文档库 最新最全的文档下载
当前位置:文档库 › 固体物理作业题

固体物理作业题

固体物理作业题
固体物理作业题

Chapter 1

Problem 1.1:

Compute the packing fraction f for the bcc lattice.

Problem 1.2:

(a) Show that the packing fraction f for the diamond lattice is π 3 /16 .

(b) What is the packing fraction and coorination number of the honeycomb lattice?

Problem 1.3:

Consider the hexagonal close packed lattice. (a) Show that c = a 8 3 = 1.633a . Frequently a crystal

structure is called hcp even c is not exactly equal to the ideal value. (b) Show that the packing fraction for

the ideal hcp lattice is π 2 / 6 = 0.7405

Problem 1.4:

The ionic compound A+B- crystallizes in the NaCl structure. Plot the packing fraction as a function of the

ratio + ?ζ= r / r . Assume that ζ< 1.

Problem 1.5:

Repeat the calculation of problem 1.4 for the CsCl structure.

Problem 1.6:

Use the information in the textbook to calculate the densities (in kgm-3) of the following solids: (a)

Aluminum, (b) Iron, (c) Silicon and (d) Zinc. Atomic weights of some common elements are listed in the

textbook.

Problem 1.7:

SrTiO3 crystallizes in the perovskite structure. The strontium atoms are at the corners of the cube with side

a, the titanium atoms are at the body center, while the oxygen atoms occupy the cube faces. (a) What is the Bravais lattice type?

2

(b) Verify that the primitive unit cell contains one Sr, one Ti and three O atoms.

(c) Write down a set of primitive lattice vectors and basis vectors for the perovskite structure.

Problem 1.8:

The primitive lattice vectors of a certain Bravais lattice can be written

R n n ax n by n z v r r r

1 2 2 1 3

( 2 ) 1

2

= 1 + + +

What is the lattice type?

Problem 1.9:

In each of the following cases indicate whether the structure is a Bravais lattice. If it is, give three primitive

lattice vectors. If it is not describe it as a Bravais lattice with as small as possible basis. In all cases the

length of the side of the unit cube is a.

(a) Base centered cubic (simple cubic with additional points in the centers of the horizontal faces of the

cubic cell).

(b) Side centered cubic (simple cubic with additional points in the centers of the vertical faces of the cubic

cell).

(c) Edge centered cubic (simple cubic with additional points at the midpoints of the lines joining nearest

neighbors).

Problem 1.10:

指出体心立方晶格(111) 面与(100) 面,(111) 面与(110) 的交线的晶向。

Chapter 2

Problem 2.1:

(i) What is a lattice? Express a lattice mathematically.

(ii) What do you mean by a “basis”?

(iii) How can you combine a lattice with a basis to obtain a crystal structure?

Problem 2.2:

(i) What are the 3 fundamental translation vectors?

(ii) Show with 2 dimensional examples, how the fundamental translation vectors may define

either a non-primitive (conventional) unit cell or a primitive unit cell.

(iii) Express mathematically the size (area in 2 dimensional & volume in 3 dim) of a unit cell.

Problem 2.3:

(i) What is a Bravais lattice?

(ii) Draw the five 2-dimensional Bravais lattices clearly showing the fundamental lattice

translation vectors. What is the difference between a centered rectangular lattice and a simple rectangular lattice?

Problem 2.4:

(i) How many 3 dimensional Bravais lattices are present?

(ii) How many 3 dimensional crystal systems are there?

(iii) Make a Table having the following columns: Lattice System -- Bravais lattice -- Diagram

of Conventional unit --Name & Symbol unit cell -- Cell characteristics.

Problem 2.5:

(i) What do you mean by packing fraction?

(ii) Calculate the packing fraction in a simple cubic, base centered cubic and a face centered

cubic structures.

(iii) In which structure are the atoms most closely packed?

(iv) What do you mean by “coordination number” in a crystal structure?

2

(v) Explain with diagram the NaCl structure and the CsCl structure? What is the structure of

diamond?

Problem 2.6:

(i) What are crystal planes?

(ii) What do the Miller Indices represent?

(iii) What do the following indices represent? (hkl), {hkl},[hkl] and ?

(iv) Draw the unit cell & the following planes in a simple cubic lattice: (100), (ī00), (200),

(1ī1), (201), (2ī0), (122).

(v) What do you mean by crystal lattice inter planar spacing (dhkl )?

(vi) Write the formulae for dhkl for a orthogonal lattice and a cubic lattice. Also write the

formula for the angle between 2 planes in a cubic lattice.

Problem 2.7:

(i) What is the density of atoms (number per unit area) on a (111) plane of a fcc lattice?

(ii) What is the density of atoms (number per unit area) on a (110) plane of a bcc lattice?

Problem 2.8:

(i) Construct the Wigner-Seitz primitive cells for one-dimensional lattice.

(ii) Construct the Wigner-Seitz primitive cells for square lattice and for honeycomb lattice

(i.e., hexagonal lattice) (2D).

(iii) Construct the Wigner-Seitz primitive cells for simple cubic, body-centered cubic and

face-centered cubic lattices (3D), respectively.

Problem 2.9:

(i) Construct the reciprocal lattice for two-dimensional rectangular lattice, square lattice,

oblique lattice and hexagonal lattice.

(ii) Construct the reciprocal lattices for simple cubic, body-centered cubic and

face-centered

cubic lattices.

3

Problem 2.10:

(i) Construct the first Brillouin zone for two-dimensional rectangular lattice, square lattice,

oblique lattice and hexagonal lattice.

(ii) Construct the first Brillouin zone for simple cubic, body-centered cubic and

face-centered cubic lattices.

Problem 2.11:

考虑晶格中的一个晶面hkl。

(i) 证明倒格矢垂 1 2 3 G hb kb lb

r v v v

= + + 直于这个晶面。

(ii) 证明晶格中两个相邻平行晶面的间距为

G

hkl d r

2π( ) =

(iii) 证明对于简单立方晶格有d = a/ h2 + k 2 + l 2

Problem 2.12:

证明第一布里渊区的体积为(2π)3/V c。其中V c 是晶格原胞的体积。提示:布里渊区的体积等于傅里

叶空间中的初基平行六面体的体积,同时利用矢量恒等式

(c ×a)×(a ×b) = (c ?a ×b)a

Problem 2.13:

(i) Explain in short how X-rays can be diffracted by a crystal. A neutron beam can also be

used instead of X-rays to study diffraction. Why? (State de Broglies hypothesis of matter

waves i.e. wave and particle duality: λ=h/p).

(ii) Draw a neat diagram and deduce Bragg’s Law for diffraction by a crystal (2d sin θ= nλ).

Visible light cannot be used to study diffraction by crystals, why?

(iii) The Bragg angle for reflection from the (111) planes in Al (fcc) is 19.2 degrees for an

X-ray wavelength of λ=1.54 ?. Compute: (i) the length of the cube edge of the unit cell;

(ii) the interplanar distance for these planes. (Ans 4.04 angstrom and 2.33 angstrom).

Problem 2.14:

4

An x-ray source emits an x-ray line of wavelength l = 0.154 nm. The lattice constant and

crystal structures of iron and aluminum are found in the tables listed in the textbook.

(i) Find the Bragg angle(s) for reflections from the (111) planes of Al.

(ii) Find the Bragg angle(s) for reflections from the (110) planes of Fe.

Problem 2.15:

The primitive lattice vectors of a 2-dimensional triangular lattice are

a ai

r r = ;b a i aj

r r r

2

3

2

= +

where a is the nearest neighbor distance.

(i) Find the reciprocal lattice

(ii) Draw the Wigner Seitz cell and locate the coordinates of its corners.

(iii) Draw the Brillouin zone and locate the coordinates of its corners.

Problem 2.16:

An X-ray reflection from a certain crystal occurs at an angle of incidence of 45o when the

crystal is maintained at 0o C. When it is heated to 150o C the angle changes by 6.4 minutes of

arc. What is the linear thermal expansion coefficient of the material?

Chapter 3

Problem 3.1

On the origin of Van der Waals force

(a) Give a qualitative interpretation on the origin of the Van der Waals force.

(b) Give a quantitative interpretation on the origin of the Van der Waals.

Problem 3.2

An approximate way of combining the repulsive and attractive interactions between the atoms in a molecular crystal is the Lennard-Jones potential

= =

12 6

12 6 ( ) - 4 -

r r r

B

r

V r A σσ

εwhere A and B are constants which depend on which atom or molecule is involved. It is conventional to

prameterize the potential in terms of an energy parameter εand length parameter σ. Table 3.1 lists the

Lennard-Jones parameters for inert gases.

Table 3.1 lists the Lennard-Jones parameters for inert gases

Element σ(angstrom) ε(eV)

Ne 2.74 0.0031

Ar 3.40 0.0104

Kr 3.65 0.0140

Xe 3.98 0.0200

(a) Plot the Lennard-Jones potential and force for the inert gases Ne, Ar, Ke and Xe, respectively.

(b) Derive the equilibrium distance r o for the inert gases in Table 3.1.

(c) Derive the potential in the neighborhood of the equilibrium distance r o for the inert gases in Table 3.1

(d) Compare with the result found in Table 4 (C. Kittel, p. 41).

Problem 3.3

The lattice parameters of KCl are given in table 5.1

(a) Calculate the Coulomb energy between a K+ and a Cl- ion at the nearest neighbour distance in units of

eV.

(b) Assume that the parameters s and e of the van der Waals attraction between the ions (the term proportional to 1/r6 in the Lennard-Jones potential) are the same as for Ar (table 3.1). Calculate the van der Waals energy between a K+ and a Cl- ion at the nearest neighbor distance of KCl. Compare with the result found under (a).

Problem 3.4

Calculate the Madelung constant for the crystal structure of NaCl and compare your results with those

listed in table 3.2.

Crystal structure of NaCl

Table 3.2 Madelung constant for some crystal structures listed in table

Structure α

NaCl 1.7476

CsCl 1.7627

ZnS 1.6381

Chapter 4

Problem 4.1

Consider a linear chain of atoms. Each atom interact with its nearest neighbor on either side via a Lennard-Jones potential. Assume parameter values approximate to krypton (table 3.1)

(a) Find the equilibrium spacing between the atoms.

(b) Find the sound velocity.

(c) What is the maximum frequency?

Problem 4.2

The harmonic chain model can be solved also when the interaction between the masses extends beyond

the nearest neighbors. Conside r the case when the n’th mass is connected to masses n+1 and n-1 with the

spacing constant K1 and to masses n+2 and n-2 with the spacing constant K2. The equation of motion for

the n’th mass is now

( n n n ) ( n n n ) mu K u u -2u K u u -2u 1 1 -1 2 2 -2 = + + + + + &&

Assume periodic boundary conditions and solutions of the form

u Ae i(kan-ωt) n =

where a is equilibrium lattice spacing.

(a) Find a formula for w as a function of k.

(b) Plot 1 ωm/K vs ka for the special case K1=K2.

Chapter 5

Problem 5.1

In sodium metal each ion contribute one conduction electron. Using the data in Table 5.1 calculate for

sodium

(a) The Fermi energy

(b) The Fermi velocity

(c) The Fermi temperature

Problem 5.2

3He atoms can be considered as Fermi particles. At low temperatures 3He forms a liquid with a volume

of 4.62×10-29 cm3 per helium atom. The mass of a 3He atom is 5×10-27 kg. Estimate the Fermi temperature

of 3He.

Problem 5.3

Estimate the electronic and lattice specific heats for Al at temperatures 1K, 10K, 100K in units of J mol-1K-1. Use the free electron model for the electrons and the Debye model for the phonons. Aluminum is

trivalent.

Table 5.1 Crystal structure of some common substance. Unless specified the temperature is 300K. Substance Structure a (angstrom) c (angstrom)

Ag fcc 4.09

Al fcc 4.05

AgBr NaCl 5.77

Ar (at 4K) fcc 5.31

Au fcc 4.08

Be hcp 2.27 3.59

C(diamond) diamond 3.57

CdS ZnS 5.82

Co hcp 2.51 4.07

Cr Bcc 2.88

CsCl CsCl 4.11

Cu fcc 3.61

CuCl ZnS 5.41

Fe Bcc 2.87

Ge diamond 5.66

InSb ZnS 6.46

K bcc 5.23

KCl NaCl 6.29

Kr(4K) fcc 5.64

Na bcc 4.23

NaCl NaCl 5.63

Ne (4K) fcc 4.46

Pb Fcc 4.95

Si Diamond 5.43

Xe(4K) Fcc 6.13

Zn Hcp 2.66 4.95

ZnS ZnS 5.41

Table 5.2 Atomic weights of selected elements

Element Symbol Atomic weight

Aluminum Al 26.982

Argon Ar 39.948

Copper Cu 63.55

Iron Fe 55.847

Krypton Kr 83.80

Silicon Si 28.086

Zinc Zn 65.38

Atomic mass unit amu = 1.66042×10-27 kg

Chapter 6

Problem 6.1

Calculate the kinetic energy of N electrons in 3D system zero temperature U NE F 5

3

0 = .

Calculate the Fermi energy of a metal. What is the relationship between the electron density and the

Fermi energy in the free electron model? Explain how this relationship would be derived. Hint: The

volume in k-space corresponding to one allowed k-state is ((2π)/L)3, where L is the length of the crystal. The total volume of the crystal is L3. There are twice as many electrons states as k-states due

to spin.

Problem 6.3

Derive the relationship connecting pressure and volume of an electron gas at 0 K. The result may be

written as p = 2(U0/V)/3. Show that the bulk modulus B = -V(dp/dV) of an electron gas at T = 0 is B = 5p/3 = 10U0/9V.

Problem 6.4

Average electron energy in 2-D. For a metal at a temperature of T = 0 K, the conduction electrons at

the bottom of the band have an energy E = 0 and the conduction electrons with the highest energy have an energy E = E F. For free electrons in two-dimensions, what is the average energy of the conduction electrons?

Problem 6.5

Find the density of states as a function of energy for a non-interacting free electron gas in two dimensions. For this system it is possible to find an analytic expression for the temperature dependence of the chemical potential. Show that

( ) = ln exp 1 ln exp 1

2

kT

kT E

mkT

T kT πn h F

μ,

here n is the number of electrons per unit area.

Thermodynamic properties of a metal. A monovalent metal has a simple cubic Bravais lattice and a

lattice constant of a = 0.15 nm. Calculate the chemical potential, the specific heat, the entropy, and the

Helmholtz free energy of the electrons at temperatures of 10 K and 300 K assuming that the free electron model can be used.

Problem 6.7

Derive the density of states D(k) in two dimensions. The density of states for a free electron gas in two dimensions is, D(E) = m/(h2π) . What is the heat capacity for a free electron gas in two dimensions?

Chapter 7

Problem 7.1

Using the empty lattice approximation, calculate the band structures of a simple cubic lattice along k x direction <100>. Then make the plot of the band structure.

Problem 7.2

Using the empty lattice approximation, calculate the band structures of a simple cubic lattice along k direction <111>. Then make the plot of the band structure.

Problem 7.3

By using empty lattice approximation, please draw the band structures for a two-dimensional rectangle lattice.

Problem 7.4

Calculate for the band structure of a square wave potential with the parameters: V=12.5eV, a =

2×10-10m, b=5×10-11m. Then draw plots for the calculated band structure.

Problem 7.5

By using empty lattice approximation, try to understand the band structure of a simple cubic lattice.

固体物理学》概念和习题 答案

《固体物理学》概念和习 题答案 The document was prepared on January 2, 2021

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式) 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

固体物理2014题库

一、填空 1. 固体按其微结构的有序程度可分为_______、_______和准晶体。 2. 组成粒子在空间中周期性排列,具有长程有序的固体称为_______;组成粒子在空间中的分布完全无序或仅仅具有短程有序的固体称为_________。 3. 在晶体结构中,所有原子完全等价的晶格称为______________;而晶体结构中,存在两种或两种以上不等价的原子或离子的晶格称为____________。 4晶体结构的最大配位数是____;具有最大配位数的晶体结构包括______________晶体结构和______________晶体结构。 5. 简单立方结构原子的配位数为______;体心立方结构原子的配位数为______。 6.NaCl 结构中存在_____个不等价原子,因此它是_______晶格,它是由氯离子和钠离子各自构成的______________格子套构而成的。 7. 金刚石结构中存在______个不等价原子,因此它是_________晶格,由两个_____________结构的布拉维格子沿空间对角线位移1/4的长度套构而成,晶胞中有_____个碳原子。 8. 以结晶学元胞(单胞)的基矢为坐标轴来表示的晶面指数称为________指数。 9. 满足2,2,1,2,3)0i j ij i j a b i j i j ππδ=??===?≠?当时 (,当时 关系的123,,b b b 为基矢,由112233 h K h b h b h b =++构成的点阵,称为_______。 10. 晶格常数为a 的一维单原子链,倒格子基矢的大小为________。 11. 晶格常数为a 的面心立方点阵初基元胞的体积为_______;其第一布里渊区的体积为_______。 12. 晶格常数为a 的体心立方点阵初基元胞的体积为_______;其第一布里渊区的体积为_______。 13. 晶格常数为a 的简立方晶格的(010)面间距为________ 14. 体心立方的倒点阵是________________点阵,面心立方的倒点阵是________________点阵,简单立方的倒点阵是________________。 15. 一个二维正方晶格的第一布里渊区形状是________________。 16. 若简单立方晶格的晶格常数由a 增大为2a ,则第一布里渊区的体积变为原来的___________倍。

学习固体物理的目的和难点

JISHOU UNIVERSITY 《固体物理》期末 考核报告 摘要:本课以本科理论物理的“四大力学”为基础。又是学习凝聚态物理学和材料科学的基础,它是最基础的、又同专业关系最密切的一门课程。通过本课的学习,一方面是对以前所学基础理论知识的复习和应用,另一方面也为今后了解、掌握现代高新技术和从事科学研究打下基础。 关键字:力学、基础、课程-现代高新科技、应用 一、引言 固体物理就是研讨固体(主要是晶体)材料物理特性的一门科学。它是从固体中的原子和电子状态的根本特点出发来讨论固体的物理性质,所以是最基础的、又同专业关系最密切的一门课程,它也讨论非晶体材料的性质,是学习金属物理、半导体物理、电介质物理、磁学等的基础、先行课程。 虽然固体物理主要是讨论固体材料的问题,但是实际上对于讨论液体、气体材料也有参考价值,同时还体现了应用基础课的特点,既要讲有关的理论体系,又要讲和实验、生产的密切关系.特别要突出科学的研究方法。对于物理类和电

子科学类的专业,固体物理是必修课。所以。对于了解学习固体物理的目的和难点是非常有必要的。 二、学习固体物理的目的 2.1 固体物理学的发展 固体物理对于技术的发展有很多重要的应用,晶体管发明以后,集成电路技术迅速发展,电子学技术、计算技术以至整个信息产业也随之迅速发展。其经济影响和社会影响是革命性的。这种影响甚至在日常生活中也处处可见。新的实验条件和技术日新月异,正为固体物理不断开拓新的研究领域。极低温、超高压、强磁场等极端条件、超高真空技术、表面能谱术、材料制备的新技术、同步辐射技术、核物理技术、激光技术、光散射效应、各种粒子束技术、电子显微术、穆斯堡尔效应、正电子湮没技术、磁共振技术等现代化实验手段,使固体物理性质的研究不断向深度和广度发展。由于固体物理本身是微电子技术、光电子学技术、能源技术、材料科学等技术学科的基础,也由于固体物理学科内在的因素,固体物理的研究论文已占物理学中研究论文三分之一以上。其发展趋势是:由体内性质转向研究表面有关的性质;由三维体系转到低维体系;由晶态物质转到非晶态物质;由平衡态特性转到研究瞬态和亚稳态、临界现象和相变;由完整晶体转到研究晶体中的杂质、缺陷和各种微结构;由普通晶体转到研究超点阵的材料。这些基础研究又将促进新技术的发展,给人们带来实际利益。同时,固体物理学的成就和实验手段对化学物理、催化学科、生命科学、地学等的影响日益增长,正在形成新的交叉领域。 2.2 学习固体物理的要求 固体物理是很抽象的,在于他研究的对象已经不是一般的某个体系,而是涉及组成物体的原子分子之间的结构能量问题,有些类似于原子物理,但又不一样。想要学好固体物理完全没有必要纠结于难记的公式和复杂的推导,关键是理解固体物理中引进的其它物理分支中没有的概念和研究方法,举个例子,一开始介绍倒格矢,概念很抽象,但是它的目的是研究晶格,晶体性质的,那么就需要站在晶体结构的角度理解它;研究满带,空带,就需要联系分子之间能量来理解它。要区分微观和宏观研究方法的不同,不要带着以往学物理的方法来学习固体物理。 对于大学生所学的固体物理,其中的内容都是比较浅显易懂,我们所要做的就是在课堂所学的基础上,去为将要学习更深的内容做好准备。利用大学所学的基础知识,对固体物理的一些基础的知识的了解,去更好的用到生活中去。这样才能做到真正的学以致用。

固体物理学题库..doc

一、填空 1.固体按其微结构的有序程度可分为 _______、_______和准晶体。 2.组成粒子在空间中周期性排列,具有长程有序的固体称为 _______;组成粒子在空间中的分布完全无序或仅仅具有短程有序的固体称为 _________。 3.在晶体结构中,所有原子完全等价的晶格称为 ______________;而晶体结构中,存在两种或两种以上不等价的原子或离子的晶格称为 ____________。 4晶体结构的最大配位数是____;具有最大配位数的晶体结构包括 ______________晶体结构和 ______________晶体结构。 5.简单立方结构原子的配位数为 ______;体心立方结构原子的配位数为 ______。6.NaCl 结构中存在 _____个不等价原子,因此它是 _______晶格,它是由氯离子和钠离子各自构成的 ______________格子套构而成的。 7.金刚石结构中存在 ______个不等价原子,因此它是 _________晶格,由两个_____________结构的布拉维格子沿空间对角线位移1/4 的长度套构而成,晶胞中有 _____个碳原子。 8. 以结晶学元胞(单胞)的基矢为坐标轴来表示的晶面指数称为________指数。 9. 满足 a i b j 2 ij 2 ,当i j时 关系的 b1,b 2, b 3为基矢,由0,当 i ( i, j 1,2,3) j时 K h h b h b h构b成的点阵,称为 _______。 1 1 2 2 3 10.晶格常数为 a 的一维单原子链,倒格子基矢的大小为 ________。 11.晶格常数为 a 的面心立方点阵初基元胞的体积为 _______;其第一布里渊区的体积为 _______。 12.晶格常数为 a 的体心立方点阵初基元胞的体积为 _______;其第一布里渊区的体积为 _______。 13.晶格常数为 a 的简立方晶格的 (010)面间距为 ________ 14.体心立方的倒点阵是 ________________点阵,面心立方的倒点阵是 ________________点阵,简单立方的倒点阵是________________。 15.一个二维正方晶格的第一布里渊区形状是 ________________。 16.若简单立方晶格的晶格常数由 a 增大为 2a,则第一布里渊区的体积变为原来的 ___________倍。

固体物理习题解答

《固体物理学》习题解答 ( 仅供参考) 参加编辑学生 柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章) 指导教师 黄新堂 华中师范大学物理科学与技术学院2003级

2006年6月 第一章 晶体结构 1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出 这两种结构的原胞与晶胞基矢,设晶格常数为a 。 解: 氯化钠与金刚石型结构都是复式格子。氯化钠的基元为一个Na +和一个Cl - 组成的正负离子对。金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。 由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为: 12 3()2()2()2a a a ? =+?? ?=+?? ?=+?? a j k a k i a i j 相应的晶胞基矢都为: ,,.a a a =?? =??=? a i b j c k 2. 六角密集结构可取四个原胞基矢 123,,a a a 与4a ,如图所示。试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的 晶面指数()h k l m 。 解: (1).对于13O A A '面,其在四个原胞基矢 上的截矩分别为:1,1,1 2 -,1。所以, 其晶面指数为()1121。

(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,1 2-,∞。 所以,其晶面指数为()1120。 (3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。所以,其晶面指数为()1100。 (4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。所以,其晶面指数为()0001。 3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的 比为: 简立方: 6 π ;六角密集:6;金刚石: 。 证明: 由于晶格常数为a ,所以: (1).构成简立方时,最大球半径为2 m a R = ,每个原胞中占有一个原子, 3 34326m a V a π π??∴== ??? 36 m V a π∴ = (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R ,每个晶胞中占有两个原子, 3 3 422348m V a π??∴=?= ? ??? 32m V a ∴ = (3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R ,每个晶胞占有4个原子, 3 3 444346 m V a a π??∴=?= ? ???

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理作业及答案

固体物理作业 2.1 光子的波长为20 nm ,求其相应的动量与能量。 答: 由λ h P = ,υh E =得: 动量1 26 9 3410 313.310 2010626.6----???=???= = m s J m s J h P λ 能量J m s m s J c h h E 18 9 1 8 34 10 932.910 2010998.210626.6----?=???? ??===λ υ 2.2 作一维运动的某粒子的波函数可表达为: , 求归一化常数A? 粒子在何处的几率最大? 答: 再由2 )()(x x ψω=得: 2 22)()(x a x A x -=ω 其中 a x ≤≤0; 3 2 2 2 2 2 462) (x A x aA x A a dx x d +-=ω 令 0)(=dx x d ω得:2 ,21a x a x = = 而a x =1时,0)(=x ω,显然不是最大; 故当2 2a x = 时,粒子的几率最大。 3.1 晶体中原子间的排斥作用和吸引作用有何关系?在什么情况下排斥力和吸引力分别起主导作用? 答:

在原子由分散无规的中性原子结合成规则排列的晶体过程中, 吸引力起到了主要作用. 在吸引力的作用下, 原子间的距离缩小到一定程度, 原子间才出现排斥力. 当排斥力与吸引力相等时, 晶体达到稳定结合状态. 可见, 晶体要达到稳定结合状态, 吸引力与排斥力缺一不可. 设此时相邻原子间的距离为0r , 当相邻原子间的距离0r r 时, 吸引力起主导作用;当相邻原子间的距离0r r 时, 排斥力起主导作用。 3.2 已知某晶体中相邻两原子间的相互作用势能可表达为: (1) 求出平衡时两原子间的距离;(2) 平衡时的结合能;(3) 若取m=2, n=10,两原子间的平衡距离为3 ?,晶体的结合能为4 eV/atom 。请计算出A 和B 的值。 答: 设平衡时原子间的距离为0r 。达到平衡时,相互作用势能应具有最小值,即)(r u 满 足: 0)(0 =??r r r u ,求得m n Am Bn r -=1 0) ( (1) 将0r 代入,得平衡时的结合能m n m n m Am Bn Am Bn A r u --+- =n 0)(B )( )( (2) 当m=2,n=10时,由(1)式得 5B=A 0r 8, 再由0r =3?,)(0r u -=4eV 代人(2)式可得: 10 96 10 01090.54 )(m eV r r u B ??=- =- 2 1920001002 10 50.4)(45)(m eV r r u r u r r A ??=-=??? ?????-=-B 4.1 一定温度下,一个光学波的声子数目多,还是声学波的声子数目多? 答: 频率为的格波的(平均) 声子数为: .

固体物理学习心得

固体物理学习心得 篇一:学习固体物理后的感想 学习固体物理的感受 经过了十几周的学习,我们这门《固体物理学》也结束了最后的任务,虽然说这门课对于咱们专业的同学来说总体上难度很大,但是在您的指导下,同学们还是基本能够按时出勤,最重要的是达到了开设这门课的最初用意,能够为我们以后学习和了解更多物理学相关的知识打下良好的基础。 本课程是材料科学与工程专业的物理类基础课,包括晶格结构、晶格振动与热性质、固体电子理论、半导体、固体磁性质、绝缘体、介电体等部分。这门课程系统介绍固体物理研究的基本理论与重要试验方法提示丰富多彩的固体形态(如金属、绝缘体、磁性材料等)形成的基本物理规律,给出研究这些固体的实验(如X光衍射、中子散射、磁

散射等)设计的基本原理。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。其实固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性,较易研究。晶体或多或少都存在各种杂质和缺陷,它们对固体的物性, 以及功能材料的技术性能都起重要的作用。半导体的电学、发光学等性质

依赖于其中的杂质和缺陷;大规模集成电路的工艺中控制和利用杂质及缺陷是极为重要的。非晶态固体的物理性质同晶体有很大差别,这同它们的原子结构、电子态以及各种微观过程有密切联系。从结构上来分,非晶态固体有两类。一类是成分无序,在具有周期性的点阵位置上随机分布着不同的原子或者不同的磁矩;另一类是结构无序,表征长程序的周期性完全破坏,点阵失去意义。但近邻原子有一定的配位关系,类似于晶体的情形,因而仍然有确定的短程序。在无序体系中,电子态有局域态和扩展态之分。在局域态中的电子只有在声子的合作下才能参加导电,这使得非晶态半导体的输运性质具有新颖的特点。1974年人们掌握了在非晶硅中掺杂的技术,现在非晶硅已成为制备高效率太阳能电池的重要材料。无序体系是一个复杂的新领域,非晶态固体实际上是一个亚稳态。目前对许多基本问题还存在着争论,有待进一步的探索和研究。

固体物理学题库

固体物理学题库 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、 填空 1. 固体按其微结构的有序程度可分为_______、_______和准晶体。 2. 组成粒子在空间中周期性排列,具有长程有序的固体称为_______;组成粒子在空间中的分布完全无序或仅仅具有短程有序的固体称为_________。 3. 在晶体结构中,所有原子完全等价的晶格称为______________;而晶体结构中,存在两种或两种以上不等价的原子或离子的晶格称为____________。 4晶体结构的最大配位数是____;具有最大配位数的晶体结构包括______________晶体结构和______________晶体结构。 5. 简单立方结构原子的配位数为______;体心立方结构原子的配位数为______。 6.NaCl 结构中存在_____个不等价原子,因此它是_______晶格,它是由氯离子和钠离子各自构成的______________格子套构而成的。 7. 金刚石结构中存在______个不等价原子,因此它是_________晶格,由两个_____________结构的布拉维格子沿空间对角线位移1/4的长度套构而成,晶胞中有_____个碳原子。 8. 以结晶学元胞(单胞)的基矢为坐标轴来表示的晶面指数称为________指数。 9. 满足2,2,1,2,3)0i j ij i j a b i j i j ππδ=??===?≠? 当时 (,当时关系的123,,b b b 为基矢,由 112233h K hb h b h b =++构成的点阵,称为_______。 10. 晶格常数为a 的一维单原子链,倒格子基矢的大小为________。 11. 晶格常数为a 的面心立方点阵初基元胞的体积为_______;其第一布里渊区的体积为_______。 12. 晶格常数为a 的体心立方点阵初基元胞的体积为_______;其第一布里渊区的体积为_______。 13. 晶格常数为a 的简立方晶格的(010)面间距为________

最新固体物理总复习题

固体物理总复习题 一、填空题 1.原胞是的晶格重复单元。对于布拉伐格子,原胞只包含个原子。2.在三维晶格中,对一定的波矢q,有支声学波,支光学波。3.电子在三维周期性晶格中波函数方程的解具有形式,式中在晶格平移下保持不变。 4.如果一些能量区域中,波动方程不存在具有布洛赫函数形式的解,这些能量区域称为;能带的表示有、、三种图式。5.按结构划分,晶体可分为大晶系,共布喇菲格子。 6.由完全相同的一种原子构成的格子,格子中只有一个原子,称为格子,由若干个布喇菲格子相套而成的格子,叫做格子。其原胞中有以上的原子。 7.电子占据了一个能带中的所有的状态,称该能带为;没有任何电子占据的能带,称为;导带以下的第一满带,或者最上面的一个满带称为;最下面的一个空带称为;两个能带之间,不允许存在的能级宽度,称为。 8.基本对称操作包括,,三种操作。 9.包含一个n重转轴和n个垂直的二重轴的点群叫。 10.在晶体中,各原子都围绕其平衡位置做简谐振动,具有相同的位相和频率,是一种最简单的振动称为。 11.具有晶格周期性势场中的电子,其波动方程为。 12.在自由电子近似的模型中,随位置变化小,当作来处理。 13.晶体中的电子基本上围绕原子核运动,主要受到该原子场的作用,其他原子场的作用可当作处理。这是晶体中描述电子状态的模型。 14.固体可分为,,。 15.典型的晶格结构具有简立方结构,,,四种结构。 16.在自由电子模型中,由于周期势场的微扰,能量函数将在K= 处断开,能量的突变为。 17.在紧束缚近似中,由于微扰的作用,可以用原子轨道的线性组合来描述电子共有化运动的轨道称为,表达式为。 18.爱因斯坦模型建立的基础是认为所有的格波都以相同的振动,忽略了频率间的差别,没有考虑的色散关系。 19.固体物理学原胞原子都在,而结晶学原胞原子可以在顶点也可以在即存在于。 20.晶体的五种典型的结合形式是、、、、。21.两种不同金属接触后,费米能级高的带电,对导电有贡献的是的电子。 22.固体能带论的三个基本假设是:、、。 23.费米能量与和因素有关。 二、名词解释 1.声子;

固体物理学整理要点

固体物理复习要点 第一章 1、晶体有哪些宏观特性? 答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点 这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映 2、什么是空间点阵? 答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。 3、什么是简单晶格和复式晶格? 答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。 复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。 4、试述固体物理学原胞和结晶学原胞的相似点和区别。 答:(1)固体物理学原胞(简称原胞) 构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。 特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。它反映了晶体结构的周期性。 (2)结晶学原胞(简称晶胞) 构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。 特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。其体积是固体物理学原胞体积的整数倍。 5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。 答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。 6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。 答: 7.密堆积结构包含哪两种?各有什么特点? 答:(1)六角密积 第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。 第二层:占据1,3,5空位中心。 第三层:在第一层球的正上方形成ABABAB······排列方式。 六角密积是复式格,其布拉维晶格是简单六角晶格。 基元由两个原子组成,一个位于(000),另一个原子位于 c b a r 213132:++=即 (2)立方密积 第一层:每个球与6个球相切,有6个空隙,如编号为1,2,3,4,5,6。 第二层:占据1,3,5空位中心。 第三层:占据2,4,6空位中心,按ABCABCABC······方式排列,形成面心立方结构,称为立方密积。 8.试举例说明哪些晶体具有简单立方、面心立方、体心立方、六角密积结构。并写出这几种结构固体物理学原胞基矢。 答:CsCl 、ABO3 ; NaCl ; ; 纤维锌矿ZnS 9.会从正格基矢推出倒格基矢,并知道倒格子与正格子之间有什么区别和联系? 11.会求晶格的致密度。 14.X 射线衍射的几种基本方法是什么?各有什么特点? 答:劳厄法:(1)单晶体不动,入射光方向不变;(2)X 射线连续谱,波长在 间变化,反射球半径 转动单晶法:(1)X 射线是单色的;(2)晶体转动。 粉末法 :(1)X 射线单色(λ固定);(2)样品为取向各异的单晶粉末。 第二章 1、什么是晶体的结合能,按照晶体的结合力的不同,晶体有哪些结合类型及其结合力是什么力? 答:晶体的结合能就是将自由的原子(离子或分子)结合成晶体时所释放的能量。 结合类型:离子晶体—离子键 分子晶体—范德瓦尔斯力 共价晶体—共价键 金属晶体—金属键 氢键晶体—氢键 max min ~λλ

固体物理选择题.doc

选择题 1. ()布拉伐格子为体心立方的晶体是 A. 钠 B. 金 C. 氯化钠 D. 金刚石 2. ()布拉伐格子为面心立方的晶体是 A. 镁 B. 铜 C. 石墨 D. 氯化铯 3. ()布拉伐格子为简立方的晶体是 A. 镁B. 铜C. 石墨D. 氯化铯 4.()银晶体的布拉伐格子是 A. 面心立方 B. 体心立方 C. 底心立方 D. 简立方 5.()金属钾晶体的布拉伐格子是 A. 面心立方 B. 体心立方 C. 底心立方 D. 简立方 6.()金刚石的布拉伐格子是 A. 面心立方 B. 体心立方 C. 底心立方 D. 简立方 7.()硅晶体的布拉伐格子是 A. 面心立方 B. 体心立方 C. 底心立方 D. 简立方 8.()氯化钠晶体的布拉伐格子是 A. 面心立方 B. 体心立方 C. 底心立方 D. 简立方 9.()氯化铯晶体的布拉伐格子是 A. 面心立方 B. 体心立方 C. 底心立方 D. 简立方 10.() ZnS 晶体的布拉伐格子是 A. 面心立方 B. 体心立方 C. 底心立方 D. 简立方 11. ()下列晶体的晶格为简单晶格的是 A. 硅 B. 冰 C. 银 D. 金刚石 12. ()下列晶体的晶格为复式晶格的是 A. 钠 B. 金 C. 铜 D. 磷化镓 13. ()晶格常数为 a 的简立方晶格,原胞体积Ω等于 A. 2a 2 3 C. a 3 /2 D. a 3/4 14. ()晶格常数为 a 的体心立方晶格,原胞体积Ω等于 A. 2a 2 3 C. a 3/2 D. a 3/4 15. ()晶格常数为 a 的面心立方晶格,原胞体积Ω等于 A. 2a 2 3 C. a 3/2 D. a 3/4 16. ()晶格常数为 a 的 CsCl 晶体的原胞体积等于 A. 2a 2 3 C. a 3/2 D. a 3/4 17. ()晶格常数为 a 的 NaCl 晶体的原胞体积等于 A. 2a 2 3 C. a 3/2 D. a 3/4 18. ()晶格常数为 a 的 Cu晶体的原胞体积等于 A. 2a 2 3 C. a 3/2 D. a 3/4 19. ()晶格常数为 a 的 Na晶体的原胞体积等于 A. 2a 2 3 C. a 3 /2 D. a 3/4 20. ()晶格常数为 a 的 Au 晶体的原胞体积等于 A. 2a 2 3 C. a 3/2 D. a 3/4 21. ()晶格常数为 a 的金刚石晶体的原胞体积等于 A. 2a 2 3 C. a 3/2 D. a 3/4 22. ()晶格常数为 a 的 Cu晶体的单胞体积等于 A. 2a 2 3 C. a 3 /2 D. a 3/4 23. ()晶格常数为 a 的 Li 晶体的单胞体积等于 A. 2a 2 3 C. a 3 /2 D. a 3/4 24. ()晶格常数为 a 的 Ge晶体的单胞体积等于 A. 2a 2 3 C. a 3 /2 D. a 3/4 25. ()晶格常数为 a 的 GaP晶体的单胞体积等于 A. 2a 2 3 C. a 3/2 D. a 3/4 26. ()晶体铜的配位数是 A.12B.8C.6D.4 27. ()金属钠晶体的配位数是 A.12B.8C.6D.4 28. ()金刚石的配位数是 A.12B.8C.6D.4 29. ()面心立方密集的致密度是 A. B. 0.74 C. D. 30. ()体心立方密集的致密度是 A. B. 0.74 C. D. 31. ()晶体的布拉伐格子共有几种? A. 12 B. 13 C. 14 D. 15 32. ()立方晶系的布拉伐格子共有几种? A.1B.2C.3D.4 33.()表征晶格周期性的概念是 A. 原胞或布拉伐格子 B. 原胞或单胞 C. 单胞或布拉伐格子 D. 原胞和基元 34. ()晶体共有几个晶系? A.4B.5C.6D.7 35. ()晶体点群有 A. 230 种B.320 种C.48 种D.32 种 36(. )晶格常数为 a 的一维单原子链,倒格子基矢的大小为 A. a B. 2a C. π/a D. 2π/a 37(. )晶格常数为 a 的一维双原子链,倒格子基矢的大小为 A. a B. 2a C. π/a D. 2π/a 38. ()晶格常数为 a 的简立方晶格的 (010) 面间距为 B. 2 C. 3 3 a 2 a 2 a 39. ()晶格常数为 a 的简立方晶格的 (110) 面间距为 A. a B. a C. a D. a 2 3 4 5 40. ()晶格常数为 a 的简立方晶格的 (111) 面间距为 A. a B. a C. a D. a 2 3 4 5

固体物理学发展简史

固体物理学发展简史 固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态,及其相互关系的科学。它是物理学中内容极丰富、应用极广泛的分支学科。 固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。 在相当长的时间里,人们研究的固体主要是晶体。早在18世纪,阿维对晶体外部的几何规则性就有一定的认识。后来,布喇格在1850年导出14种点阵。费奥多罗夫在1890年、熊夫利在1891年、巴洛在1895年,各自建立了晶体对称性的群理论。这为固体的理论发展找到了基本的数学工具,影响深远。 1912年劳厄等发现X射线通过晶体的衍射现象,证实了晶体内部原子周期性排列的结构。加上后来布喇格父子1913年的工作,建立了晶体结构分析的基础。对于磁有序结构的晶体,增加了自旋磁矩有序排列的对称性,直到20

世纪50年代舒布尼科夫才建立了磁有序晶体的对称群理论。 第二次世界大战后发展的中子衍射技术,是磁性晶体结构分析的重要手段。70年代出现了高分辨电子显微镜点阵成像技术,在于晶体结构的观察方面有所进步。60年代起,人们开始研究在超高真空条件下晶体解理后表面的原子结构。20年代末发现的低能电子衍射技术在60年代经过改善,成为研究晶体表面的有力工具。近年来发展的扫描隧道显微镜,可以相当高的分辨率探测表面的原子结构。 晶体的结构以及它的物理、化学性质同晶体结合的基本形式有密切关系。通常晶体结合的基本形式可分成:高子键合、金属键合、共价键合、分子键合和氢键合。根据X 射线衍射强度分析和晶体的物理、化学性质,或者依据晶体价电子的局域密度分布的自洽理论计算,人们可以准确地判定该晶体具有何种键合形式。 固体中电子的状态和行为是了解固体的物理、化学性质的基础。维德曼和夫兰兹于1853年由实验确定了金属导热性和导电性之间关系的经验定律;洛伦兹在1905年建立了自由电子的经典统计理论,能够解释上述经验定律,但无法说明常温下金属电子气对比热容贡献甚小的原因;泡利在1927年首先用量子统计成功地计算了自由电子气的顺磁性,索末菲在1928年用量子统计求得电子气的比热容和输运现象,解决了经典理论的困难。

固体物理经典复习题及答案(供参考)

一、简答题 1.理想晶体 答:内在结构完全规则的固体是理想晶体,它是由全同的结构单元在空间 无限重复排列而构成的。 2.晶体的解理性 答:晶体常具有沿某些确定方位的晶面劈裂的性质,这称为晶体的解理性。 3.配位数 答: 晶体中和某一粒子最近邻的原子数。 4.致密度 答:晶胞内原子所占的体积和晶胞体积之比。 5.空间点阵(布喇菲点阵) 答:空间点阵(布喇菲点阵):晶体的内部结构可以概括为是由一些相同的 点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵(布喇菲点阵),即平移矢量123d 、d 、h h h d 中123,,n n n 取整数时所对应的点的排列。空间点阵是晶体结构周期性的数学抽象。 6.基元 答:组成晶体的最小基本单元,它可以由几个原子(离子)组成,整个晶体 可以看成是基元的周期性重复排列而构成。 7.格点(结点) 答: 空间点阵中的点子代表着结构中相同的位置,称为结点。 8.固体物理学原胞 答:固体物理学原胞是晶格中的最小重复单元,它反映了晶格的周期性。 取一结点为顶点,由此点向最近邻的三个结点作三个不共面的矢量,以此三个矢量为边作的平行六面体即固体物理学原胞。固体物理学原胞的结点都处在顶角位置上,原胞内部及面上都没有结点,每个固体物理学原胞平均含有一个结点。 9.结晶学原胞 答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为 边作的平行六面体称为结晶学原胞,结晶学原胞反映了晶体的对称性,

它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积。 10.布喇菲原胞 答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为 边作的平行六面体称为布喇菲原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积 11.维格纳-赛兹原胞(W-S 原胞) 答:以某一阵点为原点,原点与其它阵点连线的中垂面(或中垂线) 将空间 划分成各个区域。围绕原点的最小闭合区域为维格纳-赛兹原胞。 一个维格纳-赛兹原胞平均包含一个结点,其体积等于固体物理学原胞的体积。 12. 简单晶格 答:当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表 该原子,这种晶体结构就称为简单格子或Bravais 格子。 13.复式格子 答:当基元包含2 个或2 个以上的原子时,各基元中相应的原子组成与格 点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。显然,复式格子是由若干相同结构的子晶格相互位移套构而成。 14.晶面指数 答:描写晶面方位的一组数称为晶面指数。设基矢123,,a a a r u u r u u r ,末端分别落 在离原点距离为123d 、d 、h h h d 的晶面上,123、、h h h 为整数,d 为晶面间距,可以证明123、、h h h 必是互质的整数,称123、、h h h 3为晶面指数,记为()123h h h 。用结晶学原胞基矢坐标系表示的晶面指数称为密勒指数。 15.倒格子(倒易点阵)

《固体物理学》基础知识训练题及其参考标准答案

《固体物理》基础知识训练题及其参考答案 说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。 第一章 作业1: 1.固体物理的研究对象有那些? 答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。 2.晶体和非晶体原子排列各有什么特点? 答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。 3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。有那些单质晶体分别属于以上三类。 答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。 面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。常见的面心立方晶体有:Cu, Ag, Au, Al等。 六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。常见的六角密排晶体有:Be,Mg,Zn,Cd等。 4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。 答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一 套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格; 金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格; Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶 格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。 ZnS:类似于金刚石。

固体物理经典复习题及标准答案

固体物理经典复习题及答案

————————————————————————————————作者:————————————————————————————————日期: 2

1 一、简答题 1.理想晶体 答:内在结构完全规则的固体是理想晶体,它是由全同的结构单元在空 间无限重复排列而构成的。 2.晶体的解理性 答:晶体常具有沿某些确定方位的晶面劈裂的性质,这称为晶体的解理性。 3.配位数 答: 晶体中和某一粒子最近邻的原子数。 4.致密度 答:晶胞内原子所占的体积和晶胞体积之比。 5.空间点阵(布喇菲点阵) 答:空间点阵(布喇菲点阵):晶体的内部结构可以概括为是由一些相同 的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵(布喇菲点阵),即平移矢量123d 、d 、h h h d 中123,,n n n 取整数时所对应的点的排列。空间点阵是晶体结构周期性的数学抽象。 6.基元 答:组成晶体的最小基本单元,它可以由几个原子(离子)组成,整个晶 体可以看成是基元的周期性重复排列而构成。 7.格点(结点) 答: 空间点阵中的点子代表着结构中相同的位置,称为结点。 8.固体物理学原胞 答:固体物理学原胞是晶格中的最小重复单元,它反映了晶格的周期性。 取一结点为顶点,由此点向最近邻的三个结点作三个不共面的矢量,以此三个矢量为边作的平行六面体即固体物理学原胞。固体物理学原胞的结点都处在顶角位置上,原胞内部及面上都没有结点,每个固体物理学原胞平均含有一个结点。 9.结晶学原胞 答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢

固体物理作业

固体物理作业 1.分别用空间点阵、晶格和原胞的概念给晶体下一个定义。 2.简单阐述下列概念: I.晶格、晶胞、晶列、晶向、晶面、晶系。 II.固体物理学原胞(初级原胞)、结晶学原胞(惯用原胞)和魏格纳赛斥原胞(W-S 原胞)。 III.正格子、倒格子、布喇菲格子和复式格子。 3.晶体的重要结合类型有哪些,他们的基本特征为何? 4.为什么晶体的稳定结合需要引力外还需要排斥力?排斥力的来源是什么? 5.何谓声子?试将声子的性质与光子作一个比较。 6.何谓夫伦克耳缺陷和肖脱基缺陷? 7.自由电子气体的模型的基本假设是什么? 8.绝缘体中的镜带或能隙的起因是什么? 9.试简述重要的半导体材料的晶格结构、特征。 10.超导体的基本电磁性质是什么? 作业解答: 1.分别用空间点阵、晶格和原胞的概念给晶体下一个定义。 解答: I. 取一个阵点做顶点,以不同方向上的平移周期a、b、c为棱长,做一个平 行六面体,这样的平行六面体叫做晶胞。由很多个晶胞结合在一起构成晶 体。 II. 在空间点阵各个点上配置一些粒子,就构成了晶格。晶格是晶体矩阵所形成的空间网状结构。在网状结构的点上配置一些结构就构成了晶体。 III. 在空间无限排列最小的结构称为原胞,原胞是构成了晶体的最小结构。2.简单阐述下列概念: 解答: I . 晶格、晶胞、晶列、晶向、晶面、晶系。 晶格:又称晶架,是指的晶体矩阵所形成的空间网状结构——说白了就是晶胞的 排列方式。把每一个晶胞抽象成一个点,连接这些点就构成了晶格。 晶胞:顾名思义,则是衡量晶体结构的最小单元。众所周知,晶体具有平移对称 性。在一个无限延伸的晶体网络中取出一个最小的结构,使其能够在空间内密铺 构成整个晶体,那么这个立体就叫做晶胞。简而言之,晶胞就是晶体平移对称的 最小单位。 晶列:沿晶格的不同方向晶体性质不同。布喇菲格子的格点可以看成分裂在一系列相 互平行的直线系上,这些直线系称为晶列。 晶向:布喇菲格子可以形成方向不同的晶列,每一个晶列定义了一个反向,称为晶向。 晶面:在晶体学中,通过晶体中原子中心的平面叫作晶面。 晶系:晶体根据其在晶体理想外形或综合宏观物理性质中呈现的特征对称元素可 划分为立方、六方、三方、四方、正交、单斜、三斜等7类,是为7个晶系。 II 固体物理学原胞(初级原胞)、结晶学原胞(惯用原胞)和魏格纳赛斥原胞(W-S 原胞。

相关文档
相关文档 最新文档