文档库 最新最全的文档下载
当前位置:文档库 › 实验六 温差电偶的定标和测量

实验六 温差电偶的定标和测量

实验六  温差电偶的定标和测量
实验六  温差电偶的定标和测量

实验六 温差电偶的定标和测量

实验目的

1.加深对温差电现象的理解。

2.了解校准热电偶温度计的基本方法。

实验仪器

铜-康铜热电偶,校准用的纯金属(铅、锌、锡)或标准热电偶,待测熔点的金属,杜瓦瓶,电位差计或数字电压表,电炉等。

实验原理

1.热电偶的测温原理

把两种不同的导体或半导体连接成一闭合回路,如图6-1所示。如两接点分别处于不同的温度T 和T 0,则回路中就会产生热电动势,这种现象称作热电效

应。同时把这个电路叫做A 、B 组成的热

电偶,如铂-铂铑热电偶、铜-铁热电偶等。 在图6-1所示的热电偶回路中,产

生的热电势由接触电势和温差电势两部

分组成。温差电势是在同一导体的两端因温度的不同而产生的一种热电势,由于材

料中高温端的电子能量比低温端的电子能量大,因而从高温端扩散到低温端的电子数比从低温端扩散到高温端的电子数多,结果使高温端失去电子而带正电荷,低温端得到电子而带负电荷,产生一附加的静电场。此静电场阻碍电子从高温端向低温端的扩散,在达到动态平衡时,导体的高温和低温端间有一个电位差V T -V T 0,此即温差电势。在热电偶回路中,导体A 和B 分别有自己的温差电势e A (T ,T 0)和e B (T ,T 0)。

接触电势的产生原因是两种导体材料的电子密度和逸出功不同。这样,当两种导体接触时,电子在其间扩散的速率就不同,使一种导体因失去电子而带正电荷,另一种导体因得到电子而带负电荷,在其接触面上形成一个静电场,即产生了电位差,这就是接触电势,其数值取决于两种不同导体材料的性质和接点的温度。在热电偶回路中两个接点分别有不同的接触电势e AB (T ),e AB (T 0)。

由于温差电势和接触电势的影响,在热电偶回路中产生的总热电势可表达为

),()(),()(),(0000T T e T e T T e T e T T E A AB B AB AB --+= (6-1) 它是材料和温度的函数,对确定的热电偶材料,热电势E AB (T ,T 0)是温度T 和T 0的函数差

)()(),(00T f T f T T E AB -= (6-2) 如果使某接点温度固定(常取水的三相点温度作为T 0),则总电势成为温度

T 的单值函数

)(),(0T T T E AB ?= (4-10-

3)

这一关系式可通过实验获得。得到)(T ?后,我们测出热电偶接点处于某未知温度时的E AB 值(另一接点温度T 0),就可得到此温度值。

2.有关热电偶回路的几点结论

(1)若组成热电偶回路的两种导体相同,则无论两接点温度如何,热电偶回路内的总热电势为零。

(2)如热电偶两接点温度相同,则无论导体由何种材料制成,热电偶回路内的总热电势亦为零。

(3)热电偶的热电势只与接点的温度有关,与导体的中间温度分布无关。

(4)热电偶在接点温度为T 、T s 时的热电势,等于热电偶在接点温度为T 、

T 2和T 2、T s 时的热电势的代数和。

(5)在热电偶回路中接入第三种材料的导线,只要第三种材料的两端温度相同,第三种导线的引入就不会影响热电偶的热电势,这一性质称中间导体定律。

(6)当两接点温度分别是T 1和T 2时,由导体A 、B 组成的热电偶的热电势

等于AC 热电偶和CB 热电偶的热电势之和。即

),(),(),(212121T T E T T E T T E CB AC AB += (6-4) 导体C 称标准电极,一般用铂制成,这一性质称标准电极定律。

正是由于上述这些性质,才使我们对热电偶的热电势的测量成为可能,在实际使用中我们往往需要在热电偶回路里接入各种仪表(如电位差计、灵敏电流计)、连接导线等。但只要与这些器件相接的各接点的温度保持相同,就不必担心对热电势产生影响,而且也允许用任意的焊接方法来焊制热电偶。

需要注意,只有当组成热电偶材料的化学成分和物理状态是均匀的时,才有上述结论成立,如材料的理化性质不均匀(如组分有变化、结构不均匀等),就会引入难以确定的附加电动势而使结果产生较大的误差。

3.热电偶的校准

在实际测温前,必须知道热电偶的热电势-温度关系曲线,称作校准曲线,以后就可以根据热电偶与未知温度接触时产生的电动势,由曲线查出对应的温度。常用的几种具有标准组分的热电偶(如由含铂90%、铑10%的铂铑丝和纯铂丝组成的铂铑-铂热电偶;由含镍89%、铬9.8%、铁1%、锰0.2%的镍铬丝和含镍94%、铝2%、铁0.5%、硅1%、锰2.5%的镍铝丝组成的镍铬-镍铝热电偶等),它们的校准曲线(或校准数据表)在有关手册中可以查到,不必自己校准,如果实验室自制的热电偶组分并不标准,则校准工作就是不可缺少的了。

校准热电偶的方法有两种。

(1)比较法:即用被校热电偶与一标准组分的热电偶去测同一温度,测得一组数据,其中被校热电偶测得的热电势即由标准热电偶所测的热电势所校准,在被校热电偶的使用范围内改变不同的温度,进行逐点校准,就可得到被校热电偶的一条校准曲线。

(2)固定点法:这是利用几种合适的纯物质在一定的气压下(一般是标准大气压),将这些纯物质的沸点或熔点温度作为已知温度,测出热电偶在这些温度下的对应的电动势,从而得到热电势—温度关系曲线,这就是所求的校准曲线。

本实验采用固定点法对热电偶进行校准。为此将热电偶的冷端保持在冰水混合物内,其温度在标准大气压下是0℃,我们选择水的沸点、锡、锌和铅的熔点

分别作为校准的固定点。

为了使测量结果较为准确,对于金属的熔点不是在加热的过程中进行测量,而是待金属熔解后,撤去热源使其冷却的过程中确定其凝固点(对金属来说凝固点与熔点完全相同),由于金属在凝结和熔解过程中其温度是不变的,我们可以利用这一特性测定金属的凝固点,为此我们用电位差计(或数字电压表)测定热电势随时间的变化曲线,如图6-2所示。如果在一定的时间(至少几分钟)内,热电动势值基本不变,则该值对应的温度就是所测金属的凝固点。本实验所用的热电偶校准电路如图6-3所示,在热电偶与电位差计的测试端相连时,应注意

其正负极性不要接错。

实验内容

1.按图6-3接线,而后对电位差计进行校准,校准完毕再进行测量。 标准电池

本实验采用饱和标准电池(电解液为饱和硫酸隔溶液)作为标准电动势源。标准电池20℃时的电动势E S (20)=1.0186V ,标准电池的电动势随温度相应变化,

温度在0℃≤t ≤40℃时电动势为

E S (t )=E 20-[39.94(t -20)+0.955(t -20)2 +0.0090(t -20)3]×10-6V

(4-70)

使用标准电池时应注意以下几点:

1)根据使用时的室温算出或由表查出当时的电动势值。

2)存放地点的温度波动要求,远离热源并避免强光射到标准电池上。

3)正负极不能接错、严禁短路。流经电池的电流小于10μA 。

4)轻拿轻放,不得振荡或倒置。

2.将热电偶测温端放入在盛有冰水混合物的杜瓦瓶中,测量0℃时的热电势(应为零)。

3.用电炉加热水,待沸腾后将热电偶放入水中测其热电势。

4.用电炉加热专用容器中的纯锡,待锡全部熔化后切断电炉电源,由其自然冷却,将电偶测温端放入熔化的金属中,测定其热电热势—时间关系曲线(一分钟测一个点)。作图确定与锡的凝固点相对应的热电势的值。

5.作被校热电偶的校准曲线,以温度为横轴,热电势为纵轴,以所测的四个固定点作热电偶的校准曲线(相邻点间以直线相连。更准确的办法要用到曲线

拟合的方法)。

6.同法测未知熔点的焊锡的凝固点的热电势,从热电偶的校准曲线上查出焊锡的熔点温度。

注意事项

1.为了避免热电偶受熔融的金属玷污,故将热电偶测温端置于一端封闭的铜管中,使其与待测金属隔离。为保持热电偶与铜管良好的接触,测量时应在铜管底部滴入几滴硅油,热电偶测温端应插入硅油中,不能悬空。

2.除结点外,热电偶丝之间及与铜管之间应保持良好的电绝缘,以免短路而造成测试错误。

3.掌握电炉加热时间,当金属全部熔融后,应及时切断电源。否则,会因加热时间过长,温度过高,一方面使金属氧化,也延长了金属冷却所用的时间。

4.由于整个测量过程时间较长,电位差计校准后仍会发生漂移,所以在每次测量前都应重新校准。

5.每种金属测完后,必须重新升温使金属熔化,取出铜套管,然后切断电源,否则在金属冷却时会收缩而不易取出铜套管。

思考题

1.具体考察一下在实验线路中热电偶是如何和第三种金属连成回路的,接头在哪里?处在什么温度?并证明若电偶与第三种金属的两个接头温度一样时,回路电动势不因加接第三种金属而变化。

2.为什么要测金属凝固时的热电势?测熔化时的热电势能行吗?

3.若以一内阻及电流灵敏度均已知的灵敏电流计代替电位差计,能否测定热电偶的电动势?为什么?

热电偶校准不确定度报告

工作用铂铑10-铂热电偶校准结果的不确定度评定 1、概述 热电偶校准结果的不确定度评估,主要是为确定标准器和电测设备选择的合理性。校准结果不确定度的评估方法和结果为日常校准工作提供参考。 2、校准对象 工作用铂铑10-铂热电偶,校准点分别为419.527℃(锌点),660.323℃(铝点),1084.62℃(铜点)。铂铑10-铂热电偶各校准点的微分热电势为:S 锌=9.64μV/℃,S 铝=10.40μV/℃,S 铜=11.80μV/℃。 3、测量标准及设备 3.1 标准器 标准器为一等标准铂铑10-铂热电偶,主要技术指标如表1 表1 计量标准器技术指标 3.2 电测设备 数字多用表,测量范围(0~100)mV ,分辨力0.1μV ,MPE :±(0.005%读数+0.0035%量程)。 4、测量方法 将一等标准铂铑10-铂热电偶(以下简称标准热电偶)和工作用铂铑10-铂热电偶(以下简称被检热电偶)捆扎后放入管式检定炉,用双极比较法在锌、铝、铜三个温度点进行检定。分别计算算术平均值,最后得到被检热电偶在各温度点的热电势值。 5、测量模型 检定点测量结果的测量模型: )(标被证E E E E t -+= (式1) 式中: t E ——被检热电偶在检定点上的热电动势值,mV ; 证E ——标准热电偶证书上给出的热电动势值,mV ; 被E ——被检热电偶测得的热电动势算术平均值,mV ;

标E ——检定时标准热电偶测得的热电动势算术平均值,mV 。 被E 和标E 是用一台数字多用表同一时间同一条件下测得,故两组测量数据具有相关 性,根据不确定度传播率得到: )()()(2)()()()(322 232222212标被标被标被证,E u c E u c E E r E u c E u c E u c y u c +++= (式2) 式中,灵敏系数: 11=??= 证E E c t 12=??=被 E E c t 1-3=??=标E E c t 相关系数:=),(标被E E r (-1~1) 6、标准不确定度评定 主要不确定度来源:测量重复性、标准器、电测设备、多路开关、参考端、炉温变化及均匀性等影响量。 6.1 测量重复性引入的不确定度分量a u ,用A 类方法进行评定。 因在三个温度点校准时,测量重复性情况大致相同,故对其在任意校准点进行重复性分析,可代表其在其他温度点重复性情况,现以1084.62℃点测量为例分析。 用一等标准热电偶作为标准检定工作用热电偶。由于本检测系统为自动读数,只能按规程测量4次,测得工作偶的五组每组4个重复性试验数据,合并样本标准偏差1p s ,测得标准偶的五组每组4个重复性试验数据,合并样本标准偏差2p s ,数据见表2。 表2

现代检测技术 实验四__K热电偶测温性能实验

检测技术实验报告 院(系):自动化专业:自动化姓名:学号: 同组人员: 评定成绩:评阅教师:

K热电偶测温性能实验 一、实验目的: 了解热电偶测温原理及方法和应用。 二、基本原理: 热电偶测量温度的基本原理是热电效应。将A和B二种不同的导体首尾相连组成闭合回路,如果二连接点温度(T,T0)不同,则在回路中就会产生热电动势,形成热电流,这就是热电效应。热电偶就是将A和B二种不同的金属材料一端焊接而成。A和B称为热电极,焊接的一端是接触热场的T端称为工作端或测量端,也称热端;未焊接的一端(接引线)处在温度T0称为自由端或参考端,也称冷端。T与T0的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜-康铜)等等,并且有相应的分度(见附录)表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。 三、需用器件与单元: 主机箱、温度源、P t100热电阻(温度源温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板、应变传感器实验模板(代mV发生器)。 四、实验步骤: 热电偶使用说明:热电偶由A、B热电极材料及直径(偶丝直径)决定其测温范围,如K(镍铬-镍硅或镍铝)热电偶,偶丝直径3.2mm时测温范围0~1200℃,本实验用的K热电偶偶丝直径为0.5mm,测温范围0~800℃;E(镍铬-康铜),偶丝直径3.2mm时测温范围-200~+750℃,实验用的E热电偶偶丝直径为0.5mm,测温范围-200~+350℃。由于温度源温度<200℃,所以,所有热电偶实际测温范围<200℃。 从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0℃时才能正确测量测量端的温度,否则存在着参考端所处环境温度值误差。 热电偶的分度表(见附录)是定义在热电偶的参考端(冷端)为0℃时热电偶输出的热电

热电偶的制作和标定

热电偶的制作和标定 一、实验目的: 1、熟悉热电偶测温原理。 2、了解自制专用热电偶的制作方法。 3、了解热电偶的标定方法。 二、实验原理: 温差热电偶(简称热电偶)是目前接触式测温中应用最为广泛的温度传感器。它具有结构简单、制造方便、测量范围宽、精确度高、热惯性小、输出为电信号便于远传或信号转换等优点。此外,它不仅可用于测量各种流体的温度而且还可用于快速及动态温度的测量。热电偶工作原理如下: 1、温差电势:温差电势是由于导体或半导体两端温度不同而产生的一种电动势。由于导体两端温度不同,则两端电子的能量也不同。温度越高电子能量越大,能量较大的电子会向能量较小的电子处跑,这就会形成一个由高温端向低温端的静电场。静电场又阻止电子继续向低温端迁移,最后达到一动平衡状态。温差电势的方向是由低温端向高温端,数值与两端温差大小有关。 2、接触电势:当两种不同的金属导体或半导体A 和B 相互接触时,由于其内部电子密度不同,因此从导体A 向导体B 扩散的电子数,要比从导体B 向导体A 扩散的电子数多,结果导体A 失去电子而带正电,导体B 因得到电子而带负电。这样,在导体A 、B 的接触面上形成一电位差。这一电位差一旦形成就对扩散起阻止作用,最后达到某种动平衡状态。平衡后的这一电位差即称为接触电势,其数值取决于两种不同导体的性质和接触点的温度。 由上可知,热电偶具有下述特点: (1)热电偶回路热电势的大小,只与组成电偶的导体材料及两端温度有关,而与热电偶的长度、粗细无关。 (2)只有用不同性质的导体或半导体才能组成热电偶,相同材料不会产生热电势。 (3)只有当热电偶两端正温度不同,热电偶的两根材料不同时才能有热电势产生。 (4)材料确定后,热电势的大小只与热电偶的温度有关。 为简化热电偶测量系统,热电偶冷端不采用冰瓶,而将其置于室温中,室温t f 用水银温度计较准确地测得。热电偶热端则设置在管式电炉中。这时测得的热电势不能直接从分度表查取热端炉内的温度,而应该根据下式,先计算出热端温度相对于冷端温度为0℃时的热电势值E(t,0)。 )0,(),()0,(f f t E t t E t E += 式中,),(f t t E ——表示热端为t ℃,冷端为t f ℃时的热电势,即实测值;)0,(f t E 表示热端为t f ℃,冷端为0℃时该对热电偶的热电势。该值可 根据t f 从指导书附表中查得。然后用)0,(t E 从分度表中查得热端温度t 。如图表示出上述确

热电偶定标教案

大学物理实验课程教案

热电偶定标实验 热电偶在现实生活中的应用及其优势:在现代工业自动控制系统中,温度控制是经常遇到的工作,对温度的自动控制有许多种方法。在实际应用中,热电偶的重要应用是测量温度,它是把非电学量(温度)转化成电学量(电动势)来测量的一个实际例子。用热电偶测温具有许多优点,如测温范围宽(-200~2000℃)、测量灵敏度和准确度较高、结构简单不易损坏等。此外由于热电偶的热容量小,受热点也可做得很小,因而对温度变化响应快,对测量对象的状态影响小,可以用于温度场的实时测量和监控。热电偶在冶金、化工生产中用于高、低温的测量;在科学研究、自动控制过程中作为温度传感器,具有非常广泛的应用。在大学物理实验中,热电偶温度计的定标是一个传统实验,该实验要求学生找出热电偶的温差电动势与冷热端温差之间的关系,并给出温差电动势与冷热端温差之间的关系曲线,求出经验方程,从而完成其定标工作,使同学们了解热电偶测温度的基本原理。 实验原理 1. 温差电效应 温度是表征热力学系统冷热程度的物理量,温度的数值表示法叫温标。常用的温标有摄氏温标、华氏温标和热力学温标等。 温度会使物质的某些物理性质发生改变。一般来讲,任一物质的任一物理性质只要它随温度的改变而发生单调的、显著的变化,都可用它来标志温度,也即制作温度计。常用的温度计有水银温度计、酒精温度计和热电偶温度计等。 在物理测量中,经常将非电学量如温度、时间、长度等转换为电学量进行测量,这种方法叫做非电量的电测法。其优点是不仅使测量方便、迅速,而且可提高测量精密度。温差电偶是利用温差电效应制作的测温元件,在温度测量与控制中有广泛的应用。本实验是研究一给定温差电偶的温差电动势与温度的关系。 如果用A、B两种不同的金属构成一闭合电路,并使两接点处于不同温度,如图1所示,则电路中将产生温差电动势,并且有温差电流流过,这种现象称为温差电效应。 1闭合电路 2. 热电偶 两种不同金属串接在一起,其两端可以和仪器相连进行测温(2)的元件称为温差电偶,也叫热电偶。温差电偶的温差电动势与二接头温度之间的关系比较复杂,

热电偶实验报告

热电偶实验报告 报告类别:正常迟交补交其他 报告分加减分扣分系数成绩 姓名联系电话学号 年级学院专业 实验日期周星期 实验题目 热电偶标定实验 实验目的 ?了解热电偶温度计的测温原理 实验原理及内容(包括基本原理阐述、主要计算公式、有关电路、光路及实验装置 示意图) 1、两种不同成份的导体A、B(称为热电极)两端接合成回路,当A、 B两个接合点的温度T、T。不同时,在回路中就会产生电动势, 这种现象称为热电效应,而这种电动势称为热电势。热电偶就是 利用这种原理进行温度测量的,其中,直接用作测量介质温度的 一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿 端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所 产生的热电势。 2、由一种材料组成的闭合回路,电路中都不会产生热电动势。 3、在热电偶中插入第三种(或多种)均质材料,只要所插入材料的两端温度相同,均不会 有附加热电动势发生。 4、在两种不同材料组成的热电偶回路中,接点温度分别为t和t0,热电动势E AB(t,t0)等 于热电偶在连接点温度为(t,t n)和(t n,t0)时相应的热电动势E AB(t,t n)和E AB(t n,t0)之和,即 E AB(t,t0)= E AB(t,t n)+ E AB(t n,t0) 5、如果两种导体A和B分别与第三种导体C组合成热电偶AC和BC的热电动势已知,则可 求出这两种导体A、B组合成热电偶AB的热电动势为 E AB(t,t0)=E AC(t,t0)-E BC(t,t0)

主要实验仪器(包括名称、型号或规格) 一支热电偶、一个电压表、一个恒温水浴箱、一支温度计、一个装有冰水混合物的仪器、一根导线 主要操作步骤(包括实验的关键步骤及注意事项) 将需要标定的热电偶的补偿端两个接头其中一个与导线一端的两个接头其中一个相连接,将导线另一端插入装有冰水混合物的仪器,将电压表的两端分别接在热电偶和导线的另一个接头上。现在调节恒温水浴箱的温度使其稳定下来后将热电偶的工作端和温度计的工作端相接触后放入恒温水浴箱读数,同时记录下电压表的五个读数。记录完毕后改变恒温水浴箱的温度重复上述工作,记录下六组恒温水浴箱在不同温度下电压表的五次读数。 实验数据记录(要求列表,将整理后的原始数据填入表内,特别注意标明单位和测量数据的有效位数,并将教师签过的原始数据单附在此页) 温度0C 数据处理及实验结果(包括平均值、不确定度的计算公式、过程及最后的实验结果。实验作图一律要求坐标纸) 第一次: ?L1== 1==mv ?lim=S1=?lim=0mv L1= 查表得:?T1= 与温度计测得的温度相差℃ 第二次:?L2=+*2+*2)/5= 2= ?lim=?32=

热电偶测温系统实验报告材料书

热电偶测温系统 实验报告书 班级:铁道自动化091班 小组成员:何俊峰、严云钧、王鹏远、倪森 瑜、康宁

目录 一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 2热电偶的补偿方法 3热电偶的实际应用 二热电偶测温系统的相关介绍 1线路原理图 2主要原件及其作用 3调试方法及其注意事项 三实验收尾及总结报告 1处理实验数据 2 实验总结

一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 (1)概况:热电偶是一种感温元件,热电偶的工作原理这就要从热电偶测温原理说起。一次仪表,直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势—热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到不同的热电偶具有不同的分度表。热电偶回路中接入第三种金属资料时,只要该资料两个接点的温度相同,热电偶所产生的热电势将坚持不变,即不受第三种金属接入回路中的影响。因此,热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 B热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,回路中就会发生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度丈量的其中,直接用作丈量介质温度的一端叫做工作端(也称为丈量端)另一端叫做冷端(也称为弥补端)冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,将热能转换为电能,用所产生的热电势测量温度 (2)分类:(S型热电偶)铂铑10-铂热电偶 铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。 S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。 S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。 (R型热电偶)铂铑13-铂热电偶 铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。 R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于R型热电偶的综合性能与S

实验六 热电偶的制作与标定

实验六热电偶的制作与标定 一. 目的 了解热电偶温度计的工作原理,学会焊接铜—康铜热电偶的方法,并学会热电偶的标定。 二. 热电偶温度计原理、焊接及标定 1. 热电偶温度计工作原理 测温用的温度计大致可以分为下列五类:膨胀式温度计(如水银温度计)、压力表式温度计(如充氮气温度计)、电阻温度计(如铂电阻温度计),热电偶温度计(如铂铑 10 —铂热电偶、镍铬—镍硅热电偶)、辐射式温度计(如光学高温计)。其中热电偶温度计由于在测温中有较高的准确度,所以在工农业生产和科研工作中都广泛地使用。 由两种不同性质金属线或合金丝 A 与 B ,连接组成一个闭合回路称之为热电偶,如图 1 所示。 A 、 B 叫做热电极。如果使两个接点 1 、 2 处于不同的温度,回路中就会产生热电势 E ,这一现象称为热电效应,热电偶就是基于这一效应来测量温度的。

在图 1 所示的热电偶的闭合回路中所产生的热电势 E AB只与热电偶的两种材料的性质和两端的温度有关,与金属丝的长度、截面大小无关。当热电偶材料一定时,则热电势 E AB就只与热电偶两端温度 t 和 t0有关,即 E AB=( t,t0)。如果参考端(又称冷端)的温度 t0保持不变,则两端之间热电势 E 12 的大小就可以用来表示测量端(又称热端)1的温度高低。通常将热电偶的冷端放在装有冰水共存的保温瓶中,使其t0恒温于0℃ 。 2. 热电偶的焊接 热电偶的测量端与参考端都是由两种金属焊接制成的。为减小传热误差和滞后,焊接点宜小,其直径应不超过两倍金属丝的直径。焊接的方法可以采用点焊、对焊,如图 2a和b所示。也可以把两个热电偶绞缠在一起再焊,称为绞状点焊,如图 2c 所示,但绞缠圈数不宜超过 2-3 圈。 a b c 图 2 热电偶的热接点 热电偶的两热电极要很好地绝缘,以防短路。如果热电偶地金属是裸线,通常都要用绝缘管套在导线上进行绝缘,聚乙烯或聚四氟乙烯都是在常温范围内采用绝缘管材料。

热电阻热电偶温度传感器校准实验

湖南大学实验指导书 课程名称:实验类型: 实验名称:热电阻热电偶温度传感器校准实验 学生姓名:学号:专业: 指导老师:实验日期:年月日 一、实验目的 1.了解热电阻和热电偶温度计的测温原理 2.学会热电偶温度计的制作与校正方法 3.了解二线制、三线制和四线制热电阻温度测量的原理 4.掌握电位差计的原理和使用方法 5.了解数据自动采集的原理 6.应用误差分析理论于测温结果分析。 二、实验原理 1.热电阻 (1) 热电阻原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。常用铂电阻和铜电阻,铂电阻在0—630.74℃以内,电阻Rt与温度t 的关系为: Rt=R0(1+At+Bt2) R0系温度为0℃时的电阻,铂电阻内部引线方式有两线制,三线制,和四线制三种,两线制中引线电阻对测量的影响最大,用于测温精度不高的场合,三线制可以减小热电阻与测量仪之间连接导线的电阻因环境温度变化所引起的测量误差。四线制可以完全消除引线电阻对测量的影响,用与高精度温度检测。本实验是三线制连接,其中一端接二根引线主要是消除引线电阻对测量的影响。 (2) 热电阻的校验 热电阻的校验一般在实验室中进行,除标准铂电阻温度计需要作三定点,(水三相点,水沸点和锌凝固点)校验外,实验室和工业用的铂或铜电阻温度计的校验方法有采用比较法

热电偶标定规程

热电偶标定规程

目录 1.0目的 (2) 2.0范围 (2) 3.0参考 (2) 4.0安全 (2) 5.0定义 (2) 6.0责任 (2) 7.0热电偶 (3) 7.1概述 (3) 7.1.1结构 (3) 7.1.2外套材料 (3) 7.2技术标准 (3) 7.3外观检查 (4) 7.4校验 (4) 7.4.1检查仪器与设备 (4) 7.4.2校验方法 (4) 7.4.3冷端非0℃值时,应按下式计算: (5) 7.5使用和维护 (6) 8.0附录 (6)

1.0目的 制定本规程的目的在于为本规程的最终用户提供明确的内容和步骤,确保仪表维护检修人员在执行任务时能够在没有监督或很少监督的情况下,按照赛科规定的标准,以安全有效可靠的方式履行自身的职责。 2.0范围 本规程适用于: 热电偶 3.0参考 本规程参考了以下文件: 电偶使用说明书 4.0安全 在执行规程时,你若确认出未知的HSE风险,向你的直接主管进行汇报。 为了确保检修人员以及仪表设备本体的安全,在执行相关操作之前必须了解和参考以下的安全提示: 1.禁止在爆炸性环境中打开处于带电工作状态的热电偶的接线盖 2.无论是在安装、维护或者使用的时候都要考虑到环境状况对热电偶的影响因素。 3.在有毒有害场所执行任务的人员,应事先了解相关的材料安全数据表。 5.0定义 6.0责任 本规程仅适用于具有专业知识的仪表维护人员的操作。 1.ES仪表工程师、主管和技术员应确保本规程在工作中得以贯彻和执行。 2.仪表维修人员应根据实际情况,就安全和技术上的任何疑问及时与其直接主管人进 行沟通。 3.任务完毕后把完成的签过字的规程或检修记录返回给主管用于审核及归档。

热电偶定标实验

图7-1 热电偶结构图 热电偶定标实验 一、实验目的 1.了解热电偶的工作原理; 2.学会对热电偶定标; 3.应用热电偶测温。 二、实验仪器 灵敏数字电压表,保温杯,电加热罐,温度计等 三、实验原理 早在19世纪初,人们就发现两种不同的金属组成的回路中(如图7-1所示),如果在两个接头端存在温度差,则回路中就会产生电 流。这种现象就称为温差电现象,这两种不同 金属组成的电路称为热电偶。产生电流的电动 势称为温差电动势。温差电动势的产生机制, 限于篇幅,在此不再多讲。但从实用的角度出 发,热电偶的一些特点和性质我们却是应该掌 握的: 1.一般来说,任意两种不同的金属组成的回路都可以构成一对热电偶。只要两个接头端有 温度差,回路中就有温差电动势,进而会产生温 差电流。(利用这一特点,我们就可以把非电量的温度转化为可以用仪表检测的电学量。) 2.各种不同的热电偶都有其特定的温差电动势的变化曲线。换言之,只要确定了组成热电偶的金属材料,则其温差电动势的变化规律就是一定的,与热电偶的体积、导线长短等因素无关。(由于有这一特点,实际应用时热电偶的测温探头就可以做得很小,因而探头的热容量也就很小,测温就非常灵敏。) 3.由于各种不同热电偶的温度特性不同,故不同的热电偶有其不同的适用温度范围。根据不同的测温环境,使用者可以查找有关资料,选择合适的热电偶进行测温。 4.一对热电偶所产生的温差电动势一般都很小,只有零点几至数十毫伏。须用很灵敏的检流装置才能检验出来。但若把大量的热电偶串联起来,组成温差电堆,其产生的温差电动势和温差电流就有明显的实用价值。特别是用某些半导体材料组成的热电偶,有些地方已把它用来制成热转换效率较高的温差电堆发电装置。

实验 Pt100热电阻测温特性实验

实验 Pt100热电阻测温特性实验 一、实验目的:了解热电阻的特性与应用。 二、基本原理:利用导体电阻随温度变化的特性。热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻,铂电阻在0-6 30、74C以内,电阻Rt与温度t的关系为:Rt = R0(1+At+Bt2)R0系温度为0C时的铂热电阻的电阻值。本实验 R0=100C,A=3、9080210-3 C-1B=-5、10-7 C-2,铂电阻现是三线连接,其中一端接两根引线主要是为了消除引线电阻对测量的影响。 三、需用器件与单元: K型热电偶、Pt100热电阻、温度测量控制仪、温度传感器实验模块、数显单元(主控台电压表)、万用表、直流稳压电源15V 和2V。 四、实验步骤: 1、差动电路调零接主控箱电源输出接主控箱数显表 Vi 地2V 图11-5 热电阻测温特性实验将温度测量控制仪上的220V电源线插入主控箱两侧配备的220V控制电源插座上。首先对温度传感器实验模块的三运放测量电路和后续的反相放大电路调零。具体方法是把R5和R6的两个输入点短接并接地,然后调节Rw2使

V01的输出电压为零,再调节Rw3,使V02的输出电压为零,此后Rw2和Rw3不再调节。 2、温控仪表的使用注意:首先根据温控仪表型号,仔细阅读“温控仪表操作说明”,(见附录一)学会基本参数设定(出厂时已设定完毕)。 3、热电偶的安装选择控制方式为内控方式,将K型热电偶温度感应探头插入“YL系列温度测量控制仪”的上方两个传感器放置孔中的一个。将K型热电偶自由端引线插入“YL系列温度测量控制仪”正前方面板的的“传感器”插孔中,红线为正极。 4、热电阻的安装及室温调零将Pt100铂电阻三根引线引入“Rt”输入的a、b上:用万用表欧姆档测出Pt100三根引线中短接的两根线(蓝色和黑色)接b端,红色接a端。这样Rt (Pt100)与R 3、R 1、Rw 1、R4组成直流电桥,是一种单臂电桥工作形式。Rw1中心活动点与R6相接,见图11-5。 5、测量记录合上内控选择开关(“加热方式”和“冷却方式”均打到内控方式),设定温度控制值为40C,当温度控制在40C时开始记录电压表读数,重新设定温度值为40C+nΔt,建议Δt=5C,n=1……7,到75C每隔1n读出数显表输出电压与温度值。待温度稳定后记下数显表上的读数(若在某个温度设定值点

热电偶标定实验报告

热电偶的制作与标定试验 指导老师:徐之平 学生:代国岭 学号:102270028 专业:工程热物理

热电偶的制作与标定试验 一、实验目的 1.了解热电偶温度计的测温原理 2.学会热电偶温度计的制作与矫正方法 3.掌握电位差计的原理和使用方法 二、实验仪器 P21588型数字毫伏表、SY821型转换开关、RTS-00B制冷恒温槽、HTS-300B标准油槽、实验热电偶 三、实验原理 热电偶工作原理如图:

两种不同成份的导体A、B(称为热电偶丝材或热电极)两端接合成回路,当A、B两个接合点的温度T、T0不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: (1)热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数;(2)热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; (3)当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。 四、实验记录及处理 1.热电偶的制作 按实验要求,截取两根适当长度的电偶丝,消除两端的氧化膜,套上绝缘套管,用钢丝钳将两根偶丝的端部胶合在一起。微微加热,立即蘸取少许硼砂,再在热源上加热,使硼砂均匀地覆盖住胶合头,防止偶丝高温焊接时氧化。 交流弧焊法:将隔离变压器输出电压调至30V左右,以碳棒为一极,胶合头为一极,用绝缘良好的夹子夹住,使两极相碰,电弧产生的瞬间高温使胶合头熔焊在一起,形成光滑的焊珠。 刚焊接的热电偶存在内应力,金相结构不符合要求,使用过程中会导致温差电势不稳定,结果重显性差。精密测量用的热电偶必须进行严格的热处理,消除内应力。 2.热电偶的校正 将热电偶的两端分别插入盛有少许硅油的玻管中,然后将一支玻管(冷端)插入盛有冰水的保温瓶中,另一支玻管(热端)插入恒温水浴中。调节恒温水浴的温度,在室温至800C 之间均匀地取六个不同温度的点,用电位差计分别测出各温度点的电动势。 实验数据记录 拟合曲线如下

K型热电偶测温实验报告

实验报告 实验课程名称传感器与自动检测技术 实验项目名称 K型热电偶测温实验 专业班测仪161班 实验班测仪161班 学生姓名袁利 学号 1600160290 小组编号第七组 实验时间: 2 0 1 8 年 10 月 8 日

实验目的及要求:了解K 型热电偶得特性与应用 实验仪器设备:智能调节仪、PT100、K 型热电偶、温度源、温度传感器实验模块 实验原理:热电偶是一种使用最多的温度传感器,它的原理是基于1821年发现的塞贝尔效应,即两种不同的导体或半导体A 或B 组成一个回路,其两端相互连接,只要两节点处的温度不同,一端温度为T ,另一端温度为0T ,则回路中就有电流产生,即回路中存在电动势, 该电动势被称为热电势。 当回路断开时,在断开处a,b 之间便有一电动势T E ,其极性和量 值与回路中的热电势一致,并规定在冷端,当电流由A 流向B 时,称A 为正极,B 为负极,实验表明,当T E 较小时,0=()T AB E S T T (AB S 是热电势率)。 热电偶基本定律: (1) 均质导体定律:由一种均质导体组成的闭合回路,不论导体的 截面积和长度如何,也不论各处的温度如何,都不能产生电动势。 (2) 中间导体定律:在热电偶回路中,只要中间导体C 两端温度相 同,那么接入中间导体对热电偶回路总热电势0(,)AB E T T 没有影响。 (3) 中间温度定律:热电偶的两个结点温度为12,T T 时,热电势为AB E (12,T T ),两结点温度为23,T T 时,热电势为AB E 23,T T (),那么当两结 点温度为13,T T 时的热电势则为

热电阻测温特性实验(精)

热电阻测温特性实验 一、实验目的:了解热电阻的特性与应用。 二、基本原理:利用导体电阻随温度变化的特性,热电阻用于测量时,要 求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为: R t=R0(1+A t+B t2) R0系温度为0℃时的电阻。本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847 ×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对 测量的影响。 三、需用器件与单元:加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表。 四、实验步骤: 1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基本参 数设定。 2、将热电偶插入台面三源板加热源的一个传感器安置孔中。将K型热电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为负极,注意热电偶护套中已安置了二支热电偶,K型和E型,它们热电势值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。E型(蓝+,绿-);k型(红+,黑-) 3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。 4、将主控箱的风扇源(24V)与三源板的冷风扇对应相连,电机转速电压旋至最大。 5、将P t100铂电阻三根线引入“R t”输入的a、b上:用万用表欧姆档测出 P t100三根线中其中短接的二根线(蓝,黑)接b端。这样R t与R3、R1、R w1、 R4组成直流电桥,是一种单臂电桥工作形式。R w1中心活动点与R6相接,见图 11-5。

热电偶标定实验

热电偶标定实验 一、概述: 温差热电偶(简称热电偶)是目前温度测量中应用最广泛的温度传感元件之一,是以热电效应为基础的测温仪表。它用热电偶作为传感器,把被测的温度信号转换成电势信号,经连接导线再配以测量毫伏级电压信号的显示仪表来实现温度的测量。 热电偶测温的优点是结构简单、制作方便、价格低廉、测温范围宽、热惯性小、准确度较高、输出的温差电信号便于远距离传送、实现集中控制和自动测试。流体、固体及其表面温度均可用它来测量,所以在工业生产和科学研究、空调与燃气工程中应用广泛。 二、实验目的 1.学习使用毫伏表测定温差电动势及热电偶工作原理。 2.掌握热电偶定标曲线的绘制规则。 3.学习用热电偶设计温度计 4.学习用直线拟合方法处理实验数据。 三、实验原理 1、温差电现象。导体中存在着与热现象有关的非静电力和电动势,称为温差电动势,依其产生的机理不同而有两种具体形式。 一种称为汤姆孙电动势。金属导线两端如果温度不同,高温端的自由电子好像气体分子一样向低温端扩散,并在低温端堆积起来,从而在导线内形成电场。由电子热扩散不平衡建立的电场反过来又阻碍不平衡热扩散的进行,最终达到动态平衡,使导线两端形成一稳定的电势差。若把两种金属导线两端连接起来,并把接点置于不同温度中,使两种不同材料的金属连接成闭合回路,因两个汤姆孙电势不相等,两段导线中即形成恒定电流。回路中相应的电动势称为汤姆孙电动势。温差越大,汤姆孙电动势也越大。 另一种称为珀耳帖(J.C.A.Peltier,1785——1845)电动势。两种不同金属连接起来,由于接触面两侧金属内自由电子浓度不同,电子将从浓度大的一侧向浓度小的一侧扩散,在接触面间形成电场,从而在两种金属间形成电位差。显然,两种金属连成回路,并把接点置于相同温度中,两接触面间将建立相等而相反的电动势,因而也形不成恒定电流。只有两接点温度不同,两个珀耳帖电动势不等,才会形成电动势。而且温差越大,形成的电动势也越大。 总之,两种电动势尽管产生的机理不同,但最后在闭合回路中形成的电动势,除与材料有关外,惟一地决定于两个接点的温度差,所以统称为温差电动势。上述两种金属A、B 两端彼此焊接并将接点置于不同温度下的回路(见图1),称为温差电偶。使用时常把一个接点置于某一恒定温度,称为参考点;另一接点作为测温点。 温差电偶中形成的温差电动势与温差的关系通常用幂函数表示,在常温范围内,要求

热电偶测量误差分析(精)

热电偶测量误差分析 一、热电偶测温基本原理 将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,就构成热电偶。如图1所示。温度t端为感温端称为测量端,温度t0端为连接仪表端称为参比端或冷端,当导体A和B的两个执着点t和t0之间存在温差时,就在回路中产生电动势EAB(t,t0),因而在回路中形成电流,这种现象称为热电效应".这个电动势称为热电势,热电偶就是利用这一效应来工作的.热电势的大小与t和t0之差的大小有关.当热电偶的两个热电极材料已知时,由热电偶回路热电势的分布理论知热电偶两端的热电势差可以用下式表示:EAB(t,t0)=EAB(t)-EAB(t0) 式中 EAB(t,t0)-热电偶的热电势; EAB(t)-温度为t时工作端的热电势; EAB(t0)-温度为t0时冷端的热电势。 从上式可看出!当工作端的被测介质温度发生变化时,热电势随之发生变化,因此,只要测出EAB(t,t0)和知道EAB(t0)就可得到EAB(t),将热电势送入显示仪表进行指示或记录,或送入微机进行处理,即可获得测量端温度t值。 要真正了解热电偶的应用则不得不提到热电偶回路的几条重要性质: 质材料定律:由一种均质材料组成的闭合回路,不论材料长度方向各处温度如何分布,回路中均不产生热电势。这条规律要求组成热电偶的两种材料必须各自都是均质的,否则会由于沿热电偶长度方向存在温度梯度而产生附加电势,从而因热电偶材料不均引入误差。 中间导体定律:在热电偶回路中插入第三种(或多种)均质材料,只要所插入的材料两端连接点温度相同,则所插入的第三种材料不影响原回路的热电势。这条定律表明在热电偶回路中可拉入测量热电势的仪表,只要仪表处于稳定的环境温度即可。同时还表明热电偶的接点不仅可经焊接而成,也可以借用均质等温的导体加以连接。 中间温度定律:两种不同材料组成的热电偶回路,其接点温度分别为t和to时的热电势EAB(t,to)等于热电偶在连接点温度为(t,tn)和(tn,to)时相应的热电势EAB(t,tn)和EAB(tn,to)的代数和,其中tn为中间温度。该定律说明当热电偶参比端温度不为0℃时,只要能测得热电势EAB (t,to),且to已知,仍可以采用热电偶分度表求得被测温度t值。 连接导体定律:在热电偶回路中,如果热电偶的电极材料A和B分别与连接导线A1和B1相连接(如下图所示),各有关接点温度为t,tn和to,那么回路的总热电势等于热电偶两端处于t和tn温度条件下的热电势EAB(t,tn)与连接导线A1和B1两端处于tn和to温度条件的热电势EA1B1(tn,to)的代数和。 中间温度定律和连接导体定律是工业热电偶测温中应用补偿导线的理论依据。 二、各种误差引起的原因及解决方式 2.1 热电偶热电特性不稳定的影响

热电阻测温特性实验及其数据分析

实验二热电阻测温特性实验 1 实验目的 了解热电阻的特性与应用。 2 基本原理 利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻,铂电阻在0~630.74℃以内,电阻Rt与温度t的关系为Rt = R0(1 + αt + βt2),其中R0是温度为0 °C时的电阻。本实验R0 = 100 Ω,α= 3.9684×10?2°C?1,β= ?5.847×10?7°C?2,铂电阻使用三引线,其中一端接二根引线,主要为消除引线电阻对测量的影响。 3 需用器件与单元 加热源、K 型热电偶、Pt100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表。

4 实验步骤 4.1 差动放大器调零 将实验模板调节增益电位器RW2顺时针调节大致到中间位置,将±15V电源及地从主控箱接入模板,检查无误后,合上主控箱电源开关,进行差动放大器调零。 4.2 将K 型热电偶插入到热源孔,将自由端按极性正确接至主控板上,用于温度设定。 4.3 将Pt100铂电阻引线接入Rt端的a、b 上。Pt100三根线中,其中两根线为铂电阻的一端。采用三线制的第一对称接法将Pt100接入电桥,这样Rt、R3和Rl、RWl、R4并联组成单臂电桥,见图2.2。

4.4 在端点a 与地之间加直流源4V,合上主控箱电源开关,调RW1使Vi输出为零,即桥路输出为零(平衡)。然后将Pt100热电阻探头插入到热源孔。 4.5 按Δt = 5℃进行升温,温度稳定后,读取数显表值,将结果填入表2.1。实验结束后将温度控制器温度设定为零,关闭电源开关。 表2.1 铂电阻热电势与温度值 5 思考题 5.1 根据表2.1值计算温度测量系统的灵敏度,S =?uO/?t(?uO输出电压变化量,?t温度变化量);及其非线性误差。 5.2 如何根据测温范围和精度要求选用热电阻? 数据处理: 1、计算温度测量系统的灵敏度:其中Δt=5℃,

热电偶标定

热电偶的标定 一、实验目的 1、加深对温差电现象的理解; 2、了解热电偶测温的基本原理和方法; 3、了解热电偶定标基本方法。 二、实验仪器 铜――康铜热电偶、YJ-RZ-4A 数字智能化热学综合实验仪、保温杯、数字万用表等。 三、实验原理 1、温差电效应 在物理测量中,经常将非电学量如温度、时间、长度等转换为电学量进行测量,这种方法叫做非电量的电测法。其优点是不仅使测量方便、迅速,而且可提高测量精密度。温差电偶是利用温差电效应制作的测温元件,在温度测量与控制中有广泛的应用。本实验是研究一给定温差电偶的温差电动势与温度的关系。 如果用A 、B 两种不同的金属构成一闭合电路,并使两接点处于不同温度,如图1所示,则电路中将产生温差电动势,并且有温差电流流过,这种现象称为温差电效应。 图1 2、热电偶 两种不同金属串接在一起,其两端可以和仪器相连进行测温(图2)的元件称为温差电 偶,也叫热电偶。温差电偶的温差电动势与二接头温度之间的关系比较复杂,但是在较小温差范围内可以近似认为温差电动势E t 与温度差)(0t t -成正比,即 )(0t t c E t -= (1) 图 2 A 金属:铜 B 金属:康铜 t 0 0t >

式中t为热端的温度,t 为冷端的温度,c称为温差系数(或称温差电偶常量)单位为? V μ℃1-,它表示二接点的温度相差1℃时所产生的电动势,其大小取决于组成温差电偶材料的性质,即 c =(k/e)ln(n A 0/n B ) (2) 式中k为玻耳兹曼常量,e为电子电量,n A 0和n B 为两种金属单位体积内的自由电子数目。 如图3所示,温差电偶与测量仪器有两种连接方式: (a)金属B的两端分别和金属A焊接,测量仪器M插入A线中间(或者插入B线之间); (b)A、B的一端焊接,另一端和测量仪器连接。 图3 在使用温差电偶时,总要将温差电偶接入电势差计或数字电压表,这样除了构成温差电偶的两种金属外,必将有第三种金属接入温差电偶电路中,理论上可以证明,在A、B两种金属之间插入任何一种金属C,只要维持它和A、B的联接点在同一个温度,这个闭合电路中的温差电动势总是和只由A、B两种金属组成的温差电偶中的温差电动势一样。 温差电偶的测温范围可以从4.2K(-268.95℃)的深低温直至2800℃的高温。必须注意,不同的温差电偶所能测量的温度范围各不相同。 3、热电偶的定标 热电偶定标的方法有两种。 (1)比较法:即用被校热电偶与一标准组分的热电偶去测同一温度,测得一组数据,其中被校热电偶测得的热电势即由标准热电偶所测的热电势所校准,在被校热电偶的使用范围内改变不同的温度,进行逐点校准,就可得到被校热电偶的一条校准曲线。 (2)固定点法:这是利用几种合适的纯物质在一定气压下(一般是标准大气压),将这些纯物质的沸点或熔点温度作为已知温度,测出热电偶在这些温度下对应的电动势,从而得到电动势――温度关系曲线,这就是所求的校准曲线。 本实验采用固定点法、且连接方法参照图3中的(a)对热电偶进行定标。 实验中的铜――康铜热电偶分为了“热电偶热端”和“热点偶冷端”两部分,它们都是由受热管和两股材料分别为铜和康铜的导线组成,如图4所示,其中,铜导线外部是红色绝缘层,康铜导线外部是黑色绝缘层,且两股导线在受热管中焊接在一起,但和外部的受热管绝缘,受热管的作用只是让其内部的两导线焊接端良好受热。

温度传感器实验报告

温度传感器实验 姓名学号 一、目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、仪器 温度传感器实验模块 热电偶(K 型、E 型) CSY2001B 型传感器系统综合实验台(以下简称主机) 温控电加热炉 连接电缆 万用表:VC9804A,附表笔及测温探头 万用表:VC9806,附表笔 三、原理 (1)热电偶测温原理 由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。

图1中T 为热端,To 为冷端,热电势 本实验中选用两种热电偶镍铬—镍硅(K 分度)和镍铬—铜镍(E 分度)。 (2)热电偶标定 以K 分度热电偶作为标准热电偶来校准E 分度热电偶,被校热电偶热电势与标准热电偶热电势的误差为 式中:——被校热电偶在标定点温度下测得的热电势平均值。 ——标准热电偶在标定点温度下测得的热电势平均值。 ——标准热电偶分度表上标定温度的热电势值。

——被校热电偶标定温度下分度表上的热电势值。 ——标准热电偶的微分热电势。 (3)热电偶冷端补偿 热电偶冷端温度不为0℃时,需对所测热电势值进行修正,修正公式为: E(T,To)=E(T,t1)+E(T1,T0) 即:实际电动势=测量所得电势+温度修正电势 (4)铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在0℃≤T≤650℃时, 式中:——铂热电阻T℃时的电阻值 ——铂热电阻在0℃时的电阻值 A——系数(=3.96847×10-31/℃) B——系数(=-5.847×10-71/℃2) 将铂热电阻作为桥路中的一部分在温度变化时电桥失衡便可测得相应电路的输出电压变化值。 (5)PN结温敏二极管 半导体PN 结具有良好的温度线性,根据PN 结特性表达公式 可知,当一个PN 结制成后,其反向饱和电流基本上只与温度有关,温度每升高一度,PN 结正向压降就下降2mv,利用PN 结的这一特性可以测得温度的变化。 (6)热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的热敏元件。它呈负温度特性,灵敏度高,可以测量小于0.01℃的温差变化。图2为金属铂热电阻与热敏电阻温度曲线的比较。

相关文档