文档库 最新最全的文档下载
当前位置:文档库 › 完全平方公式与配方法

完全平方公式与配方法

完全平方公式与配方法
完全平方公式与配方法

《分式中考常见题型》专题

班级 姓名

只要站起来的次数比倒下去的次数多,那就是成功。 【类型一】

(2013?鸡西第2题3分)在函数x

x y 1

+=中,自变量x 的取值范围是 . (2012?鸡西第12题3分)函数x

x y 1

12+-=中,自变量x 的取值范围是 . (2011?鸡西第12题3分)函数y=3

2

-+x x 中,自变量x 的取值范围是 . (2010?鸡西第2题3分)函数2

1

-=x y 中,自变量x 的取值范围是 . (2009?鸡西第2题3分)函数2

1-=x y 中,自变量x 的取值范围是 .

【类型二】

(2013?鸡西第16题3分)已知关于x 的分式方程11

2

=++x a 的解是非正数,则a 的取值范围

(2012?鸡西第9题3分)若关于x 的分式方程x

x 13=--无解,则m 的值为( ) A. —1.5 B. 1 C.—1.5或2 D.—0.5或.—1.5 (2011?鸡西第7题3分)分式方程

=--11x x )

2)(1(+-x x m 有增根,则m 的值为( ) A 0和3 B 1 C 1和-2 D 3

(2010?鸡西第8题3分)已知关于x 的分式方程

2122

a x x -=++的解为负数,那么字母a 的取值范围是 .

(2009?鸡西第11题3分)若关于x 的分式方程

13

1=---x

x a x 有增根,a = .

【由增根求参数的值】

1、当k 为何值时,方程3

31-=--x k

x x 会出现增根?

2、已知分式方程21

33=+++x ax x 有增根,求a 的值。

3、分式方程

1

11+=-+-x x x m x x 有增根1=x ,则m 的值为多少?

由增根求参数的值,其解题思路为:①将原方程化为整式方程(两边同乘以最简公分母)

; ②确定增根(题目已知或使分母为零的未知数的值); ③将增根代入变形后的整式方程,求出参数的值。 【由分式方程根的情况,求参数的取值范围】 1、a 为何值时,关于x 的方程)

1(214-+=

+-x x a

x x x 有解?

2、关于x 的方程3-x x -2=3

-x m 有一个正数解,求m 的取值范围。

3、已知关于x 的方程11

)1)(1(6=---+x m

x x 有解,求m 的取值范围。

由分式方程根的情况,求参数的取值范围,其解题思路为:

①将原方程化为整式方程。 ②把参数看成常数求解。 ③根据根的情况,确定参数的取值范围。(注意要排除增根时参数的值)

《完全平方公式与配方法》专题

班级 姓名

瓜是长大在营养肥料里的最甜,天才是长在恶性土壤中的最好。—— 培 根 【类型一】完全平方公式及变形

⑴ 2222()a ab b a b ++=+, ⑵ 2222()a ab b a b -+=-; ⑶ 222()2a b a b ab +=+-, ⑷ 222()2a b a b ab +=-+;

1、若4,3a b ab +==。求22a b +的值。

2、若227,2x y x y +=+=-,求xy 的值。

3、若221,2x y x y +=+=。求2()x y -的值。

4、若7,18x y xy -==,求22x y +的值。

5、若7,9x y xy +=-=-,求x y -的值。

6、若226,12xy x y =+=,x 与y 相等吗?

【类型二】配方法 分解因式x 2+2x-3

解:原式=x 2+2x +1-1-3 =(x 2+2x+1)-4 =(x+1)2-4

=(x+1+2)(x+1-2)

此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法。此题为用配方法分解因式。

=(x+3)(x-1)

配方法的应用:

1、若2228170x x y y ++-+=,求,x y 的值。

2、若229618820x y x y +-++=,

求,x y 的值。

3、若222246140

x a x a ab b

2(1)34420

++++++=,++-+-+=,4、若222

x y z x y z

求x y z

a b x的值。

++的值。求,,

5、求241

x x

264

++的最值。

-+的最小值。6、求2

x x

7、求237

--+的最值。8、试说明22261

x x

+-++的值总是正数。

x y x y

9、判断代数式22

-+++的值的符号。

x xy y y

31829835

10、若222

++=++=。求证:以,,

a b c a b c

6,12

a b c为边的三角形为等边三角形。

平方差公式和完全平方公式基础拔高练习(含答案)

平方差公式 令狐采学 ◆基础训练 1.(a2+b2)(a2-b2)=(____)2-(____)2=______. 2.(-2x2-3y2)(2x2-3y2)=(____)2-(____)2=_____. 3.20×19=(20+____)(20-____)=_____-_____=_____. 4.9.3×10.7=(____-_____)(____+____)=____-_____. 5.20062-2005×2007的计算结果为() A.1 B.-1 C.2 D.-2 6.在下列各式中,运算结果是b2-16a2的是() A.(-4a+b)(-4a-b)B.(-4a+b)(4a-b) C.(b+2a)(b-8a)D.(-4a-b)(4a-b)

7.运用平方差公式计算. (1)102×98 (2)2×3(3)-2.7×3.3 (4)1007×993 (5)12×11(6)-19×20 (7)(3a+2b)(3a-2b)-b(a-b)(8)(a-1)(a-2)(a+1)(a+2) (9)(a+b)(a-b)+(a+2b)(a-2b)(10)(x+2y)(x-2y)-(2x+5y)(2x-5y)(11)(2m-5)(5+2m)+(-4m-3)(4m-3) (12)(a+b)(a-b)-(a-3b)(a+3b)+(-2a+3b)(-2a-3b) ◆综合应用 8.(3a+b)(____)=b2-9a2;(a+b-m)(____)=b2-(a-m)2. 9.先化简,再求值:(3a+1)(3a-1)-(2a-3)(3a+2),其中a=-. 10.运用平方差公式计算:

最新完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()22 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a -3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是

完全平方公式变形的应用练习题

乘法公式的拓展及常见题型整理 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222 +-=+a a a a 拓展二:ab b a b a 4)()(22=--+ ()()2 2 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求 ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 2 2 a c c b b a -+-+-的值是 ⑵1=+y x ,则2221 21y xy x ++= ⑶已知xy 2 y x ,y x x x -+-=---2 22 2)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab ⑴若()()a b a b -=+=2 2 713,,则a b 22 +=____________,a b =_________

完全平方公式经典题型 (1)

完全平方(和、差)公式: 1. 公式:()2222a b a ab b ±=±+ 逆用:()2 222a ab b a b ±+=± 文字叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. 口诀:首平方加尾平方,乘积二倍在中央。 其中,a b 可以是数字、单项式和多项式。其中22,a b 称为二次项,均为正项;2ab 为中间项,符号由括号里的符号确定。 扩展:()222222ax by a x abxy b y ±=±+ a,b 为x 、y 系数,那么展开式的中间项系数为2ab 。 例:1.229124a ab b -+= 2. 2244a ab b -+= 3. 2(23)x -= 4. 221()32x y -= 4. 2102= 6. 299= 题型解析: 一、添括号运用乘法公式计算: (1)2)(b a -- (2)2)(c b a ++ (4) ()()22 225x 4y 5x 4y --+ (5)2)12(-+b a (6)2)12(--y x 二、展开式系数的判断:公式逆用 1、要使k x x +-62是完全平方式,则k=________ 2、要使42++my y 成为完全平方式,那么m=________ 3、将多项式92+x 加上一个整式,使它成为完全平方式,这个整式可以是_______________ 4、多项式()2249a ab b -+是完全平方差公式,则括号里应填 。 5、将下列式子补充完整: (1)24x - xy +216y =( ) 2 (2)225a +10ab + =( )2 (3) -4ab + =(a - )2 (4)216a + + =( +)22b (5)2916x - + =( 223y ?-?? 三、利用公式加减变形 例.已知5=+b a 3ab =,求22b a +和 2)(b a -的值 1. 若a+b=0,ab=11,求a 2﹣ab+b 2的值。 2.已知 x + y = 8,xy = 12,求 x 2 + y 2 的值 3. 已知,(x+y )2=16,(x ﹣y )2=8,那么xy 的值是多少? 4. 如果,求和1a-a 的值。 5. 已知x 2+y 2=13,xy=6,则x+y 的值是多少?

平方差与完全平方公式教案与答案

平方差与完全平方公式教案与答案

15.2.1 平方差公式 知识导学 1.平方差公式:(a+b)(a-b)=a2-b2 即两个数的和与这两个数的差的积,等于这两个数的平方差。 2. 平方差公式的灵活运用:通过变形,转化为符合平方差公式的形式,也可以逆用平方差公式,连续运用平方差公式,都可以简化运算。 典例解悟 例1. 计算:(1)(2x+3y)(2x-3y) (2) (-4m2-1)(-4m2+1) 解:(1)(2x+3y)(2x-3y)=(2x)2-(3y)2=4x2-9y2 (2) (-4m2-1)(-4m2+1)=(-4m2)2-12=16m4-1 感悟:正确掌握平方差公式的结构,分清“相同项”与“相反项”,再结合已学知识计算本题。其中第(2)题中的相同项是-4m2,不能误以为含有负号的项一定是相反项。 例2.先化简,再求值:(x+2y)(x-2y)-(2x-y)(-2x-y),其中x=8,y=-8. 解:原式=(x2-4y2)-(y2-4x2)=5x2-5y2. 当x=8,y=-8时,原式=5×82-5×(-8)2=0.

感悟:本题是整式的混合运算,其中两个多项式相乘符合平方差公式的特征。在本题(2x-y)(-2x-y)中,相同项是-y,相反项是2x与-2x,应根据加法的交换律,将此式转化为(-y+2x)(-y-2x)。阶梯训练 A级 1.下列各多项式乘法中,可以用平方差公式计算的是() A.(-a-b)(a+b) B.(-a-b)(a-b) C.(-a+b)(a-b) D.(a+b)(a+b) 2.在下列各式中,计算结果是a2 -16b2 的是() A.(-4b+a)(-4b-a) B.(-4b+a)(4b-a) C.(a+2b)(a-8b) D.(-4b-a)(4b-a) 3.下列各式计算正确的是() A.(x+3)(x-3)=x2 -3 B.(2x+3)(2x-3)=2x2 -9 C.(2x+3)(x-3)=2x2 -9 D.(2x+3)(2x-3)=4x2 -9 4.(0.3x-0.1)(0.3x+0.1)=_________ 5. (2 3x+3 4 y) (2 3 x-3 4 y) = _________ 6.(-3m-5n)(3m-5n)=_________

完全平方公式之恒等变形

§1.6 完全平方公式(2) 班级: 姓名: 【学习重点、难点】 重点: 1、弄清完全平方公式的结构特点; 2、会进行完全平方公式恒等变形的推导. 难点:会用完全平方公式的恒等变形进行运算. 【学习过程】 ● 环节一:复习填空 ()2_____________a b += ()2_____________a b -= ● 环节二: 师生共同推导完全平方公式的恒等变形 ①()222_______a b a b +=+- ②()222_______a b a b +=-+ ③()()22_______a b a b ++-= ④()()22_______a b a b +--= ● 典型例题及练习 例1、已知8a b +=,12ab =,求22a b +的值 变式训练1:已知5a b -=,22=13a b +,求ab 的值 变式训练2:已知6ab =-,22=37a b +,求a b +与a b -的值 方法小结:

提高练习1:已知+3a b =,22+30a b ab =-,求22a b +的值 提高练习2:已知210a b -=,5ab =-,求224a b +的值 例2、若()2=40a b +,()2=60a b -,求22a b +与ab 的值 小结: 课堂练习 1、(1)已知4x y +=,2xy =,则2)(y x -= (2)已知2()7a b +=,()23a b -=,求=+22b a ________,=ab ________ (3)()()2222________a b a b +=-+ 2、(1)已知3a b +=,4a b -=,求ab 与22a b +的值 (2)已知5,3a b ab -==求2()a b +与223()a b +的值。 (3)已知224,4a b a b +=+=,求22a b 与2()a b -的值。

完全平方公式——配方法

完全平方公式——配方法 一.选择题(共2小题) 1.(2018?宜宾模拟)已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±20 2.(2017秋?凉州区期末)若x2+2(m﹣3)x+16是完全平方式,则m的值等于() A.3 B.﹣5 C.7 D.7或﹣1 二.填空题(共1小题) 3.(2017秋?资中县期末)小丽在计算一个二项式的平方时,得到正确结果m2﹣10mn+■,但最后一项不慎被墨水污染,这一项应是. 三.解答题(共7小题) 4.(2016秋?卢龙县期末)将多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方.则添加单项式的方法共有多少种?请写出所有的式子及演示过程. 5.(2012秋?仪征市校级月考)小明在做作业时,不慎把墨水滴在纸上,将一个三项式前后两项污染得看不清楚了,中间项是12xy,请帮他把前后两项补充完整,使它成为完全平方式,有几种方法?(至少写出三种不同的方法) 三项式:■+12xy+■=2. (1); (2); (3).

6.(2012春?都江堰市校级期中)如果a2﹣2(k﹣1)ab+9b2是一个完全平方式,那么k=. 7.已知4x2﹣100x+m是完全平方式,求m的值并说明理由. 8.已知x2﹣(m﹣1)xy+49y2是一个完全平方式,求m的值. 9.将下列式子配成完全平方式: (1)1﹣0.5 (2)8+4. 10.若9(x﹣y)2+M+4是一个完全平方公式,求M的表达式.

完全平方公式——配方法 参考答案与试题解析 一.选择题(共2小题) 1.B. 2.D. 二.填空题(共1小题) 3.25n2. 三.解答题(共7小题) 4.解:添加的方法有5种,其演示的过程分别是(1分) 添加4x,得4x2+1+4x=(2x+1)2;(2分) 添加﹣4x,得4x2+1﹣4x=(2x﹣1)2;(3分) 添加4x4,得4x2+1+4x4=(2x2+1)2;(4分) 添加﹣4x2,得4x2+1﹣4x2=12;(5分) 添加﹣1,得4x2+1﹣1=(2x)2.(6分) 5.解:(1)4x2+12xy+9y2=(2x+3y)2; (2)4x2y2+12xy+9=(2xy+3)2; (3)x2y2+12xy+36=(xy+6)2; 故答案为:(1)4x2+12xy+9y2=(2x+3y)2;(2)4x2y2+12xy+9=(2xy+3)2;(3)x2y2+12xy+36=(xy+6)2 6.解:∵a2﹣2(k﹣1)ab+9b2=a2﹣2(k﹣1)ab+(3b)2, ∴﹣2(k﹣1)ab=±2×a×3b, ∴k﹣1=3或k﹣1=﹣3, 解得k=4或k=﹣2. 即k=4或﹣2. 7.解:m=25.理由如下: ∵4x2﹣100x+m是完全平方式, ∴100x=2×2x×,

完全平方公式与平方差公式

《完全平方公式与平方差公式》教学设计 第1课时完全平方公式 1.能根据多项式的乘法推导出完全平方公式;(重点) 2.理解并掌握完全平方公式,并能进行计算.(重点、难点) 一、情境导入 计算: (1)(x+1)2; (2)(x-1)2; (3)(a+b)2; (4)(a-b)2. 由上述计算,你发现了什么结论? 二、合作探究 探究点:完全平方公式 【类型一】直接运用完全平方公式进行计算 利用完全平方公式计算: (1)(5-a)2; (2)(-3m-4n)2; (3)(-3a+b)2. 解析:直接运用完全平方公式进行计算即可. 解:(1)(5-a)2=25-10a+a2;

(2)(-3m-4n)2=9m2+24mn+16n2; (3)(-3a+b)2=9a2-6ab+b2. 方法总结:完全平方公式:(a±b)2=a2±2ab+b2.可巧记为“首平方,末平方,首末两倍中间放”. 变式训练:见《学练优》本课时练习“课堂达标训练”第12题 【类型二】构造完全平方式 如果36x2+(m+1)xy+25y2是一个完全平方式,求m的值. 解析:先根据两平方项确定出这两个数,再根据完全平方公式确定m 的值. 解:∵36x2+(m+1)xy+25y2=(6x)2+(m+1)xy+(5y)2,∴(m+1)xy=±2·6x·5y,∴m+1=±60,∴m=59或-61. 方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 变式训练:见《学练优》本课时练习“课堂达标训练”第4题 【类型三】运用完全平方公式进行简便计算 利用完全平方公式计算: (1)992; (2)1022. 解析:(1)把99写成(100-1)的形式,然后利用完全平方公式展开计算.(2)可把102分成100+2,然后根据完全平方公式计算.解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801; (2)1022=(100+2)2=1002+2×100×2+4=10404. 方法总结:利用完全平方公式计算一个数的平方时,先把这个数写成

配完全平方公式

配完全平方及应用 姓名: 日期: 【知识要点】 1.配完全平方,即利用公式2222222()2()a b ab a b a b ab a b ++=++-=-及把一个展开了的多项式配成另一个多项式的平方的形式,有些多项式可以刚好配成,则称之为完全平方式. 2.配方的作用一般有: ①求最小值:如果一个式子配成了形如22()()(,.,.)m a b n c d k m n k ++++其中为常数,且m,n 同正的形式,则其可取的最小值为k . ②降次:将一个复杂的等量关系本转化为几个简单的等量关系,如一个复杂的多项式可以配成形如22()()0(.),0,0m a b n c d m n a b c d +++=+=+=为常数,且m,n 同号则可以得出. 3.配方的方法就在于利用两项来确定第三项来配(如有22a b +了则第三项一定是 2ab 或2ab -,有了22a ab +或22a ab -则第三项一定是2b ) .不过,在某些较为复杂的题目中,还需要利用一些分拆的技巧,需要注意. 【课前热身】 1.填空:x 2+( )+ 4 1=( )2; 4x 2+12xy+( ) =( )2; 21x 2-6xy+( ) =( )2; 2x 2+( )+18y 2 =( )2; 2.如果(x+y)2—4(x+y)+4=0,则x+y=_____________ 3.已知(x+y)2-2x-2y+1=0,则x+y=__________ 4.已知2216x ax ++是一个完全平方式,则a 的值等于 5.如果4x 2—axy+9y 2是一个完全平方式,则a 的值是 【典型例题】

例1.(1)已知0122 =--a a ,求841a a +的值. (2)已知()21a b +=,()225a b -=.求22a b ab ++. 例2.当a ,b 为何值时,多项式224618a b a b +-++有最小值?并求出这个最小值。 例3.求多项式222451213x xy y y -+-+的最小值。 例4.已知x 、y 满足不等式2x 2+3y 2+5≤4x+6y,求x+y 的值. 例5.若a 、b 、c 为正数,且满足444222222,a b c a b b c c a ++=++那么a 、b 、c 之间有什么关系?为什么? 【经典练习】 1.已知(x+y)2-2x-2y+1=0,则x+y=__________ 2.如果x 2+y 2-2x+6y+10=0,则x+y= 3.如果22530a ab m -+是一个完全平方式,那么m = 。 4.将下列各式配成完全平方与一个常数的和。 (1)23x x -+ (2)2459x x +- 5.如果(a 2+b 2)(a 2+b 2-6)+9=0,求a 2+b 2 6.(1)如果x 2+y 2-4x-6y+13=0,求xy (2)已知0444522=+--+b ab b a ,求a+b 7.已知的值则ca bc ab c b a c b b a ---++=--=-222,5,2。 8.已知22242221,032y y xy x x y x ++--=--求的值。 9.可取的最小值为多少则若222,3 2211z y x z y x ++-=+=-? 10(思考题).若1003722=+b a ,1007322=+d c ,10037=+bc ad ,求c d b a - 的值. 课后作业

初中数学完全平方公式的变形与应用

完全平方公式的变形与应用 提高培优完全平方公式 222222()2,()2a b a a b b a b a a b b 在使用时常作如下变形: (1) 222222()2,()2a b a b a b a b a b a b (2) 2222()()4,()()4a b a b a b a b a b a b (3) 2222 ()()2()a b a b a b (4) 2222 1 [()()]2a b a b a b (5) 22 1 [()()]2a b a b a b (6) 222222 1 [()()()]2a b c a b b c ca a b b c c a 例1 已知长方形的周长为 40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差 为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解设长方形长为 α,宽为b ,则α-b=4,αb=12.由公式(2),有:(α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和, 证明:这个整数的2倍也可以表示为两个整数的平方和 . 证明设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为 S ,则由公式(4),有:S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2 ≥0,∴当x=y 即(x-y)2=0时,S 最小,其最小值为 64232=128(cm 2). 例5 已知两数的和为 10,平方和为52,求这两数的积. 解设这两数分别为α、b ,则α+b =10,α2+b 2 =52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb-bc-c α的值. 解由公式(6)有: α2+b 2+c 2-αb-bc-αc =12 [(α-b)2+(b-c )2+(c-α)2] =12 [(-1)2+(-1)2+22] =12×(1+1+4)=3.

完全平方公式常考题型(经典)

完全平方公式典型题型 一、公式及其变形 1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2) 公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。 注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。 2、公式变形 (1)+(2)得:22 22 ()()2a b a b a b ++-+= (12)-)(得: 22 ()()4 a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=- 3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++ 二、题型 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2 是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.

完全平方公式变形公式专题

半期复习(3)——完全平方公式变形公式及常见题型一.公式拓展: 2a2b2(a b)22ab 22 拓展一:a b(a b)2ab 11211 2 2 2 a(a)2a(a)2 22 a a a a 2a b2a b22a22b2 2 拓展二:(a b)(a b)4ab 22(a b)2(a b)24ab (a b)(a b)4ab 2222 拓展三:a b c(a b c)2ab2ac2bc 拓展四:杨辉三角形 33232 33 (a b)a a b ab b

444362243 4 (a b) a a b a b ab b 拓展五:立方和与立方差 3b a b a ab b 3223b3a b a ab b 22 a()()a()() 第1页(共5页)

二.常见题型: (一)公式倍比 。 2 2 a b 例题:已知 a b =4,求ab 2 1 1 (1) x y 1,则 2 2 x xy y = 2 2 2 2 x y 2 ) 2 (2) 已知x x x y ,xy ( 1) ( 则= 2 ( 二)公式变形 (1) 设(5a+3b)2=(5a-3b)2+A,则A= 2 2 (2) 若( x y) ( x y) a ,则a 为 (3) 如果 2 ( ) 2 (x y) M x y ,那么M等于(4) 已知(a+b) 2=m,(a —b) 2=n,则ab 等于 2 (2 3 ) 2 ( ,则N的代数式是(5) 若2a b a b N 3 ) (三)“知二求一” 1.已知x﹣y=1,x 2+y2=25,求xy 的值. 2.若x+y=3 ,且(x+2)(y+2)=12. (1)求xy 的值; 2+3xy+y 2 的值. (2)求x

完全平方公式(一)

1.6完全平方公式(一) ●教学目标 (一)教学知识点 1.完全平方公式的推导及其应用. 2.完全平方公式的几何背景. (二)能力训练要求 1.经历探索完全平方公式的过程,进一步发展符号感和推理能力. 2.重视学生对算理的理解,有意识地培养他们有条理的思考和表达能力. (三)情感与价值观要求 1.了解数学的历史,激发学习数学兴趣. 2.鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力. ●教学重点 1.完全平方公式的推导过程、结构特点、语言表述、几何解释. 2.完全平方公式的应用. ●教学难点 1.完全平方公式的推导及其几何解释. 2.完全平方公式结构特点及其应用. ●教学方法 自主探索法 学生在教师的引导下自主探索完全平方公式的几何解释、代数运算角度的推理,揭示其结构特点,然后达到合理、熟练地应用. ●教具准备 投影片四张 第一张:试验田的改造,记作(§1.6.1 A) 第二张:想一想,记作(§1.6.1 B) 第三张:例题,记作(§1.6.1 C) 第四张:补充练习,记作(§1.6.1 D) ●教学过程 Ⅰ.创设问题情景,引入新课 [师]去年,一位老农在一次“科技下乡”活动中得到启示,将一块边长为a米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大.今年,又一次“科技下乡”活动,使老农铁了心,要走科技兴农的路子,于是他想把原来的试验田,边长增加b米,形成四块试验田,种植不同的新品种. 同学们,谁来帮老农实现这个愿望呢? (同学们开始动手在练习本上画图,寻求解决的途径) [生]我能帮这位爷爷. [师]你能把你的结果展示给大家吗? [生]可以.如图1-25所示,这就是我改造后的试验田,可以种植四种不同的新品种.

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一: 拓展二: 拓展三: 拓展四:杨辉三角形 拓展五: 立方与与立方差 二.常见题型: (一)公式倍比 例题:已知=4,求。 (1),则= (2)已知= (二)公式变形 (1)设(5a +3b)2=(5a -3b)2+A,则A= (2)若()()x y x y a -=++22 ,则a 为 (3)如果,那么M 等于 (4)已知(a+b)2=m,(a —b)2=n,则ab 等于 (5)若,则N 得代数式就是 (三)“知二求一” 1.已知x ﹣y=1,x 2+y 2=25,求xy 得值. 2.若x+y=3,且(x+2)(y+2)=12. (1)求xy 得值; (2)求x 2+3xy+y 2得值. 3.已知:x+y=3,xy=﹣8,求: (1)x 2+y 2 (2)(x 2﹣1)(y 2﹣1). 4.已知a ﹣b=3,ab=2,求: (1)(a+b)2 (2)a 2﹣6ab+b 2得值. (四)整体代入 例1:,,求代数式得值。 例2:已知a= x +20,b=x +19,c=x +21,求a 2+b 2+c 2-ab -bc -ac 得值 ⑴若,则= ⑵若,则= 若,则=

⑶已知a2+b2=6ab且a>b>0,求得值为 ⑷已知,,,则代数式得值就是. (五)杨辉三角 请瞧杨辉三角(1),并观察下列等式(2): 根据前面各式得规律,则(a+b)6=. (六)首尾互倒 1.已知m2﹣6m﹣1=0,求2m2﹣6m+=. 2.阅读下列解答过程: 已知:x≠0,且满足x2﹣3x=1.求:得值. 解:∵x2﹣3x=1,∴x2﹣3x﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题: 已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7, 求:(1)得值;(2)得值. (七)数形结合 1.如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形. (1)您认为图(2)中得阴影部分得正方形边长就是多少? (2)请用两种不同得方法求图(2)阴影部分得面积; (3)观察图(2),您能写出下列三个代数式之间得等量关系吗? 三个代数式:(m+n)2,(m﹣n)2,mn. (4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值. 2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例 如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示. (1)请写出图3图形得面积表示得代数恒等式; (2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2. (八)规律探求 15.有一系列等式:

完全平方公式教材分析

一、重点、难点分析 本节教学的重点是完全平方公式的熟记及应用.难点是对公式特征的理解(如对公式中积的一次项系数的理解).完全平方公式是进行代数运算与变形的重要的知识基础。 1.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.即:这两个公式是根据乘方的意义与多项式的乘法法则得到的. 这两个公式的结构特征是:左边是两个相同的二项式相乘,右边是三项式,是左边二中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式. 2.只要符合这一公式的结构特征,就可以运用这一公式. 在运用公式时,有时需要进行适当的变形,例如可先变形为或或者,再进行计算.在运用公式时,防止发生这样错误. 3.运用完全平方公式计算时,要注意: (1)切勿把此公式与公式混淆,而随意写成. (2)切勿把“乘积项” 中的2丢掉. (3)计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用乘法法则进行计算. 4.与都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式. 二、教法建议 1.在公式的运用上,与平方差公式的运用一样,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,教科书把公式中的字母同具体题目中的数或式子,用“ ”连结起来,逐项比较、对照,步骤写得完整,便于学生理解如何正确地使用完全平方公式进行计算.2.正确地使用公式的关键是确定是否符合使用公式的条件.重要的是确定两数,然后再看是否两数的和(或差),最后按照公式写出两数和(或差)的平方的结果. 3.如何使学生记牢公式呢?我们注意了以下两点. (1)既讲“法”,又讲“理” 在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式、法则道理的基础上进行记忆.我们引导学生借助面积图形对完全平方公式做直观说明,也是对说理的重视.在“明白道理”这个前提下的记忆,即使学生将来发生错误也易于纠正.

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2 222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a-3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是 (三)“知二求一” 1.已知x﹣y=1,x 2+y 2=25,求xy 的值. 2.若x +y=3,且(x+2)(y +2)=12. (1)求xy的值; (2)求x 2+3x y+y2的值.

平方差公式和完全平方公式强化练习答案

平方差公式 公式: ( a+b)(a-b)= a 2-b 2 语言叙述:两数的 和乘以这两个数的差等 于这两个数的平方差 , . 。 公式结构特点: 左边: (a+b)(a-b) 右边: a 2-b 2 熟悉公式:公式中的a 和b 既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。 (5+6x)(5-6x) 中 (5+6x) 是公式中的a , (5-6x) 是公式中的b (5+6x) (5+6x) 中 (5+6x) 是公式中的a , (5+6x) 是公式中的b (x-2y)(x+2y) 中 (x+2y)是公式中的a , (x-2y) 是公式中的b (-m+n)(-m-n) 中 (-m-n) 是公式中的a , (-m+n) 是公式中的b (a+b+c )(a+b-c) 中 (a+b+c ) 是公式中的a , (a+b-c) 是公式中的b (a-b+c )(a-b-c) 中 (a-b+c ) 是公式中的a , (a-b-c) 是公式中的b (a+b+c )(a-b-c) 中 (a+b+c ) 是公式中的a , (a-b-c) 是公式中的b 填空: 1、(2x-1)( (2x+1 )=4x 2-1 2、(-4x- 7y )( 7y -4x)=16x 2-49y 2 第一种情况:直接运用公式 1.(a+3)(a-3) 2..( 2a+3b)(2a-3b) = a 2-9 =4a 2 -9b 2 3. (1+2c)(1-2c) 4. (-x+2)(-x-2) =1-4C 2 =x 2-42平方差公式和完全平方公式强化练习答案 5. (2x+12)(2x-12) 6. (a+2b)(a-2b) =4x 2-1/4 =a 2-4b 2 7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b) =4a 2-25b 2 =4a 2-9b 2 第二种情况:运用公式使计算简便 1、 1998×2002 2、498×502 =(2000-2)(2000+2) =(500-2)(500+2) =4000000-4 =250000-4 =3999996 =249996 3、999×1001 4、1.01×0.99 =(1000-1)(1000+1) =(1+0.1)(1-0.1) =1000000-1 =1-0.01 =999999 =0.99 5、30.8×29.2 6、(100-13)×(99-23) =(30+0.8)(30-0.8) = =900-0.64 =899.46 7、(20-19)×(19-89) =(19+8/9)(19-8/9) =361-64/81 =11032/27 第三种情况:两次运用平方差公式 1、(a+b )(a-b)(a 2+b 2) =(a 2-b 2) (a 2+b 2) =a 4-b 4 2、(a+2)(a-2)(a 2+4) =(a 2-4) (a 2+4) =a 4-16 3、(x- 12)(x 2+ 14)(x+ 12 ) =(x 2-1/4)( (x 2+ 14) =x 4-1/16 第四种情况:需要先变形再用平方差公式

完全平方公式变形

完全平方公式变形 1.已知 ,求下列各式的值: (1) ; (2) . (3)4 41x x 2.已知x+y=7,xy=2,求 (1)2x 2+2y 2; (2)(x ﹣y )2.。 (3)x 2+y 2-3xy 3.已知有理数m ,n 满足(m+n )2=9,(m ﹣n )2=1.求下列各式的值. (1)mn ; (2)m 2+n 2

平方差公式的应用 1.(a+b﹣c)(a﹣b+c)=a2﹣()2. 2.()﹣64m2n2=(a+)(﹣8mn) 3.已知x2﹣y2=12,x﹣y=4,则x+y=. 4.(x﹣y)(x+y)(x2+y2)(x4+y4)…(x2n+y2n)=. 5..(﹣3x+2y)()=﹣9x2+4y2. 6.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=. 7.计算:=. 8.已知a﹣b=1,a2﹣b2=﹣1,则a4﹣b4=. 9.一个三角形的底边长为(2a+4)厘米,高为(2a﹣4)厘米,则这个三角形的面积为. 10观察下列等式19×21=202﹣1,28×32=302﹣22,37×43=402﹣32,…,已知m,n 为实数,仿照上述的表示方法可得:mn=. 11.正方形Ⅰ的周长比正方形Ⅱ的周长长96cm,它们的面积相差960cm2,求这两个正方形的边长 12如图,第一个图中两个正方形如图所示放置,将第一个图改变位置后得到第二个图,两图阴影部分的面积相等,则该图可验证的一个初中数学公式 为. 以下为提高题(请班级前20名学生会做) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“神秘数”.若60是一个“神秘数”,则60可以写成两个连续偶数的平方差为:60=. 14.20082﹣20072+20062﹣20052+…+22﹣12=. 15.(32+1)(34+1)(38+1)…(364+1)×8+1=. 16.(3a+3b+1)(3a+3b﹣1)=899,则a+b=. 17.化简式子,其结果是.

完全平方公式变形的应用练习题_2

(一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 22a c c b b a -+-+-的值是 ⑵1=+y x ,则222 121y xy x ++= ⑶已知xy 2y x ,y x x x -+-=---2222)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab ⑴若()()a b a b -=+=22713,,则a b 22+=____________,a b =_________ ⑵设(5a +3b )2=(5a -3b )2+A ,则A= ⑶若()()x y x y a -=++22,则a 为 ⑷如果2 2)()(y x M y x +=+-,那么M 等于 ⑸已知(a+b)2=m ,(a —b)2=n ,则ab 等于 ⑹若N b a b a ++=-22)32()32(,则N 的代数式是 ⑺已知,3)(,7)(22=-=+b a b a 求ab b a ++22的值为 。 ⑻已知实数a,b,c,d 满足53=-=+bc ,ad bd ac ,求) )((2222d c b a ++ (三)整体代入 例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。 例2:已知a= 201x +20,b=201x +19,c=20 1x +21,求a 2+b 2+c 2-ab -bc -ac 的值 ⑴若499,7322=-=-y x y x ,则y x 3+= ⑵若2=+b a ,则b b a 422+-= 若65=+b a ,则b ab a 3052++=

巧用完全平方公式解题例析

巧用完全平方公式解题例析 完全平方公式“(a±b)2=a2±2ab+b2”是整式运算中非常重要的一个公式,灵活运用完全平方公式的一些变形和技巧,可以使运算化繁为简,化难为易。为帮助大家及早掌握完全平方公式的有关用法,现结合实例对完全平方公式的应用技巧作如下分类小结. 一、对号入座,直接应用 例1.计算:()2 22 +。 x y 32 简析:上式括号内是两个单项式(2 3x与2 2y)的和,括号外是这两个单项式和的完全平方,因此可将2 3x与2 2y分别看作a、b而直接套用完全平方公式进行计算。 解:原式=()2 222222224224 +=+??+=++。 32(3)232(2)9124 x y x x y y x x y y 二、适当变换,间接应用 1、符号变换 例2.计算:2 --。 (2) x y 简析:上式括号内的两项均带负号,计算时可先逆用乘法分配律,将负号变换到括号外,待处理好符号后再应用完全平方公式进行计算。 解:原式=[]222222 -+=+=+??+=++。 x y x y x x y y x xy y (2)(2)(2)2244 2、系数变换 例3.计算:(32)(96) m n m n --。 简析:因上式后一个括号内的两项9m与-6n含有公因数3,(逆用乘法分配律)将3作为公因式提取后,可得(32) -,与前一个括号相同,所以本题可先 m n 变换第二个括号内的系数,然后再套用完全平方公式进行计算。 解:原式=22222 m n m n m n m mn n m mn n --=-=-+=-+。 3(32)(32)3(32)3(9124)273612 3、指数变换 例4.计算:22 -+ ()() m n m n 简析:上式若按运算顺序先用完全平方公式展开再相乘,则较麻烦,但若逆

相关文档
相关文档 最新文档