文档库 最新最全的文档下载
当前位置:文档库 › 基于某TOP227Y芯片地单端反激式开关电源制作

基于某TOP227Y芯片地单端反激式开关电源制作

基于某TOP227Y芯片地单端反激式开关电源制作
基于某TOP227Y芯片地单端反激式开关电源制作

基于TOP227Y芯片的单端反激式开关电源

前言

虽然身边到处充斥着电子设备,所有空间几乎都被各种电磁波覆盖,但是从来没有真正留意过什么。后来,因为偶尔需要找朋友维修一些电子设备,加之有培养孩子学一些电子电路知识的想法,于是就在不经意间走近了“近在咫尺却又远在天边”的电子世界。

开始是基于简单的需要,利用工频变压器和LM317自己设计制作了带呼吸灯的直流稳压电源比较粗糙。后来因为要改造车载点烟器的手机充电接口,又基于34063自制车载手机充电板,使用中发现34063做的充电板虽然基本满足使用要求。但是一直存在芯片明显发热的问题,偶尔还有电感噪声。于是基于LM2596再做车载手机充电板。

从制作中了解到LM2596系列是3A电流输出降压开关型集成稳压芯片,它内含固定频率振荡器(150KHZ)和基准稳压器(1.23v),并具有完善的保护电路、电流限制、热关断电路等。利用该器件只需很少的外围器件便可构成高效稳压电路。这时才第一次听说“开关电源”(开始还以为就是带机械开关的电源呢,呵呵)。上网查阅资料,学习,尝试,自己终于制成了一款真正的开关电源。

知识超市

1、单激式变压器开关电源

变压器开关电源的最大优点是,变压器可以同时输出多组不同数值

的电压,改变输出电压和输出电流很容易,只需改变变压器的匝数比和漆包线截面积的大小即可;另外,变压器初、次级互相隔离,不需共用同一个地。因此,变压器开关电源也有人把它称为离线式开关电源。这里的离线并不是不需要输入电源,而是输入电源与输出电源之间没有导线连接,完全是通过磁场偶合传输能量。变压器开关电源采用变压器把输入输出进行电器隔离的最大好处是,提高设备的绝缘强度,降低安全风险,同时还可以减轻EMI 干扰,并且还容易进行功率匹配。

变压器开关电源有单激式变压器开关电源和双激式变压器开关电源之分,单激式变压器开关电源普遍应用于小功率电子设备之中,因此,单激式变压器开关电源应用非常广泛。而双激式变压器开关电源一般用于功率较大的电子设备之中,并且电路一般也要复杂一些。

单激式变压器开关电源的缺点是变压器的体积比双激式变压器开关电源的激式变压器的体积大,因为单激式开关电源的变压器的磁芯只工作在磁回路曲线的单端,磁回路曲线变化的面积很小。

2、单片开关电源的简单原理

单片开关电源由于具有单片集成化、最简外电路、最佳性能指标、无工频变压器、能完全实现电气隔离等显著特点,显示出强大的生命力,倍受人们青睐,是开关电源的发展方向。目前,它已成为国际上开发290W以下高效率中、小功率开关电源、精密开关电源、特种开关电源及电源模块的优选集成电路。

TOP227Y是PI公司1997年推出了TOP SwitchⅡ系列器件中一

款输出功率比大的芯片,其封装形式是TO-220,自带小散热片,是典型的三端集成器件,三个管脚分别为控制端C(control)、源极S (source)、漏极D(drain),其内部功率MOSFET器件的耐压值高达700V,可设计成150W以下仪器仪表的多路隔离式内置控制电源。(现在该公司的产品已经出到TOPSwitch-JX系列型号是TOP264-271)TOP227Y的基本工作原理是利用反馈电流Ic来调节占空比D ,达到稳压目的。如当输出电压Vo减小时,经过反馈电路使得Ic降低,D增大,Vo升高,最终使Vo保持不变。

本设计的原理图

如图是用TOP227Y芯片设计的单端反激式开关电源的原理图。输入为220V AC(±15%),输出为+12VDC 。

由于TOPSwitch芯片集成度高,设计工作主要是外围电路的设计。外围电路基本分为输入整流滤波电路、钳位保护电路、高频变压器、输出整流滤波电路及反馈电路5部分。

电路中交流滤波线圈为10~33mH,采取双线并绕。整流电路选择整流桥,交流电源经过BR1和C2整流滤波后产生直流高压,给高

频变压器的初级绕组供电。高频变压器初级绕组NP的极性与次级绕组NS、反馈绕组NF的极性相反。在TOPSwitch导通时,次级整流管VD4截止,此时电能以磁能量形式存储在初级绕组中;当TOPSwitch 截止时,VD4导通,能量传输给次级。高频变压器在电路中兼有能量存储、隔离输出和电压变换这三大功能。

直流高压经初级绕组加至TOPSwitch的漏极上。在功率MOSFET 关断瞬间,高频变压器漏感会产生尖峰电压,另外在初级绕组上还会产生感应电压(即反向电动势),两者叠加至内部功率开关管MOSFET 的漏极上,因此必须在漏极增加钳位保护电路。钳位电路由瞬态电压抑制器或稳压管VR2和超快恢复二极管VD1组成。VR2和VD1能将漏感产生的尖峰电压箝位到安全值。VR2采用反向击穿电压为200V的瞬态电压抑制器P6KE200A,VD1选用1A/600V的超快恢复二极管BYV26C。当MOSFET导通时,变压器的初级极性上端为正,下端为负,从而导致VD4截止,因而钳位电路不起作用。在MOSFET截止瞬间,初级极性则变为上负下正,此时尖峰电压就被VR2吸收掉。

次级绕组电压通过VD4、C9、C10、L2和C12、 C14整流滤波,获得12V输出电压Vo。输出整流滤波电路由整流二极管和滤波电容、滤波电感构成。输出整流二极管的开关损耗占系统损耗的1/6多,是影响开关电源效率的主要因素,它包括正向导通损耗和反向恢复损耗。由于肖特基二极管反向恢复时间短,在降低反向恢复损耗以及消除输出电压中的纹波方面有明显的性能优势,所以选用肖特基二极管MUR620CT作为整流二极管。

对输出滤波电容,ESR(等效串联阻抗)和纹波电流是它的两个重要参数。当电容两端电压小于35V时,ESR只与电容的体积有关, 可以考虑使用高频低阻电容。由于手里没有这样的电容,我采用两个电解电容并联降低内阻的办法。

输出滤波电感采用的是一个旧的拆机电感,测量大约有10uH。它的作用主动抑制开关噪声的产生。为减少共模干扰,在输出的地与高压侧的地之间接共模抑制电容,如图中的C11 。

反馈绕组电压经过VD2、C7整流滤波后获得反馈电压,经光耦合器中的光敏三极管给TOPSwitch的控制端提供偏压。输出电压Vo通过电阻R13、R15分压,与TL431中的2.5V基准电压进行比较后输出误差电压,然后通过光耦去改变控制端电流。TOPSwitch的占空比D 与Ic(控制电流)成反比。反馈电路是通过调节TOPSwitch的占空比实现稳压的。

关于反馈相关参数设计

为使PWM线性调节,一般选PC817A二极管正向电流为3mA;TL431一般选20mA即可,不但可稳定工作,又能提供一部分死负载。设计的取值为:R12=470Ω,R3=150Ω,R13=38K,R15=10K。(由于除了470欧的电阻手里没有其他对应阻值,所以采用两个300欧并联代替R3,R15采用12K,R13采用47K。所以本设计实际输出电压为12.29V)

若需增加软起动功能以限制开启电源时的占空比,使Vo平滑地

升高,应在U2的两端并联一只软起动电容,容量范围为4.7μF~47μF。在软起动过程中Vo是按照一定的斜率升高的,能对TOP227Y 起到保护作用。

改变高频变压器的匝数比和U2的稳压值,还可获得其他输出电压值。R7为12V输出提供一个假负载,用以提高轻载时的负载调整率。其实本设计中可以不用这个R7,可以在安装元件时把它换成滤波电容。

实际制作

PCB设计

[小常识]开关电源PCB排版的要点

1.旁路瓷片电容器的电容不能太大,而它的寄生串联电感应尽量小,多个电容并联能改善电容的阻抗特性;

2.电感的并联电容应尽量小,电感引脚焊盘之间的距离越远越好;避免在底层上放置任何功率或信号走线;

3.高频环路的面积应尽可能减小;

4.过孔放置不应破坏高频电流在底层上的路径;

5.系统板上不同电路需要不同接地层,不同电路的接地层通过单点与电源接地层相连接;

6.控制芯片至上端和至下端场效应管的的驱动电路环路要尽量短;

7.开关电源功率电路和控制信号电路元器件需要连接道不同的接地层,这两个地层一般都是通过单点相连接。

利用感光板制作

正在腐蚀中... ...

腐蚀完毕

涂阻焊层,制作丝印层,钻孔,焊接,制作成品。

R8和C4构成能量吸收回路,他们的设计决定着钳位保护电路的类型

R11和C8构成缓冲电路,但是取值不当会引起更大的振荡。

由于没有示波器,无法测量输出波纹有多大,也没有设备去测量噪声如何。只是用万用表测量空载输出12.29V,连接手机充电板,给手机充电从30%直至充满没有问题。

后记:

制作成功的关键:一是变压器的设计制作(该公司有专门的设计软件,可惜已经不支持II系列了)。我这里用的是一个现成二手的旧变压器。另外就是PCB的设计很重要,自己去设计时才发现这里的学问太多了,学无止境啊!

附录:

制成电路板的尺寸大约是50mm*100mm。体积比一个工频变压器大不了多少。真是体积小,重量轻,效率高啊。

后来到朋友处用示波器测量,由于示波器比较古老,看不出直流输出有明显的波纹。猜测:该电源纹波电压峰一峰值小于100mV?

随后又测试了带载能力,持续点亮一个汽车前照卤素大灯,55W,电压一直非常稳定在12.29V,比较理想。

根据制成品和需要又重新微调了PCB布局:

1、改变交流滤波电感的封装,可以兼容手里两种不同规格的电感

2、进一步缩小高频回路的面积。

关于开关电源变压器次级大多采用“半波”整流方式的解释

开关电源利用单激方式工作,即开关管导通时变压器储能,截止时变压器才释能,所以变压器次级实际上输出的是脉冲电而非正、负半周都有。所以采用半波足够了!

关于单片开关电源的选用

本设计对应Top-II系列芯片,换用TOP224Y(输出功率75W)亦可。但是应用输出功率150W的TOP227Y,相当于降额使用,这样就可以降低导通损耗。

关于假负载的讨论

1、加假负载是为解决空载振荡的问题

原理:

单端反激电源在空载的情况下,在某些工作点处会发生振荡现象,表现为变压器的啸叫或输出的不稳定。发生这种现象是由于空载或轻载时开关瞬时开通时间过大,造成输出能量太大因此电压过冲也很大。需要较长的时间去恢复到正常电压,因此开关需停止工作一段时间,这样开关就工作于间歇性工作模式。为了解决这种振荡而加假负载,这样使得电压过冲减小或消失。

但太大的假负载会使单端反激电源的效率降低,而且即使在轻载的情况下,在某一特定工作点也有可能发生振荡

2、高压轻载情况下,是反激环路最恶劣的状态,因为这时候主功率回路的极点频率很低,增益曲线会以-20db/dec衰减~而我们常常会在反激滤波电容的ESR零点频率处增加一个极点来补偿滤波电容的ESR零点,补偿回路在ESR零点频率后,会以-20db/dec衰减,而主功率回路,也会以-20db/dec衰减,这样一来,总的开环增益会以

-40db/dec衰减,穿过0db线,系统极容易发生震荡。增加死负载以后,主功率回路在ESR零点频率处的增益,是被抬高了的~

3、电路调试中,先加假负载使电路稳定,然后适当减小这个负载~

4、在反激中,起本身就存在一些固有的损耗,像431等,所以很多时候是不需要额外的增加假负载的

5、由于后级稳压器或假负载会造成成本增加和效率降低,因而它们缺乏足够的吸引力,特别是在近年来对多种消费类应用中的空载和/或待机输入功耗的法规要求越来越严格的情况下,这一设计开始受到冷落。而有源并联稳压器不仅可以解决稳压问题,还能够最大限度地降低成本和效率影响。

2019年反激式开关电源设计大全

2019年反激式开关电源设计大全

前言 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它 的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消 副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负 载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水 泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整 个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电 流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分 量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝 数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很 小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。

可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压 器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没 有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向 磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁 感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动 势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开 关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下, 首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源 变压器设计的思考二中讨论。 反激式开关电源设计的思考二---气隙的作用 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁 芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢? 由全电流定律可知:

UCC38C43隔离单端反激式开关电源电路图

UC3842/UC3843隔离单端反激式开关电源电路 图 开关电源以其高效率、小体积等优点获得了广泛应用。传统的开关电源普遍采用电压型脉宽调制(PWM)技术,而近年电流型PWM技术得到了飞速发展。相比电压型PWM,电流型PWM具有更好的电压调整率和负载调整率,系统的稳定性和动态特性也得以明显改善,特别是其内在的限流能力和并联均流能力使控制电路变得简单可靠。 电流型PWM集成控制器已经产品化,极大推动了小功率开关电源的发展和应用,电流型PWM控制小功率电源已经取代电压型PWM控制小功率电源。Unitrode公司推出的UC3842系列控制芯片是电流型PWM控制器的典型代表。 DC/DC转换器 转换器是开关电源中最重要的组成部分之一,其有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。

图1 电路结构图 电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器 次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD 导通,给输出电容C充电,同时负载R上也有电流I流过。M1导通与截止的等效拓扑如 图2所示。 图2 M1导通与截止的等效拓扑 电流型PWM 与电压型PWM比较,电流型PWM控制在保留了输出电压反馈控制外,又增加了一 个电感电流反馈环节,并以此电流反馈作为PWM所必须的斜坡函数。 下面分析理想空载下电流型PWM电路的工作情况(不考虑互感)。电路如图3所示。 设V导通,则有 L·diL/dt = ui (1) iL以斜率ui/L线性增长,L为T1原边电感。经无感电阻R1采样 Ud=R1·iL送到脉宽比较器A2与Ue比较,当Ud>Ue,A2输出高电平,送到RS锁存器 的复位端,此时或非门的两个输入中必有一个高电平,经过或非门输出低电平关断功率开

单端反激开关电源方案

反激式开关电源变压器的设计 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D ,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我设计变压器的方法。 设计变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V 到265V ,输出5V ,2A 的电源,开关频率是100KHZ 。 第一步,选定原边感应电压V OR 这个值是由自己来设定的,这个值就决定了电源的占空比。可能朋友们不理解什么是原边感应电压,为了便于理解,我们从下面图一所示的例子谈起,慢慢的来。 这是一个典型的单端反激式开关电源,大家再熟悉不过了,下面分析一下一个工作周期的工作情况,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的电流: I 升=V S *Ton/L 这三项分别是原边输入电压、开关开通时间和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的电流: I降=V OR *T OFF /L 这三项分别是原边感应电压(即放电电压)、开关管关断时间和电感量.在经过一个周期后,原边电感电流会回到原来的值,不可能会变,所以,有: V S *T ON /L=V OR *T OFF /L 即上升了的等于下降了的,懂吗?好懂吧!上式中可以用D来代替T ON ,用(1-D)来代替T OFF 。移项可得: 图一

(整理)反激式开关电源变压器设计原理.

反激式开关电源变压器设计原理 (Flyback Transformer Design Theory) 第一节. 概述. 反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图. 一、反激式转换器的优点有: 1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2. 转换效率高,损失小. 3. 变压器匝数比值较小. 4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下. 2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 第二节. 工作原理 在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下: 当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2. 由图可知,导通时间 ton的大小将决定Ip、Vce的幅值: Vce max = VIN / 1-Dmax VIN: 输入直流电压 ; Dmax : 最大工作周期 Dmax = ton / T 由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN. 开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip 为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic 的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip 亦可用下列方法表示: Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率 公式导出如下: 输出功率 : Po = LIp2η / 2T

单端反激式开关电源-主电路设计

摘要开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制、IC 和MOSFET构成。 本设计在大量前人设计开关电源的的基础上,以反激式电路的框架,用TOP244Y 构成12V、2.5A开关电源模块,通过整流桥输出到高频变压器一次侧,在二次侧经次级整流滤波输出。输出电压经采样与TL431稳压管内部基准电压进行比较,经过线性光偶合器PC817改变TOP244Y的占空比,从而使电路能直流稳压输出。 关键词开关电源;脉冲宽度调制控制;高频变压器;TOP244Y ABSTRACT Switching power supply is the use of modern electronic technology, control switching transistor turn-on and turn-off time ratio of the output voltage to maintain a stable power supply, switching power supply generally by the pulse width modulation (PWM) control,IC and MOSFET form. The design of a large number of predecessors in the switching power supply design based on the flyback circuit to the framework, using TOP244Y constitute a 12V, 2.5A switching power supply module, through the rectifier bridge output to high-frequency transformer primary side, the secondary side by the time level rectifier output. TL431 by sampling the output voltage regulator with an internal reference voltage comparison, after a linear optical coupler PC817 change TOP244Y duty cycle, so the circuit can be DC regulated output. Keyword Switching Power Supply;PWM Control;high frequency transformer;TOP244Y 目录 前言 (3) 1.反激式PWM高频开关电源的工作原理 (4)

反激式开关电源原理

反激式开关电源原理 反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源. "反激"(FL Y BACK)的具体所指是当输入为高电平(开关管接通)时输出线路中串联的电感为放电状态,相反当输入为高电平(开关管断开)时输出线路中的串联的电感为充电状态. 与之相对的是"正激"(FORWARD)式开关电源,当输入为高电平(开关管接通)时输出线路中串联的电感为充电状态,相反当输入为高电平(开关管断开)时输出线路中的串联的电感为放电状态,以此驱动负载. 电机配导线(电机一个千瓦大约2A) "1.5加二,2.5加三" "4后加四,6后加六" "25后加五,50后递增减五" "百二导线,配百数" 该口诀是按三相380V交流电动机容量直接选配导线的。"1.5加二"表示1.5mm2的铜芯塑料线,能配3.5kW的及以下的电动机。由于4kW 电动机接近3.5kW的选取用范围,而且该口诀又有一定的余量,所以在速查表中4kW以下的电动机所选导线皆取1.5mm2。"2.5加三"、"4后加四",表示2.5mm2及4mm2的铜芯塑料线分别能配5.5kW、8kW电动机。"6后加六",是说从6mm2的开始,能配"加大六"kW的电动机。即6mm2的可配12kW,选相近规格即配1lkW电动机。10mm2可配16kW,选相近规格即配15kW电动机。16mm2可配22kW电动机。这中间还有18.5kW电动机,亦选16mm2的铜芯塑料线。"25后加五",是说从25mm2开始,加数由六改为五了。即25mm2可配30kW的电动机。35mm2可配40kW,选相近规格即配37kW电动机。"50后递增减五",是说从50mm2开始,由加大变成减少了,而且是逐级递增减五的。即50mm2可配制45kW电动机(50-5)。70mm2可配60kW(70-10),选相近规格即配备55kW 电动机。95mm2可配80kW(95-15),选相近规格即配75kW电动机。"百二导线,配百数",是说120mm2的铜芯塑料线可配1OOkW电动机,选相规格即90kW 电动机。2.电动机配用导线的对表速查例如一台Y180L-4、22kW电动机,从速查表查得应配BV型16mm2的铜芯塑料线。七、有关使用速查表的几项说明1.表中所列电动机为Y系列380V/50Hz三相异步电动机,对于其它系列电动机,只要额定电压和频率相符,额定电流相接近,也可参考使用。2.选用的BV型铜芯塑料线截面,是以水泥厂供用电距离在200m及以下,年运行时问7000~8000h,以降低线路损耗节电效益显著等条件考虑的。如果供电距离大于200m,则需要按常规的导线选用设计条件(如发热条件、电压损耗条件、经济电流密度、机械强度),另行设计计算。如果采用BLV型塑料铝芯线,其规格要降一级选用。即2.5mm2铝芯线可代替1.5mm2铜芯线,4mm2铝芯线可代替2.5mm2铜芯线……,其它依此类推。 热继电器配置 一般情况下,可选用两相结构热继电器,但当三相电压的均衡性较差,工作环境恶劣或无人看管的电动机,宜选用三相结构的热继电器。对于三角形接线的电动机,应该选用带断相保护装置的热继电器。 2、热继电器额定电流选择。

反激式开关电源设计的思考(一到五)

反激式开关电源设计的思考一 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步: 第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。 可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下,首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源变压器设计的思考二中讨论。 关键词:开关电源反激式磁芯饱和 反激式开关电源设计的思考二 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢?由全电流定律可知:

(完整版)单端反激式开关电源的设计..

《电力电子技术》 课程设计报告 题目:单端反激式开关电源的设计学院:信息与控制工程学院

一、课程设计目的 (1)熟悉Power MosFET的使用; (2)熟悉磁性材料、磁性元件及其在电力电子电路中的使用; (3)增强设计、制作和调试电力电子电路的能力; 二、课程设计的要求与内容 本课程设计要求根据所提供的元器件设计并制作一个小功率 的反激式开关电源。我设计的是一个输入190V,输出9V/1.1A的反激式开关电源,要求画出必要的设计电路图,进行必要的电路参数计算,完成电路的焊接任务。有条件的可以用protel99 SE进行PCB电路板的印制。 三、设计原理 1、开关型稳压电源的电路结构 (1)按驱动方式分,有自激式和他激式。 (2)按DC/DC变换器的工作方式分:①单端正激式和反激式、推挽式、半桥式、全桥式等;②降压型、升压型和升降压型等。 (3)按电路组成分,有谐振型和非谐振型。 (4)按控制方式分:①脉冲宽度调制(PWM)式;②脉冲频率调制(PFM)式; ③PWM与PFM混合式。 DC/DC变换器用于开关电源时,很多情况下要求输入与输出间进行电隔离。这时必须采用变压器进行隔离,称为隔离变换器。这类变换器把直流电压或电流变换为高频方波电压或电流,经变压器升压或降压后,再经整流平滑滤波变为直流电压或电流。因此,这类变换器又称为逆变整流型变换器。 DC/DC变换器有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。

图1 电路结构图 电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD导通,给输出电容C充电,同时负载R上也有电流I 流过。M1导通与截止的等效拓扑如图2所示。 图2 M1导通与截止的等效拓扑 2、反激变换器工作原理 基本反激变换器如图3所示。假设变压器和其他元器件均为理想元器件,稳态工作如下: (1)当有源开关Q导通时,变压器原边电流增加,会产生上正下负的感应电动势,从而在副边产生下正上负的感应电动势,如图 3(a)所示,无源开关VD1因反偏而截止,输出由电容C向负 载提供能量,而原边则从电源吸收能量,储存于磁路中。 (2)当有源开关Q截止时,由于变压器磁路中的磁通不能突变,所以在原边会感应出上负下正的感应电动势,故VD1正偏而导通,

反激式变压器开关电源电路参数计算(精)

反激式变压器开关电源电路参数计算 反激式变压器开关电源电路参数计算基本上与正激式变压器开关电源电路参数计算一样,主要对储能滤波电感、储能滤波电容,以及开关电源变压器的参数进行计算。1-7-3-1.反激式变压器开关电源储能滤波电容参数的计算前面已经详细分析,储能滤波电容进行充电时,电容两端的电压是按正弦曲线的速率变化,而储能滤波电容进行放电时,电容两端的电压是按指数曲线的速率变化,但由于电容充、放电的曲率都非常小,所以,把图1-19反激式变压 反激式变压器开关电源电路参数计算基本上与正激式变压器开关电源电路参数计算一样,主要对储能滤波电感、储能滤波电容,以及开关电源变压器的参数进行计算。 1-7-3-1.反激式变压器开关电源储能滤波电容参数的计算 前面已经详细分析,储能滤波电容进行充电时,电容两端的电压是按正弦曲线的速率变化,而储能滤波电容进行放电时,电容两端的电压是按指数曲线的速率变化,但由于电容充、放电的曲率都非常小,所以,把图1-19反激式变压器开关电源储能滤波电容两端电压的充、放电波形画成了锯齿波,这也相当于用曲率的平均值来取代曲线的曲率,如图1-26所示。 图1-26中,uo是变压器次级线圈输出波形,Up是变压器次级线圈输出电压正半周波形的峰值,Up-是变压器次级线圈输出电压负半周波形的峰值,Upa是变压器次级线圈输出电压波形的半波平均值,uc是储能滤波电容两端的电压波形,Uo是反激式变压器开关电源输出电压的平均值,i1是流过变压器初级线圈的电流,i2是流过变压器次级线圈的电流,Io是流过负载两端的平均电流。 从图1-26可以看出,反激式变压器开关电源储能滤波电容充、放电波形与图 1-7反转式串联开关电源储能滤波电容充、放电波形(图1-8-b))基本相同,只是极性正好相反。因此,图1-19反激式变压器开关电源储能滤波电容参数的计算方法与图1-7反转式串联开关电源储能滤波电容参数的计算方法完全相同。反激式变压器开关电源储能滤波电容参数的计算,除了参考图1-7以外,还可以参考前面串联式开关电源或反转式串联开关电源中储能滤波电容参数的计算方法,同时还可以参考图1-6中储能滤波电容C的充、放电过程。 从图1-26中可以看出,反激式变压器开关电源与反转式串联开关电源中的储能电感一样,仅在控制开关K关断期间才产生反电动势向负载提供能量,因此,即使是在占空比D等于0.5的情况下,储能滤波电容器充电的时间与放电的时间也不相等,电容器充电的时间小于半个工作周期,而电容器放电的时间则大于半个工作周期,但电容器充、放电的电荷是相等的,即电容器充电时的电流大于放电时的电流。

反激开关电源原理

星期一, 05/11/2009 - 09:42 —陶显芳 1-7.反激式变压器开关电源 反激式变压器开关电源工作原理比较简单,输出电压控制范围比较大,因此,在一般电器设备中应用最广泛。 1-7-1.反激式变压器开关电源工作原理 所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。 图1-19-a是反激式变压器开关电源的简单工作原理图,图1-19-a中,Ui是开关电源的输入电压,T是开关变压器,K是控制开关,C是储能滤波电容,R是负载电阻。图1-19-b是反激式变压器开关电源的电压输出波形。 把图1-19-a与图1-16-a进行比较,如果我们把图1-16-a中开关变压器次级线圈的同名端对调一下,原来变压器输出电压的正、负极性就会完全颠倒过来,图1-19-b所示的电压输出波形基本上就是从图1-16-b的波形颠倒过来的。不过,因为图1-16-b的波形对应的是纯电阻负载,而图1-19-b的负载是一个储能滤波电容和一个电阻并联。由于储能滤波电容的容量很大,其两端电压基本不变,变压器次级线圈输出电压uo相当于被整流二极管和输出电压Uo进行限幅,因此,图1-16-b中输出电压uo的脉冲尖峰完全被削除,被限幅后的剩余电压幅值正好等于输出电压Uo的最大值Up,同时也等于变压器次级线圈输出电压uo的半波平均值Upa。

下面我们来详细分析反激式变压器开关电源的工作过程(参考图1-20)。 图1-19-a中,在控制开关K接通的Ton期间,输入电源Ui对变压器初级线圈N1绕组加电,初级线圈N1绕组有电流i1流过,在N1两端产生自感电动势的同时,在变压器次级线圈N2绕组的两端也同时产生感应电动势,但由于整流二极管的作用,没有产生回路电流。相当于变压器次级线圈开路,变压器次级线圈相当于一个电感。因此,流过变压器初级线圈N1绕组的电流就是变压器的励磁电流,变压器初级线圈N1绕组两端产生自感电动势可由下式表示: e1 = L1di/dt = Ui —— K接通期间(1-98) 或 e1 = N1dф/dt = Ui —— K接通期间(1-99) 上式中,e1为变压器初级线圈N1绕组产生的自感电动势,L1是变压器初级线圈N1绕组的电感,N1为变压器初级线圈N1绕组线圈绕组的匝数,ф为变压器铁心中的磁通。对(1-98)和(1-99)式进行积分,由此可求得: i1 =Ui*t/L1 +i(0) —— K接通期间(1-100) ф=Ui*t/N1 +ф (0) —— K关断瞬间(1-101) 上式中,i1是流过变压器初级线圈N1绕组的电流,ф为变压器铁心中的磁通;i1(0)为变压器初级线圈中的初始电流,即:控制开关刚接通瞬间流过变压器初级线圈N1绕组的电流;ф(0)为初始磁通,即:控制开关刚接通瞬间变压器铁心中的磁通。当开关电源工作于输出临界连续电流状态时,这里的i1(0)正好0,而ф(0)正好等于剩磁通S?Br。当控制开关K将要关断,且开关电源工作于输出电流临界连续状态时,i1和均达到最大值: i1m =Ui*Ton/L1 —— K关断瞬间(1-102)

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻 图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。

单端反激式开关电源(毕业设计)

目录 摘要 (2) 第一章开关电源概述 (1) 1.1 开关电源的定义与分类 (1) 1.2 开关电源的基本工作原理与应用 (1) 1.2.1 开关电源的基本工作原理 (1) 1.2.2 开关电源的应用 (2) 1.3 开关电源待解决的问题及发展趋势 (5) 1.3.1 开关电源待解决的问题 (5) 1.3.2 开关电源的发展趋势 (5) 第二章设计方案比较与选择 (7) 2.1 本课题选题意义 (7) 2.2 方案的设计要求 (7) 2.3 选取的设计方案 (8) 第三章反激式高频开关电源系统的设计 (9) 3.1 高频开关电源系统参数及主电路原理图 (9) 3.2 单端反激式高频变压器的设计 (10) 3.2.1 高频变压器设计考虑的问题 (10) 3.2.2 单端反激式变压器设计 (11) 3.3 高频开关电源控制电路的设计 (15) 3.3.1 PWM 集成控制器的工作原理与比较 (15) 3.3.2 UC3842工作原理 (17) 3.3.3 UC3842的使用特点 (18) 3.4 反馈电路及保护电路的设计 (19) 3.4.1 过压、欠压保护电路及反馈 (19) 3.4.2 过流保护电路及反馈 (19) 3.5变压器设计中注意事项 (20) 第四章总结 (21) 参考文献 (23) 致谢 ............................................................................................................................ 错误!未定义书签。

反激式开关电源设计资料.doc

反激式开关电源设计资料 前言 反激式开关电源的控制芯片种类非常丰富,芯片厂商都有自己的专用芯片,例如UC3842、UC3845、OB2262、OB2269、TOPSWITCH 等等。虽然控制芯片略有不同,但是反激式开关电源的拓扑结构和电路原理基本上是一样的,本资料以UC3842为控制芯片设计了一款反激式开关电源。 单端反激式开关稳压电源的基本工作原理如下: D1 T R L 图1 反激式开关电源原理图 当加到原边主功率开关管Q1的激励脉冲为高电平使Q1导通时,直流输入电压V IN加载原边绕组N P两端,此时因副边绕组相位是上负下正,使整流管D1反向偏置而截止;当驱动脉冲为低电平使Q1截止时,原边绕组N P两端电压极性反向,使副边绕组相位变为上正下负,则整流管被正向偏置而导通,此后存储在变压器中的磁能向负载传递释放。因单端反激式电源只是在原边开关管到同期间存储能

量,当它截止时才向负载释放能量,故高频变压器在开关工作过程中,既起变压隔离作用,又是电感储能元件。因此又称单端反激式变换器是一种“电感储能式变换器”。 学习了反激式开关电源的工作原理之后,我们可以自行设计一款电源进行调试。开关电源是一门实验科学,理论知识的学习是必不可少的,但是光掌握了理论知识是远远不够的,还要多做实验,测试不同环境不同参数下的电源工作情况,这样才能对电源有更深的认识。除此之外,掌握大量的实验数据可以对以后设计电源和电源的优化提供很大帮助,可以更快速更合理的设计出一款新电源或者排除一些电源故障。通过阅读下面的章节,可以使你对电源从原理理解到设计能力有一个快速的提升。

第一章 电源参数的计算 第一步,确定系统的参数。我们设计一个电源首先要确定电源工作在一个什么样的环境,比如说输入电压的范围、频率、网侧电压是否纯净,接下来是电源的输出能力包括输出电压、电流和纹波大小等等。先要确定这些相关因素,才能更好的设计出符合标准的电源。我们在第二章会详细介绍如何利用这些参数设计电源。 输入电压范围(V line min 和V line max ); 输入电压频率(f L ); 输出电压(V O ); 输出电流(I O ); 最大输出功率 (P 0)。 效率估计(E ff ):需要估计功率转换效率以计算最大输入功率。如果没有参考数据可供使用,则对于低电压输出应用和高电压输出应用,应分别将E ff 设定为0.8~0.85。 利用估计效率,可由式(1-1)求出最大输入功率。 O IN ff P P E = (1-1) 第二步:确定输入整流滤波电容(C DC )和DC 电压范围。 最大DC 电压纹波计算: max DC V ?= (1-2) 式(1-2)中,D ch 为规定的输入整流滤波电容的充电占空比。其 典型值为0.2。对于通用型输入(85~265Vrms ),一般将max V DC ?设定为

单端反激式开关电源

交流异步电动机变频调速原理: 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。 变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 交-直部分 整流电路:由VD1-VD6六个整流二极管组成不可控全波整流桥。对于380V的额定电源,一般二极管反向耐压值应选1200V,二极管的正向电流为电机额定电流的1.414-2倍。 (二)变频器元件作用 电容C1: 是吸收电容,整流电路输出是脉动的直流电压,必须加以滤波, 变压器是一种常见的电气设备,可用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。 压敏电阻: 有三个作用,一过电压保护,二耐雷击要求,三安规测试需要. 热敏电阻:过热保护

霍尔: 安装在UVW的其中二相,用于检测输出电流值。选用时额定电流约为电机额定电流的2倍左右。 充电电阻: 作用是防止开机上电瞬间电容对地短路,烧坏储能电容开机前电容二端的电压为0V;所以在上电(开机)的瞬间电容对地为短路状态。如果不加充电电阻在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过无穷大的电流导致整流桥炸掉。一般而言变频器的功率越大,充电电阻越小。充电电阻的选择范围一般为:10-300Ω。 储能电容: 又叫电解电容,在充电电路中主要作用为储能和滤波。PN端的电压电压工作范围一般在430VDC~700VDC 之间,而一般的高压电容都在400VDC左右,为了满足耐压需要就必须是二个400VDC的电容串起来作800VDC。容量选择≥60uf/A 均压电阻:防止由于储能电容电压的不均烧坏储能电容;因为二个电解电容不可能做成完全一致,这样每个电容上所承受的电压就可能不同,承受电压高的发热严重(电容里面有等效串联电阻)或超过耐压值而损坏。 C2电容; 吸收电容,主要作用为吸收IGBT的过流与过压能量。 (2)直-交部分 VT1-VT6逆变管(IGBT绝缘栅双极型功率管):构成逆变电路的主要器件,也是变频器的核心元件。把直流电逆变频率,幅值都可调的交流电。 VT1-VT6是续流二极:作用是把在电动机在制动过程中将再生电流返回直流电提供通道并为逆变管VT1-VT6在交替导通和截止的换相过程中,提供通道。(3)控制部分:电源板、驱动板、控制板(CPU板) 电源板:开关电源电路向操作面板、主控板、驱动电路、检测电路及风扇等提供低压电源,开关电源提供的低压电源有:±5V、±15V 、±24V向CPU其附属电路、控制电路、显示面板等提供电源。 驱动板:主要是将CPU生成的PWM脉冲经驱动电路产生符合要求的驱动信号激励IGBT输出电压。 控制板(CPU板):也叫CPU板相当人的大脑,处理各种信号以及控制程序等部分 [注:再次整流(直流变交流)--->更贴切的叫法是逆变!在这里感谢蔡工给我们编辑们提的意见!也欢迎大家多给我们编辑组提出更多宝贵的意见和建议!mym(2005.08.23) ]

反激式开关电源变压器是这么计算的

反激式开关电源变压器是这么计算的 于法拉弟电磁感应定律,这个定律是在一个铁心中,当磁通变化的时候, 其会产生一个感应电压,这个感应电压=磁通的变化量/时间T 再乘以匝数比,把 磁通变化量换成磁感应强度的变化量乘以其面积就可以推出上式来,NP=90*4.7 微秒/32 平方毫米*0.15,得到88 匝0.15 是选取的值,算了匝数,再确定线径, 一般来说电流越大线越热,所以需要的导线就越粗,需要的线径由有效值来 确定,而不是平均值。上面已经算得了有效值,所以就来选线,用0.25 的线就 可以,用0.25 的线,其面积是0.049 平方毫米,电流是0.2 安,所以其电流密度是4.08,一般选定电流密度是4 到10 安第平方毫米。若是电流很大,最好 采用两股或是两股以上的线并绕,因为高频电流有趋效应,这样可以比较好。 第六步,确定次级绕组的参数、圈数和线径。 原边感应电压,就是一个放电电压,原边就是以这个电压放电给副边的, 看上边的图,因为副边输出电太为5V,加上肖特基管的压降,就有5.6V,原 边以80V 的电压放电,副边以5.6V 的电压放电,那么匝数是多少呢?当然其遵守变压器那个匝数和电压成正比的规律,所以副边电压=NS*(UO+UF) /VOR,其中UF 为肖特基管压降,这个副边匝数等于88*5.6/80,得6.16,整取6 匝,再算副边的线径,当然也就要算出副边的有效值电流,下图是副边电流 的波形,有突起的时间是1-D,没有突起的是D,刚好和原边相反,但其KRP 的值和原边相同,这个峰值电流就是原边峰值电流乘以其匝数比,要比原 边峰值电流大数倍。 第七步,确定反馈绕组的参数。 反馈是反激的电压,其电压是取自输出级的,所以反馈电压是稳定的,TOP

单端反激开关电源

因该电源是公司产品的一个配套使用,且各项指标都不是要求太高,故选用最常用的反激拓扑,这样既可以减小体积(给的体积不算大),还能降低成本,一举双的! 反激拓扑的前身是Buck-Boost变换器,只不过就是在Buck-Boost变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的Buck-Boost变换器。 先学习下Buck-Boost变换器 工作原理简单介绍下 1.在管子打开的时候,二极管D1反向偏置关断,电流Is流过电感L,电感电流IL线性上升,储存能量! 2.当管子关断时,电感电流不能突变,电感两端电压反向为上负下正,二极管D1正向偏置开通!给电容C充电及负载提供能量! 3.接着开始下个周期! 从上面工作可以看出,Buck-Boost变换器是先储能再释放能量,VS不直接向输出提供能量,而是管子打开时,把能量储存在电感,管子关断时,电感向输出提供能量! 根据电流的流向,可以看出上边输出电压为负输出! 根据伏秒法则 Vin*Ton=Vout*Toff Ton=T*D Toff=T*(1-D)

代入上式得 Vin*D=Vout*(1-D) 得到输出电压和占空比的关系Vout=Vin*D/(1-D) 看下主要工作波形 从波形图上可以看出,晶体管和二极管D1承受的电压应力都为Vs+Vo(也就是Vin+Vout); 再看最后一个图,电感电流始终没有降到0,所以这种工作模式为电流连续模式(Ccm模式)。 如果再此状态下把电感的电感量减小,减到一定条件下,会出现这个波形!

从上图可以看出,电感电流始终降到0后再到最大,所以这种模式叫不连续模式(DCM模式)。 把上边的Buck-Boost变换器的开关管和续流管之间加上一个变压器就会变成反激变换器! 还是和上边一样,先把原理大概讲下:

一款基于UC3842的单端反激式开关电源的设计

一款基于UC3842的单端反激式开关电源的设计 164908060( 楼主 ) 2013-8-31 11:00:32只看该作者 981 | 21 倒序浏览引言 电源装置是电力电子技术应用的一个重要领域,其中高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛的应用。开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度,后者,较电压控制型有不可比拟的优点。 UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。所谓电流型脉宽调制器是按反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是比较理想的新型的控制器闭。 电路设计和原理 1 UC3842工作原理 UC3842是单电源供电,带电流正向补偿,单路调制输出的集成芯片,其内部组成框图如图l所示。其中脚1外接阻容元件,用来补偿误差放大器的频率特性。脚2是反馈电压输入端,将取样电压加到误差放大器的反相输入端,再与同相输入端的基准电压进行比较,产生误差电压。脚3是电流检测输入端,与电阻配合,构成过流保护电路。脚4外接锯齿波振荡器外部定时电阻与定时电容,决定振荡频率,基准电压VREF为0.5V。输出电压将决定变压器的变压比。由图1可见,它主要包括高频振荡、误差比较、欠压锁定、电流取样比较、脉宽调制锁存等功能电路。UC3842主要用于高频中小容量开关电源,用它构成的传统离线式反激变换器电路在驱动隔离输出的单端开关时,通常将误差比较器的反向输入端通过反馈绕组经电阻分压得到的信号与内部2.5V基准进行比较,误差比较器的输出端与反向输入端接成PI补偿网络,误差比较器的输出端与电流采样电压进行比较,从而控制PWM序列的占空比,达到电路稳定的目的。

20w单端反激式开关电源课件

电子综合设计与制作课程设计(论文) 20w单端反激式开关电源设计 院(系)名称电子与信息工程学院 专业班级电子122 学号120404063 学生姓名卡拉卡提 指导教师孙福明 起止时间:2014.12.15—2014.12.26

课程设计(论文)任务及评语 院(系):电子与信息工程学院教研室:电子信息工程

摘要 近年来,随着电力电子技术的发展,开关稳压电源正朝着小型化、高频化﹑继承化的方向发展,高效率的开关电源已经得到了越来越广泛的应用,单端反激式电路以其简单,可以高效提供直流输出等诸多优点,特别适合设计小功率的开关电源。开关电源是利用现代电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)和MOSFET 构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。开关电源比普通的线性电源效率高,开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。 本文介绍了一种单端反激式单片开关电源的设计方法。该开关电源输入电压单相170~ 260V,输入交流电频率45~65HZ,输出直流电压12V恒定,输出直流电流2A,最大功率:25W,可获得高质量的稳压输出。参照给定的该电源的技术参数,设计了该开关电源的滤波、整流、逆变等电路。详细的给出了开关电源高频变压器的设计方法,文中给出了主电路图,通过基本计算,选择控制电路和保护电路的结构以及变压器的变比及容量。本文重点介绍该电源的设计思想,工作原理及特点。 关键词:开关电源;反激电路;脉宽调制

目录 第1章绪论 (1) 1.1开关电源技术概况 (1) 1.2本文设计内容 (1) 第2章需求分析 (1) 2.1调研情况 (1) 2.2开关电源种类 (1) 2.3 单端反激式开关电源 (1) 2.4 开关稳压电源的电路原理框图 (2) 2.5调宽式开关稳压电源的基本原理 (3) 2.6开关电源的两种工作模式 (4) 第3章系统设计 (5) 3.1系统总体结构设计 (5) 3.2具体电路设计 (5) 3.2.1整流部分 (5) 3.2.2控制设计 (6) 3.2.3保护电路设计 (7) 3.3元器件型号选择 (7) 3.3.1 EMI滤波电路 (7) 3.3.2整流电路 (8) 3.3.3控制电路 (8) 3.4驱动电路 (8) 第4章课程设计总结 (10) 参考文献 (11)

相关文档
相关文档 最新文档