文档库 最新最全的文档下载
当前位置:文档库 › 实验讲义(化工原理)

实验讲义(化工原理)

实验讲义(化工原理)
实验讲义(化工原理)

实验一、雷诺实验

一、实验目的

1.了解管内流体质点的运动方式,认识不同流动形态的特点,掌握判别流型的准则。

2.观察圆直管内流体作层流、过渡流、湍流的流动型态。观察流体层流流动的速度分

布。

二、实验内容

1. 以红墨水为示踪剂,观察圆直玻璃管内水为工作流体时,流体作层流、过渡流、湍

流时的各种流动型态。

2.观察流体在圆直玻璃管内作层流流动的速度分布。

三、实验装置

实验装置流程如图1-1所示。

图1-1 雷诺实验装置

1 溢流管;

2 墨水瓶;

3 进水阀;4示踪剂注入管

5水箱;6 水平玻璃管;7 流量调节阀

实验管道有效长度: L=600 mm

外径: Do=30 mm

内径: Di=24.5 mm

孔板流量计孔板内径: do=9.0 mm

四、实验步骤

1. 实验前的准备工作

(1) 实验前应仔细调整示踪剂注入管4的位置,使其处于实验管道6的中心线上。

(2) 向红墨水储瓶2 中加入适量稀释过的红墨水,作为实验用的示踪剂。

(3) 关闭流量调节阀7,打开进水阀3,使水充满水槽并有一定的溢流,以保证水槽内

的液位恒定。

(4) 排除红墨水注入管4中的气泡,使红墨水全部充满细管道中。

2. 雷诺实验过程

(1) 调节进水阀,维持尽可能小的溢流量。轻轻打开阀门7,让水缓慢流过实验管道。

(2) 缓慢且适量地打开红墨水流量调节阀,即可看到当前水流量下实验管内水的流动状

况(层流流动如图1-2所示)。用体积法(秒表计量时间、量筒测量出水体积)可测得水的流量并计算出雷诺准数。因进水和溢流造成的震动,有时会使实验管道中的红墨水流束偏离管的中心线或发生不同程度的摆动;此时, 可暂时关闭进水阀3,过一会儿,即可看到红墨水流束会重新回到实验管道的中心线。

图1-2层流流动示意图

(3) 逐步增大进水阀3和流量调节阀7的开度,在维持尽可能小的溢流量的情况下提高

实验管道中的水流量,观察实验管道内水的流动状况(过渡流、湍流流动如图1-3所示)。同时,用体积法测定流量并计算出雷诺准数。

图1-3过渡流、湍流流动示意图

3.流体在圆管内流动速度分布演示实验

首先将进口阀3打开,关闭流量调节阀7。打开红墨水流量调节阀,使少量红墨水流入不流动的实验管入口端。再突然打开流量调节阀7,在实验管路中可以清晰地看到红墨水流动所形成的,如图1-4所示的速度分布。

图1-4速度分布示意图

4. 实验结束时的操作

(1)关闭红墨水流量调节阀,使红墨水停止流动。

(2)关闭进水阀3,使自来水停止流入水槽。

(3)待实验管道冲洗干净,水中的红色消失时,关闭流量调节阀7。

(4)若日后较长时间不用,请将装置内各处的存水放净。

五、注意事项

做层流流动时,为了使层流状况能较快地形成,而且能够保持稳定。第一,水槽的溢流应尽可能的小。因为溢流大时,上水的流量也大,上水和溢流两者造成的震动都比较大,影响实验结果。第二,应尽量不要人为地使实验装置产生任何震动。为减小震动,若条件允许,可对实验架进行固定。

实验二、流体流动阻力测定实验

一、实验目的

⒈ 学习直管摩擦阻力△P f 、直管摩擦系数λ的测定方法。

⒉ 掌握不同流量下摩擦系数λ与雷诺数Re 之间关系及其变化规律。 ⒊ 学习压差传感器测量压差,流量计测量流量的方法。 ⒋ 掌握对数坐标系的使用方法。 二、实验内容

⒈ 测定既定管路内流体流动的摩擦阻力和直管摩擦系数λ。

⒉ 测定既定管路内流体流动的直管摩擦系数λ与雷诺数Re 之间关系曲线和关系式。 三、实验原理

流体在圆直管内流动时,由于流体的具有粘性和涡流的影响会产生摩擦阻力。流体在管内流动阻力的大小与管长、管径、流体流速和摩擦系数有关,它们之间存在如下关系。

h f = ρf

P ?=2

2

u d l λ λ=

22u P l d f ???ρ Re =c μ

ρ

??u d 式中:-d 管径,m ;

-?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 管内平均流速,m / s ;

-ρ流体的密度,kg / m 3; -μ流体的粘度,N·

s / m 2。 摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式6-2可以计算出不同流速(流量V )下的直管摩擦系数λ,用式6-3计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 四、实验流程及主要设备参数: 1.实验流程图: 见图2-1

水泵8将储水槽9中的水抽出,送入实验系统,首先经玻璃转子流量计2测量流量,

然后送入被测直管段5或6测量流体流动的光滑管或粗糙管的阻力,或经7测量局部阻力后回到储水槽, 水循环使用。被测直管段流体流动阻力△p 可根据其数值大小分别采用变送器18或空气—水倒置∪型管10来测量。 2.主要设备参数:

被测光滑直管段:第一套 管径 d —0.01 (m) 管长 L —1.6(m) 材料: 不锈钢管

第二套 管径 d —0.095 (m) 管长 L —1.6(m) 材料: 不锈钢管 被测粗糙直管段:第一套 管径 d —0.01 (m) 管长 L —1.6(m) 材料: 不锈钢管 第二套 管径 d —0.0095 (m) 管长 L —1.6(m) 材料: 不锈钢管

2.被测局部阻力直管段: 管径d—0.015(m) 管长L—1.2(m) 材料: 不锈钢管

3.压力传感器:

型号:LXWY 测量范围: 200 KPa

压力传感器与直流数字电压表连接方法见图2

4.直流数字压差表:

型号: PZ139 测量范围: 0 ~200 KPa

5.离心泵:

型号: WB70/055 流量: 8(m3/h) 扬程: 12(m)

电机功率: 550(W)

6.玻璃转子流量计:

型号测量范围精度

LZB—40 100~1000(L/h) 1.5

LZB—10 10~100(L/h) 2.5

图2-1

五、实验方法

1.向储水槽内注水,直到水满为止。(有条件最好用蒸馏水,以保持流体清洁)

2. 直流数字表的使用方法请详细阅读使用说明书。

3.大流量状态下的压差测量系统,应先接电予热10~15分钟,调好数字表的零点,方可启

动泵做实验。

4.检查导压系统内有无气泡存在.

当流量为零时,若空气—水倒置∪型管内两液柱的高度差不为零,则说明系统内有气泡存在,需赶净气泡方可测取数据。

赶气泡的方法: 将流量调至最大,把所有的阀门全部打开,排出导压管内的气泡,直至排净为止。

5.测取数据的顺序可从大流量至小流量,反之也可,一般测15~20组数,建议当流量读数

小于300L /h 时,只用空气—水倒置∪型管测压差△P 。

6.局部阻力测定时关闭阀门3和4,全开或半开阀门7,用倒置U 型管关测量远端、近端压差并能测出局部阻力系数。

7.待数据测量完毕,关闭流量调节阀,切断电源。 六、实验注意事项:

1.利用压力传感器测大流量下△P 时,应切断空气—水倒置∪型管闭阀门13、13’否则影响

测量数值。

2.若较长时间内不做实验,放掉系统内及储水槽内的水。

3.在实验过程中每调节一个流量之后应待流量和直管压降的数据稳定以后方可记录数

据。

4.较长时间未做实验,启动离心泵之前应先盘轴转动否则易烧坏电机。 七、数据处理:

(1)λ─Re 的计算

在被测直管段的两取压口之间列柏努利方程式,可得:

△P f =△P ( 1 )

△P f L u 2

h f =───=λ── ── ( 2 )

ρ d 2

2d △P f λ=── ── ( 3 ) Lρ u 2

duρ Re =─── ( 4 ) μ 符号意义:

d─管径 (m) L─管长 (m) u─流体流速 (m /s) △P f ─直管阻力引起的压降 (N /m 2)

ρ─流体密度 (Kg /m 3) μ─流体粘度 (Pa.s) λ─摩擦阻力系数 Re─雷诺准数

测得一系列流量下的△P f 之后,根据实验数据和式(1),(3)计算出不同流速下的λ值。用式(4)计算出Re 值,从而整理出λ─Re 之间的关系, 在双对数坐标纸上绘出λ─Re 曲线。

(2).局部阻力的计算:

H f 局=ΔP 局/ρ=(2ΔP 近-ΔP 远)/ρ=ξ×(u 2/2)

22u

p

?

?=

ρ

ξ

实验三、 流量计性能测定实验

一、实验目的

⒈ 了解几种常用流量计的构造、工作原理和主要特点。 ⒉ 掌握流量计的标定方法。

⒊ 了解节流式流量计流量系数C 随雷诺数Re 的变化规律,流量系数C 的确定方法。 ⒋ 学习合理选择坐标系的方法。 二、实验内容

⒈ 通过实验室实物和图像,了解孔板、文丘里及涡轮流量计的构造及工作原理。

⒉ 测定节流式流量计(孔板或文丘里)的流量标定曲线。 ⒊ 测定节流式流量计的雷诺数Re 和流量系数C 的关系。 三、实验原理

流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为:

ρ

)

(20

下上P P CA V s -=

式中:—S V 被测流体(水)的体积流量,m 3/s ;

—C 流量系数,无因次; —0A 流量计节流孔截面积,m 2; —下上P P -流量计上、下游两取压口之间的压强差,Pa ;

—ρ被测流体(水)的密度,kg /m 3 。

用涡轮流量计和转子流量计作为标准流量计来测量流量V S 。每一个流量在压差计上都有一对应的读数,将压差计读数△P 和流量V s 绘制成一条曲线,即流量标定曲线。同时用式6-8整理数据可进一步得到C —Re 关系曲线。 四、主要设备参数: 1. 设备参数

(1).离心泵: 型号:WB 70/055 转速 n= 2800 转/分,

流量 Q=20-120 L /min, 扬程 H=19-13.5m

(2).贮水槽:550*400*450

(3).试验管路: 内径 d =26.0mm 2. 流量测量:

(1).涡轮流量计:φ25,最大流量 10m 3/h

(2).孔板流量计:孔板孔径φ15,(3). 文丘里流量计:喉径φ15, (4). 转子流量计:LZB-25 (0.25-2.5m3/h)(5)铜电阻温度计 (6).差压变送器(0-200kPa ) 五、 实验流程:

实验流程示意图如下图:

用离心泵3将贮水槽8的水直接送到实验管路中,经涡轮流量计计量后分别进入到转子流量计、孔板流量计、文丘里流量计,最后返回贮水槽8。测量孔板流量计时把9、11阀门打开;10、12阀门关闭。测量文丘里流量计时把9、10阀门打开;11、12阀门关闭。测量转子流量计时把12、10、11阀门打开;9阀门关闭。流量由调节阀10、11、12来调节水的流量。温度由铜电阻温度计测量。

六、实验方法及步骤

1.启动离心泵前, 关闭泵流量调节阀

2.启动离心泵。

3.按流量从小到大的顺序进行实验。用流量调节阀调某一流量,待稳定后,读取涡轮频

率数,并分别记录流量、压强差。

4.实验结束后,关闭泵出口流量调节阀9、12后,停泵。

七、注意事项:

阀门12在离心泵启动前应关闭,避免由于压力大将转子流量计的玻璃管打碎。

实验四、 离心泵性能测定实验

一、实验目的:

1、熟悉离心泵的结构与操作方法,了解压力、流量的测量方法。

2、掌握离心泵特性曲线、管路特性曲线的测定方法、表示方法,加深对离心泵性能的了解。

二、实验内容:

1、熟悉离心泵的结构与操作。

2、手动(或计算机自动采集数据和过程控制)测定某型号离心泵在一定转速下,Q (流量)与H (扬程)、N (轴功率)、η(效率)之间的特性曲线以及特定管路条件下的管路特性曲线。

三、 实验原理:

A 、离心泵性能的测定:

离心泵是最常见的液体输送设备。对于一定型号的泵在一定的转速下,离心泵的扬程H 、轴功率N 及效率η均随流量Q 的改变而改变。通常通过实验测出Q-H 、Q-N 及Q-η关系,并用曲线表示之,称为特性曲线。特性曲线是确定泵的适宜操作条件和选用泵的重要依据。本实验中使用的即为测定离心泵特性曲线的装置,具体测定方法如下: 1、H 的测定:

在泵的吸入口和压出口之间以1N 流体为基准列柏努利方程

入入

出入出出

入出出出入

入入

)--+-+

-+

-=+++=+++f f H g

u

u

g

P P Z Z H H g

u g P Z H g u g P Z 2(222

2

22ρρρ (1-1)

上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力(不包括泵体内部的流动阻力所引起的压头损失),当所选的两截面很接近泵体时,与柏努利方程中其它项比较,出入-f H 值很小,故可忽略。于是上式变为:

g

u u g

P P Z Z H 2(22入

出入

出入出)

-+-+-=ρ (1-2)

将测得的高差)入出Z Z -(和入出P

P -的值以及计算所得的u 入,u 出代入式1-2即可求得H 的值。

2、 N 的测定:

功率表测得的功率为电动机的输入功率。由于泵由电动机直接带动,传动效率可视

为1.0,所以电动机的输出功率等于泵的轴功率。即: 泵的轴功率N =电动机的输出功率,kw

电动机的输出功率=电动机的输入功率×电动机的效率。 泵的轴功率=功率表的读数×电动机效率,kw 。 3、η的测定

N Ne =

η % 102

1000ρ

ρHQ g HQ Ne ==

式中:η— 泵的效率,%; N — 泵的轴功率,kw Ne — 泵的有效功率,kw , H — 泵的压头,m Q — 泵的流量,m 3/s , ρ— 水的密度,kg/m 3 B 、管路特性曲线的测定:

在特定的管路条件下,应用变频调速器改变电机的频率,相应改变了泵的转速(流量)。分别测量泵的扬程、流量,即可得到管路特性曲线。

四、实验流程及设备主要技术参数: 1、实验流程:

水泵将储水槽中的水抽出,送入实验系统,由出口调节阀控制流量,经涡轮流量计计量流量后经流回储水槽循环使用。

2、主要仪器设备一览表:

流量公式:Q=F/K*3600/1000,其中F 为频率数,K 为涡轮流量计仪表常数。 泵入口,出口测压点间的距离(Z2-Z1)=0.180米

五、实验操作:

实验前,向储水槽加入蒸馏水,合上电源总开关。 实验操作:

将出口调节阀关到零位。

1、按照变频调速器说明设定(Fn-11为0;Fn- 10为0)后在并设定变频调速器的频率(50)。

2、启动离心泵;改变流量调节阀的位置,分别记录稳定后各流量下的流量、泵进出口压力和电机输入功率值,测8--10组数据(流量调节阀的位置从零位到最大)。处理数据后可以得到离心泵特性曲线。

3、将流量调节阀放在任何一位置,改变变频调速器的频率以改变泵的流量,分别记录稳定

后各频率下的流量、泵进出口压力值,测8—10组数据,处理数据后可得到管路特性曲线。

4、把流量调至零位后,停泵。

六、 使用实验设备应注意的事项:

1. 实验前应检查水槽水位,流量调节阀关闭到零位。

2. 注意变频调速器的使用方法。严格按照实验操作中给出的变频器参数进行调节,在计算机自动控制时不要手动改变变频器的频率。变频器其它参数不要改动。

七、 附录

1、数据处理方法:

计算举例:

测量频率(流量)138HZ 、电机输入功率0.65(Kw )

泵出口处压强P2=0.132(MPa)、泵入口处压强P1=0.012(MPa),

液体温度17.5℃ 液体密度ρ=1000.8kg/(m 3) 、泵进口高度=0.18米

流量公式:Q=F/K*3600/1000,其中仪表常数K=76.724, F=138 Q=138/76.724*3600/1000 =6.48M 3/H 泵的扬程)(2)(121

212Z Z g

u u g P P H -+-+-=

ρ 18.081

.98.100010)012.0132.0(6

+??+=

=14.9(m ) 泵的轴功率N轴=N电×η电 =650×60% =0.390(Kw )

泵的效率: 1000

????=

N g Q H ρ

η 3600100039.08.100081.948.69.14?????= =67.5%

实验五、 搅拌器性能测定

搅拌是重要的化工单元操作之一,它常用于互溶液体的混合、不互溶液体的分散和接触、气液接触、固体颗粒在液体中的悬浮、强化传热及化学反应等过程. 一、 实验目的

⒈ 掌握搅拌功率曲线的测定方法。

⒉ 了解影响搅拌功率的因素及其关联方法。 二、 实验内容

⒈ 用水溶液,测定液相搅拌功率曲线。

⒉ 用水溶液和空气,测定气—液相搅拌功率并与液相搅拌功率比较。 三、 实验原理

搅拌过程中要输入能量才能达到混合的目的,即通过搅拌器把能量输入到被搅拌的

流体中去。因此搅拌釜内单位体积流体的能耗成为判断搅拌过程好坏的依据之一。 由于搅拌釜内液体运动状态十分复杂,搅拌功率目前尚不能由理论得出。只能由实验获

得它和多变量之间的关系,以此作为搅拌操作放大过程中确定搅拌规律的依据。 液体搅拌功率消耗可表达为下列诸变量的函数:

),,,,,,( g d n k f N μρ=

式中:N —搅拌功率,W ; K —无量纲系数; n —搅拌转数,r/s ;

d —搅拌器直径,m ; ρ—流体密度,kg/m 3; μ—流体粘度,pa·s ; g —重力加速度,m/s 2;

由因次分析法可得下列无因次数群的关联式:

y x g d n n d K d

n N

)()(2253μρρ= 令 p N d

n N

=5

3ρ, p N 称为功率准数 ; e R n d =μρ2 , Re 称为搅拌雷诺准数 r F g

d

n =2, F r 称为搅拌佛鲁德准数 则 y

r x e

p F KR N = ;令 y

r p F N =

φ, φ称为功率因数, x

e KR =φ

对于不打旋的系统重力影响极小,可忽略F r 的影响,即0=y 。x

e p KR N ==φ

本实验中,搅拌功率采用下式得到: )(2

.12Kn

R I V I N +?-?=

式中:I —搅拌电机的电枢电流,A ; V —搅拌电机的电枢电压,V ; R —搅拌电机的内阻,28Ω;n —搅拌电机的转数,r/s ; K —0.00125。

当有气体通入时,在相同的转速下,搅拌功率会显著下降。因为,物系的粘度、密度发生改变。

设Q 为空气的体积流量,令N a =Q/nd 3 ——通气准数。

相同转速下,气液搅拌功率N g /N 与通气准数N a 的关系可用下式描述: 当 N a < 0.035时 N g /N = a -bN a ; a, b 为常数

当N a > 0.035时N g/N = a’–b’N a;a’, b’为常数

通过测定N g,在直角坐标纸上作N g/N——N a曲线,确定常数a, b或a’, b’

四、主要设备参数:

1.搅拌器: 型号: KDZ-1;功率: 160w 转速: 3200转/分

2.搅拌釜内径280mm ;

3.搅拌器直径100mm

五、实验流程:

本实验使用的是标准搅拌槽,其直径为280mm;搅拌浆为六片平直叶圆盘涡轮。装置流程见图。

多相搅拌实验装置流程图

1—空压机;2—流量计;3—温度计;4—电动机;5—直流电流表;6—电机调

速器;7—直流电压表,8-测速仪;9—挡板;10-搅拌槽;11-气体分布器

六、实验方法

⒈测定水溶液搅拌功率曲线

打开总电源,各数字仪表显示―0‖。打开搅拌调速开关,慢慢转动调速旋纽,电机

开始转动。在转速约100~400(r/min)之间,取10~12个点测试(实验中适宜的

转速选择:低转速时搅拌器的转动要均匀;高转速时以流体不出现旋涡为宜)。实

验中每调一个转速,待数据显示基本稳定后方可读数,同时注意观察流型及搅拌情

况。每调节一个转速记录以下数据:电机的电压(V)、电流(A)、转速n(r/min)。

⒉测定气液搅拌功率

开启空气压缩机,调节气体流量计的空气流量为定值(如300L/h).在上述每一转速

下记录以下数据:电机的电压(V)、电流(A)、转速n(r/min)。在某一转速下改

变空气流量,重复操作

⒊实验结束时一定把调速降为―0‖,方可关闭搅拌调速。

七、注意事项

⒈电机调速一定是从―0‖开始,调速过程要慢,否则易损坏电机。

⒉不得随便移动实验装置。

⒊本实验没有测气液混合后的密度和粘度。(无粘度计)

八、实验数据记录与数据处理

(一)数据计算

1 液相搅拌功率:

水温:密度:粘度:搅拌器直径:

2 气液搅拌功率

(二)作图

N与Re的关系曲线。

1 在对数坐标纸上可标绘出N-Re与p

2在直角坐标纸上作N g/N——N a曲线,确定常数a, b或a’, b’

思考题:搅拌功率受哪些因素的影响?如何提高实验结果准确性?

实验六 恒压过滤常数测定 (板框过滤机)

过滤是利用过滤介质进行液—固混合系统的分离过程,过滤介质通常采用带有许多毛细孔的物质如滤布、毛织物、多孔陶瓷等。含有固体颗粒的悬浮液在一定压力差的作用下液体通过过滤介质,固体颗粒被截留在介质表面上,从而使液固两相分离。 一、实验目的与内容

⒈ 掌握恒压过滤常数K 、通过单位过滤面积虚拟滤液量e q 、虚拟过滤时间e θ的测定方法,加深对K 、e q 、e θ的概念和影响因素的理解。 ⒉ 学习滤饼的压缩性指数s 和物料常数k 的测定方法。 ⒊ 学习

q dq

d -θ

一类关系的实验确定方法。 二、实验原理

恒压过滤常数K 、e q 、e θ的测定方法:

在过滤过程中,由于固体颗粒不断地被截留在介质表面上,滤饼厚度增加,液体流过

固体颗粒之间的孔道加长,而使流体阻力增加,故恒压过滤时,过滤速率逐渐下降。随着过滤进行,若得到相同的滤液量,则过滤时间增加。 恒压过滤方程

)()(2e e K q q θθ+=+

式中:q —单位过滤面积获得的滤液体积,m 3 / m 2; e q —单位过滤面积上的虚拟滤液体积,m 3 / m 2; θ—实际过滤时间,s ; e θ—虚拟过滤时间,s ; K —过滤常数,m 2/s 。 将式6-9进行微分可得:

e q K

q K dq d 2

2+=θ 这是一个直线方程式,于普通坐标上标绘

q dq d -θ的关系,可得直线。其斜率为K

2

,截距为

e q K

2,从而求出K 、e q 。至于e θ可由下式求出: e e K q θ=2

当各数据点的时间间隔不大时,

dq d θ可用增量之比q

??θ来代替。 在本实验装置中,若在计量瓶中收集的滤液量达到100ml 时作为恒压过滤时间的零点。

那么,在此之前从真空吸滤器出口到计量瓶之间的管线中已有的滤液再加上计量瓶中100ml 滤液,这两部分滤液可视为常量(用q '表示),这些滤液对应的滤饼视为过滤介质以外的另一层过滤介质。在整理数据时,应考虑进去,则方程式6-10变为:

)(22q q K q K q e '++=??θ A

V q '

=

' (各套V '为200ml ) 过滤常数的定义式:s p k K -?=12 两边取对数 )2l g (lg )1(lg k p s K +?-=

因常数='=

ν

μr k 1

,故K 与p ?的关系在对数坐标上标绘时应是一条直线,直线的斜率为s -1,由此可得滤饼的压缩性指数s ,然后代入式6-12求物料特性常数k 。 三、主要设备参数:

1.旋涡泵: 型号:

2.搅拌器: 型号: KDZ-1 ; 功率: 160w 转速: 3200转/分;

3.过滤板: 规格: 160*180*11(mm )。

4.滤布:型号 工业用;过滤面积0.0475m 2。

5.计量桶:第1套 长282mm 、宽325mm 。 四、实验流程: 流程图: (见图一)

如图一所示,滤浆槽内配有一定浓度的轻质碳酸钙悬浮液(浓度在2-4%左右),用电动搅拌器进行均匀搅拌(浆液不出现旋涡为好)。启动旋涡泵,调节阀门3使压力表5指示在规定值。滤液在计量桶内计量。 过滤、洗涤管路如图二示:

图一 恒压过滤实验流示意图

1─调速器;2─电动搅拌器;3、4、6、11、14─阀门; 5、7─压力表8─板框过滤机; 9─压紧装置;10─滤浆槽;

12─旋涡泵;13-计量桶 。

五. 实验方法及步骤:

1.系统接上电源,打开搅拌器电源开关,启动电动搅拌器2。将滤液槽10内浆液搅拌

均匀。

2.板框过滤机板、框排列顺序为:固定头-非洗涤板-框-洗涤板-框-非洗涤板-可动头。用

压紧装置压紧后待用。

3.使阀门3处于全开、阀4、6、11处于全关状态。启动旋涡泵12,调节阀门3使压力

表5达到规定值。

4.待压力表5稳定后,打开过滤入口阀6过滤开始。当计量桶13内见到第一滴液体时

按表计时。记录滤液每增加高度20mm时所用的时间。当计量桶13读数为160 mm 时停止计时,并立即关闭入口阀6。

5.打开阀门3使压力表5指示值下降。开启压紧装置卸下过滤框内的滤饼并放回滤浆槽

内,将滤布清洗干净。放出计量桶内的滤液并倒回槽内,以保证滤浆浓度恒定。

6.改变压力,从(2)开始重复上述实验。

7.每组实验结束后应用洗水管路对滤饼进行洗涤,测定洗涤时间和洗水量。

8.实验结束时阀门11接上自来水、阀门4接通下水,关闭阀门3对泵及滤浆进出口管

进行冲洗。

六、注意事项:

1)过滤板与框之间的密封垫应注意放正,过滤板与框的滤液进出口对齐。用摇柄把过

滤设备压紧,以免漏液。

2)计量桶的流液管口应贴桶壁,否则液面波动影响读数。

3)实验结束时关闭阀门3。用阀门11、4接通自来水对泵及滤浆进出口管进行冲洗。切

忌将自来水灌入储料槽中。

4)电动搅拌器为无级调速。使用时首先接上系统电源,打开调速器开关,调速钮一定由

小到大缓慢调节,切勿反方向调节或调节过快损坏电机。

5)启动搅拌前,用手旋转一下搅拌轴以保证顺利启动搅拌器。

实验七 化工传热综合实验

一、实验目的:

⒈ 通过对空气-水蒸气简单套管换热器的实验研究,掌握对流传热系数i α的测定方法,加深对其概念和影响因素的理解。并应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。

⒉ 通过对管程内部插有螺旋线圈的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m 中常数B 、m 的值和强化比Nu/Nu 0,了解强化传热的基本理论和基本方式。

3. 求取简单套管换热器、强化套管换热器的总传热系数Ko 。

4. 了解热电偶温度计的使用。 二、 实验内容:

⒈ 测定5~6个不同空气流速下简单套管换热器的对流传热系数i α。

⒉ 对i α的实验数据进行线性回归,求关联式Nu=ARe m Pr 0.4中常数A 、m 的值。 ⒊ 测定5~6个不同空气流速下强化套管换热器的对流传热系数i α。

⒋ 对i α的实验数据进行线性回归,求关联式Nu=BRe m 中常数B 、m 的值。 ⒌ 同一流量下,按实验一所得准数关联式求得Nu 0,计算传热强化比Nu/Nu 0。

6. 在同一流量下分别求取一次简单套管换热器、强化套管换热器的总传热系数Ko 。 三、实验原理:

1.对流传热系数i α的测定

对流传热系数i α可以根据牛顿冷却定律,用实验来测定

i

i m i

i S t Q ??=

α (6-14)

式中:i α—管内流体对流传热系数,W/(m 2?℃); Q i —管内传热速率,W ; S i —管内换热面积:m 2;

mi t ?—管内流体空气与管内壁面的平均温差,℃。 平均温差由下式确定:

)2

(

2

1i i w mi t t t t +-=? (6-15) 式中:t i1,t i2—冷流体空气的入口、出口温度,℃;

t w —壁面平均温度,℃。

因为传热管为紫铜管,其导热系数很大,而管壁又薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示。 管内换热面积:i i i

L d S ??π= (6-16)

式中:d i —传热管内径,m ;

L i —传热管测量段的实际长度,m 。

由热量衡算式:其中质量流量由下式求得: 3600

i

i i V W ρ= 式中:V i —冷流体在套管内的平均体积流量,m 3 / h ; c pi —冷流体的定压比热,kJ / (kg·℃); ρi —冷流体的密度,kg /m 3。 c pi 和ρi 可根据定性温度t m 查得,2

2

1i i m t t t +=

为冷流体进出口平均温度。 ⒉ 对流传热系数准数关联式的实验确定

流体在管内作强制湍流时,处于被加热状态,准数关联式的形式为

n i m

i i A Nu Pr Re =. (6-19)

其中: i i

i i d Nu λα=

, i i i i i d u μρ=Re , i

i pi i c λμ=Pr 物性数据λI 、 c pi 、ρI 、μI 可根据定性温度t m 查得。经过计算可知,对于管内被加热的

空气,普兰特准数Pr i 变化不大,可以认为是常数,则关联式的形式简化为:

4.0Pr Re i m

i i A Nu = (6-20)

这样通过实验确定不同流量下的Re i 与i Nu ,然后用线性回归方法确定A 和m 的值。

⒊ 强化比的确定

强化传热能减小传热面积,以减小换热器的体积和重量;提高现有换热器的换热能力;使换热器能在较低温差下工作。

强化传热的方法有多种,本实验装置是采用在换热器内管插入螺旋线圈的方法来强化传热的。螺旋线圈的结构图如图6-3所示,螺旋线圈由直径

1mm 钢丝按一定节距绕成。将金属螺旋线圈插入并固定在管内,流体一面由于螺旋线圈的作用而发生旋转,一面还周期性地受到线圈的螺旋金属丝的扰动,因而可以使传热强化。由于绕制线圈的金属丝直径很细,流体旋流强度也较弱,所以阻力较小,有利于节省能源。螺旋线圈是以线圈节距H 与管内径d 的比值技术参数,且节距与管内径比是影响传热效果和阻力系数的重要因素。科学家通过实验研究总结了形式为m

B Nu Re =的经验公式,其中B 和m 的值因螺旋丝尺寸不同而不同。在本实验中,测定不同流量下的Re i 与i Nu ,用线性回归方法可确定B 和m 的值。

单纯研究强化效果(不考虑阻力的影响),可以用强化比的概念作为评判准则,它的形

图6-3 螺旋线圈强化管内部结构

式是:0Nu Nu ,其中Nu 是强化管的努塞尔准数,Nu 0是普通管的努塞尔准数,显然,强化比0Nu Nu >1,而且它的值越大,强化效果越好。需要说明的是,如果评判强化方式的真正效果和经济效益,则必须考虑阻力因素,只有强化比较高,且阻力系数较小的强化方式,才是最佳的强化方法。

4. 换热器总传热系数Ko 的确定

实验中若忽略换热器的热损失,在定态传热过程中,空气升温获得的热量与对流传递的热量及换热器的总传热量均相等:

)(12i i pi i i t t c W Q -=m o 0t S K ?= (6-21)

即以外表面为基准的总传热系数: m

00t S Q

K ?=

(6-22)

式中传热量Q 已由式(6-17)得到,管外径为基准的换热面积:i 00L d S ??π=

式中传热间壁两侧对数平均温度差: 2

i s 1i s 2i s 1i s m t T t T ln

)

t T ()t T (t -----=

? (6-23)

在同一流量下分别求取一次简单套管换热器、强化套管换热器的总传热系数Ko ,并比较两种套管换热器Ko 值的大小。

四、 实验流程及设备主要参数:

1、 实验流程:

化工原理实验

流量计的种类很多,本实验是研究差压式(速度式)流量计的校正,这类差压式流量计是用测定流体的压差来确定流体流量(或流速)常用的有孔板流量计、文丘里流量计和毕托管等。实验装置用孔板流量计如同2。a)所示,是在管道法兰向装有一中心开孔的不诱钢板。 孔板流量计的缺点是阻力损失大,流体流过孔板流量计,由于流体与孔板有摩擦,流道突然收缩和扩大,形成涡流产生阻力,使部分压力损失,因此流体流过流量计后压力不能完全恢复,这种损失称为永久压力损失(局部阻力损失)。流量计的永久压力损失可以用实验方法测出。如下图所示,实验中测定3、4两个截面的压力差,即为永久压力损失。对孔板流量计,测定孔板前为d1的地方和孔板后6d1的地方两个截面压差 工厂生产的流量计大都是按标准规范生产的。出厂时一般都在标准技术状况下(101325Pa,20℃)以水或空气为介质进行标定,给出流量曲线或按规定的流量计算公式给出指定的流量系数,然而在使用时,往往由于所处温度、压强、介质的性质同标定时不同,因此为了测定准确和使用方便,应在现场进行流量计的校正。即使已校正过的流量计,由于在长时间使用中被磨损较大时,也需要再一次校正。 量体法和称重法都是以通过一定时间间隔内排出的流体体积或质量的测量来实现的 《化工原理实验指导》李发永 流量计原理 工厂生产的流量计,大都是按标准规范制造的。流量计出厂前要经过校核,并作出流量曲线,或按规定的流量计算公式给出指定的流量系数,或将流量系数直接刻在显示仪表刻度盘上供用户使用。 如果用户丢失原厂的流量曲线图;或者流量计经长期使用,由于磨损造成较大的计量误差;或者用户自行制造非标准形式的流量计;或者被测量流体与标定的流体成分或状态不同,则必须对流量计进行校核(或称为标定)。也就是用实验的方法测定流量计的指示值与实际流量的关系,作出流量曲线或确定流量的计算公式。因此,流量计的校核在生产、科研中都具有很重要的实际意义。 Φ16×2.5 Ф:是表示外径 DN:公称直径(近似内径) “Φ”标识普通圆钢管的直径,或管材的外径乘以壁厚,如:Φ25×3标识外径25mm,壁厚为3mm的管材; 以孔板流量计为例进行说明,文丘里流量计的原理与此完全一样,只是流量系数不同。

化工原理实验报告

化工原理实验报告 Prepared on 22 November 2020

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面积求得) (m/s)

1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位差可 知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 222121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图 泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm 。 四、实验操作步骤与注意事项 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。 4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h 1…△h 4。要注意其变化情况。继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h 1…△h 4。 5、实验完毕停泵,将原始数据整理。 实验二 离心泵性能曲线测定 一、实验目的 1. 了解离心泵的构造和操作方法 2. 学习和掌握离心泵特性曲线的测定方法

化工原理实验报告

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面 积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验指导

化工2004/02 化工原理实验 福州大学化工原理实验室 二〇〇四年二月

前言 实施科教兴国战略和可持续发展战略,迎接知识经济时代的到来,建设面向知识经济时代的国家创新体系,要求造就一支庞大的高素质的创造性人才队伍。因此,作为高级人才的培养基地,高等院校应当把创造力的教育和培养贯穿于各门课程教学及实践性教学环节中。实践性教学环节相对于课堂理论教学环节,更能贯穿对学生创造力的开发,其教学内容、方法、手段如何能适应创造性人才的培养要求尤为重要。传统的大学实验教学,其内容是以验证前人知识为主的验证型实验,其方法是教师手把手地教,这些都不利于培养学生的主动性和创造性。当今,大学实验教学改革中,普遍开设综合型、设计型、研究型实验,是对学生进行创造教育的重要思路和做法。在“211工程”重点建设的大学必须通过的本科教学评优工作指标中就明确要求综合型、设计型、研究型实验应占70%以上。 《化工原理实验》是一门技术基础实验课,在培养化工类及相关专业的高级人才中起举足轻重的作用,被学校确定为我校参加本科教学评优工作重点建设的基础课程之一。福州大学投入247万元用于建设以“三型”实验为主的现代化的具有国内先进水平的化工原理实验室。目前,第一期投入100万元的化工原理实验室建设工作已经完成,第二期投入147万元的建设工作正在进行中。已建成具有国内先进水平的实验装置18套,其中有6套是我校与北京化工大学、天津大学共同联合研制的,有2套是我们自行研制的。这些装置将化工知识与计算机技术紧密地结合起来,同时还融合了化学、电工电子、数学、物理及机械等多学科的知识,具有计算机数据采集、处理和控制等功能,能够针对不同专业的要求开出不同类型的“三型”实验。有了这些高新技术装备的实验装置,我们还必须花大力气进行化工原理实验内容、方法的改革,必须以当代教育思想、教育方法论及教育心理学为指导,研究以学生自主学习为主的启发式、交互式、研讨式、动手式的实验教学方法,从实验方案拟定、实验步骤设计、实验流程装配、实验现象观察、实验数据处理和实验结果讨论等方面有效地培养学生的创造性思维和实践动手能力。《化工原理实验讲义》就是为了适应化工原理实验教学内容、方法、手段的改革要求而编写的。 《化工原理实验讲义》由施小芳高级实验师执笔主编,李微高级实验师、林述英实验师参与编写工作,阮奇教授主审。叶长燊等老师参加了编写讲义的讨论,并提出许多宝贵意见。在此,对本讲义在编写过程中给予热心帮助和支持的老师,表示衷心的感谢。 本讲义在编写过程中,参阅了有关书籍、杂志、兄弟院校的讲义等大量资料,由于篇幅所限,未能一一列举,谨此说明。本讲义难免存在不妥之处,衷心地希望读者给予指教,使本讲义日臻完善。 福州大学化工原理实验室 2004.2.5

化工原理精馏实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2011.04.24 班 级: 化工0801 姓 名: 王晓 同 组 人:丁大鹏,王平,王海玮 装置型号: 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气-液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的1.2-2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E e N E N 式中 E —总板效率; N —理论板数(不包括塔釜); Ne —实际板数。

化工原理实验讲义全

化工原理实验 讲义 专业:环境工程 应用化学教研室 2015.3

实验一 流体机械能转化实验 一、实验目的 1、了解流体在管流动情况下,静压能、动能、位能之间相互转化关系,加深对伯努利方程的理解。 2、了解流体在管流动时,流体阻力的表现形式。 二、实验原理 流动的流体具有位能、动能、静压能、它们可以相互转换。对于实际流体, 因为存在摩擦,流动过程中总有一部分机械能因摩擦和碰撞,而被损失掉。所以对于实际流体任意两截面,根据能量守恒有: 2211221222f p v p v z z H g g g g ρρ++=+++ 上式称为伯努利方程。 三、实验装置(d A =14mm ,d B =28mm ,d C =d D =14mm ,Z A -Z D =110mm ) 实验装置与流程示意图如图1-1所示,实验测试导管的结构见图1-2所示: 图1-1 能量转换流程示意图

图1-2实验导管结构图 四、操作步骤 1.在低位槽中加入约3/4体积的蒸馏水,关闭离心泵出口上水阀及实验测试 导管出口流量调节阀和排气阀、排水阀,打开回水阀后启动离心泵。 2.将实验管路的流量调节阀全开,逐步开大离心泵出口上水阀至高位槽溢流 管有液体溢流。 3.流体稳定后读取并记录各点数据。 4.关小流量调节阀重复上述步骤5次。 5.关闭离心泵出口流量调节阀后,关闭离心泵,实验结束。 五、数据记录和处理 表一、转能实验数据表 流量(l/h) 压强mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 测试点标 号 1 2 3 4 5 6 7 8

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4.0Pr Re ??=a A Nu 中的参数A 、a * 4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βg ΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βg ΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βg ΔT : Gr =βg ΔT l 3ρ2/μ2 5)原函数无量纲化 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: 热量衡算方程: 圆管传热牛顿冷却定律: 圆筒壁传导热流量:)] /()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54.02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

化工原理实验思考题答案

实验1单项流动阻力测定 (1)启动离心泵前,为什么必须关闭泵的出口阀门? 答:由离心泵特性曲线知,流量为零时,轴功率最小,电动机负荷最小,不会过载烧毁线圈。 (2)作离心泵特性曲线测定时,先要把泵体灌满水以防止气缚现象发生,而阻力实验对泵灌水却无要求,为什么? 答:阻力实验水箱中的水位远高于离心泵,由于静压强较大使水泵泵体始终充满水,所以不需要灌水。 (3)流量为零时,U形管两支管液位水平吗?为什么? 答:水平,当u=0时柏努利方程就变成流体静力学基本方程: Z l P l ? :?g =Z2 P2;g,当P l = P2 时,Z I = Z2 (4 )怎样排除管路系统中的空气?如何检验系统内的空气已经被排除干净? 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U形管顶部的阀门,利用空气压强使U形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 (5)为什么本实验数据须在双对数坐标纸上标绘? 答:因为对数可以把乘、除变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。 (6)你在本实验中掌握了哪些测试流量、压强的方法?它们各有什么特点? 答:测流量用转子流量计、测压强用U形管压差计,差压变送器。转子流量计,随流量的大小,转子可以上、下浮动。U形管压差计结构简单,使用方便、经济。差压变送器,将压差转换 成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测 大流量下的压强差。 (7 )读转子流量计时应注意什么?为什么? 答:读时,眼睛平视转子最大端面处的流量刻度。如果仰视或俯视,则刻度不准,流量就全有误^^。 (8)两个转子能同时开启吗?为什么? 答:不能同时开启。因为大流量会把U形管压差计中的指示液冲走。 (9 )开启阀门要逆时针旋转、关闭阀门要顺时针旋转,为什么工厂操作会形成这种习惯?答:顺时针旋转方便顺手,工厂遇到紧急情况时,要在最短的时间,迅速关闭阀门,久而久之就形成习惯。当然阀门制造商也满足客户的要求,阀门制做成顺关逆开。 (10)使用直流数字电压表时应注意些什么? 答:使用前先通电预热15分钟,另外,调好零点(旧设备),新设备,不需要调零点。如果有波动,取平均值。 (11)假设将本实验中的工作介质水换为理想流体,各测压点的压强有何变化?为什么?答:压强相等,理想流体u=0,磨擦阻力F=0,没有能量消耗,当然不存在压强差。 Z j +P/? +uj/2g =Z2 +u;/2g , T d1=d2 二U1=U2 又T Z1=Z2 (水平管)P1 = P2 (12)离心泵送液能力,为什么可以通过出口阀调节改变?往复泵的送液能力是否也可采用同样的调节方法?为什么? 答:离心泵送液能力可以通过调节出口阀开度来改变管路特性曲线,从而使工作点改变。往复泵是正往移泵 流量与扬程无关。若把出口堵死,泵内压强会急剧升高,造成泵体,管路和电机的损 坏。 (13)本实验用水为工作介质做出的入一Re曲线,对其它流体能否使用?为什么?

化工原理实验资料

实验一干燥实验 一、实验目的 1.了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2.掌握恒定条件下物料干燥速率曲线的测定方法。 3.测定湿物料的临界含水量X C,加深对其概念及影响因素的理解。 4.熟悉恒速阶段传质系数K H、物料与空气之间的对流传热系数的测定方法。 二、实验内容 1.在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其影响因 素。 2.测定恒速阶段物料与空气之间的对流传热系数「和传质系数K H。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的 机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不 变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量, 即以湿物料为基准的水分含量,用?来表示。但因干燥时物料总量在变化,所以采用以干 基料为基准的含水量X表示更为方便。??与X的关系为: CO X (8—1)1 - ■ 式中:X —干基含水量kg水/kg绝干料; ■—湿基含水量kg水/kg湿物料。 物料的绝干质量G C是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。干燥曲线即物料的干基含水量X与干燥时间?的关系曲线,它说明物料在干燥过程中,干 基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较小的直线段AB段;随后为持续时间长、斜率较大的直线BC;段以后的一段为曲线

化工原理实验指导(1)

实验1 雷诺实验 一、实验目的 1、观察液体在不同流动状态时的流体质点的运动规律。 2、观察液体由层流变紊流及由紊流变层流的过渡过程。 3、测定液体在园管中流动时的上临界雷诺数Rec1和下临界雷诺数Rec2。 二、实验要求 1、实验前认真阅读实验教材,掌握与实验相关的基本理论知识。 2、熟练掌握实验内容、方法和步骤,按规定进行实验操作。 3、仔细观察实验现象,记录实验数据。 4、分析计算实验数据,提交实验报告。 三、实验仪器 1、雷诺实验装置(套), 2、蓝、红墨水各一瓶, 3、秒表、温度计各一只, 4、 卷尺。 四、实验原理 流体在管道中流动,有两种不同的流动状态,其阻力性质也不同。在实验过程中,保持水箱中的水位恒定,即水头H不变。如果管路中出口阀门开启较小,在管路中就有稳定的平均流速u,这时候如果微启带色水阀门,带色水就会和无色水在管路中沿轴线同步向前流动,带色水成一条带色直线,其流动质点没有垂直于主流方向的横向运动,带色水线没有与周围的液体混杂,层次分明的在管道中流动。此时,在速度较小而粘性较大和惯性力较小的情况下运动,为层流运动。如果将出口阀门逐渐开大,管路中的带色直线出现脉动,流体质点还没有出现相互交换的现象,流体的运动成临界状态。如果将出口阀门继续开大,出现流体质点的横向脉动,使色线完全扩散与无色水混合,此时流体的流动状态为紊流运动。

雷诺数:γ d u ?= Re 连续性方程:A ?u=Q u=Q/A 流量Q 用体积法测出,即在时间t 内流入计量水箱中流体的体积ΔV 。 t V Q ?= 4 2 d A ?=π 式中:A-管路的横截面积 u-流速 d-管路直径 γ-水的粘度 五、实验步骤 1、连接水管,将下水箱注满水。 2、连接电源,启动潜水泵向上水箱注水至水位恒定。 3、将蓝墨水注入带色水箱,微启水阀,观察带色水的流动从直线状态至脉动临界状态。 4、通过计量水箱,记录30秒内流体的体积,测试记录水温。 5、调整水阀至带色水直线消失,再微调水阀至带色水直线重新出现,重复步骤4。 6、层流到紊流;紊流到层流各重复实验三次。 六、数据记录与计算 d= mm T (水温)= 0C 七、实验分析与总结(可添加页) 1、描述层流向紊流转化以及紊流向层流转化的实验现象。 2、计算下临界雷诺数以及上临界雷诺数的平均值。

化工原理实验报告

化工原理实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截 面积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验指导书

化工原理实验指导书 目录

实验一流体流淌阻力的测定 (1) 实验二离心泵特性曲线的测定 (5) 实验三传热系数测定实验 (7) 实验四筛板式精馏塔的操作及塔板效率测定 (9) 实验五填料塔吸取实验 (12) 演示实验柏努利方程实验 (14) 雷诺实验 (16) 实验一流体流淌阻力的测定 一、实验目的

1、了解流体在管道内摩擦阻力的测定方法; 2、确定摩擦系数λ与雷诺数Re 的关系。 二、差不多原理 由于流体具有粘性,在管内流淌时必须克服内摩擦力。当流体呈湍流流淌时,质点间不断相互碰撞,引起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。流体的粘性和流体的涡流产生了流体流淌的阻力。在被侧直管段的两取压口之间列出柏努力方程式,可得: ΔP f =ΔP L —两侧压点间直管长度(m) d —直管内径(m) λ—摩擦阻力系数 u —流体流速(m/s ) ΔP f —直管阻力引起的压降(N/m 2 ) μ—流体粘度(Pa.s ) ρ—流体密度(kg/m 3 ) 本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系列流量下的ΔP f 值,将已知尺寸和所测数据代入各式,分不求出λ和Re ,在双对数坐标纸上绘出λ~Re 曲线 。 三、实验装置简要讲明 水泵将储水糟中的水抽出,送入实验系统,第一经玻璃转子流量计测量流量,然后送入被测直管段测量流体流淌的阻力,经回流管流回储水槽,水循环使用。 被测直管段流体流淌阻力△P 可依照其数值大小分不采纳变压器或空气—水倒置U 型管来测量。 四、实验步骤: 1、向储水槽内注蒸馏水,直到水满为止。 2、大流量状态下的压差测量系统,应先接电预热10-15分钟,观擦数字外表的初始值并记录后方可启动泵做实验。 3、检查导压系统内有无气泡存在.当流量为0时打开B1、B2两阀门,若空气-水倒置U 型管内两液柱的高度差不为0,则讲明系统内有气泡存在,需要排净气泡方可测取数据。 排气方法:将流量调至较大,排除导压管内的气泡,直至排净为止。 4、测取数据的顺序可从大流量至小流量,反之也可,一样测15~20组数,建议当流量读数小于300L/h 时,用空气—水倒置U 型管测压差ΔP 。 5、待数据测量完毕,关闭流量调剂阀,切断电源。 五、使用实验设备应注意的事项: 2 2u d L P h f f ?=?= λ ρ 2 2u P L d f ??= ρλμ ρ du = Re

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

最新浙江大学化工原理实验---填料塔吸收实验报告分析解析

实验报告 课程名称:过程工程原理实验(乙) 指导老师: 叶向群 成绩:__________________ 实验名称:吸收实验 实验类型:工程实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 填料塔吸收操作及体积吸收系数测定 1 实验目的: 1.1 了解填料吸收塔的构造并熟悉吸收塔的操作; 1.2 观察填料塔的液泛现象,测定泛点空气塔气速; 1.3 测定填料层压降ΔP 与空塔气速u 的关系曲线; 1.4 测定含氨空气—水系统的体积吸收系数K y a 。 2 实验装置: 2.1 本实验的装置流程图如图1: 专业: 姓名: 学号: 日期:2015.12.26 地点:教十2109

2.2物系:水—空气—氨气。惰性气体由漩涡气泵提供,氨气由液氮钢瓶提供,吸收剂水采用自来水,他们的流量分别通过转子流量计。水从塔顶喷淋至调料层与自下而上的含氮空气进行吸收过程,溶液由塔底经过液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 3 基本原理: 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定相同,故转子流量计的读数值必须进行校正。校正方法如下:

3.2 体积吸收系数的测定 3.2.1相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系为: 相平衡常数m与系统总压P和亨利系数E的关系如下: 式中:E—亨利系数,Pa P—系统总压(实验中取塔内平均压力),Pa 亨利系数E与温度T的关系为: lg E= 11.468-1922 / T 式中:T—液相温度(实验中取塔底液相温度),K。 根据实验中所测的塔顶表压及塔顶塔底压差△p,即可求得塔内平均压力P。根据实验中所测的塔底液相温度T,利用式(4)、(5)便可求得相平衡常数m。 3.2.2 体积吸收常数 体积吸收常数是反映填料塔性能的主要参数之一,其值也是设计填料塔的重要依据。本实验属于低浓气体吸收,近似取Y≈y、X≈x。 3.2.3被吸收的氨气量,可由物料衡算 (X1-X2) 式中:V—惰性气体空气的流量,kmol/h;

2014化工原理实验复习提纲(下册):

第一部分 实验基础知识 1、 如何读取实验数据 2、 如何写实验报告 3、 数据处理 一、实验数据的误差分析 1. 真值 2、平均值及其种类 3、误差的分类 4、精密度和精确度 5、实验数据的记数法和有效数字 错误认识:小数点后面的数字越多就越正确,或者运算结果保留位数越多越准确。 二、实验数据处理 实验数据中各变量的关系可表示为列表式,图示式和函数式。 第二部分 实验内容 a log log log log ln ln ln ln ln 1212=--+=?=+=?=截矩直线的斜率=真值,双对数坐标半对数坐标x x y y x b a y ax y bx a y ae y b bx Θ

每个实验的原理、操作方法、仪表的使用、实验记录、数据处理、思考题 一、精馏实验: 物系、实验原理、流程图、数据处理(用公式表示)、思考题 1)测定指定条件下的全塔效率或等板高度 2)操作中可调节可控制的量 3)物料浓度的测定方法 4)操作步骤,先全回流,再确定一定回流比操作,为什么 5)实验中出现异常现象(液泛,无回流),如何判断?如何处理? 6)进料状态对精馏塔的操作有何影响?确定q线需要测定哪几个 量?查取进料液的汽化潜热时定性温度应取何值? 7)什么是全回流?全回流操作的标志有哪些?在生产中有什么实际 意义? 8)其他条件都不变,只改变回流比,对塔性能会产生什么影响? 9)进料板位置是否可以任意选择,它对塔的性能有何影响? 10)为什么酒精蒸馏采用常压操作而不采用加压蒸馏或真空蒸馏? 11)将本塔适当加高,是否可以得到无水酒精?为什么? 12)影响精馏塔操作稳定的因素有哪些?如何确定精馏塔操作已达 稳定?本实验装置能否精馏出98%(质量)以上的酒精?为什么? 13)各转子流量计测定的介质及测量条件与标定时的状态不同,应如 何校正?

化工原理实验资料

实验一 干燥实验 一、实验目的 1. 了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2. 掌握恒定条件下物料干燥速率曲线的测定方法。 3. 测定湿物料的临界含水量X C ,加深对其概念及影响因素的理解。 4. 熟悉恒速阶段传质系数K H 、物料与空气之间的对流传热系数α的测定方法。 二、实验内容 1. 在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其 影响因素。 2. 测定恒速阶段物料与空气之间的对流传热系数α和传质系数K H 。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量,即以湿物料为基准的水分含量,用ω来表示。但因干燥时物料总量在变化,所以采用以干基料为基准的含水量X 表示更为方便。ω与X 的关系为: X = -ω ω 1 (8—1) 式中: X —干基含水量 kg 水/kg 绝干料; ω—湿基含水量 kg 水/kg 湿物料。 物料的绝干质量G C 是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。干燥曲线即物料的干基含水量X 与干燥时间τ的关系曲线,它说明物料在干燥过程中,干基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较小的直线段AB 段;随后为持续时间长、斜率较大的直线BC ;段以后的一段为曲线

化工原理实验指导书

化工原理实验指导书

目录 实验一流体流动阻力的测定 (1) 实验二离心泵特性曲线的测定 (5) 实验三传热系数测定实验 (7) 实验四筛板式精馏塔的操作及塔板效率测定 (9) 实验五填料塔吸收实验 (12) 演示实验柏努利方程实验 (14)

雷诺实验 (16)

实验一流体流动阻力的测定 、实验目的 1、 了解流体在管道内摩擦阻力的测定方法; 2、 确定摩擦系数入与雷诺数 Re 的关系。 二、基本原理 由于流体具有粘性, 在管内流动时必须克服内摩擦力。 当流体呈湍流流动时, 质点间不 断相互碰撞,弓I 起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。流体的粘性和 流体 的涡流产生了流体流动的阻力。 在被侧直管段的两取压口之间列出柏努力方程式, 可得: △ P f = △ P ’ P f L u 2 h f d 2 L —两侧压点间直管长度(m ) 2d P f d —直管内径(m ) 入一摩擦阻力系数 u —流体流速(m/s ) △ P f —直管阻力引起的压降(N/m 2 ) 厂流体粘度(Pa.s ) p — 流体密度(kg/m 3 ) 本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系 列流量下的△ P f 值,将已知尺寸和所测数据代入各式,分别求出入和 Re ,在双对数坐标纸 上绘出入?Re 曲线。 三、实验装置简要说明 水泵将储水糟中的水抽出, 送入实验系统,首先经玻璃转子流量计测量流量, 然后送入 被测直管段测量流体流动的阻力,经回流管流回储水槽,水循环使用。 被测直管段流体流 动阻力△ P 可根据其数值大小分别采用变压器或空气一水倒置 U 型管来测量。 四、实验步骤: 1、 向储水槽内注蒸馏水,直到水满为止。 2、 大流量状态下的压差测量系统 ,应先接电预热10-15分钟,观擦数字仪表的初始值并 记 录后方可启动泵做实验。 3、 检查导压系统内有无气泡存在 .当流量为0时打开B1、B2两阀门,若空气一水倒置 U 型管内两液柱的高度差不为 0,则说明系统内有气泡存在,需要排净气泡方可测取数据。 排气方法:将流量调至较大,排除导压管内的气泡,直至排净为止。 4、 测取数据的顺序可从大流量至小流量,反之也可,一般测 15?20组数,建议当流量 读数 小于300L/h 时,用空气一水倒置 U 型管测压差△ P 。 5、待数据测量完毕,关闭流量调节阀,切断电源。 Re du

化工原理实验答案汇编

实验四 1.实验中冷流体和蒸汽的流向,对传热效果有何影响? 无影响。因为Q=αA△t m,不论冷流体和蒸汽是迸流还是逆流流动,由 于蒸汽的温度不变,故△t m不变,而α和A不受冷流体和蒸汽的流向的影响, 所以传热效果不变。 2.蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响、应采取什么 措施? 不冷凝气体的存在相当于增加了一项热阻,降低了传热速率。冷凝器 必须设置排气口,以排除不冷凝气体。 3.实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷 凝水? 冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速 率。在外管最低处设置排水口,及时排走冷凝水。 4.实验中,所测定的壁温是靠近蒸汽侧还是冷流体侧温度?为什么?传热系数k 接近于哪种流体的 壁温是靠近蒸汽侧温度。因为蒸汽的给热系数远大于冷流体的给热系 数,而壁温接近于给热系数大的一侧流体的温度,所以壁温是靠近蒸汽侧温度。而总传热系数K接近于空气侧的对流传热系数 5.如果采用不同压强的蒸汽进行实验,对α关联式有何影响? 基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强对α关联式无影响。 实验五固体流态化实验 1.从观察到的现象,判断属于何种流化? 2.实际流化时,p为什么会波动? 3.由小到大改变流量与由大到小改变流量测定的流化曲线是否重合,为什么?4流体分布板的作用是什么? 实验六精馏 1.精馏塔操作中,塔釜压力为什么是一个重要操作参数,塔釜压力与哪些因素有关? 答(1)因为塔釜压力与塔板压力降有关。塔板压力降由气体通过板上孔口或通道时为克服局部阻力和通过板上液层时为克服该液层的静压力而引起,因而塔板压力降与气体流量(即塔内蒸汽量)有很大关系。气体流量过大时,会造成过量液沫夹带以致产生液泛,这时塔板压力降会急剧加大,塔釜压力随之升高,因此本实验中塔釜压力可作为调节塔釜加热状况的重要参考依据。(2)塔釜温度、流体的粘度、进料组成、回流量。 2.板式塔气液两相的流动特点是什么? 答:液相为连续相,气相为分散相。 3.操作中增加回流比的方法是什么,能否采用减少塔顶出料量D的方法? 答:(1)减少成品酒精的采出量或增大进料量,以增大回流比;(2)加大蒸气量,增加塔顶冷凝水量,以提高凝液量,增大回流比。

化工原理实验讲

1流体阻力测定实验 实验目的 1)掌握流体流经直管和阀门时阻力损失的测定方法,通过实验了解流体流动中能量损失的变化规律。 2 )测定直管摩擦系数入与雷诺准数Re的关系,将所得的入~Re方程与经验公式比较。 3 )测定流体流经阀门时的局部阻力系数E。 4 )学会倒U形差压计、差压传感器、涡轮流量计的使用方法。 5 )观察组成管路的各种管件、阀门,并了解其作用。 基本原理 流体在管内流动时,由于粘性剪应力和涡流的存在,不可避免地要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。 1)沿程阻力 流体在水平等径圆管中稳定流动时,阻力损失表现为压力降低,即 h f 仏上厘(1 —1) 影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通 过实验研究其规律。为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。根据因次分析,影响阻力损失的因素有, (1)流体性质:密度P、粘度卩; (2)管路的几何尺寸:管径d、管长I、管壁粗糙度£; (3)流动条件:流速卩。 可表示为: p f (d,l,,,u,)(1—2)组合成如下的无因次式: p 2 (du I J d ,—)(1—3) u d p du I u2 (,—)? d d 2 du 令( , d )/ (1 — 4) 则式(1 —1)变为: 2 h f P 1u(1 - 5) d2 式中,入称为摩擦系数。层流(滞流)时,入=64/R e;湍流时入是雷诺准数R e和相对粗糙度的函数,须由实验确定。

2) 局部阻力 局部阻力通常有两种表示方法,即当量长度法和阻力系数法。 (1)当量长度法 流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径 长度的直管阻力损失,这个直管长度称为当量长度,用符号le表示。这样,就可以用直管 阻力的公式来计算局部阻力损失,而且在管路计算时.可将管路中的直管长度与管件、阀门的当量长度合并在一起计算,如管路中直管长度为I,各种局部阻力的当量长度之和为le,则流体在管路中流动时的总阻力损失h f为 I leu2 h f(1 —6) d 2 (2)阻力系数法\ 流体通过某一管件或阀门时的阻力损失用流体在管路中的动能系数来表示,这种计算局 部阻力的方法,称为阻力系数法。 即 2 . u h f (1 —7) 2 式中,E――局部阻力系数,无因次;u 在小截面管中流体的平均流速,m/ s。 由于管件两侧距测压孔间的直管长度很短?引起的摩擦阻力与局部阻力相比,可以忽略不计。因此h f'直可应用柏努利方程由压差计读数求取。 实验装置与流程 1)实验装置 实验装置如图1 —1所示。主要由水箱、管道泵,不同管径、材质的管子,各种阀门和管件,转子流量计等组成。第一根为粗糙管,第二根为光滑管。第三根不锈钢管,装有待测闸阀,用于局部阻力的测定。 1、水箱 2、管道泵 3、5、6、球阀 4、均压环7、系统排水阀8闸阀9、流量调节阀 10、排污水阀11倒U形差压计12、不锈钢管13、粗糙管14、光滑管15、转子流量计16、导压管17、温度计18、进水阀

相关文档