激光尤如一个极为精准的“时钟”和一架超高速的“相机”,它可以将自然界中特别是原子、分子水平上的一些快速过程分析、记录下来,形成多种时间分辨光谱技术和泵浦/探测技术.由于飞秒激光具有快速和高分辨率特性,它在病变早期诊断、医学成像和生物活体检测、外科医疗及超小型卫星的制造上都有着独特的优点和不可替代的作用. 1.2.2飞秒激光在超强领域中的应用 飞秒激光是研究原子分子体系、高阶非线性和多光子过程的重要工具.飞秒脉冲的峰值功率和光强可以非常高,这样的强光所对应的电磁场会远大于原子中的库仑场,从而很容易将原子中的电子统统剥落,是产生激光等离子体、超短X光、新一代粒子加速器和激光核聚变快速点火的高新技术途径.物质在高强度飞秒激光的作用下会出现非常奇特的现象:气态、液态、固态的物质瞬息间变成了等离子体.这种等离子体可以辐射出各种波长的射线激光.高功率飞秒激光与电子束碰撞能够产生硬X射线飞秒激光、β射线激光以及正负电子对.高功率飞秒激光还可以将大气击穿,从而制造放电通道,实现人工引雷,避免飞机、火箭、发电厂等因天然雷击而造成的灾难性破坏.高功率飞秒激光与物质相互作用,能够产生足够数量的中子,实现激光受控核聚变的快速点火,从而为人类获得新一代能源开辟了一条崭新的途径. 收稿日期:2007203205 作者简介:郭玉洁(19792)女,辽宁辽阳人,硕士,研究方向:激光物理.

超短脉冲激光烧蚀技术应用探究

超短脉冲激光烧蚀技术应用探究 近年来随着超短脉冲激光烧蚀技术的发展,该技术被广泛应用于工业领域。短脉冲激光与物质相互作用时间介于纳秒与飞秒之间,其峰值功率可达兆瓦级,因此在加工中可应用于高精度、高硬材料的精细加工上,同时也可以实现材料的三维加工,该方式称为“冷”加工。文章旨在介绍超短脉冲技术的应用研究,使人们对该技术有一定的宏观认识。 标签:超短脉冲;激光烧蚀;应用探究;宏观认识 1 短脉冲激光器与金属相互作用理论 短脉冲诱导烧蚀材料的过程的建立需要一定的时间,并且与激光强度有直接关系。当脉宽给定时,只有当激光场的强度超过一定值时,形成的等离子体才能发生不可逆的损伤阈值,该阈值范围通常以激光的能流阈值表示。根据文献指出,脉冲宽度从连续到几十个皮秒范围内,烧蚀过程为离子雪崩过程,开始于内部电子。通过对超短脉宽烧蚀阈值的研究发现,当偏离了脉冲宽度平方根法则的时候,能量在很大范围内变动均可引起材料的烧蚀,如图1所示为超短脉冲激与金属作用的过程。 当前人们于超短脉冲激光烧蚀物质的机理和研究还没有获得完全的认知,研究的模型是将物质看做一个总体的系统去考虑,只有达到了该物质的沸点或熔点时,使得物质蒸发或者熔化而使材料被去除。应用傅里叶传热模型对上述过程可进行具体的描述,但是他不适用于描述和分析超短脉冲激光与金属薄膜或者介质膜的作用过程。原因是由于载流子的特征尺寸与膜层的厚度相当,同时其特征时间与传输能量的时间接近。 当超短脉冲激光与金属材料作用发生激光烧蚀时,材料的表面的电子吸收激光的能量后变为非平衡状态,发生了相互制约的现象。造成电子爆炸运动速度接近于费米速率。同时热电子通过碰撞作用使得内部电子获得加热,之后参与碰撞的电子达到短暂的呈费米分布的热平衡态。电子与晶格通过碰撞耦合效应,使得电子温度降低和晶格温度升高,最终电子温度与材料的晶格温度达到平衡。 2 短脉冲激光烧蚀研究方法 激光烧蚀的研究方法包括:实验方法测定,理论计算分析和数值模拟。实验方法能够准确的对后两种方法进行检验。但实验方法需要的成本巨大。理论计算分析和数值模拟方法是一种对于研究激光烧蚀问题的非常有的方法,其理论分析过程非常严谨,但是也存在一定的边界条件限制,需要进行相应的假设,处理问题的范围有限。但其可低成本、高精度模拟短脉冲烧蚀机理内的复杂问题,一直是各大科研院校应用的最广泛的方法。若条件允许会采用实验方法进行验证,不断修正算法达到近乎理想的模拟及精密数值计算水平。

超短脉冲激光单次SHG_FROG的测量

基础和应用基础研究?强激光与加速器187 当激光束偏离抛面镜光轴1.5 mrad时,光强几乎降至理想聚焦光强时的一半;当失准角达到了3 mrad时,光强降至30%以下,焦斑形状发生明显改变。可见,在抛物面镜聚焦系统中,若要得到好的聚焦强度,必须严格控制激光束与抛物面镜的光轴高度重合。这也给建立准直系统提出了精度要求,至少要在4 mrad以上,以保证首先能看到抛面镜的聚焦光斑;细调节精度0.5 mrad以上,保证抛面镜有好的聚焦效果。 超短脉冲激光单次SHG-FROG的测量 徐永生 将实验室现有的二次谐波(SHG)单次自相关仪和光谱仪结合起来,搭建了单次SHG-FROG 测量设备(图1)。其基本原理是首先将入射光脉冲分为两束,其中一束作为探测光,另一束作为开关光,并将开关光引入一时间延迟,再让两束光通过非线性介质产生相互作用,所产生的光经光谱仪进行光谱展开后,用CCD进行测量,CCD光谱轴上标定的结果为δλ=0.067 nm/pixel,时间延迟轴标定结果为δt=2.2 fs/pixel,从而得到相互作用后的光强信息。在此基础上,用迭代的方法从谱图中还原脉冲的电场分布,从而获得该脉冲的强度和相位信息。 利用该台SHG-FROG自相关仪测量实验室超短脉冲激光系统TSA输出的FROG图像,将光谱轴和时间延迟轴标定后的参数代入SHG-FROG还原程序中进行还原,经多次迭代运算,还原后的FROG图像如图2所示。图3为还原后的光谱强度和相位,图4为还原后的电场强度及其相位分布。由图3、4可看出,TSA的输出脉冲相位随光谱和时间成近似平坦分布。因此,TSA输出脉冲为无啁啾脉冲。还原后的激光参数为:激光脉冲的时域脉宽FWHM为Δτ=83 fs、频域带宽FWHM为Δλ=9 nm、波长为754.135 nm、脉宽带宽积Δυ·Δτ=0.396,其波形近似为非对称双曲正割型。 图1 SHG-FROG自相关仪

浅析超短脉冲激光微纳加工技术

1 前言 随着激光技术的发展,激光器件向着超短脉冲、超高强度、超短波长的方向迈进,这给激光材料加工带来了革命性的进步。近年来超短脉冲激光精密加工越来越得到人们的关注。这主要体现在超短脉冲激光加工可以得到高于长脉冲激光加工的精度,最高可以达到亚微米甚至纳米。另外超短脉冲激光除了可以进行材料表面的加工,还能够实现对透明材料内部的加工与改性。适用于其他加工方法无法实现的高精度、复杂形状元器件的加工,实现真三维、可设计、可集成。超短脉冲激光的瞬间功率极大,可以和几乎任何材料相互作用,因而可用于激光加工的材料几乎不受限制。对于超硬、易碎、高熔点、易爆等材料的加工,更具有其他方法无法匹敌的优势。 这里的超短脉冲激光微细加工技术指的是利用超短脉冲激光(脉冲宽度在皮秒至飞秒量级,10-12~10-15s) 对材料的显微加工、精密裁切以及微观改性。这里的3个术语定义如下:显微加工指的是对样品材料的精密去除;精密裁切指的是用激光将样品材料裁切成微纳尺度的特征形状;微观改性指的是利用激光改变样品材料特定微观区域的物理化学性能。这3个术语既相互独立又紧密相连,有时在微观改性的同时也伴随着样品材料的精密去除,而显微加工是精密裁切的基础。我们把上述术语统称为超短脉冲激光微纳加工。 2 超短脉冲激光微纳加工分类 从材料的性能变化来说,超短脉冲激光微纳加工可以分为表面形貌、折射率、离子价态、相态、缺陷态、晶态、化学键以及能带结构等的修饰与调控。在超短脉冲激光加工过程中,有时是单一的性能修饰,有时是多项性能的修饰同时发生。现举例说明。 图1为超短脉冲激光诱导的6种材料性能转变。(a)为在金属表面形成的亚波长周期结构。其周期从入射激光波长尺度到入射波长的1/10,为制备纳米尺度周期结构提供了一种全新的途径。(b)为波导结构。超短脉冲激光可以在透明材料内部诱导折射率改变,写入二维、三维的波导结构及器件,如分束器、衍射光栅、阵列波导光栅、波导激光器等。(c)为在晶体内部诱导的缺陷结构,即色心。在诸如半导体、发光、信息存储、色心激光等技术领域有着广泛的应用。(d)为离子价态变化。在金属离子或稀土离子掺杂的玻璃内部,使得掺杂离子的价态发生改变,诱导出具有特殊功能的复合材料,实现特定的线性、非线性光学性能。(e)为晶态变化。超短脉冲激光辐照非晶态的玻璃材料可以在辐照区域析出晶体相,或者超短脉冲激光辐照晶体材料,在激光辐照区域可以从一种晶态向另一种晶态转化,为制备不同晶态的集成器件提供了新途径。(f)为半导体带隙变化。通过超短脉冲激光半导体硅,改变其能带结构。经处理的硅具有吸收光谱宽以及光谱响应速度快的特点,在太阳能电池以及光电探测器方面具有极大的应用前景。

超短脉冲激光加工陶瓷基复合材料制孔研究

超短脉冲激光加工陶瓷基复合材料制孔研究 刘瑞军袁桓恒袁赵晨曦袁王瀚寰袁李光泽 渊中国航发沈阳黎明航空发动机有限责任公司袁辽宁沈阳110043冤 摘要院陶瓷基复合材料由于能够提高零件的耐高温和推重比等性能袁适用于航天发动机热端部件袁但由于在传统加工过程中易出现崩边尧层间撕裂等缺陷袁且无法实现微孔加工限制了其使用遥通过选择飞秒级超短脉冲激光加工制备陶瓷基复合材料微孔袁探索加工方案尧优化工艺参数袁对加工后的表面完整性进行评价袁确定了超短脉冲激光微孔加工孔径范围尧几何精度及表面质量袁有助于解决陶瓷基复合材料微孔加工难题遥 关键词院陶瓷基复合材料曰表面完整性曰烧蚀阈值曰飞秒级曰超短脉冲激光 中图分类号院TG665 文献标志码院A 文章编号院1009原279X渊2019冤02原0055-04 Study on Micropore Preparation of Ceramic Matrix Composites by Ultra-short Pulse Laser Processing LIU Ruijun袁HUAN Heng袁ZHAO Chenxi袁WANG Hanhuan袁LI Guangze 渊AECC Shenyang Liming AERO-ENGINE Co.,Ltd.袁Shenyang 110043袁China 冤 Abstract 院Because of its contribution in high temperature resistance and thrust weight ratio袁the ceramic matrix composites are suitable for use in aerospace engines.However袁the application of ceramic matrix composites is limited due to the defects such as chipping and interlaminar tearing in traditional processing袁as well as its unablity to micro-hole machining.Firstly袁the femtosecond ultra-short pulse laster is used to process micro -hole of ceramic matrx composites.Then袁the processing scheme and parameters is optimized and the surface integrity after processing is evaluated.Finally袁the aperture range袁geometric accuracy and surface quality by ultra -short pulse laser machining is confirmed袁which helps to solve the problem in ceramic matrix composites micropore machining. Key words 院ceramic matrix composites曰uface integrity曰abiation threshold曰femtosecond曰ultra-short pulse laser 收稿日期院2019-01-09 第一作者简介院刘瑞军袁男袁1981年生袁高级工程师遥 陶瓷基复合材料是一种新型热结构材料袁具备航空发动机用结构材料的高强度尧高刚度和轻质量的性能要求袁是制造现代高性能飞机的重要材料遥欧美国家在高性能运输机和战斗机上越来越重视应用陶瓷基复合材料替代某些高温合金结构件袁以达到提高性能并减轻重量的目的遥 航空发动机热端部件由于特殊的工况限定袁多以微孔结构实现气膜冷却袁以降低零件表面温度尧提高疲劳寿命遥由于陶瓷基复合材料的弱导电性袁加工微孔现行工艺已无法满足制造需求袁需要一种替代工艺实现高精度尧高表面质量要求袁超短脉冲激光加工技术逐渐被行业所关注遥 超短脉冲激光设备是由激光器发出高功率超短超快脉冲激光袁通过复合光束扫描机构高速旋转扫描袁由光学组件把激光束直接聚焦在工件表面袁以直写的方式在各种材料上实现多种形状特征加工袁最大程度降低材料基体及表面损伤袁能够提高航空发动机热端零件特定结构的表面完整性袁提升零件使用寿命遥 1陶瓷基复合材料切割验证 1.1切割试验与效果 采用长脉冲激光尧超短脉冲激光尧电火花线切割尧水射流切割四种工艺进行复合材料切割试验袁论证不同工艺加工材料表面状态及质量评估袁切割断口表面实物状态见图1袁扫描电镜检测见图2[1]遥 激光加工及增材制造 叶电加工与模具曳2019年第2期 55要要

相关文档