文档库 最新最全的文档下载
当前位置:文档库 › 2021新版风电接入电网技术规定

2021新版风电接入电网技术规定

2021新版风电接入电网技术规定
2021新版风电接入电网技术规定

( 安全管理 )

单位:_________________________

姓名:_________________________

日期:_________________________

精品文档 / Word文档 / 文字可改

2021新版风电接入电网技术规

Safety management is an important part of production management. Safety and production are in

the implementation process

2021新版风电接入电网技术规定

1.1基本要求

风电场具有功功率调节能力,并能根据电网调度部门指令控制其有功功率输出。为了实现对风电场有功功率的控制,风电场需安装有功功率控制系统,能够接收并自动执行调度部门远方发送的有功出力控制信号,确保风电场最大输出功率及功率变化率不超过电网调度部门的给定值。

1.2最大功率变化率

风电场应限制输出功率的变化率。最大功率变化率包括1min功率变化率和10min功率变化率,具体限值可参照表1。

表1风电场最大功率变化率推荐值

风电场装机容量(MW)

10min最大变化量(MW)

1min最大变化量(MW)

150

100

30

在风电场并网以及风速增长过程中,风电场功率变化率应当满足此要求。这也适用于风电场的正常停机,但可以接受因风速降低(或超出最大风速)而引起的超出最大变化率的情况。风电场最大功率变化率的确定也可根据风电场所接入系统的状况、其他电源的调节特性、风电机组运行特性等,由电网运营企业和风电场开发运营企业共同确定。

1.3紧急控制

在电网紧急情况下,风电场应根据电网调度部门的指令来控制其输出的有功功率,并保证风电场有功控制系统的快速性和可靠性。

a)电网故障或特殊运行方式下要求降低风电场有功功率,以防止输电设备发生过载,确保电力系统稳定性。

b)当电网频率高于50.5Hz时,依据电网调度部门指令降低风电场有功功率,严重情况下可以切除整个风电场。

c)在事故情况下,若风电场的运行危及电网安全稳定,电网调度部门有权暂时将风电场解列。事故处理完毕,电网恢复正常运行状态后,应尽快恢复风电场的并网运行。

、风电场无功功率

2.1无功电源

a)风电场应具备协调控制机组和无功补偿装置的能力,能够自动快速调整无功总功率。风电场的无功电源包括风电机组和风电场的无功补偿装置。首先充分利用风电机组的无功容量及其调节能力,仅靠风电机组的无功容量不能满足系统电压调节需要的,在风电场集中加装无功补偿装置。

b)风电场无功补偿装置能够实现动态的连续调节以控制并网点电压,其调节速度应能满足电网电压调节的要求。

2.2无功容量

a)风电场在任何运行方式下,应保证其无功功率有一定的调节容量,该容量为风电场额定运行时功率因数0.98(超前)~0.98(滞后)所确定的无功功率容量范围,风电场的无功功率能实现动态连

续调节,保证风电场具有在系统事故情况下能够调节并网点电压恢复至正常水平的足够无功容量。

b)百万千瓦级及以上风电基地,其单个风电场无功功率调节容量为风电场额定运行时功率因数0.97(超前)~0.97(滞后)所确定的无功功率容量范围。

c)通过风电汇集升压站接入公共电网的风电场,其配置的容性无功补偿容量能够补偿风电场满发时送出线路上的无功损耗;其配置的感性无功补偿容量能够补偿风电场空载时送出线路上的充电无功功率。

d)风电场无功容量范围在满足上述要求下可结合每个风电场实际接入情况通过风电场接入电网专题研究来确定。

3、

3.1电压偏差

当风电场并网点的电压偏差在-10%~+10%之间时,风电场内的风电机组应能正常运行。

3.2运行要求

风电接入电网技术规定(通用版)

风电接入电网技术规定(通用 版) Safety management refers to ensuring the smooth and effective progress of social and economic activities and production on the premise of ensuring social and personal safety. ( 安全管理) 单位:_______________________ 部门:_______________________ 日期:_______________________ 本文档文字可以自由修改

风电接入电网技术规定(通用版) 1.1基本要求 风电场具有功功率调节能力,并能根据电网调度部门指令控制其有功功率输出。为了实现对风电场有功功率的控制,风电场需安装有功功率控制系统,能够接收并自动执行调度部门远方发送的有功出力控制信号,确保风电场最大输出功率及功率变化率不超过电网调度部门的给定值。 1.2最大功率变化率 风电场应限制输出功率的变化率。最大功率变化率包括 1min功率变化率和10min功率变化率,具体限值可参照表1。 表1风电场最大功率变化率推荐值

风电场装机容量(MW) 10min最大变化量(MW) 1min最大变化量(MW) 150 100 30 在风电场并网以及风速增长过程中,风电场功率变化率应当满足此要求。这也适用于风电场的正常停机,但可以接受因风速降低(或超出最大风速)而引起的超出最大变化率的情况。风电场最大功率变化率的确定也可根据风电场所接入系统的状况、其他电源的调节特性、风电机组运行特性等,由电网运营企业和风电场开发运营企业共同确定。 1.3紧急控制 在电网紧急情况下,风电场应根据电网调度部门的指令来控制其输出的有功功率,并保证风电场有功控制系统的快速性和可靠性。

风电并网对电网的影响及其策略

风电并网对电网的影响及其策略-机电论文 风电并网对电网的影响及其策略 李梦云 (武汉理工大学自动化学院,湖北武汉430070) 【摘要】目前,中国风电已超核电成为第三大主力电源。但风力电场等分布式电源对电力网络的日益渗透的同时,给现代电力系统带来了很多方面的影响,比如改变了电力网络中能量传递的单向性,对现有配电网的稳定性产生较大的影响(尤其是对电网电压稳定性的影响)。因此,对风电并入配电网后产生的影响及其应对策略进行相关的研究是非常具有现实意义的。介绍了风力发电目前的发展状况和风电接入电网后对电力系统带来的影响,尤其是针对风电场并网后对电网的稳态电压的稳定性,以风速和风电机组的功率因数作为影响因素,从原理上,分别分析其对含风电场的电网的稳态电压的影响。最后在此基础上,提出初步的应对策略。 关键词风力发电;电网;稳态电压;影响;策略 0 前言 随着日益增长的电力负荷、能源的短缺、环境恶化的愈发严重,以及用户要求电能质量的提高,大家越来越关注DG(分布式发电)。研究表明,分布式发电的发展可以反映能源的综合运用、电力行业的服务程度和环境保护的提升。尤其是其中的风力资源,因为其是可再生能源、开发潜力大、环境和经济效益好,因此得到了广泛的应用,使风力发电成为分布式发电中重要的发展方向,同时也使其成为一种当今新型能源中发展迅速的发电方式。 1 风电并网对电力系统的影响

风电场并入配电网,使输电网对部分地区的电力输送压力得到缓解和电力系统的网损得到改善的同时,也对电力系统产生了许多不好的影响如电压波动、闪变等。 同时由于风具有随机性,其输入电网的有功和无功有很大的波动性。风速的不可预测这一特性,使我们不能对风电进行准确而又可靠地出力预测,我们需要更加注重负荷跟踪、备用容量等,提高了风电场的运行成本。 风电并网增加电力系统调峰调频的难度,不仅需要风电场容量,而且需要风电场快速响应负荷变化;风电机组并网时,会不可避免的对电网有冲击电流。风电场与电网的联络线的潮流的双向性,使并网后的电网的继电保护的保护配置提高了要求。 2 风电并网对电网电压的影响 配电网的电压分布情况由电力系统的潮流所决定,当电力网络中电源功率和负荷发生变化时,将会引发电力网络各个母线的节点产生变化。对风电并网的配电网来说,风电场的功率的波动会影响电网电压出现偏移。由于风电场接入配电网后,风电场的接入点的变化、有功功率和无功功率的不平衡等,会导致无功功率从无功源流向负荷。风电场的电压偏移会影响风电场的接入容量和风电并网后电力系统的安全运行。 2.1 风速变化对配电网电压的影响 将接入风电场的配电网系统的供电线路作等值电路,则风电场并网点至无限大系统两端的电压降落为: U1-U2=I(R1+R2+jX1+ jX2) (1) 上式中,U1为风电场的输出电压,U2为电网电压,R1、X1表示风电场的电

风电接入电网技术规定

风电场接入电网技术规定 1、风电场有功功率 1.1 基本要求 风电场具有功功率调节能力,并能根据电网调度部门指令控制其有功功率输出。为了实现对风电场有功功率的控制,风电场需安装有功功率控制系统,能够接收并自动执行调度部门远方发送的有功出力控制信号,确保风电场最大输出功率及功率变化率不超过电网调度部门的给定值。 1.2 最大功率变化率 风电场应限制输出功率的变化率。最大功率变化率包括1min功率变化率和10min功率变化率,具体限值可参照表1。 表1 风电场最大功率变化率推荐值 在风电场并网以及风速增长过程中,风电场功率变化率应当满足此要求。这也适用于风电场的正常停机,但可以接受因风速降低(或超出最大风速)而引起的超出最大变化率的情况。风电场最大功率变化率的确定也可根据风电场所接入系统的状况、其他电源的调节特性、风电机组运行特性等,由电网运营企业和风电场开发运营企业共同确定。 1.3 紧急控制 在电网紧急情况下,风电场应根据电网调度部门的指令来控制其输出的有功功率,并保证风电场有功控制系统的快速性和可靠性。 a) 电网故障或特殊运行方式下要求降低风电场有功功率,以防止输电设备

发生过载,确保电力系统稳定性。 b) 当电网频率高于50.5Hz时,依据电网调度部门指令降低风电场有功功率,严重情况下可以切除整个风电场。 c) 在事故情况下,若风电场的运行危及电网安全稳定,电网调度部门有权暂时将风电场解列。事故处理完毕,电网恢复正常运行状态后,应尽快恢复风电场的并网运行。 2、风电场无功功率 2.1 无功电源 a) 风电场应具备协调控制机组和无功补偿装置的能力,能够自动快速调整无功总功率。风电场的无功电源包括风电机组和风电场的无功补偿装置。首先充分利用风电机组的无功容量及其调节能力,仅靠风电机组的无功容量不能满足系统电压调节需要的,在风电场集中加装无功补偿装置。 b) 风电场无功补偿装置能够实现动态的连续调节以控制并网点电压,其调节速度应能满足电网电压调节的要求。 2.2 无功容量 a) 风电场在任何运行方式下,应保证其无功功率有一定的调节容量,该容量为风电场额定运行时功率因数0.98(超前)~0.98(滞后)所确定的无功功率容量范围,风电场的无功功率能实现动态连续调节,保证风电场具有在系统事故情况下能够调节并网点电压恢复至正常水平的足够无功容量。 b) 百万千瓦级及以上风电基地,其单个风电场无功功率调节容量为风电场额定运行时功率因数0.97(超前)~0.97(滞后)所确定的无功功率容量范围。 c) 通过风电汇集升压站接入公共电网的风电场,其配置的容性无功补偿容量能够补偿风电场满发时送出线路上的无功损耗;其配置的感性无功补偿容量能够补偿风电场空载时送出线路上的充电无功功率。 d) 风电场无功容量范围在满足上述要求下可结合每个风电场实际接入情况通过风电场接入电网专题研究来确定。 3、风电场电压范围

关于印发风电并网运行反事故措施要点的通知

国家电网公司文件 国家电网调〔2011〕974号 关于印发风电并网运行反事故措施要点的通知 各分部,华北电网有限公司,各省(自治区、直辖市)电力公司,中国电科院,国网电科院,国网经研院: 为落实《国家能源局关于加强风电场并网运行管理的通知》(国能新能〔2011〕182号),公司在总结分析风电并网运行故障原因和存在问题的基础上,组织制定了《风电并网运行反事故措施要点》,现予印发,请各单位严格执行。 风电机组低电压穿越能力缺失是当前风电大规模脱网故障频发的主要原因。为防止类似故障再次发生,各单位要督促网内风力发电企业对风电机组低电压穿越性能进行改造、调试,并通过国家有关部门授权的有资质的检测机构按《风电机组并网检测 管理暂行办法》(国能新能〔2010〕433号)要求进行的检测验证。对此,特别强调: 1. 新建风电机组必须满足《风电场接入电网技术规定》等相关技术标准要求,并通过按国家能源局《风电机组并网检测管理暂行办法》(国能新能〔2010〕433号)要求进行的并网检测,不符合要求的不予并网。 2. 对已并网且承诺具备合格低电压穿越能力的风电机组,风电场应在半年内完成调试和现场检测,并提交检测验证合格报告。同一型号的机组应至少检测一台。逾期未交者,场内同一型号的机组不予并网。 3. 对已并网但不具备合格低电压穿越能力的容量为1MW及以上的风电机组,风电场应在一年内完成改造和现场检测,并提交检测验证合格报告。报告提交前,场内同一型号的机组不予优先调度。逾期未交者,场内同一型号的机组不予并网。 附件:风电并网运行反事故措施要点

二○一一年七月六日 主题词:综合风电反事故措施通知 国家电网公司办公厅2011年7月6日印发

风电并网技术标准(word版)

ICS 备案号: DL 中华人民共和国电力行业标准 P DL/Txxxx-200x 风电并网技术标准 Regulations for Wind Power Connecting to the System (征求意见稿) 200x-xx-xx发布200x-xx-xx实施中华人民共和国国家发展和改革委员会发布

DL/T —20 中华人民共和国电力行业标准 P DL/Txxxx-2QQx 风电并网技术标准 Regulations for Wind Power Connecting to the System 主编单位:中国电力工程顾问集团公司 批准部门:中华人民共和国国家能源局 批准文号:

前言 根据国家能源局文件国能电力「2009]167号《国家能源局关于委托开展风电并网技术标准编制工作的函》,编制风电并网技术标准。《风电场接入电力系统技术规定》GB/Z 19963- 2005于2005年发布实施,对接入我国电力系统的风电场提出了技术要求。该规定主要考虑了我国风电尚处于发展初期,风电机组制造产业处于起步阶段,风电在电力系统中所占的比例较小,接入比较分散的实际情况,对风电场的技术要求较低。根据我国风电发展的实际情况,各地区风电装机规模和建设进度不断加快,风电在电网中的比重不断提高,原有规定已不能适应需要。为解决大规模风电的并网问题,在风电大规模发展的情况下实现风电与电网的协调发展,特编制本标准。 本标准土要针对大规模风电场接入电网提出技术要求,由风电场技术规定、风电机组技术规定组成。 本标准由国家能源局提出并归口。 本标准主编单位:中国电力工程顾问集团公司 参编单位:中国电力科学研究院 本标准主要起草人:徐小东宋漩坤张琳郭佳李炜李冰寒韩晓琪饶建业佘晓平

参考-风电接入电网技术规定

管理制度参考范本 参考-风电接入电网技术规定 撰写人:__________________ 部门:__________________ 时间:__________________

1.1基本要求风电场具有功功率调节能力,并能根据电网调度部 门指令控制其有功功率输出。为了实现对风电场有功功率的控制,风 电场需安装有功功率控制系统,能够接收并自动执行调度部门远方发 送的有功出力控制信号,确保风电场最大输出功率及功率变化率不超 过电网调度部门的给定值。1.2最大功率变化率风电场应限制输出功 率的变化率。最大功率变化率包括1min功率变化率和10min功率变化率,具体限值可参照表1。表1风电场最大功率变化率推荐值风电场装机容量(MW)10min最大变化量(MW)1min最大变化量(MW)3020630-150装机容量/1.5装机容量/515010030在风电场并网以 及风速增长过程中,风电场功率变化率应当满足此要求。这也适用于 风电场的正常停机,但可以接受因风速降低(或超出最大风速)而引 起的超出最大变化率的情况。风电场最大功率变化率的确定也可根据 风电场所接入系统的状况、其他电源的调节特性、风电机组运行特性等,由电网运营企业和风电场开发运营企业共同确定。1.3紧急控制在电网紧急情况下,风电场应根据电网调度部门的指令来控制其输出的 有功功率,并保证风电场有功控制系统的快速性和可靠性。a)电网故 障或特殊运行方式下要求降低风电场有功功率,以防止输电设备发生 过载,确保电力系统稳定性。b)当电网频率高于50.5Hz时,依据电网 调度部门指令降低风电场有功功率,严重情况下可以切除整个风电场。 c)在事故情况下,若风电场的运行危及电网安全稳定,电网调度部门 有权暂时将风电场解列。事故处理完毕,电网恢复正常运行状态后, 应尽快恢复风电场的并网运行。、风电场无功功率2.1无功电源a)风

风电光伏技术标准清单

风力发电工程 序号专用标准名称标准编号备注 一综合管理 1 风力发电工程质量监督检查大纲国能安全[2016]102号2016-04-05实施 2 风力发电工程建设监理规范NB/T 31084-2016 2016-06-01实施 3 风力发电工程施工组织设计规范DL/T 5384-2007 4 风电场工程劳动安全与工业卫生验收规范NB/T 31073-20152015-09-01实施 5 风力发电企业科技文件归档与整理规范NB/T 31021-2012 二社会监督 1 电力业务许可证管理规定国家电监会令第9号2005-10-13实施 关于印发风电场工程竣工验收管理暂行办法和风电场项目后评 2 国能新能[2012]310号 价管理暂行办法的通知 三消防工程 1 风力发电机组消防系统技术规程CECS 391:20142015-05-01实施四风电工程专用标准 1 设计标准 风电场工程勘察设计收费标准NB/T 31007-2011 风电场工程可行性研究报告设计概算经编制办法及计算标准FD 001-2007 风电场工程等级划分及安全标准(试行)FD 002-2007 风电机组地基基础设计规定(试行)FD 003-2007 风电场工程概算定额FD 004-2007 风力发电场设计规范GB 51096-20152015-11-01实施风力发电厂设计技术规范DL/T 5383-2007 风电场设计防火规范NB 31089-20162016-06-01实施风力发电机组雷电防护系统技术规范NB/T 31039-2012 风电机组低电压穿越能力测试规程NB/T 31051-2014 风电机组电网适应性测试规程NB/T 31054-2014 风力发电机组接地技术规范NB/T 31056-2014 风力发电场集电系统过电压保护技术规范NB/T 31057-2014

风力发电对电力系统的影响学习资料

风力发电对电力系统 的影响

风力发电对电力系统的影响 摘要 风力发电总是依赖于气象条件,并逐渐以大规模风电场的形式并入电网,给电网带来各种影响。因此,电网并未专门设计用来接入风电,如果要保持现有的电力供应标准,不可避免地需要进行一些相应的调整。本论文依据正常条例讨论了风电设计和设备网络的开发所遇到的一些问题和解决风电场并网时遇到的各种问题。由于风力发电具有大容量、动态和随机性的特性,它给电力系统的有功/无功潮流、电压、系统稳定性、电能质量、短路容量、频率和保护等方面带来影响,针对这些问题提出了相应的对策,以期待更好地利用风力发电。 关键词:风力发电;电力系统;影响;风电场 1. 引言 人们普遍接受,可再生能源发电是未来电力的供应。由于电力需求快速增长,对以化石燃料为基础的发电是不可持续的。相反的,风电作为一种有发展前景的可再生能源备受人们关注。当由于工业发展和世界大部分地区经济的增长而引起电力的需求稳步增长时,它有抑制排放和降低不可替代燃料储备消耗的潜力。 当大型风电场(几百兆瓦)成为一个主流时,风力发电越来越受欢迎。2006年间,包括世界上超过70个国家在内的风能发展,装机容量从2005年的59091兆瓦达到74223兆瓦。2006年的巨大增长表明,决策者们开始重视风能

发展能够带来的好处。由于到2020年12%的供电来于1250Gw的安装风电装机,将积累节约10771百万吨的二氧化碳,这个报道是人类减少温室气体排放的一个重要手段。 大型风电场的电力系统具有很高的容量、动态随机性能,这将会挑战系统的安全性和可靠性。而提供电力系统清洁能源的同时,风电场也会带来一些对电力系统不利的因素。随着风力发电的膨胀和风电在电力系统中比重的增加,影响将很可能成为风力集成的技术性壁垒。因此,应该探讨其影响并提出解决这些问题的对策。 风能已经从25年前的原型中走了很长的路,而且在未来的二十年里它也会继续前进。有一系列的问题与风电系统的运作和发展。虽然风力发电的渗透可能会取代传统的植物产生大量的能量,关注的重点是风力发电和电网之间的相互作用。本文提供了一个概述风力发电对电力系统的影响,并建议相应的对策来处理这些问题,以适应电力系统中的风力发电。 根据上述问题,本文从总体上讨论了风力发电项目开发过程中遇到的问题,以及在处理项目时,将风电场与电力系统相结合的问题。由于风力发电具有容量大、动态、随机性等特点,其影响主要包括有功、无功功率流、电压、系统稳定性、电能质量、短路容量、系统备用、频率和保护。针对这些问题,提出相应的对策建议,以适应电力系统的风力发电。 本文的组织如下。第2节给出了风力发电的发展情况。在第3节介绍了风力发电的特点。在4节中,详细讨论了风力发电对电力系统的影响。在第5节中,提出了减少风力发电的影响的对策。最后,第6节总结本文。

风电相关国家标准整理

国家相关标准 风力发电机组功率特性测试 主要依照IEC61400-12-1:2005风电机组功率特性测试是目前唯一一个正式版本电流互感器级别应满足IEC 60044-1 电压互感器级别应满足IEC 60186 功率变送器准确度应满足GB/T 13850-1998要求,级别为0.5级或更高 IEC 61400-12-1 功率曲线 IEC 61400-12-1 带有场地标定的功率曲线 IEC 61400-12-2 机舱功率曲线 IEC 61400-12 新旧版本区别 对于垂直轴风电机组,气象桅杆的位置不同 改变了周围区域的环境要求 改变了障碍物和临近风电机组影响的估算方法 使用具有余弦相应的风速计 根据场地条件将风速计分为A、B、S三个等级 根据高风速切入和并网信号可以得到两条功率曲线 风速计校准要符合MEASNET规定 风速计需要分级 电网频率偏差不超过2HZ 场地标定只能通过测量,不能用数值模拟 场地标定的每一扇区分段至少为10° 可以同步校准风速计 改进了对风速计安装的描述 通过计算确定横杆长度 增加针对小型风机的额外章节 MEASNET标准和旧版IEC61400-12标准区别 使用全部可用的测量扇区,否则在报告中说明 不允许使用数值场地标定 场地标定更详细的描述,包括不确定度分析 只允许将风速计置于顶部 风速计的校准必须符合MEASNET准则 不使用AEP不完整标准 轮毂高度、风轮直径、桨角只能通过测量来判定,不能按照制造商提供的判定报告中必须提供全方位的照片 IEC61400-12-1:Power performance measurement for electricity producing wind turbine(2005)风电机组功率特性测试 可选择:场地标定 IEC61400-12-2:Power curve verification of individual wind turbine,单台风电机组功率曲线验证(未完成)

风力发电并网技术及电能质量控制策略

风力发电并网技术及电能质量控制策略 发表时间:2018-08-20T17:02:21.880Z 来源:《红地产》2017年8月作者:熊毅 [导读] 随着我国科学技术的发展,社会的进步,加上矿物资源越来越贫乏, 随着风力发电技术的不断发展,已经从过去的小型风力发电机独立运行发展为大型发电机组并网运行,也就是常说的风力发电场并网运行。采用这种运行方式以后,不但提高了对风力的利用率,还在电能供给方面做出了卓越的成绩。在电能的质量控制面,因为风力发电并网技术的实行,使电能质量控制达到了良的效果,从而在根本上改变了人们的用电状况,为人们的工作和生活增添了一份助力。 1 风力发电的原理和技术 空旷的原野和辽阔的海面是风能的优质资源,风力发电是利用大自然中的空气以一定速度流动所产生的风能驱动风车的叶片旋转,将此旋转运动在增速机中转速提升,在由此产生的力矩带动下,发电机组中的导体通过切割磁力线产生感应电动势,外接闭合回路在导体中会有电流产生,实现风能向电能的转换。依据目前的风车技术,只要风速大于 3 米 / 秒便可以产生电能,实现发电目的。 风力发电机一般有风轮、偏航装置、发电机组、塔架、限速安全机构和储能用蓄电池等部件构成。风轮是由,个或、个叶片组成的集风装置,它的作用是采集风的动能转变为风轮旋转的机械能。风轮后面的调向器也叫尾舵,它的功能是控制风轮的迎风方向,使风轮随时面对风向,最大限度地获取风能。限速安全机构的作用是对风轮的转速予以一定的限制,使之在规定的范围内保持相对稳定,起到保证风力发电机限速平稳运行的作用。塔架则是机组的承载和风轮的支撑机构。 由于自然界的风速极不稳定,其很强的随机性和间歇性致使风力发电机的输出功率也极不稳定,高峰和低谷落差甚大,所以,风力发电机发出的电能不能直接用在电负载上,而是先用铅酸蓄电池储存起来,以保持风力发电系统持续稳定的供电运行状态。 2 风力发电并网技术 风电并网技术,是发电机输出电压,在频率、幅值和相位以上及电网系统电压是一致的。而随着风电机组容量的逐渐增大,风电电力并网的时候对电网的冲击也随之增大,因此选择科学的风电并网技术是十分必要的。 2.1 同步风力发电机组并网技术 同步发电机在运行的过程当中,一方面要输出有功功率,而另一方面则需提供无功功率,此外还需周波稳定及质量高,所以被广泛采用。然而怎么将这项技术与风电机组的并网结合起来也是一个问题,通常因风速不稳定等因素造成了转子转矩的不稳定,在并网的时候调速的性能不能达到精度要求,若不采取有效的控制,就会出现无功振荡或失步的问题。特别是重载情况,结果可能会更加的严重。但是近些年,随着科学技术不断提高,新型的电力电子技术能够在一定的程度上处理好这个问题,例如说一些变频装置。所以同步风力发电机组并网技术应当给予足够重视。 2.2 异步风力发电机组并网技术 与同步风电机组并网技术不同,异步风电机运行的过程当中,其主要凭借转差率调整负荷,因此调速的精度要求较低,也不需要同步设备与整步操作,只需要在其转速接近同步转速的时候,就能够轻松的并网。风电机组配用异步发电机,优点就在这项技术控制装置相对较为简单,在并网之后无振荡与失步问题,并且运行稳定及可靠。而缺点是直接并网可能会造成大冲击电流出现,降低电压,从而对系统运行的安全造成一定影响,系统的本身没有无功功率,其需要进行无功补偿。若不稳定系统频率太低的话,就会使电流剧增及电压过载。因此,对异步风电机组要进行严格的监视,并采取有效的措施,才能够保证发电机组的安全运行。 3 电能质量控制策略 3.1 改善电能质量 电能质量就是电力系统中电能的质量,理想的电能应该是美对称的正弦波,但有些因素会使波形偏离对称正弦,由此便产生了电能质量问题。很多城市的电能质量较低,对人们的生活和工作产生了很大的影响,因此必须改善电能质量。主要方法为:首先可以改善电功率因数,使无功就地平衡,但要注意的是,一定要合理选择供电半径。其次要合理选择供电系统线路的导线截面,但要注意合理配置变电与配电设备,防止其过负荷运行。第三要适当设置调压措施,例如串联补偿、变压器加装有载调压装置、装同期调试相机或者静电电容器等。以上三种措施,在实际的用中对电能质量的改善具有良好的效果,可以大力推广。同时,我们要注意及时对百姓的用电情况进行调查,找出不足之处,以便于对电能质量及时进行改善。 3.2 提高电能质量 电能质量的高低影响着人们的日常生活和工作,因此在改善电能质量的基础上,必须有所提高。很多城市的电能质量虽然得了改善,但还是没有办法满足人们的需求,因此,提高电能质量成为了人们的迫切要求,对于科研人员来说也是一项重要的任务。要想提高电能质量,首先要找出供电电压超过允许偏差的原因,经过大量的调查和研究,我们发现原因主要有三点,一是冲击性负荷、非对称性负荷的影响;二是调压措施缺乏或使用不当;三是线路过负荷运行。根据上述三点原因,使用风力发电并网技术可以有效的提高电能质量,不仅节省了运营成本,而且对风能的利用率也提高了不少。 4 结束语 综上所述,研究风力发电并网技术及电能质量控制策略对确保电网电能质量具有重要的作用。因此要进一步提高风力发电并、网技术及电能质量控制策略,这样才能促进整个电力系统的稳定运行。 参考文献: [1] 常耀华 . 对风力发电并网技术与其电能质量控制策略浅论 [J]. 电子制作 ,2014(01):266. [2] 齐洁 , 常耀华 . 对风力发电并网技术与其电能质量控制策略浅论 [J]. 企业研究 ,2014(02):153. [3] 魏巍 , 关乃夫 , 徐冰 . 风力发电并网技术及电能质量控制 [J]. 吉林电力 ,2014,42(05):24-26. [4] 樊裕博 . 风力发电并网技术及电能质量控制策略 [J].科技传播 ,2015,7(21):43-44. [5] 邹金运 . 风力发电并网技术及电能质量控制策略 [J].黑龙江科技信息 ,2015(35):88. [6] 谢鹏 . 风力发电并网技术与电能质量控制 [J]. 科技创新导报 ,2016,13(13):41+70. [7] 路立仁 . 浅析风力发电并网技术及电能控制策略 [J].科技与创新 ,2016(17):134. [8] 张国新 . 风力发电并网技术及电能质量控制策略 [J].电力自动化设备 ,2009,29(06):130-133.

风电接入对电网的影响

风电的接入对电网的影响 1.对电网频率的影响 风电出力波动将会产生严重的有功功率平衡问题。风电比例大小对系统调频影响严重,当电力系统中风电装机容量达到一定规模时,风电功率波动或者风电场因故整体退出运行,可能会导致系统有功出力和负荷之间的动态不平衡,当电网其他发电机组不能够快速响应风电功率波动时,则有可能造成系统频率偏差,严重时可能导致系统频率越限,进而危及电网安全运行[1]。因此,始终保持电力系统频率在允许的很小范围内波动,是电力系统运行控制的最基本目标,也是电力调度自动化系统的最重要任务。电力系统正常运行时,频率始终保持在50Hz±0.2Hz 的范围内,当采用现代自动调频装置时,误差可以不超过0.05~0.15Hz。 2.对电网电压的影响 风电场并入电网后,由于风电具有间歇性和随机性的特点,使得当风电功率变化时,电网电压也将随之发生波动。随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范围,严重时会导致电压崩溃。影响电压波动有很多因素,例如风电机组类型、风况、所接入电网的状况和策略等,但最根本的原因是风速的波动带来的并网风电机组输出功率的变化。系统要求节点电压与额定值的偏差不允许超过一定的范围。因此,必须釆取适当的措施来防止偏差过大,维持系统的节点电压在限定的范围之内,防止与额定值的偏差超过允许范围。风电接入系统的所带来的电压与无功功率问题亟待解决。 综上所述,为保证大规模风电接入后电网的安全稳定运行,风电接入后的电网运行控制技术越来越重要,电网的稳定控制技术、运行控制技术、优化调度技术以及风电与电网的协调控制技术将成为风电并网控制技术中的关键技术[2,3]。 [1] 计崔. 大型风力发电场并网接入运行问题综述[J]. 华东电力, 2008, 36(10): 71-73. [2] 耿华, 杨耕, 马小亮. 并网型风力发电机组的控制技术综述[J]. 电力电子技术, 2007, 40(6): 33-36. [3] 王伟胜, 范高锋, 赵海翔. 风电场并网技术规定比较及其综合控制系统初探 [J]. 电网技术, 2007, 31(18): 73-77.

光伏电站接入系统导则(2010年版)

光伏电站接入系统导则 (2010年版) 江苏省电力公司 2010年1月

目录 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (2) 4 一般原则 (3) 5 光伏电站接入系统技术原则 (4) 6 继电保护及自动装置 (7) 7调度自动化及通信 (8) 8 电能计量及电能质量在线监测 (9) 9 电源及设备布置 (10) 附录A 光伏电站接入系统典型方案示例 (11)

1 范围 本导则内所有光伏电站均指并网型光伏电站。 本导则规定了光伏电站接入系统应遵循的一般原则和技术要求。 本导则根据《国家电网公司光伏电站接入电网技术规定(试行)》(国家电网发展[2009]747号)制定,适用于接入江苏电网的光伏电站,包括有变压器和无变压器连接的光伏电站。 本导则未涉及的内容,还应执行现行的国家标准、规范及电力行业标准的有关规定。 2 规范性引用文件 下列文件中的条款通过本标准的引用而构成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2297-1989 太阳光伏能源系统术语 GB/T 12325-2008 电能质量供电电压允许偏差 GB/T 12326-2008 电能质量电压波动与闪变 GB/T 14549-1993 电能质量公用电网谐波 GB/T 15543-2008 电能质量三相电压不平衡 GB/T 18479-2001 地面用光伏(PV)发电系统概述和导则 GB/T 19939-2005 光伏电站并网技术要求 GB/Z 19964-2005 光伏发电站接入电力系统技术规定 DL/T 448 电能计量装置技术管理规程 DL/T 5202-2004 电能量计量系统设计技术规程 GB/T 14285-2006 继电保护和安全自动装置技术规程

(整理)光伏电站接入电网技术规定

------------- 光伏电站接入电网技术规定 (征求意见稿) xxxx-xx-xx发布xxxx-xx-xx实施 国家电网公司发布

目次 1. 范围 (3) 2. 规定性引用文件 (3) 3. 术语和定义 (3) 4. 一般原则 (5) 5. 电能质量 (5) 6. 功率控制和电压调节 (7) 7. 电压与频率响应特性 (8) 8. 安全与保护 (9) 9. 通用技术条件 (9) 10. 电能计量(该部分内容提请国网营销部门提出修改和补充意见) (10) 11. 通信与信号 (10) 12. 系统测试 (11)

光伏电站接入电网技术规定 1.范围 本规定内所有光伏电站均指并网发电光伏电站,本规定不包括离网光伏电站。 本规定规定了光伏电站接入电网运行应遵循的一般原则和技术要求。 本规定适用于通过静态变换器(逆变器)接入电网的光伏电站,包括有变压器与无变压器连接。 2.规定性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规定,但鼓励根据本规定达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规定。 GB/T 2297-1989 太阳光伏能源系统术语 GB/T 12325-2008 电能质量供电电压偏差 GB/T 14549-93 电能质量公用电网谐波 GB/T 12326-2008 电能质量电压波动和闪变 GB/T 15543-2008 电能质量三相电压不平衡 GB/T 18479-2001 地面用光伏(PV)发电系统概述和导则 GB/T 19939-2005 光伏系统并网技术要求 GB/T 20046-2006 光伏(PV)系统电网接口特性 GB 2894 安全标志(neq ISO 3864:1984) GB 16179 安全标志使用导则 DL/T 544 电力系统通信管理规程 DL/T 598 电力系统通信自动交换网技术规范 DL/T 448 电能计量装置技术管理规定 DL/T 5202 电能量计量系统设计技术规程 DL/T 1040-2007 电网运行准则 SJ/T11127 光伏(PV)发电系统过电压保护-导则 DL 755-2001 电力系统安全稳定导则 3.术语和定义 下列术语和定义适用于本规定:

风电并网对电力系统的影响及改善措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 风电并网对电力系统的影响及改善措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1411-62 风电并网对电力系统的影响及改善 措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 [摘要]:由于风电场是一种依赖于自然能源的分散电源,同时目前大多采用恒速恒频异步风力发电系统,其并网运行降低了电网的稳定性和电能质量。着眼于并网风电场与电网之间的相互影响,特别是对系统稳定性以及电能质量的影响,对大型风电场并网运行中的一些基础性的技术问题进行了研究。 [关键词]:风电场;并网;现状分析。 一、引言 风力发电作为一种重要的可再生能源形式,越来越受到人们的广泛关注,并网型风力发电以其独特的能源、环保优势和规模化效益,得到长足发展,随着风电设备制造技术的日益成熟和风电价格的逐步降低,近些年来,无论是发达国家还是发展中国家都在大力

发展风力发电。 风力发电之所以在全世界范围获得快速发展,除了能源和环保方面的优势外,还因为风电场本身所具有的独特优点:(1)风能资源丰富,属于清洁的可再生能源;(2)施工周期短,实际占地少,对土地要求低; (3)投资少,投资灵活,投资回收快;(4)风电场运行简单,风力发电具有经济性;(5)风力发电技术相对成熟。 自20世纪80年代以来,大、中型风电场并网容量发展最为迅猛,对常规电力系统运行造成的影响逐步明显和加大,随着风电场规模的不断扩大,风电特性对电网的负面影响愈加显著,成为制约风电场建设规模的严重障碍。因此深入研究风电场与电网的相互作用成为进一步开发风电所迫切要求解决的问题。其局限性主要表现在:(1)风能的能量密度小且不稳定,不能大量储存;(2)风轮机的效率较低;(3)对生态环境有影响,产生机械和电磁噪声;(4)接入电网时,对电网有负面影响。

国家电网风电接入

国家电网公司 风电场接入电网技术规定 (修订版) 二○○九年二月

1 范围 本规定提出了风电场接入电网的技术要求。 本规定适用于国家电网公司经营区域内通过110(66)千伏及以上电压等级线路与电网连接的新建或扩建风电场。 对于通过其他电压等级与电网连接的风电场,也可参照本规定。 2 规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规定;但鼓励根据本规定达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规定。 GB/T 12325-2008 电能质量供电电压偏差 GB 12326-2008 电能质量电压波动和闪变 GB/T 14549-1993 电能质量公用电网谐波 GB/T 15945-2008 电能质量电力系统频率偏差 GB/T 15543-2008 电能质量三相电压不平衡 DL 755-2001 电力系统安全稳定导则 SD 325-1989 电力系统电压和无功技术导则

GB/T 20320-2006 风力发电机组电能质量测量和评估方法DL/T 1040-2007 电网运行准则 3 术语和定义 本标准采用下列定义和术语。 3.1 风电机组wind turbine generator system; WTGS 将风的动能转换为电能的系统。 3.2 风电场wind farm;wind power plant; 由一批风电机组或风电机组群组成的电站。 3.3 风电场并网点point of interconnection of wind farm 与公共电网直接连接的风电场升压站高压侧母线。 3.4 风电场有功功率active power of wind farm 风电场输入到并网点的有功功率。 3.5 风电场无功功率reactive power of wind farm 风电场输入到并网点的无功功率。

风电并网技术标准

风电并网技术标准 1范围 1 0. 1本标准适用于通过110 (66)千伏及以上电压等级线路接入电网的新建或扩建风电 1 0. 2通过其他电压等级接入电网的风电场,可参照木规定。 10. 3己投运风电场改建参照本规定执行。 2引用标准 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其 随后所有的修改单或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究 是否可使用这些文件的最新版木。 DL/755-2001电力系统安全稳定导则 SD131—1984电力系统技术导则 SDJ161—1985电力系统设计技术规程 SD325-1989电力系统电压和无功电力技术导则 GB/T 12325-2008电能质量供电电压偏差 GB 12326-2008电能质量电压波动和闪变 GB/T 14549-1993电能质量公用电网谐波 GB/T 15945-2008电能质量电力系统频率偏差 GB/T 15543-2008电能质量二相电压不平衡 GB/T 20320-2006风力发电机组电能质量测量和评估方法 DL/T 1040-2007电网运行准则 国家电力监管委员会令第5号《电力二次系统安全防护规定》 国家电力监管委员会电监安全[2006]34号《电力二次系统安全防护总体方案》 3术语和定义 本标准采用下列定义和术语。 3. 0. 1风电机组wind turbine generator system, WTGS 将风的动能转换为电能的系统。 3.0.2风电场wind farm; wind power plant; 由一批风电机组或风电机组群(包括机组单元变压器)、汇集线路、主升压变压器及其 他设备组成的发电站。 3.0.3风电有效容量effective capacity of wind power 根据风电的出力概率分布,综合考虑系统调峰和送出工程,使系统达到技术经济最优的 风电最大出力,为风电有效容量。风电有效容量分为风电场有效容量和风电基地有效容量。 3. 0. 4风电场并网点point of interconnection of wind farm 风电场升压站高压侧母线或节点。 3.0.5风电场有功功率active power of wind farm 风电场输入到并网点的有功功率。 3. 0. 6风电场无功功率reactive power of wind farm 风电场输入到并网点的无功功率。 3.0.7功率变化率power ramp rate 在单位时一间内风电场输出功率最大值与最小值之间的变化量和装机容量的比值。 3. 0. 8公共连接点point of common coupling 风电场并网点和电网连接的第一落点。 3. 0. 9风电机组低电压穿越low voltage ride through of wind turbines 当电网故障或扰动引起风电场并网点的电压跌落时,在一定电压跌落的范围内,风电机 组能够不间断并网运行。 4风电场技术规定 4. 1风电场接入系统 4. 1 1风电场送出线路导线截面按照风电场有效容量选择。风电基地送出线路导线截面按照风电基地有效容量选择。 4.1.2风电场升压站主变压器应采用有载调压变压器,主变容量按照风电场有效容量选择。汇集风电场群的升压变压器容量参考风电基地有效容量选择。

风电新能源的发展现状及其并网技术的发展前景研究

龙源期刊网 https://www.wendangku.net/doc/ed1737124.html, 风电新能源的发展现状及其并网技术的发展前景研究 作者:邹璐 来源:《无线互联科技》2019年第17期 摘 ; 要:风力发电以其资源丰富、成本低廉、开发方便、节能环保的优势成为可再生能源中发展最快的清洁能源,被世界各国大规模开发和应用,其发展前景十分广阔。文章首先对我国当前风力发电技术的现状进行了简要概括;其次,阐述了风电新能源的特点以及风电并网对传统电网的影响;最后,探讨了风电并网发电技术的发展趋势,希望能够推动风力发电技术的创新发展和应用。 关键词:风电;新能源;并网技术 当今人类生存和发展急需解决的是能源和环境问题。进入21世纪以来,世界各国为了保证各自的能源安全并应对气候变化,纷纷调整能源战略,加大可再生能源的开发和建设力度,尤其是风能的开发和利用。风力发电作为一种可再生的绿色能源,以其无污染、储量丰富、成本低廉、使用前景广阔的优势倍受世界各国的重视。我国由于海域面积辽阔,风能储量很大且分布较广,开发潜力很大。近年来,在能源和环境危机日趋紧迫的情况下,我国政府实施了一系列新的能源战略,对能源结构进行了调整,风电产业及技术水平得到了飞速发展,但在风电并网技术方面还存在一些问题,总结并分析如何解决这些问题,对深入推进风电产业的健康、可持续发展意义非凡。 1 ; ;我国风力发电技术现状 我国的风力发电起步较晚,20世纪80年代中期风力发电开始进入商业化运营阶段。虽然较之国外尚存在一定差距,但在国家利好政策的支持和推动下,风力发电事业得到了迅猛发展。从2005—2008年的4年时间里,全国风电装机容量由126 kW增长到1 221万kW,以每年一翻的惊人速度发展着,远远领先于世界风电发展的平均速度。2009年年底,我国以风电 总装机容量2 601万kW的数据位居世界第二,其中新增装机容量为1 300万kW,占世界新增装机容量的30%以上,居于世界首位。这一数据充分证明我国风电产业正在步入一个飞速发展的阶段,同时,在技术上,经历了从引进技术到消化吸收,再到自主创新,一系列改变之后正日益发展壮大起来。兆瓦级机组在国内风电市场的大量普及,标志着我国对风电技术自主研发能力的提升。此外,我国对海上风电也进行了积极的探索和实践,从2008—2015年的7年时间里,海上风电的装机容量有了大幅度的增长。2016年,仅海上风电新增装机就有154台, 容量高达59万kW,同比增长50%之多。由此看来,我国的风电产业发展是非常迅速的,潜力十分巨大。但是,我国的风电技术还存在很大的不足,主要体现在:并網型风机以进口为

相关文档