文档库 最新最全的文档下载
当前位置:文档库 › 微分中值定理的证明及其应用毕业论文

微分中值定理的证明及其应用毕业论文

微分中值定理的证明及其应用毕业论文
微分中值定理的证明及其应用毕业论文

【标题】微分中值定理的证明及其应用

【作者】蒋雯亦

【关键词】Lagrange中值定理Cauchy中值定理辅助函数

【指导老师】吴先兵

【专业】数学教育

【正文】

1 引言

在一元函数微积分中,微分中值定理是应用函数局部性质研究函数整体性质的重要工具。Lagrange中值定理、Cauchy中值定理是微分学中的两个重要定理,它们揭示了函数值与导数值之间的内在联系,为微分学的应用和对函数的进一步研究提供了理论依据,对两个微分中值定理的证明一般都划归为Rolle中值定理来证明。因此,Rolle中值定理是基础,Lagrange中值定理及Cauchy中值定理是Rolle中值定理的推广,熟练运用Rolle中值定理,正确掌握函数证明的各种技巧,对解决实际问题非常重要。 2001年,鲁凤菊[5]给出了证明微分中值定理时构造辅助函数的两种方法及微分中值定理在一元函数、多元向量值函数及抽象函数方面的推广。2007年,贾计荣[6]用行列式证明Cauchy中值定理及Lagrange中值定理,并对微分中值定理加以推广。2008年,孙彩贤[7]从不同方面对微分中值定理加以证明,使得抽象的定理灵活化,从而更易理解。李建杰[8]着重探讨Cauchy中值定理的几种新证法,比较详细地叙述了求证的思路、方法和具体步骤,简述了求证过程对微积分教学的意义。陈鱼昆[9]分别研究Lagrange中值定理、Cauchy中值定理及Rolle中值定理的某些重要应用。2009年,杨洪秀[10]列出了证明Lagrange中值定理的几种不同方法。宋振云[11]通过复数乘法运算构造出一系列Lagrange中值定理证明中满足Rolle中值定理条件的辅助函数,并明确指出了Cauchy中值定理证明中辅助函数的构造方法。

微分中值定理的证明和应用,通常以Rolle中值定理作为它的预备定理,证明的关键在于方法的掌握,而教材通常都只用一种方法来证明微分中值定理,因而不能提高学生的思维能力,本文试用多种方法来证明Lagrange中值定理和Cauchy中值定理,再将Rolle中值定理、Lagrange中值定理及Cauchy中值定理分别应用到不同的问题中,让学生能够更加容易掌握和应用微分中值定理。为此,我将在微分中值定理的证明和应用的方法中去进一步拓展和推广。

2 预备知识

定义2.1:设函数在某内有定义,若,则称在点连续。

定义2.2:设函数在点的某邻域内有定义,若极限存在,则称函

数在点处可导,并称该极限为函数在点出的导数。

定理2.1 [12] (Rolle中值定理):若函数满足如下条件:

(i)在闭区间上连续;

(ii)在开区间内可导;

(iii);

则在内至少存在一点,使得

定理2.2 [12] (Lagrange中值定理)若函数满足如下条件:

(i)在闭区间上连续;

(ii)在开区间内可导;

则在内至少存在一点,使得

定理2.3 [12] (Cauchy中值定理)设函数和满足:

(i)在上都连续;

(ii)在内都可导;

(iii)和不同时为零;

(iv),则存在,使得

定理2.4 [8](达布中值定理)若函数在闭区间内可导,并且,不妨设

,则对于任何满足的常数,必存在一点,使得。

引理1[10]:若S是闭区间的一个完全覆盖,则S包含的一个划分,即存在< <…

< ,使每个闭区间( 1,2,…)都属于S。

引理2[10]:若函数在开区间内可微,且对任意,,则存在,

使得且函数在上严格单调。

3 微分中值定理定理的几种不同证明方法

3.1 Lagrange中值定理的几种证明方法

3.1.1 反证法

证明:假设对任意,有

令,则对任意,,

设,则,令,于是,并由假设知:对任意的。令:

,则是的一个完全覆盖,即对任意的,存在,使得,由引理2知在严格单调,设是含有且长度小于的的任一闭子区间,则,于是在上严格单调,即。由引理1知,在中必存在的一个划分…,不妨设这些小区间是按序号排列的,于是对任意的(1,2,…,)函数在上严格单调,不妨假设在上严格单调递增,若的右端点为,则的左端点为,而对于,必存在,使得都不空,于是由函数在上的严格单调递增,可得在上严格单调递增,依次类推可得在每个上都严格单调递增,于是在严格单调递增。所以对任意的,有。

另一方面,在右连续及在左连续,且,知,即,这与式矛盾,故有,即存在,使得

,证毕。

3.1.2 构造行列式型辅助函数

证明:设,

因在上连续,在内可导,且,故由Rolle定理知,至少存在一点,使得,所以

,证毕。

3.1.3 用复数乘法运算构造辅助函数

图3-1

证明:如图3-1所示,设曲线弦的倾斜角为,则,取曲线上任意一点,对复数作复数乘法运算:。

作辅助函数,注意到,即,则,由Lagrange中值定理的条件知,在上满足Rolle 中值定理的条件,因此至少存在一点,使,即所以

,证毕。

3.1.4 构造和差型辅助函数

证明:由移项得

由此可以看出它是函数在点的导数,于是可构造函数

容易验证满足Rolle中值定理的三个条件,故,即

,证毕。

3.1.5 引入旋转变换

证明:Lagrange中值定理与Rolle中值定理的区别仅仅在于区间端点函数值相等与不相等,自然想到能否通过旋转变换使之满足Rolle中值定理条件,从而证明Lagrange中值定理,为此引入坐标系的旋转变换,即

,,

同时有逆变换,即

我们选取合适的,使得,只须,

变形可得,

也就是,

同时可知在上连续,在内可微,故知满足Rolle中值定理条件,则存在一点

,使得,

即:

亦即:

,证毕。

3.1.6 区间套证明法

图3-2

证明:有定理条件,在上连续,在可导,采用如下方法制作区间套:记,将二等分,设分点为,易知为上一点,把该点记为,过作直线,使其斜率等于,此时可能出现两种情况:

(1)与只有一个交点,则即为所求;

(2)与不只有一个交点,取和相邻的交点对应的横坐标,与作成区间,且。(如图3-2)

由以上作法,显然可以知道:,

若出现(2),则将二等分,设分点为,记,是上的点,过作直线,使其斜率

等于,此时也可能出现两种情况:

○1与只有一个交点,则即为所求;

○2与不只有一个交点,取和相邻的交点对应的横坐标,与作成区间,且,显然易知,若出现○2,则将二等分,按以上方法找到,如此一直作下去,可能出现两种情况:

(i)经过若干步后得到某一个,符合定理要求,定理成立;

(ii)在逐次等分过程中,若不出现(i)中的情形,于是得到一个闭区间序列( 1,2,…),由区间的作法可知序列满足:

(a)…;

(b);

(c)。

因而构成区间套,有区间套定理,存在一点( 1,2,…),又有前述作法,不可能在内,而且这样的至少存在一个。

综上所述,至少存在一点,使得成立,证毕。

3.2 Cauchy中值定理的几种证明方法

3.2.1 反函数法

证明:在内可导,且,则或,。设,可知在内为严格单调增函数,由反函数存在条件知有反函数;设,因为在上连续,在内可导,由反函数的连续性、可导性知的反函数在上连续,在内可导;又因为在上连续,在内可导,推得也在上连续,在内可导;由Lagrange中值定理,故存在,使

令,则,因为,则,并注意到,及复合函数、反函数的求导法则,得:

代入上式得到

,证毕。

3.2.2 反证法

证明:设AB的参数方程为

,其中为参数,且,

那么曲线上某一点处切线的斜率为

若在内不存在满足,

即对任意,

或。

不妨设,作函数,则

,,

即为内的严格单调增函数,由在上连续,可知,,

即,与矛盾,原假设不成立,至少存在一点,使得,证毕。

3.2.3 用原函数构造辅助函数

证明:要证明在内至少有一点,使成立,只要证明,

而有一个原函数

且满足在上连续,在内可导,由Rolle中值定理,则至少存在一点,使得

从而结论成立,证毕。

3.2.4 用常数值结构设辅助函数

证明:要证明在内至少存在一点,使得

首先设(常数),则,令,则,即,且满足在上连续,在内可导,由Rolle 中值定理,则至少存在一点,使得,

所以

,证毕。

3.2.5 构造行列式型辅助函数

证明:设

由于是,的多项式函数,从而在c上连续,在内可导,且利用行列式性质易见

,故由Rolle中值定理知,至少存在一点,使得

,,

由此可得

,证毕。

4 微分中值定理的几种应用

4.1 Rolle中值定理的几种应用

4.1.1 应用Rolle中值定理来讨论方程的根

Rolle中值定理常常用来讨论方程的根,是用来确定导函数的根的存在性。

例1 (1)方程(为常数)在区间内不可能有两个不同的实根;

(2)方程(为正整数,,为实数),当为偶数时至多有两个实根,当为奇数时至多有三个实根。

证明:(1)设,若,使,则由Rolle中值定理知,使,即,解之得,与矛盾,所以不能有两个不等实根。

(2)先证明如下结论:若多项式的导函数有个实根,则至多有个实

根。

设有个以上实根,则至少为个,设其前个实根依次为

…,则由Rolle中值定理知,

(…,)使(…,)。与有个实

根矛盾,故结论成立。

记,则。

当为偶数时,即时,。方程仅有一个实根。

故,即至多有两个实根。

当为奇数时,即时,。方程至多有两个实根

。故,即至多有三个实根。

4.1.2 应用Rolle中值定理证明等式

Rolle中值定理常常用来讨论一阶导数、二阶导数,通常用构造辅助函数或辅助区间的方法

来解决问题。

例2 设在上连续,在内可导,且,证明在内至少存

在一点,使得。

证明:(辅助函数法)令,由题设知在上连续,在内可导,又因为,所以由Rolle 中值定理知存在一点,使得

即得结论。

例3设函数在闭区间上连续,在开区间内二阶可导,并且曲线和连接点与的直线段在内相交。求证:,使得。

证明:(辅助区间法)设是曲线与弦交点的横坐标。根据Lagrange中值定理,我们有,使得

,使得

由此推出。又因为在上连续,在上可导,所以对在上用Rolle中值定理,可知,使得。

例4设函数在上可导,且。求证:,使得。

证明:(辅助函数法)设辅助函数

显然在上连续,在内可导,进一步,对,我们有

分两种情况:

第一种情况,。根据Rolle中值定理,使得,所以。

第二种情况,,不妨设,那么由式,有

。因为连续且,所以,使得

。于是根据连续函数的中间值定理,,

使得。现在对在上用Rolle中值定理,我们有,使得,所以。对于的情况,可类似证明。

4.2 Lagrange中值定理的几种应用

4.2.1 应用Lagrange中值定理证明等式

证明等式,可令,在(其中)上便可直接应用Lagrange中值定理。

例5 求证。

证明:令在上用Lagrange中值定理(其中),有(其中介于和之间)。

即有

所以有

例6 设函数,在内可导,且,。证明,使

证明:(辅助函数法)作辅助函数,则有

,。

在与上对分别使用Lagrange中值定理,可知,,使

联立两式即得

例7 设在上连续,在上可导,。求证:,使得。

证明:(辅助区间法)令,则

,使,即。

因为在上连续,在内可导,所以在上用Lagrange中值定理,则,使得

4.2.2 应用Lagrange中值定理证明不等式

求证形如的不等式,一般令,再在上用

Lagrange中值定理,一般根据的符号正负便可判断与的大小关系。

例8 求证当时,。

证明:令,在上用Lagrange中值定理,有

(其中),

所以,当时,不等式成立,即。

4.2.3 应用Lagrange中值定理求极限

例9 求。

解:设函数,若令,,则由Lagrange中值定理知存在一点

(其中介于和之间)使得

即有

则有

(其中介于和之间)。

4.3 Cauchy中值定理的几种应用

4.3.1 应用Cauchy中值定理证明等式

例10 设函数在点的某个邻域内具有二阶导数,证明:对充分小的,存在,,使得

证明:(辅助函数法)设

由已知,存在,使在内有二阶导数,则当时,在上满足Cauchy中值定理条件,,使

而在上满足Cauchy中值定理条件,且

,则,使

记,则有

,,。

例11 设函数在闭区间上可微分,并且。证明

其中。

证明:令,不妨设,易知在上连续,在上可导,且有,由Cauchy中值定理,存在一点使得

将分别代入上式,即得

亦即

4.3.2 用Cauchy中值定理证明不等式

例12 设函数在上连续可导,且。证明

证明:记,使取定的,因,故在上有界。同样的,在上也有界。因此只要证明在上有界。

对,由Cauchy中值定理可知,使

其中,而为常数。于是由有

由此得出

或即

从而有

同样可证,

综上所述

4.3.3 应用Cauchy中值定理证明函数的一致连续性

例13 设函数在上可导,且存在,证明在上一致连续。

分析:定义在半开闭区间上连续函数一致连续的充要条件是存在,而题设条件与导数有关,因此可综合利用Cauchy中值定理及Cauchy收敛准则证明这一结论。

证明:由条件存在,故当时有界,即及,对有

考虑,对(不妨设),在上,满足Cauchy中值定理条件,于是有

也即有

,再令,则对有

由右极限的Cauchy收敛准则可知存在,又,从而在上一致连续。

4.3.4 应用Cauchy中值定理求极限

例14 求。

解:设,由Cauchy中值定理得

,。

因,由夹逼原则,,于是

5 总结及后续工作

微分中值定理作为微分学的基本定理,在研究函数的性质方面起着重要作用,本文归纳总结了它的一些简单应用技巧,意在扩大中值定理的使用范围,加强其实际应用价值,使中值定理发挥更大作用。通过上面证明和应用微分中值定理,不仅解决了微分中值定理的证明问题,而且推广了微分中值定理,为我们今后证明与微分中值定理相关的题目开阔了思路。总之,能利用微分中值定理来解的题目的类型是很多的,要熟练地掌握利用微分中值定理解题是件不容易的事,只有平时多练习,熟能生巧。这类问题中,思路要广阔,多从几个方面来分析,这样不至于无从下手,同时也能提高我们的发散思维能力和创新能力。

第3章 微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得'()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理

条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,则导数存在0值。如果翻来覆去变形无法弄到两端相等,那么还是别用罗尔定理了,两端相等,证明0值是采用罗尔定理的明显特征。 拉格朗日定理是两个端点相减,所以一般用它来证明一个函数的不等式: 122()()-()1()m x f x f x m x <<; 一般中间都是两个相同函数的减法,因为这样便 于直接应用拉格朗日,而且根据拉格朗日的定义,一般区间就是12[,]x x 。 5、洛必达法则应用注意 正常求极限是不允许使用洛必达法则的,洛必达法则必须应用在正常求不出来的不定式极限中。不定式极限有如下7种: 000,,0*,,0,1,0∞∞ ∞∞-∞∞∞ 每次调用洛必达方法求解极限都必须遵从上述守则。 6、泰勒公式求极限。 如果极限是0 lim () x x f x → 那么就在0x 附近展开。如果极限是

(完整版)利用微分中值定理证明不等式

微分中值定理证明不等式 微分中值定理主要有下面几种: 1、费马定理:设函数()f x 在点0x 的某邻域内有定义,且在点0x 可导,若点0x 为()f x 的极值点,则必有 0()0f x '=. 2、罗尔中值定理:若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 3、拉格朗日中值定理:若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; 则在开区间(,)a b 内至少存在一点ξ,使得 ()()()f b f a f b a ξ-'=-. 4、柯西中值定理:若函数()f x ,()g x 满足如下条件: (1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)()f x ',()g x '不同时为零; (4)()()g a g b ≠; 则在开区间(),a b 内存在一点ξ,使得 ()()()()()() f f b f a g g b g a ξξ'-='-. 微分中值定理在证明不等式时,可以考虑从微分中值定理入手,找出切入点,灵活运用相关微分中值定理,进行系统的分析,从而得以巧妙解决. 例1、 设 ⑴(),()f x f x '在[,]a b 上连续; ⑵()f x ''在(,)a b 内存在; ⑶()()0;f a f b == ⑷在(,)a b 内存在点c ,使得()0;f c > 求证在(,)a b 内存在ξ,使()0f ξ''<. 证明 由题设知存在1(,)x a b ∈,使()f x 在1x x =处取得最大值,且由⑷知1()0f x >,1x x =也是极大值点,所以 1()0f x '=. 由泰勒公式:211111()()()()()(),(,)2! f f a f x f x a x a x a x ξξ'''-=-+-∈. 所以()0f ξ''<. 例2 、设0b a <≤,证明ln a b a a b a b b --≤≤.

微分中值定理及其应用

第六章微分中值定理及其应用 微分中值定理(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的有力工具。中值定理名称的由来是因为在定理中出现了中值“ξ”,虽然我们对中值“ξ”缺乏定量的了解,但一般来说这并不影响中值定理的广泛应用. 1.教学目的与要求:掌握微分中值定理与函数的Taylor公式并应用于函数性质的研究,熟练应用L'Hospital法则求不定式极限,熟练应用导数于求解函数的极值问题与函数作图问题. 2.教学重点与难点: 重点是中值定理与函数的Taylor公式,利用导数研究函数的单调性、极值与凸性. 难点是用辅助函数解决有关中值问题,函数的凸性. 3.教学内容: §1 拉格朗日定理和函数的单调性 本节首先介绍拉格朗日定理以及它的预备知识—罗尔定理,并由此来讨论函数的单调性. 一罗尔定理与拉格朗日定理 定理6.1(罗尔(Rolle)中值定理)设f满足 (ⅰ)在[]b a,上连续; (ⅱ)在) a内可导; (b , (ⅲ)) a f= f ) ( (b

则),(b a ∈?ξ使 0)(='ξf (1) 注 (ⅰ)定理6.1中三条件缺一不可. 如: 1o ? ??=<≤=1 010 x x x y , (ⅱ),(ⅲ)满足, (ⅰ)不满足, 结论不成立. 2o x y = , (ⅰ),(ⅲ)满足, (ⅱ)不满足,结论不成立. 3o x y = , (ⅰ), (ⅱ)满足, (ⅲ)不满足,结论不成立. (ⅱ) 定理6.1中条件仅为充分条件. 如:[]1,1 )(2 2-∈?????-∈-∈=x Q R x x Q x x x f , f 不满足(ⅰ), (ⅱ), (ⅲ)中任一条,但0)0(='f . (ⅲ)罗尔定理的几何意义是:在每一点都可导的一段连续 曲线上,若曲线两端点高度相等,则至少存在一条水平切线. 例 1 设f 在R 上可导,证明:若0)(='x f 无实根,则0)(=x f 最多只有一个实根. 证 (反证法,利用Rolle 定理) 例 2 证明勒让德(Legendre)多项式 n n n n n dx x d n x P )1(!21)(2-?= 在)1,1(-内有n 个互不相同的零点. 将Rolle 定理的条件(ⅲ)去掉加以推广,就得到下面应用更为广

第六章 微分中值定理及其应用

第六章 微分中值定理及其应用 引言 在前一章中,我们引进了导数的概念,详细地讨论了计算导数的方法.这样一来,类似于求已知曲线上点的切线问题已获完美解决.但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具. 另一方面,我们注意到:(1)函数与其导数是两个不同的的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,因此如何解决这个矛盾?需要在导数及函数间建立起一一联系――搭起一座桥,这个“桥”就是微分中值定理. 本章以中值定理为中心,来讨论导数在研究函数性态(单调性、极值、凹凸性质)方面的应用. §6.1 微分中值定理 教学章节:第六章 微分中值定理及其应用——§6.1微分中值定理 教学目标:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础. 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之 间的包含关系. 教学重点:中值定理. 教学难点:定理的证明. 教学方法:系统讲解法. 教学过程: 一、一个几何命题的数学描述 为了了解中值定理的背景,我们可作以下叙述:弧? AB 上有一点P,该处的切线平行与弦AB.如何揭示出这一叙述中所包含的“数量”关系呢? 联系“形”、“数”的莫过于“解析几何”,故如建立坐标系,则弧? AB 的函数是y=f(x),x ∈[a,b]的图像,点P 的横坐标为x ξ=.如点P 处有切线,则f(x)在点x ξ=处可导,且切线的斜率为()f ξ';另一方面,弦AB 所在的直线斜率为()() f b f a b a --,曲线y=f(x)上点P 的切线平行于弦 AB ?()() ()f b f a f b a ξ-'= -. 撇开上述几何背景,单单观察上述数量关系,可以发现:左边仅涉及函数的导数,右边仅涉及

微分中值定理例题

理工大学 微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理

()()1.()0,(0)0,f x f f f ?ξξξξζξξξ'' <=>><≤[][]''''''[]<<≤121212 121212122111211121 1221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζ?''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。 12n 12n 12n 11221122n 001 1 000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n n n i i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >???∈<<1++?+=++?+≤?=<=>α. '''=+-+ ∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 00 1 1 1 1 0000111() ()()()().x 2! ()()()()()(()()().) n n n i i i i i i i n n i n n i i i i i i i i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======?? ''-'-≥+-<<'≥+-===- ??? ∑∑∑∑∑∑∑注:x ()3.)tan . 2 F ,F 2 (0)0,(0)0,((cos 2 F f x f F F f ππξ ξπξξπππ πππξ [0]0'∈=[0]0=∴===[0]∈Q 设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续, 在(,)内可导, 且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cos sin F cos sin 0222222 cos 0)tan 2 2 x x x f f f πξξξ ξξξξ ξ ξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

微分中值定理研究报告和推广

渤海大学 毕业论文<设计) 题目微分中值定理的研究和推广完成人姓名张士龙 主修专业数学与应用数学 所在院系数学系 入学年度 2002年9月 完成日期 2006年5月25日 指导教师张玉斌

目录 引言 (1) 一、中值定理浅析 (1) 1、中值定理中的 (1) 2、中值定理中条件的分析 (2) 二、微分中值定理的推广 (4) 1、微分中值定理在无限区间上的推广 (4) 2、中值定理矢量形式的推广 (7) 3、微分中值定理在n维欧式空间中的推广 (9) 4、中值定理在n阶行列式形式的推广 (12) 5、高阶微分中值定理 (15) 结束语 (19) 参考文献 (19)

微分中值定理的研究和推广 张士龙 <渤海大学数学系锦州 121000 中国) 摘要:微分中值定理是高等数学中的一项重要内容,是解决微分问题的关键。本文对微分中值定理中的一些条件给予了相关说明。后又在此基础上,对微分中值定理进行了一系列的推广,先后在无限区间内,在定理的矢量形式,在多维欧氏空间中,在高阶行列式形式,以及在微分定理的高阶形式五个方面来研究,通过定理与实例的结合,来说明各个推广的过程。从而,使定理向着更加广阔的方面发展,有利于对定理的掌握和应用。 关键词:微分中值定理,无限区间,矢量形式,行列式,高阶微分中值定理,欧式空间。 The Research and Popularization of The Differential Mean Value Theorem Shilong Zhang (Department of Mathematics Bohai University Jinzhou 121000 China> Abstract: The differential mean value theorem is an important element of higher mathematics. It is the key to solve the differential problems. This text gives detailed explanations to the conditions of the differential mean value theorem. On this foundation, this text carries on series of promotional activities of the theorem, and makes research in the indefinite sector, the vector form of the theorem, the multi-dimensional Euclidean space, the high rank determinant and high rank of the differential theorem altogether five aspects. This text illustrates the promotional process through the integration of the theorem and its examples, so as to enable the theorem to develop towards broader aspects. It is advantageous to the mastery and application of the theorem. Key words: the differential mean value theorem, indefinite sector, the rector form, Euclidean space, determinant, defferential value theorm of higher order 引言 罗尔定理、拉格朗日定理、柯西定理统称为微分学的中值定理。中值定理既应用导数来研究函数的性质,是沟通函数及其导数之间的桥梁,是应用导数的局部性研究,函数在区间上的重要工具。在实践中,有着广泛的应用,因此,有必要将其进一步推广,使其达到一个比较完善的地步,对进一步的研究和创造有很大的帮助。 一、中值定理浅析 1、中值定理中的

微分中值定理及其应用

分类号UDC 单位代码 密级公开学号 2006040223 四川文理学院 学士学位论文 论文题目:微分中值定理及其应用 论文作者:XXX 指导教师:XXX 学科专业:数学与应用数学 提交论文日期:2010年4月20日 论文答辩日期:2010年4月28日 学位授予单位:四川文理学院 中国 达州 2010年4月

目 录 摘要 .......................................................................... Ⅰ ABSTRACT....................................................................... Ⅱ 引言 第一章 微分中值定理历史 (1) 1.1 引言 ................................................................... 1 1.2 微分中值定理产生的历史 .................................................. 2 第二章 微分中值定理介绍 (4) 2.1 罗尔定理 ............................................................... 4 2.2 拉格朗日中值定理........................................................ 4 2.3 柯西中值定理 ........................................................... 6 第三章 微分中值定理应用 (7) 3.1 根的存在性的证明........................................................ 7 3.2 一些不等式的证明........................................................ 8 3.3 求不定式极限 .......................................................... 10 3.3.1 型不定式极限 .................................................... 10 3.3.2 ∞ ∞ 型不定式极限 .................................................... 11 3.4 利用拉格朗日定理讨论函数的单调性 ....................................... 12 第四章 结论 ................................................................... 14 参考文献....................................................................... 15 致谢 .. (16)

微分中值定理的证明题(题目)

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证 4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明: (1)在(0,1)内存在ξ,使得ξξ-=1)(f . (2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得 5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+. 6. 若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

9. 设()f x 在[,]a b 上连续,(,)a b 内可导(0),a b ≤<()(),f a f b ≠ 证明: ,(,)a b ξη?∈使得 ()().2a b f f ξηη +''= (1) 10. 已知函数)(x f 在[0 ,1]上连续,在(0 ,1)内可导,b a <<0,证明存在),(,b a ∈ηξ, 使)()()(3/22/2ηξηf b ab a f ++= 略) 11. 设)(x f 在a x ≥时连续,0)(时,0)(/>>k x f ,则在))(,(k a f a a -内0)(=x f 有唯一的实根 根 12. 试问如下推论过程是否正确。对函数21sin 0()0 0t t f t t t ?≠?=??=?在[0,]x 上应用拉格朗日中值定理得: 21s i n 0()(0)111s i n ()2s i n c o s 00x f x f x x f x x x ξξξξ --'====--- (0)x ξ<< 即:1 1 1cos 2sin sin x x ξξξ=- (0)x ξ<< 因0x ξ<<,故当0x →时,0ξ→,由01l i m 2s i n 0ξξξ+→= 01lim sin 0x x x +→= 得:0lim x +→1cos 0ξ=,即01lim cos 0ξξ+→= 出 13. 证明:02x π?<<成立2cos x x tgx x <<。

微分中值定理和应用(大学毕业论文)

毕业论文(设计) 题目名称:微分中值定理的推广及应用 题目类型:理论研究型 学生:邓奇峰 院 (系):信息与数学学院 专业班级:数学10903班 指导教师:熊骏 辅导教师:熊骏 时间:2012年12月至2013年6月

目录 毕业设计任务书I 开题报告II 指导老师审查意见III 评阅老师评语IV 答辩会议记录V 中文摘要VI 外文摘要VII 1 引言1 2 题目来源1 3 研究目的和意义1 4 国外现状和发展趋势与研究的主攻方向1 5 微分中值定理的发展过程2 6 微分中值定理的基本容3 6.1 罗尔(Rolle)中值定理3 6.2 拉格朗日(Lagrange)中值定理4 6.3 柯西(Cauchy)中值定理4 6.4 泰勒(Taylor)定理4 7 微分中值定理之间的联系5 8 微分中值定理的应用5 8.1 根的存在性证明6 8.2 利用微分中值定理求极限8 8.3 利用微分中值定理证明函数的连续性10 8.4 利用微分中值定理解决含高阶导数的中值问题10 8.5 利用微分中值定理求近似值10 8.6 利用微分中值定理解决导数估值问题10 8.7 利用微分中值定理证明不等式11 9 微分中值定理的推广14 9.1 微分中值定理的推广定理15 9.2 微分中值定理的推广定理的应用17 参考文献18 致19

微分中值定理的推广及应用 学生:邓奇峰,信息与数学学院 指导老师:熊骏,信息与数学学院 【摘要】微分中值定理,是微积分的基本定理,是沟通函数与其导数之间的桥梁,是应用导数的局部性研究函数整体性的重要数学工具,在微积分中起着极其重要的作用。本文首先介绍了微分中值定理的发展过程、微分中值定理的容和微分中值定理之间的在联系,接着再看微分中值定理在解题中的应用,如:“讨论方程根(零点)的存在性” ,“求极限”和“证明不等式”等方面的应用。 由于微分中值定理及有关命题的证明方法中往往出现的形式并非这三个定理中的某个直接结论,这就需要借助于一个适当的辅助函数,来实现数学问题的等价转换,但是,怎样构造适当的辅助函数往往是比较困难的。在此重点给出如何通过构造辅助函数来解决中值定理问题,从理论和实际的结合上阐明微分中值定理的重要性。 拉格朗日中值定理及柯西中值定理都是罗尔中值定理的推广。本文从其它角度归纳、推导了几个新的形式,拓宽了罗尔中值定理的使用围。同时,用若干实例说明了微分中值定理在导数极限、导数估值、方程根的存在性、不等式的证明、以及计算函数极限等方面的一些应用。 【关键词】微分中值定理罗尔中值定理拉格朗日中值定理柯西中值定理联系推广应用

微分中值定理及其应用

本科生毕业论文(设计)系(院)数学与信息科学学院专业数学与应用数学 论文题目微分中值定理及其应用 学生姓名贾孙鹏 指导教师黄宽娜(副教授) 班级11级数应1班 学号 11290056 完成日期:2015年4月

微分中值定理及其应用 贾孙鹏 数学与信息科学学院数学与应用数学 11290056 【摘要】微分中值定理是研究复杂函数的一个重要工具,是数学分析中的重要内容。我们可以运用构造函数的方法来巧妙的运用微分中值定理解决问题。本文主要研究微分中值定理的内容和不同形式之间的关系,以及它的推广形式。并归纳了它在求极限,根的存在性,级数等方面的应用。最后对中间点的问题进行了讨论。 【关键词】微分中值定理应用辅助函数 1引言 微分中值定理主要包括罗尔(Roll)定理,拉格朗日(Lagannge)中值定理,柯西(Cauchy)中值定理,以及泰勒(Taylor)公式。他们之间层层递进。研究了单个函数整体与局部,以及多个函数之间的关系。对掌握函数的性质,以及根的存在性等方面具有重要的作用。学微分中值定理这节同我们要掌握为什么要学这节,和不同定理之间的关系和应用。从教材来看,我们已经明白了导数微分重要性,但没讲明如何运用,因此有必要加强导数的应用,而微分中值定理是导数运用的理论基础。所以这部分内容很重要。它是以后研究函数极限,单调,凹凸性的基础。从微分中值定理的产生来看,其中一个基础问题就是函数最值问题。而解决此类问题就是能熟练的运用微分中值定理。此文为加深对中值定理的理解,在它推广的基础上详细解释了定理间的关系,对它的应用作了5个大方面的归纳。并对最新研究成果作了解释。 2柯西与微分中值定理 2.1柯西的证明 首先在柯西之前就有很多科学家给出了导数的定义,当然他们对导数的认识存在着差异。比如说欧拉在定义导数的时候就用了差商的形式,如将() g x的导数定义 为 ()() g x h g h h +- 当趋于0时的极限。对于拉格朗日他对导数的认识开始是建立在 错误观点的,他认为任意的函数都可以展开成幂级数的形式,但是事实并不是这样。而柯西采用的是极限来定义并将其转化成了不等式的语言。我们来看下柯西的证明,它开始于:

微分中值定理及其在不等式的应用

安阳师范学院本科学生毕业论文微分中值定理及其应用 作者张在 系(院)数学与统计学院 专业数学与应用数学 年级2008级 学号06081090 指导老师姚合军 论文成绩 日期2010年6月

学生诚信承诺书 本人郑重承诺:所成交的论文是我个人在导师指导下进行的研究工作即取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包括其他人已经发表的或撰写的研究成果,也不包括为获得安阳师范学院或其他教育机构的学位或证书所需用过的材料。与我一同工作的同志对本研究所作出的任何贡献均已在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名:导师签名:日期

微分中值定理及其应用 张庆娜 (安阳师范学院 数学与统计学院, 河南 安阳455002) 摘 要:介绍了使用微分中值定理一些常见方法,讨论了洛尔中值定理、拉格朗日中值定理、柯西中值定理在证明中根的存在性、不等式、等式及判定级数的敛散性和求极限等方面的应用,最后通过例题体现微分中值定理在具体问题中的应用. 关键词:连续;可导;微分中值定理;应用 1 引言 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在几何研究中,得到如下论:“抛物线弓形的顶点的切线必平行于抛物线弓形的底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes )正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri ) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实:曲线段上必有一点的切线平行于曲线的弦,这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了.1637,著名法国数学家费马(Fermat ) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle ) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy ) ,他是数学分析严格化运动的推动者,他的三部巨著《分析教程》、《无穷小计算教程概论》 (1823年)、《微分计算教程》(1829年),以严格化为其主要目标,对微积分理论进行了重构.他首先赋予中值定理以重要作用,使其成为微分学的核心定理.在《无穷小计算教程概论》中,柯西首先严格地证明了拉格朗日定理,又在《微分计算教程》中将其推广为广义中值定理—柯西定理.从而发现了最后一个微分中值定理. 近年来有关微分中值定理问题的研究非常活跃,且已有丰富的成果,相比之下,对有关中值定理应用的研究尚不是很全面.由于微分中值定理是高等数学的一个重要基本内容,而且无论是对数学专业还是非数学专业的学生,无论是研究生入学考试还是更深层次的学术研究,中值定理都占有举足轻重的作用,因此有关微分中值定理应用的研究显得颇为必要. 2 预备知识 由于微分中值定理与连续函数紧密相关,因此有必要介绍一些闭区间上连续函数的性质、定理. 定理2.1[1](有界性定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有界.即常数0M > ,使得x [,]a b 有|()|f x M ≤. 定理2.2(最大、最小值定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有最大值与最小值. 定理2.3(介值性定理) 设函数()f x 在闭区间[,]a b 上连续,且()()f a f b ≠.若μ为介于()f a 与()f b 之间的任意实数(()()f a f b μ<<或()()f b f a μ<<),则至少存在一点

微分中值定理及其应用大学毕业论文

微分中值定理及其应用 大学毕业论文 Last revised by LE LE in 2021

毕业论文(设计) 题目名称:微分中值定理的推广及应用 题目类型:理论研究型 学生姓名:邓奇峰 院 (系):信息与数学学院 专业班级:数学10903班 指导教师:熊骏 辅导教师:熊骏 时间:2012年12月至2013年6月

目录 毕业设计任务书................................................ I 开题报告..................................................... II 指导老师审查意见 ............................................ III 评阅老师评语................................................. IV 答辩会议记录.................................................. V 中文摘要..................................................... VI 外文摘要.................................................... VII 1 引言 (1) 2 题目来源 (1) 3 研究目的和意义 (1) 4 国内外现状和发展趋势与研究的主攻方向 (1) 5 微分中值定理的发展过程 (2) 6 微分中值定理的基本内容 (3) 罗尔(Rolle)中值定理 (3) 拉格朗日(Lagrange)中值定理 (4) 柯西(Cauchy)中值定理 (4) 泰勒(Taylor)定理 (4) 7 微分中值定理之间的联系 (5) 8 微分中值定理的应用 (5) 根的存在性证明 (6) 利用微分中值定理求极限 (8) 利用微分中值定理证明函数的连续性 (9) 利用微分中值定理解决含高阶导数的中值问题 (10) 利用微分中值定理求近似值 (10) 利用微分中值定理解决导数估值问题 (10) 利用微分中值定理证明不等式 (11) 9 微分中值定理的推广 (14) 微分中值定理的推广定理 (14) 微分中值定理的推广定理的应用 (16) 参考文献 (18) 致谢 (19)

最新3[1]1微分中值定理及其应用汇总

3[1]1微分中值定理 及其应用

3.2 微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基 础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:2学时 一、微分中值定理: 1. Rolle中值定理: 设函数在区间上连续,在内可导,且有.则?Skip Record If...?,使得?Skip Record If...?.

https://www.wendangku.net/doc/ea9473034.html,grange中值定理: 设函数在区间上连续,在内可导, 则?Skip Record If...?,使得?Skip Record If...?. 推论1 函数在区间I上可导且为I上的常值函 数. 推论2 函数和在区间I上可导且 推论3 设函数在点的某右邻域上连续,在内可导. 若存在,则右导数也存在,且有 (证) 但是, 不存在时, 却未必有不存在. 例如对函数 虽然不存在,但却在点可导(可用定义求得). Th ( 导数极限定理 ) 设函数在点的某邻域内连续,在 内可导. 若极限存在, 则也存在, 且( 证 ) 由该定理可见,若函数在区间I上可导,则区间I上的每一点,要么是导函 数的连续点,要么是的第二类间断点.这就是说,当函数在区间I 上点点可导时,导函数在区间I上不可能有第二类间断点.

最新数学分析教案-(华东师大版)第六章-微分中值定理及其应用

第六章微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:14学时 § 1 中值定理(4学时) 教学目的:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。 教学重点:中值定理。 教学难点:定理的证明。 教学难点:系统讲解法。 一、引入新课:

通过复习数学中的“导数”与物理上的“速度”、几何上的“切线”之联系,引导学生从直觉上感到导数是一个非常重要而有用的数学概念。在学生掌握了“如何求函数的导数”的前提下,自然提出另外一个基本问题:导数有什么用?俗话说得好:工欲善其事,必先利其器。因此,我们首先要磨锋利导数的刀刃。我们要问:若函数可导,则它应该有什么特性?由此引入新课——第六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(板书课题) 二、讲授新课: (一)极值概念: 1.极值:图解,定义 ( 区分一般极值和严格极值. ) 2.可微极值点的必要条件: Th ( Fermat ) ( 证 ) 函数的稳定点, 稳定点的求法. (二)微分中值定理: 1. Rolle中值定理: 叙述为Th1.( 证 )定理条件的充分但不必要性. https://www.wendangku.net/doc/ea9473034.html,grange中值定理: 叙述为Th2. ( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理.用几何直观引进辅助函数的方法参阅[1]P157. Lagrange中值定理的各种形式. 关于中值点的位置. 推论1 函数在区间I上可导且为I上的常值函数. (证)

微分中值定理

微分中值定理 班级: 姓名: 学号:

摘要 微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁,本文在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 罗尔定理 定理1 若函数f 满足下列条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 几何意义: 在每一点都可导的连续曲线上,若端点值相等则在曲线上至少存在一条水平曲线。 (注:在罗尔定理中,三个条件有一个不成立,定理的结论就可能不成立.) 例1 若()x f 在[]b a ,上连续,在()b a ,内可导()0>a ,证明:在()b a ,内方程 ()()[]() ()x f a b a f b f x '222-=-至少存在一个根. 证明:令()()()[]()()x f a b x a f b f x F 222---= 显然()x F 在[]b a ,上连续,在()b a ,内可导,而且 ()()()()b F a f b a b f a F =-=22 根据罗尔定理,至少存在一个ξ,使

()()[]() ()x f a b a f b f '222-=-ξ 至少存在一个根. 例2 求极限: 1 2 20(12) lim (1) x x e x ln x →-++ 解:用22ln )(0)x x x →:(1+有 20 2 12 012 01(12)2lim (1) 1(12)2 lim (12)lim 2(12)lim 2212 x x x x x x x x e x In x e x x e x x e x →→-→- →-++-+=-+=++=== 拉格朗日中值定理 定理2:若函数f 满足如下条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导, 则在开区间(,)a b 内至少存在一点ξ,使得 ()() () f b f a f b a ξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为罗尔中值定理的结论.这表明罗尔中值定理是拉格朗日中值定理的一种特殊情形. 拉格朗日中值定理的几何意义是:在满足定理条件的曲线()y f x =上至少存在一点(,())P f ξξ,该曲线在该点处的切线平行于曲线两端点的连线AB . 此外,拉格朗日公式还有以下几种等价表示形式,供读者在不同场合适用:

微分中值定理习题课

第三 微分中值定理习题课 教学目的 通过对所学知识的归纳总结及典型题的分析讲解,使学生对所学的知识有一个更深刻的理解和认识. 教学重点 对知识的归纳总结. 教学难点 典型题的剖析. 教学过程 一、知识要点回顾 1.费马引理. 2.微分中值定理:罗尔定理,拉格朗日中值定理,柯西中值定理. 3.微分中值定理的本质是:如果连续曲线弧AB 上除端点外处处具有不垂直于横轴的切线,则这段弧上至少有一点C ,使曲线在点C 处的切线平行于弦AB . 4.罗尔定理、拉格朗日中值定理、柯西中值的条件是充分的,但不是必要的.即当条件满足时,结论一定成立;而当条件不满足时,结论有可能成立,有可能不成立. 如,函数 (){ 2 ,01,0 , 1 x x f x x ≤<== 在[]1,0上不满足罗尔定理的第一个条件,并且定理的结论对其也是不成立的.而函数 (){ 2 1,11,1, 1 x x f x x --≤<= = 在[]1,1-上不满足罗尔定理的第一和第三个条件,但是定理的结论对其却是成立的. 5.泰勒中值定理和麦克劳林公式. 6.常用函数x e 、x sin 、x cos 、)1ln(x +、α )1(x +的麦克劳林公式. 7.罗尔定理、拉格朗日中值定理、柯西中值定理及泰勒中值定理间的关系. 8.00、∞∞ 、∞?0、∞-∞、00、∞1、0 ∞型未定式. 9.洛必达法则. 10.∞?0、00、∞1、0 ∞型未定式向00或∞∞ 型未定式的转化. 二、练习 1. 下面的柯西中值定理的证明方法对吗?错在什么地方?

由于()x f 、()x F 在[]b a ,上都满足拉格朗日中值定理的条件,故存在点()b a ,∈ξ,使得 ()()()()a b f a f b f -=-ξ', ()1 ()()()()a b F a F b F -'=-ξ. ()2 又对任一 (),,()0 x a b F x '∈≠,所以上述两式相除即得 ()()()()()()ξξF f a F b F a f b f ''= --. 答 上述证明方法是错误的.因为对于两个不同的函数()x f 和()x F ,拉格朗日中值定理公式中的ξ未必相同.也就是说在()b a ,内不一定存在同一个ξ,使得()1式和()2式同时成立. 例如,对于()2 x x f =,在[]1,0上使拉格朗日中值定理成立的 21 = ξ;对()3 x x F =, 在[]1,0上使拉格朗日中值定理成立的 33 = ξ,两者不等. 2. 设函数()x f y =在区间[]1,0上存在二阶导数,且 ()()()()x f x x F f f 2 ,010===.试证明在()1,0内至少存在一点ξ,使()0='ξF .还至少存在一点η,使()0F η''= 分析 单纯从所要证明的结果来看,首先应想到用罗尔定理.由题设知, ()()010==F F ,且()x F 在[]1,0上满足罗尔定理的前两个条件,故在()1,0内至少存在一 点ξ,使()0='ξF .至于后一问,首先得求出()x F ',然后再考虑问题. ()()()x f x x xf x F '+='22,且()00='F .这样根据题设,我们只要在[]ξ,0上对函数 ()x F '再应用一次罗尔定理,即可得到所要的结论. 证 由于()y f x =在[]1,0上存在二阶导数,且()()10F F =,()x F 在[]1,0上满足罗尔定理的条件,故在()1,0内至少存在一点ξ,使()0='ξF . 由于 ()()()x f x x xf x F '+='2 2, 且()00='F ,()x F '在[]ξ,0上满足罗尔定理的条件,故在 ()ξ,0内至少存在一点η,使

相关文档
相关文档 最新文档