文档库 最新最全的文档下载
当前位置:文档库 › 离散数学模拟题及部分答案(英文)

离散数学模拟题及部分答案(英文)

离散数学模拟题及部分答案(英文)
离散数学模拟题及部分答案(英文)

Discrete Mathematic Test

Editor: Jin Peng

Date: 2008.5.6

Contents:

Discrete Mathematic Test (Unit 1) (3)

Discrete Mathematic Test (Unit 2) (8)

Discrete Mathematic Test (Unit 3) (13)

Discrete Mathematic Test 1 (17)

Discrete Mathematic Test 2 (22)

Appendix1 Answer to Discrete Mathematic Test(Unit 1) (27)

Appendix2 Answer to Discrete Mathematic Test 2 (31)

Discrete Mathematic Test (Unit 1)

Part I (T/F questions, 15 Scores)

In this part, you will have 15 statements. Make your own judgment, and then put T (True) or F (False) after each statement.

1. Let A, B, and C be sets such that A∪B=A∪C, then B=C. ( )

2. Let A and B be subsets of a set U, and A B, then A△B=A B

and A∩B’= . ( ) 3. Let p a nd q and r be three statements. If ~pú~q ≡ ~pú~r, then q and r have the same value. ( )

4. Let A, B be sets such that both AíB and A?B is possible. ( )

5. Let p and q be two statements, then (p?~q) ?((~pú~q) (p?~q)) is a tautology.

( )

6.Let A, B be sets, P(A) is the power set of A, then P(A B)=P(A) P(B).( )

7. Let A, B, and C be sets, then if A?B,BíC,then AíC. ( )

8. Let A, B be sets, if A={?}, B=P(P(A)), then {?}?B and{?}íB. ( )

9. Let x be real number, then x?{x} {{x}} and {x}í{x} {{x}}. ( )

10. Let A, B, and C be sets, then A (B∪C) = (A B) ∪(A C). ( )

11. If A={x}∪x, then x?A and xíA. ( )

12. ( x)(P(x)∧Q(x))and ( x)P(x) ∧( x)Q(x) are equivalent. ( )

13. Let A and B be sets, then A×(B C)=(A×B) (A×C). ( )

14. The argument formula (púq)? (r s), (sút)?w╞ p?w is valid. ( )

15. ( x)(P(x) ?Q(x))and ( x)P(x) ? ( x)Q(x) are equivalent. ( )

Part II (1 Foundations: Sets Logic, and Algorithms , 85 Scores)

1. (8 points)What sets so each of the V enn diagrams in following Figure represent?

2. (8 points)Let U={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}. Let A={1,5,6,9,10,15} and B={5,6,8,9,12,13}. Determine the following:

Find a. SA b. SA’ c. SB d. SA∩B .

3. (8 points) A class of 45 students has 3 minors for options, respectively A, B and C. A is the set of students taking algebra, B is the set of students who play basketball, C is the set of students taking the computer programming course. Among the 45 students, 12 choose subject A, 8 choose B and another 6 choose C. Additionally, 9 students choose all of the three subjects.

What is the at least number of students do not taking the algebra course and the computer programming course and playing basketball?

4. (8 points)Find a formula A that uses the variables p and q such that A is true only when exactly one of p and q is true.

5. (8 points)Prove the validity of the logical consequences.

Anne plays golf or Anne plays basketball. Therefore, Anne plays golf.

6. (9 points)Prove the validity of the logical consequences.

If the budget is not cut then prices remain stable if and only if taxes will be raised. If the budget is not cut, then taxes will be raised. If price remain stable, then taxes will not be raised. Therefore, taxes will not be raised.

7. (8 points) (1) What is the universal quantification of the sentence: x2 +x is an even integer, where x is an even integer? Is the universal quantification a true statement?

(2) What is the existential quantification of the sentence: x is a prime integer, where x is an odd integer? Is the existential quantification a true statement?

8. (12 points)Symbolize the following sentences by using predicates, quantifiers, and logical connectives.

(1) Any nature number has only one successor number.

(2) For all x,y N, x+y=x if and only if y=0.

(3) Not all nature number x N, it exist a nature number y N, such that x≤y.

9. (8 points)Show that x(~F(x)∨A(x)),x(A(x) →B(x)),x F(x)

|= x B(x)

10. (8 points)In the bubble sort algorithm, if successive elements L[j] and L[j+1] are such that L[j]>L[j+1], then they are interchanged, that is, swapped. Therefore, the bubble sort algorithm may require elements to be swapped. Show how bubble sort sorts the elements 7 5 6 3 1 4 2 in increasing order. Draw figures.

Discrete Mathematic Test (Unit 2)

Part I (T/F questions, 15 Scores)

In this part, you will have 15 statements. Make your own judgment, and then put T (True) or F (False) after each statement.

1.Let A and B be sets such that any subsets of A B is a relation from A to B. ( )

2. Let R={(1,1),(1,2),,(3,3) ,(3,1) ,(1,3)} be relations on the set A={1,2,3}then R is transitive. ( )

3. Let R={(1,1),(2,2),(2,3),(3,3)} be relations on the set A={1,2,3}then R is symmetric.

( ) 4. Let R be a symmetric relation. then Rn is symmetric for all positive integers n.

( ) 5. Let R and S are reflexive relations on a set A then maybe not reflexive.

( ) 6. Let R={(a,a),(b,b),(c,c) ,(a,b) ,(b,c)} be relations on the set A={a,b,c}then R is equivalence relation. ( )

7. If R is equivalence relation,then the transitive closure of R is R. ( )

8. Let R be relations on a set A,then R maybe symmetric and antisymmetic. ( )

9. If and are partition of a given set A,then ∪ is a lso a partition of A.( )

10.Let R and S are equivalence relations on a set A, Let ψbe the set of all equivalence class of R,and ? be the set of all equivalence class of S, if R≠S, then ψ∩? =Φ. ( ) 11. Let (S, ) be a poset such that S is a finite no nempty set,then S has ninimal element,and the elements is unique. ( )

12. Let R and S are relations on a set A,then MR∩S MR∧MS. ( )

13. If a relation R is symmetric .then there is loop at every vertex of its directed graph.

( ) 14. A directed graph of a partial order relation R cannot contain a closed directed path other than loops. ( ) 15. The poset ,where P(S) is the power set of a set S is not a chain. ( )

Part II (1 Foundations: Sets Logic, and Algorithms , 85 Scores)

1. (8 points) Let R be the relation {(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)}, and let S be relation {(2, 1), (3, 1), (3, 2), (4, 2)}. Find S R.and R3.

2. (8 points)Determine whether the relations represented by the following zero-one matrices are partial orders.

3. (8 points)Determine the number of different equivalence relations on a set with three elements by listing them.

4. (8 points)Let R ={ (a , b)∈A| a divides b }, where A={1,2,3,4}. Find the matrix MR of R. Then determine whether R is reflexive, symmetric, or transitive.

5. (8 points)Determine whether the relation R on the set of all people is reflexive, symmetric, antisymmetric, and/or transitive, where (a, b) R if and only if

a) a is taller than b.

b) a and b were born on the same day.

c) a has the same first name as b.

6. (8 points) Define a equivalence relations on the set of students in your discrete mathematics class .Determine the equivalence classes for these equivalence relations.

7. (10 points) Let R be the relation on the set of ordered pairs of positive integers such that if and only if . Show that R is an equivalence relation.

8. (8 points) Answer the following questions for the partial order represented by the following Hasse diagram.

9. (9 points) Let R be the relation on the set A={a,b,c,d} such that the matrix of R is

find

(1) reflexive closure of R.

(2) symmetric closure of R.

(3) transitive closure of R.

10. (10 points)

(1)Show that there is exactly one greatest element of a poset, if such an element exists.

(2) Show that the least upper bound of a set in poset is unique if it exists.

Discrete Mathematic Test (Unit 3)

Part I (T/F questions, 15 Scores)

In this part, you will have 15 statements. Make your own judgment, and then put T (True) or F (False) after each statement.

1. There exist a simple graph with four edges and degree sequence 1,2,3,4. ( )

2. There are at least two people whith exactly the same number of friends in any gathering of n>1 people.

. ( )

3. The number of edges in a complete graph with n vertices is n(n-1). ( )

4. The complement of graph G is not possible a subgraph of G. ( )

5. Tthat any cycle-free graph contains a vertex of degree 0 or 1.

( )

6. The gr aph G, either G or its complement G’, is a connected graph. ( )

7. Any graph G and its complement G’ can not be isomorphic ( )

8. An Eulerian is a Hamiltonian graph,but a Hamiltonian graph is not An Eulerian .

( ) 9. If every member of a party of six people knows at least three people ,prove that they can sit around a table in such a way that each of them knows both his neighbors. ( )

10. A circuit either is a cycle or can be reduced to a cycle. ( )

11. A graph G with n vertices .G is connected if and only if G is a tree. ( )

12. A connected graph is a circuit if the degree of each vertex is 2. ( )

13.A circuit either is a cycle or can be reduced to a cycle. ( )

14.For any simple connected planar gragh G that X (G) 6. ( )

15. .The sum of the odd degrees of all vertices of a graph is even. ( )

Part II (1 Foundations: Sets Logic, and Algorithms , 85 Scores)

1. (10 points) Does there exist a simple graph with degree sequence 1,2,3,5? Justify you answer.

2. (10 points) Suppose there are 90 small towns in a country. From each town there is a direct bus route to a least 50 towns. Is it possible to go from one town to ant other town by bus possibly changing from one bus and then taking another bus to another town?

3. 10 points) Find the number of distinct paths of length 2 in graphs K5.

4. (5 points Draw all different graphs with two vertices and two edges.

5. (10 points) Determine where the graphs in Figure 1 have Euler trails.If the graph has an Euler trail, exhibit one.

6.(10 points) Use a K-map to find the minimized sum-of-product Boolean expressions of the expressions.

xyzw+xyzw’+xyx’w’+xy’zw’+x’yzw+x’yzw’+x’y’z’w’+x’y’z’w

7. (10 points) Insert 5, 10, and 20, in this order, in the binary search tree of following Figure. Draw the binary search tree after each insertion.

8.(8 points) Does there exist a simple connected planar graph with 35 vertices and 100 edges?

9. (10 points) Let G be a simple connected graph with n vertices. Suppose the degree of each vertex is at lease n 1. Does it imply the existence of a Hamiltonian cycle in G?

Discrete Mathematic Test 1

Part I (T/F questions)

Directions: in this part, you will have 15 statements. Make your own judgment, and then put T (True) or F (False) after each statement.

1. Let A and B be nonempty sets .Then A?B if and only if A-B=?. ( )

2. Let A and B be nonempty sets. If B≠Φ,then A-B? A. ( )

3. “Is Hangzhou a beautiful city?” This sentence is a statement. ( )

4. Let P and Q and R be three statements.if P∧Q≡P∧R,then Q and R have the same value.

( ) 5. Let P and Q be two statements.then (~p∨~q)→(p→~q) is not a tautology.

( )

6. (x)(P(x)∧Q(x))and (x)P(x) ∧(x)Q(x) are equivalent. ( )

7. Let A and B be sets.any subset of A×B is a relation. ( )

8.Let A={ 1,2,3}and R=={<1, 1>, <2, 2>, <1, 3>, <3, 1>, <2, 3>},so R is an equivalence Relation on A. ( ) 9.Let R be a relation on set A.then R is an equivalence Relation on A if and only if

R

R??R. ( )

10. R is an equivalence Relation on A.R- equivalence class is not a partition of A .( )

11.If a mathematical system has an identity,so the cayley table has no equal

Lines. ( ) 12. Let A be a nonempty set.then Φis identity of (ρ(A),∩). ( ) 13.The sum of the odd degrees of all vertices of a graph is even. ( )

14. Any graph G and its complement G’can not be isomorphic.( )

15. A graph G with n vertices .G is connected if and only if G is a tree. ( ) Part Ⅱ ( set questions)

theory of Knowledge Set .

16.Let A,B,and C be sets.Prove A∩(B-C)=(A∩B)-(A∩C).

17. A class of 40 students has 3 minors for options, respectively A, B and C. Among the 40 students, 15 choose subject A, 10 choose B and another 6 choose C. Additionally, 5 students choose all of the three subjects. Our question is at least how many students do not choose any subject.

Part Ⅲ ( LOGIC questions)

Directions: in this part, you need to provide solutions for question 17~19 based on the theory of knowledge logic .

18.Show that ~(P∧~Q),~Q∨R ,~R |= ~P

19、show that ?x(F(x) →~A(x)),?x(A(x)∨B(x),?x ~B(x) |= ?x ~F(x)

Part Ⅳ ( Relations and Posets questions)

Directions: in this part,you need to provide solutions for question 20-22 based on the theory of knowledge relations and posets.

20.Let A={1,2,3,4},R={(1,2),(2,3),(3,1) }, L={(1,4),(2,2),(3,3),(4,3)},find the transitiv closures of the relations L

R?.

21.Let {A

1, A

2

, A

3

………A

n

}be a partition of a given set X.Difine a relation R on S as

follows:

For all a,b∈X,(a,b) ∈R if and only if there exists A such that a,b∈A.

22.Conseder the poset(S,≤),where S={k|k%96=0}and the relation ≤ is the divisibility relation.

1)Find all minimal and maximal elements.

2)Find all lower bounds of{6, 12, 16}.

3)Find all upper bounds of{6, 12, 16}.

4)Find the glb and lub of {6, 12, 16}.

离散数学试题及答案精选版

离散数学试题及答案 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

一、填空题 1设集合A,B,其中A={1,2,3},B={1,2},则A-B=____________________; (A)-(B)=__________________________. 2.设有限集合A,|A|=n,则|(A×A)|=__________________________. 3.设集合A={a,b},B={1,2},则从A到B的所有映射是 _______________________________________,其中双射的是 __________________________. 4.已知命题公式G=(PQ)∧R,则G的主析取范式是 _______________________________ __________________________________________________________. 6设A、B为两个集合,A={1,2,4},B={3,4},则从AB= _________________________;AB=_________________________;A-B=_____________________. 7.设R是集合A上的等价关系,则R所具有的关系的三个特性是 ______________________,________________________,__________________ _____________. 8.设命题公式G=(P(QR)),则使公式G为真的解释有 __________________________, _____________________________,__________________________. 9.设集合A={1,2,3,4},A上的关系 R 1={(1,4),(2,3),(3,2)},R 2 ={(2,1),(3,2),(4,3)},则

(完整版)离散数学试卷及答案

离散数学试题(A卷答案) 一、(10分)求(P↓Q)→(P∧?(Q∨?R))的主析取范式 解:(P↓Q)→(P∧?(Q∨?R))??(?( P∨Q))∨(P∧?Q∧R)) ?(P∨Q)∨(P∧?Q∧R)) ?(P∨Q∨P)∧(P∨Q∨?Q)∧(P∨Q∨R) ?(P∨Q)∧(P∨Q∨R) ?(P∨Q∨(R∧?R))∧(P∨Q∨R) ?(P∨Q∨R)∧(P∨Q∨?R)∧(P∨Q∨R) ? M∧1M ? m∨3m∨4m∨5m∨6m∨7m 2 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解设设P:王教授是苏州人;Q:王教授是上海人;R:王教授是杭州人。则根据题意应有: 甲:?P∧Q 乙:?Q∧P 丙:?Q∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为:

((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?'R 。由定理4.15和由定理4.16得sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。 综上可知,tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 四、(15分)集合A ={a ,b ,c ,d ,e }上的二元关系R 为R ={}, (1)写出R 的关系矩阵。 (2)判断R 是不是偏序关系,为什么? 解 (1) R 的关系矩阵为: ??? ??? ? ? ? ?=100001100010100 10110 11111 )(R M (2)由关系矩阵可知,对角线上所有元素全为1,故R 是自反的;ij r +ji r ≤1,故R 是反对称的;可计算对应的关系矩阵为:

离散数学第五版 模拟试题 及答案

《离散数学》模拟试题3 一、填空题(每小题2分,共20分) 1. 已知集合A ={φ,1,2},则A得幂集合p(A)=_____ _。 2. 设集合E ={a, b, c, d, e}, A= {a, b, c}, B = {a, d, e}, 则A∪B =___ ___, A∩B =____ __,A-B =___ ___,~A∩~B =____ ____。 3. 设A,B是两个集合,其中A= {1, 2, 3}, B= {1, 2},则A-B =____ ___, ρ(A)-ρ(B)=_____ _ _。 4. 已知命题公式R Q P G→ ∧ ? =) (,则G的析取范式为。 5. 设P:2+2=4,Q:3是奇数;将命题“2+2=4,当且仅当3是奇数。”符号化 ,其真值为。 二、单项选择题(选择一个正确答案的代号填入括号中,每小题4分,共16分。) 1. 设A、B是两个集合,A={1,3,4},B={1,2},则A-B为(). A.{1} B. {1, 3} C. {3,4} D. {1,2} 2. 下列式子中正确的有()。 A. φ=0 B. φ∈{φ} C. φ∈{a,b} D. φ∈φ 3. 设集合X={x, y},则ρ(X)=()。 A. {{x},{y}} B. {φ,{x},{y}} C. {φ,{x},{y},{x, y}} D. {{x},{y},{x, y}} 4. 设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,3),(3,2)}, 则R不具备(). 三、计算题(共50分) 1. (6分)设全集E=N,有下列子集:A={1,2,8,10},B={n|n2<50 ,n∈N},C= {n|n可以被3整除,且n<20 ,n∈N},D={n|2i,i<6且i、n∈N},求下列集合:(1)A∪(C∩D) (2)A∩(B∪(C∩D)) (3)B-(A∩C) (4)(~A∩B) ∪D 2. (6分)设集合A={a, b, c},A上二元关系R1,R2,R3分别为:R1=A×A, R2 ={(a,a),(b,b)},R3 ={(a,a)},试分别用 定义和矩阵运算求R1·R2 ,22R,R1·R2 ·R3 , (R1·R2 ·R3 )-1 。 3.(6分)化简等价式(﹁P∧(﹁Q∧R))∨(Q∧R)∨(P∧R). 4.(8分) 设集合A={1,2,3},R为A上的二元关系,且 M R= 写出R的关系表达式,画出R的关系图并说明R的性质. 5. (10分)设公式G的真值表如下. 试叙述如何根据真值表求G的 主析取范式和主合取范式,并 写出G的主析取范式和主合取范式. 1 0 0 1 1 0 1 0 0

离散数学期末试题

离散数学考试试题(A 卷及答案) 一、(10分)求(P ↓Q )→(P ∧?(Q ∨?R ))的主析取范式 解:(P ↓Q )→(P ∧?(Q ∨?R ))??(?( P ∨Q ))∨(P ∧?Q ∧R )) ?(P ∨Q )∨(P ∧?Q ∧R )) ?(P ∨Q ∨P )∧(P ∨Q ∨?Q )∧(P ∨Q ∨R ) ?(P ∨Q )∧(P ∨Q ∨R ) ?(P ∨Q ∨(R ∧?R ))∧(P ∨Q ∨R ) ?(P ∨Q ∨R )∧(P ∨Q ∨?R )∧(P ∨Q ∨R ) ?0M ∧1M ?2m ∨3m ∨4m ∨5m ∨6m ∨7m 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。则根据题意应有: 甲:?P ∧Q 乙:?Q ∧P 丙:?Q ∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P ,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为: ((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?' R 。则sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P:您努力,Q:您失败。 2、 “除非您努力,否则您将失败”符号化为 ; “虽然您努力了,但还就是失败了”符号化为 。 2、论域D={1,2},指定谓词P P (1,1) P (1,2) P (2,1) P (2,2) T T F F 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不就是对称的又不就是反对称的关系 R= ;A 上既就是对称的又就是反对称的关系R= 。 5、设代数系统,其中A={a,b,c}, 则幺元就是 ;就是否有幂等 性 ;就是否有对称性 。 6、4阶群必就是 群或 群。 7、下面偏序格就是分配格的就是 。 8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件就是 。 * a b c a b c a b c b b c c c b

二、选择 1、在下述公式中就是重言式为( ) A.)()(Q P Q P ∨→∧; B.))()(()(P Q Q P Q P →∧→??; C.Q Q P ∧→?)(; D.)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为 ( )。 A.0; B.1; C.2; D.3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A.3; B.6; C.7; D.8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A.4; B.5; C.6; D.9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A.自反性、对称性、传递性; B.反自反性、反对称性; C.反自反性、反对称性、传递性; D.自反性 。 6、设 ο,+ 为普通加法与乘法,则( )>+<ο,,S 就是域。 A.},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈== C.},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。 7、下面偏序集( )能构成格。

离散数学试卷及答案一

一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有 一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( ) A.汉密尔顿回路 B.欧拉回路 C.汉密尔顿通路 D.初级回路 2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( ) A.10 B.12 C.16 D.14 3.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( ) A.b∧(a∨c) B.(a∧b)∨(a’∧b) C.(a∨b)∧(a∨b∨c)∧(b∨c) D.(b∨c)∧(a∨c) 4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( ) A.<{1},·> B.〈{-1},·〉 C.〈{i},·〉 D.〈{-i},·〉 5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交 运算,下列系统中是代数系统的有( ) A.〈Z,+,/〉 B.〈Z,/〉 C.〈Z,-,/〉 D.〈P(A),∩〉 6.下列各代数系统中不含有零元素的是( ) A.〈Q,*〉Q是全体有理数集,*是数的乘法运算 B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算 C.〈Z,ο〉,Z是整数集,ο定义为xοxy=xy,?x,y∈Z D.〈Z,+〉,Z是整数集,+是数的加法运算 7.设A={1,2,3},A上二元关系R的关系图如下: R具有的性质是 A.自反性 B.对称性 C.传递性 D.反自反性 8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( ) A.R∪I A B.R C.R∪{〈c,a〉} D.R∩I A 9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的 等价关系,R应取( ) A.{〈c,a〉,〈a,c〉} B.{〈c,b〉,〈b,a〉} C.{〈c,a〉,〈b,a〉} D.{〈a,c〉,〈c,b〉} 10.下列式子正确的是( ) A. ?∈? B.??? C.{?}?? D.{?}∈? 11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x

离散数学试题及解答

离散数学 2^m*n 一、选择题(2*10) 1.令P:今天下雨了,Q:我没带伞,则命题“虽然今天下雨了,但是我没带伞”可符号化为()。 (A)P→?Q (B)P∨?Q (C)P∧Q (D)P∧?Q 2.下列命题公式为永真蕴含式的是()。 (A)Q→(P∧Q)(B)P→(P∧Q) (C)(P∧Q)→P (D)(P∨Q)→Q 3、命题“存在一些人是大学生”的否定是(A),而命题“所有的人都是要死的”的否定 是()。 (A)所有人都不是大学生,有些人不会死 (B)所有人不都是大学生,所有人都不会死 (C)存在一些人不是大学生,有些人不会死 (D)所有人都不是大学生,所有人都不会死 4、永真式的否定是()。

(A)永真式(B)永假式(C)可满足式(D)以上均有可能 5、以下选项中正确的是()。 (A)0= ? (B)0 ? (C)0∈? (D)0?? 6、以下哪个不是集合A上的等价关系的性质?() )。 (A)2 (B)4 (C)3 (D)5 10.连通图G是一棵树,当且仅当G中()。 (A)有些边不是割边(B)每条边都是割边 (C)无割边集(D)每条边都不是割边

二、填空题(2*10) 1、命题“2是偶数或-3是负数”的否定是________。 2、设全体域D是正整数集合,则命题?x?y(xy=y)的真值是______。 3、令R(x):x是实数,Q(x):x是有理数。则命题“并非每个实数都是有理数”的符号化表示为 4 5 6、设 7 8 (1)若A去,则C和D中要去1个人; (2)B和C不能都去; (3)若C去,则D留下 五、(15分)设A={1,2,3},写出下列图示关系的关系矩阵,并讨论它们的性质:

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学试卷及答案(2)

一、填空 20% (每小题2分) 1、 P :你努力,Q :你失败。“除非你努力,否则你将失败”的翻译为 ;“虽然你努力了,但还是失败了”的翻译为 。 2、论域D={1,2},指定谓词P 则公式),(x y yP x ??真值为 。 2、 设S={a 1 ,a 2 ,…,a 8},B i 是S 的子集,则由B 31所表达的子集是 。 3、 设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则R= (列举法)。 R 的关系矩阵M R = 。 5、设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= ; A 上既是对称的又是反对称的关系R= 。 6、设代数系统,其中A={a ,b ,c}, 则幺元是 ;是否有幂等 性 ;是否有对称性 。 7、4阶群必是 群或 群。 8、下面偏序格是分配格的是 。

9、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是 。 10、公式R Q P Q P P ?∧∨?∧∧?∨)(())(( 的根树表示为 。 二、选择 20% (每小题2分) 1、在下述公式中是重言式为( ) A .)()(Q P Q P ∨→∧; B .))()(()(P Q Q P Q P →∧→??; C .Q Q P ∧→?)(; D .)(Q P P ∨→ 。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为( )。 A .0; B .1; C .2; D .3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A .3; B .6; C .7; D .8 。 4、 设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A .4; B .5; C .6; D .9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为

离散数学考试试题(A、B卷及答案)

离散数学考试试题(A卷及答案) 一、证明题(10分) 1) (P∧Q∧A C)∧(A P∨Q∨C ) (A∧(P Q ))C。P<->Q=(p->Q)合取(Q->p) 证明: (P∧Q∧A C)∧(A P∨Q∨C) (P ∨Q ∨A∨C)∧(A∨P∨Q∨C) ((P ∨Q ∨A)∧(A∨P∨Q))∨C反用分配律 ((P∧Q∧A)∨(A ∧P ∧Q))∨C ( A∧((P∧Q)∨(P ∧Q)))∨C再反用分配律 GAGGAGAGGAFFFFAFAF

( A∧(P Q))∨C (A∧(P Q ))C 2) (P Q)P Q。 证明:(P Q)((P∧Q))(P ∨Q))P Q。 二、分别用真值表法和公式法求(P(Q∨R))∧(P∨(Q R))的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值(15分)。 主析取范式与析取范式的区别:主析取范式里每个括号里都必须有全部的变元。 主析取范式可由析取范式经等值演算法算得。 GAGGAGAGGAFFFFAFAF

证明: 公式法:因为(P(Q ∨R))∧(P∨(Q R)) (P∨Q∨R)∧(P∨(Q ∧R )∨(Q ∧R)) (P∨Q ∨R)∧(((P∨Q)∧(P ∨R ))∨(Q ∧R ))分配律 (P∨Q∨R)∧(P∨Q ∨Q)∧(P∨Q ∨R)∧(P∨R ∨Q)∧(P∨R ∨R) (P∨Q ∨R)∧(P∨Q ∨R )∧(P ∨Q∨R) M∧5M∧6M使(非P析取Q析取R)为0 4 GAGGAGAGGAFFFFAFAF

所赋真值,即100,二进制为4 GAGGAGAGGAFFFFAFAF

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

自考离散数学试题及答案

一、单项选择题(本大题共15小题,每小题1分,共15分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.下列句子不是.. 命题的是( D ) A .中华人民共和国的首都是北京 B .张三是学生 C .雪是黑色的 D .太好了! 2.下列式子不是.. 谓词合式公式的是( B ) A .(?x )P (x )→R (y ) B .(?x ) ┐P (x )?(?x )(P (x )→Q (x )) C .(?x )(?y )(P (x )∧Q (y ))→(?x )R (x ) D .(?x )(P (x ,y )→Q (x ,z ))∨(?z )R (x ,z ) 3.下列式子为重言式的是( ) A .(┐P ∧R )→Q B .P ∨Q ∧R →┐R C .P ∨(P ∧Q ) D .(┐P ∨Q )?(P →Q ) 4.在指定的解释下,下列公式为真的是( ) A .(?x )(P (x )∨Q (x )),P (x ):x =1,Q (x ):x =2,论域:{1,2} B .(?x )(P (x )∧Q (x )),P (x ):x =1,Q (x ):x =2,论域: {1,2} C .(?x )(P (x ) →Q (x )),P (x ):x >2,Q (x ):x =0,论域:{3,4} D .(?x )(P (x )→Q (x )),P (x ):x >2,Q (x ):x =0,论域:{3,4} 5.对于公式(?x ) (?y )(P (x )∧Q (y ))→(?x )R (x ,y ),下列说法正确的是( ) A .y 是自由变元 B .y 是约束变元 C .(?x )的辖域是R(x , y ) D .(?x )的辖域是(?y )(P (x )∧Q (y ))→(?x )R (x ,y ) 6.设论域为{1,2},与公式(?x )A (x )等价的是( ) A .A (1)∨A (2) B .A (1)→A (2) C .A (1)∧A (2) D .A (2)→A (1) 7.设Z +是正整数集,R 是实数集,f :Z +→R , f (n )=log 2n ,则f ( ) A .仅是入射 B .仅是满射 C .是双射 D .不是函数 8.下列关系矩阵所对应的关系具有反对称性的是( ) A .???? ??????001110101 B .??????????101110001 C .??????????001100100 D .???? ??????001010101 9.设R 1和R 2是集合A 上的相容关系,下列关于复合关系R 1?R 2的说法正确的是( ) A .一定是等价关系 B .一定是相容关系

离散数学期末试卷A卷及答案

《离散数学》试卷(A 卷) 一、 选择题(共5 小题,每题 3 分,共15 分) 1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕?)(为(C )。 A 、{1,2} B 、{2,3} C 、{1,4,5} D 、{1,2,3} 2、下列语句中哪个是真命题 ( A ) A 、如果1+2=3,则4+5=9; B 、1+2=3当且仅当4+5≠9。 C 、如果1+2=3,则4+5≠9; D 、1+2=3仅当4+5≠9。 3、个体域为整数集合时,下列公式( C )不是命题。 A 、)*(y y x y x =?? B 、)4*(=??y x y x C 、)*(x y x x =? D 、)2*(=??y x y x 4、全域关系A E 不具有下列哪个性质( B )。 A 、自反性 B 、反自反性 C 、对称性 D 、传递性 5、函数612)(,:+-=→x x f R R f 是( D )。 A 、单射函数 B 、满射函数 C 、既不单射也不满射 D 、双射函数 二、填充题(共 5 小题,每题 3 分,共15 分) 1、设|A|=4,|P(B)|=32,|P(A ?B)|=128,则|A ?B|=??2???.

2、公式)(Q P Q ?∨∧的主合取范式为 。 3、对于公式))()((x Q x P x ∨?,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为???1???。 4、设A ={1,2,3,4},则A 上共有???15????个等价关系。 5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。 三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分) 1、“这个语句是真的”是真命题。 ( F ) 2、“张刚和小强是同桌。”是复合命题。 ( F ) 3、))(()(r q q p p ∧?∧→?∨是矛盾式。 ( T ) 4、)(T S R T R S R ??????。 ( F ) 5、恒等关系具有自反性,对称性,反对称性,传递性。 ( T ) 6、若f 、g 分别是单射,则g f ?是单射。 ( T ) 7、若g f ?是满射,则g 是满射。 ( F ) 8、若A B ?,则)()(A P B P ?。 ( T ) 9、若R 具有自反性,则1-R 也具有自反性。 ( T ) 10、B A ∈并且B A ?不可以同时成立。 (F ) 四、计算题(共 3 小题,每题 10 分,共30 分) 1、调查260个大学生,获得如下数据:64人选修数学课程,94人选修计算机课程,58人选修商贸课程,28人同时选修数学课程和商贸课程,26人同时选修数学课程和计算机课程,22人同时选修计算机课程和商贸课程,14人同时选修三门课程。问 (1)三门课程都不选的学生有多少? (2)只选修计算机课程的学生有多少?

《离散数学》测试题答案

《离散数学》测试题答 案 https://www.wendangku.net/doc/eb11821650.html,work Information Technology Company.2020YEAR

测试题 ——离散数学 一、选择题 1、G是一棵根树,则()。 A、G一定是连通的 B、G一定是强连通的 C、G只有一个顶点的出度为0 D、G只有一个顶点的入度为1 2、下面哪个语句不是命题()。 A、中国将成功举办2008年奥运会 B、一亿年前地球发生了大灾难 C、我说的不是真话 D、哈密顿图是连通的 3、设R是实数集合,在上定义二元运算*:a,b∈R,a*b=a+b-ab,则下面的论断中正确的是()。 A、0是*的零元 B、1是*的幺元 C、0是*的幺元 D、*没有等幂元 4、下面说法中正确的是()。 A、所有可数集合都是等势的 B、任何集合都有与其等势的真子集 C、有些无限集合没有可数子集 D、有理数集合是不可数集合 5、无向完全图K3的不同构的生成子图有()个。 A. 6 B.5 C. 4 D. 3 6、下面哪一种图不一定是无向树? A、无回路的连通图 B、有n个顶点n-1条边的连通图 C、每对顶点间都有通路的图 D、连通但删去一条边则不连通的图 7、设集合A={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( )。 A.1 A B.{{4,5}} A C. {1,2,3} A D.A 8、在有界格中,若一个元素有补元,则补元( )。 A、必惟一 B、不惟一 C、不一定惟一 D、可能惟一 9、设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A是不封闭的() A、 x*y=max{x,y} B、 x*y=min{x,y} C、 x*y=GCD(x,y),即x,y的最大公约数 D、 x*y=LCM(x,y),即x,y的最小公倍数

离散数学试卷及答案

填空10% (每小题 2 分) 1、若P,Q,为二命题,P Q 真值为0 当且仅当。 2、命题“对于任意给定的正实数,都存在比它大的实数” 令F(x):x 为实数,L(x, y) : x y 则命题的逻辑谓词公式为。 3、谓词合式公式xP(x) xQ(x)的前束范式为。 4、将量词辖域中出现的和指导变元交换为另一变元符号,公式其余的部分不变,这种方法称为 换名规则。 5、设x 是谓词合式公式A的一个客体变元,A的论域为D,A(x)关于y 是自由的,则被称为存 在量词消去规则,记为ES。 选择25% (每小题分) 1、下列语句是命题的有()。 A、明年中秋节的晚上是晴天; C、xy 0 当且仅当x 和y 都大于0; D 、我正在说谎。 2、下列各命题中真值为真的命题有()。 A、2+2=4当且仅当3是奇数; B、2+2=4当且仅当 3 不是奇数; C、2+2≠4 当且仅当3是奇数; D、2+2≠4当且仅当 3 不是奇数; 3、下列符号串是合式公式的有() A、P Q ; B、P P Q; C、( P Q) (P Q); D、(P Q) 。 4、下列等价式成立的有( )。 A、P QQ P ; B、P(P R) R; C、P (P Q) Q; D 、P (Q R) (P Q) R。 5、若A1,A2 A n和B为 wff ,且A1 A2 A n B 则 ( )。 A、称A1 A2 A n 为 B 的前 件; B 、称 B 为A1,A2 A n 的有效结论

C 、 x(M (x) Mortal (x)) ; D 、 x(M(x) Mortal (x)) 8、公式 A x(P(x) Q(x))的解释 I 为:个体域 D={2} ,P(x) :x>3, Q(x) :x=4则 A 的 真 值为( ) 。 A 、 1; B 、 0; C 、 可满足式; D 、无法判定。 9、 下列等价关系正确的是( )。 A 、 x(P(x) Q(x)) xP(x) xQ(x); B 、 x(P(x) Q(x)) xP(x) xQ(x); C 、 x(P(x) Q) xP(x) Q ; D 、 x(P(x) Q) xP(x) Q 。 10 、 下列推理步骤错在( )。 ① x(F(x) G(x)) P ② F(y) G(y) US ① ③ xF(x) P ④ F(y) ES ③ ⑤G(y) T ②④I ⑥ xG(x) EG ⑤ A 、②; B 、④; C 、⑤; D 、⑥ 逻辑判断 30% 1、 用等值演算法和真值表法判断公式 A ((P Q) (Q P)) (P Q) 的类型。 C 、当且仅当 A 1 A 2 A n D 、当且仅当 A 1 A 2 A n B F 。 6、 A ,B 为二合式公式,且 B ,则( )。 7、 A 、 A C 、 A B 为重言式; B 、 B ; E 、 A B 为重言式。 人总是要死的”谓词公式表示为( )。 论域为全总个体域) M (x ) : x 是人; Mortal(x) x 是要死的。 A 、 M (x) Mortal (x) ; B M (x) Mortal (x)

离散数学试卷及答案(1)

一、填空 20% (每小题2分) 1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =?B A 。 2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。 3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ?∨→?∧→∨?的真值= 。 4.公式P R S R P ?∨∧∨∧)()(的主合取范式为 。 5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ?→? 在I 下真值为 。 6.设A={1,2,3,4},A 上关系图为 则 R 2 = 。 7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为 则 R= 。

8.图的补图为 。 9.设A={a ,b ,c ,d} ,A 上二元运算如下: 那么代数系统的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。 10.下图所示的偏序集中,是格的为 。 二、选择 20% (每小题 2分) 1、下列是真命题的有( ) A . }}{{}{a a ? ; B .}}{,{}}{{ΦΦ∈Φ; C . }},{{ΦΦ∈Φ; D . }}{{}{Φ∈Φ。 2、下列集合中相等的有( ) A .{4,3}Φ?; B .{Φ,3,4}; C .{4,Φ,3,3}; D . {3,4}。 3、设A={1,2,3},则A 上的二元关系有( )个。

A.23 ;B.32 ;C.332?;D.223?。 4、设R,S是集合A上的关系,则下列说法正确的是() R 是自反的; A.若R,S 是自反的,则S R 是反自反的; B.若R,S 是反自反的,则S R 是对称的; C.若R,S 是对称的,则S R 是传递的。 D.若R,S 是传递的,则S 5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下 t s p R= t s ∈ =则P(A)/ R=() < > ∧ A ) (| || |} ( , {t , | s A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}} 6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“?”的哈斯图为() 7、下列函数是双射的为() A.f : I→E , f (x) = 2x ;B.f : N→N?N, f (n) = ; C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。 (注:I—整数集,E—偶数集,N—自然数集,R—实数集) 8、图中从v1到v3长度为3 的通路有()条。 A.0;B.1;C.2;D.3。 9、下图中既不是Eular图,也不是Hamilton图的图是()

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2) x (A(x)B(x))xA(x)xB(x) 证明:x(A(x)B(x))x(A(x)∨B(x)) x A(x)∨xB(x) xA(x)∨xB(x) xA(x)xB(x) 二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R)) (P∧(Q∨R))∨(P∧Q∧R) (P∧Q)∨(P∧R))∨(P∧Q∧R) (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D,(C∨D)E, E(A∧B),(A∧B)(R∨S)R∨S证明:(1) (C∨D) E ?P (2) E(A∧B) ??P (3) (C∨D)(A∧B) T(1)(2),I (4) (A∧B)(R∨S)??P (5) (C∨D)(R∨S) ? T(3)(4),I (6) C∨D P (7) R∨S T(5),I 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x) P

(2)P(a) T(1),ES (3)x(P(x)Q(y)∧R(x)) P (4)P(a)Q(y)∧R(a) T(3),US (5)Q(y)∧R(a) T(2)(4),I (6)Q(y) T(5),I (7)R(a) T(5),I (8)P(a)∧R(a) T(2)(7),I (9)x(P(x)∧R(x)) T(8),EG (10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I 四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。 解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。 先求|A∩B|。 ∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。 于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。 证明:∵x A-(B∪C) x A∧x(B∪C) xA∧(xB∧x C) (x A∧x B)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C) ∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x2} R*S={| x,y N∧y=x2+1} S*R={<x,y>| x,yN∧y=(x+1)2},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。 七、设R={<a,b>,,<c,a>},求r(R)、s(R)和t(R) (15分)。 解:r(R)={,,,<b,b>,

相关文档 最新文档