文档库 最新最全的文档下载
当前位置:文档库 › 三菱M701F级燃机TCA冷却系统设计说明

三菱M701F级燃机TCA冷却系统设计说明

三菱M701F级燃机TCA冷却系统设计说明
三菱M701F级燃机TCA冷却系统设计说明

TCA冷却系统

1.概述

燃机透平冷却空气用于冷却透平转子和动叶片。冷却空气来自于压气机排气,并通过TCA冷却后供给透平转子和动叶片。TCA的冷却水来自高压给水泵出口。

本文的主要内容为:TCA冷却器给水系统的控制方法,管道、控制阀、仪表和其他相关设备的设计方法。

注意:为了确定TCA冷却器给水控制阀门的整定值,在最后的设计阶段,控制阀、仪表、各个设备的压力值(高压省煤器、流量计、控制阀)都是由三菱提出的。

2.TCA冷却要求

TCA冷却器冷却水系统和透平冷却空气供给温度的要求如下:

a:TCA冷却空气出口温度(透平冷却空气入口温度):

在燃机启动期间应小于100℃。

(从燃机点火到全速空载期间)

在这个阶段,TCA冷却器的入口水温应小于60℃。

b:TCA冷却空气出口温度:在燃机全速空载后,温度值应根据需求不断调整。如果空气温度小于90℃,由于小于空气的露点温度,空气会产生结露。

c:TCA冷却器出口水温:

TCA出口水温应维持在不小于15℃,低于TCA出口的饱和温度。

d:TCA给水流量变化率:

TCA入口空气流量和温度需要根据燃机的工作状态进行调整(燃机负荷,周围环境温度)。TCA冷却器给水流量的控制是为了保持TCA冷却器出口空气温度在规定值以下。

3.TCA冷却器给水系统

如图所示,为TCA给水流程图。

由于这个给水系统是EPC设计的。并且为了使操作更加简单顺利,我们需要确认这个系统是否满足第2部分提到的要求。需要注意的是TCA冷却系统的流量控制阀是燃机控制系统GTC控制而不是DCS。

1)TCA冷却器给水流量控制阀(凝汽器侧)FCV-1

FCV-1是通过燃气轮机GTC控制,并与压气机入口空气温度所对应的燃机负荷和TCA冷却水流量相一致。给水流量的控制目标是冷却空气温度,并且可以避免TCA冷却器给水管路中的水出现汽化现象。FCV-1的主要作用如下:

a)TCA冷却器给水流量随燃机负荷变化:

在燃机低负荷时,保持足够的冷却水通过冷却器和FCV-2是非常困难的。因为TCA冷却器与高压省煤器是并行运行的,在燃机低负荷

(80~100MW)时,锅炉的产气量很小,使得高压省煤器出入口压差很

小,那么在这种情况下,TCA有充足的冷却水流量是不可能的。

b)HRSG中流量控制阀的备用流量控制

当流量控制的主要阀门是FCV-2时,FCV-1的连续流量控制是作为FCV-2的备用控制,用于保持TCA的最小冷却水量并避免管路中蒸

汽的产生。由于以上原因,FCV-1应具有快开功能,快开时间为1s。2)TCA冷却器给水流量控制阀(余热锅炉侧)FCV-2

TCA冷却器出口冷却水与高压省煤器出口相连,并通过高压汽包上的给水控制阀进入高压汽包。

FCV-2的开关是根据压气机入口空气温度,通过燃气轮机控制GTC和燃机负荷情况进行控制,避免FCV1或高压汽包液位的干扰。开关控制的考虑因素如下:

a)达到透平冷却空气合适的温度。

b)避免TCA冷却器管路中的水汽化。

(在燃机负荷增加时,FCV-2根据燃机负荷缓慢打开。但是TCA冷却器的冷却水流量跟不上,这时,由FCV-1提供足够的冷却水量。因此,TCA冷却器冷却水量是由FCV-1和FCV-2相互配合完成的。)

FCV-1和FCV-2的开关根据第2部分TCA给水流量变化特性进行调整。

3)高压汽包给水调阀

这个阀门是通过其前后差压4bar来控制给水流量。

4)TCA冷却器入口阀

这个阀门用于在紧急情况下,切断TCA冷却器给水,并带互锁。关断阀(25A)关断的目的是防止TCA冷却器出现水锤现象。因此,在第4部分中TCA冷却器管路泄露的情况下,这些阀门需要迅速关闭。快关时间为1s。

5)流量计FT1

在燃机运行期间,TCA冷却器冷却水流量是通过给水流量控制阀(凝汽器侧)FCV-1控制的。FCV-1的控制是通过监视流量计FT1,流量信号会直接传递到燃机控制系统GTC。

6)压力变送器和温度表

TCA冷却器冷却水的情况是通过压力变送器和温度表测得的。这些仪表的信号用于监视运行情况,不是用于TCA冷却器的控制。

7)低压除氧器&汽包旁路阀

这个阀门是在燃机启动期间作为低压除氧器&低压汽包的旁路,为了使得燃机冷却空气的温度在100℃以下,通过这个阀门为TCA冷却器提供低温的冷却水。在达到全速空载(FSNL)后,该阀门全关。(注意:TCA 冷却器的冷却水温度在第2部分的要求是60℃以下)

8)给水泵最小流量

给水泵到凝汽器的最小流量是为了保证在燃机启动期间给水泵的最小流量。

(注意:如果给水泵的最小流量再循环回到了汽包,而不是凝汽器,应避免汽包的液位过高)

4.互锁

以下讨论的均为事故情况:

1)TCA冷却器管路泄露

TCA冷却器壳体侧有4个液位检测装置。其中一个是液位高报警,其他三个用于高高跳机保护(三取二)。当液位高报警信号发出时,小放水阀(25A)开启,但是燃机仍可继续运行。但是,当水位继续上升,达到跳机液位时,TCA冷却器管路破裂,燃机跳机保护动作。与此同时,为了切断TCA冷却器的冷却水防止冷却水进入燃机,TCA冷却器将切断冷却水

系统(关闭TCA水侧入口阀,FCV-1,FCV-2)和TCA冷却器防水阀(50A)开启。

2)凝汽器保护

当凝气器保护发生时,燃机跳闸。因为,TCA冷却器系统中流量控制阀FCV-1不能使用,不能保持TCA最小冷却水量。

3)所有高压给水泵跳闸

当所有高压给水泵跳闸时,燃机跳机。因为在这种情况下,TCA冷却器如果继续运行将导致管内产生蒸汽。

4)TCA冷却水流量低

TCA冷却水流量低报警和流量低跳机保护动作都会导致TCA冷却器内部产生蒸汽。

5.三菱要求

通过燃机控制系统GTC设定TCA冷却器冷却水量。

1)FCV-1冷却水流量控制

控制阀特点,FCV-1特点。

2)FCV-1冷却水流量控制

a)控制阀规格,FCV-1特点,高压省煤器入口调阀。

b)高压省煤器压力值。

c)流量计规格和压力值。

6.附件

TCA冷却系统的设计条件。

TCA冷却系统的设计条件:

0.简介

该部分描述了EPC设计的TCA冷却器冷却水系统涉及的计算和系统设计。1.正常情况下的要求

1)TCA冷却器热负荷曲线

a)天然气点火

如图1所示,为TCA冷却器的热负荷随燃机负荷变化曲线

设备在设计时要留有15%的工作余量。

2)冷却水条件

高压给水泵出口的水源用于TCA冷却器的冷却水。TCA冷却器出口冷却水将于高压省煤器出口连接(在高压给水控制阀前)。为了使TCA冷却器有充足的冷却水,在高压汽包入口添加了高压给水控制阀。TCA冷却器的冷却水流量通过TCA冷却器出口的冷却水控制阀。在紧急情况下,TCA冷却器的冷却水将排入凝汽器。

参考图6,高压给水系统图,三菱公司和合作者的工作划分

冷却水条件:

出口压力:大于165bar(*1)

流量(*2):参考图3A,3B,3C,4A,4B,4C

入口温度(*3):参考图3A,3B,3C,4A,4B,4C

出口温度:计算值(*4)

水侧压降:约1bar

(*1):小于240bar

(*2):图3A,3B和3C描述了不同冷却水入口温度下,冷却水流量随燃

机负荷的变化。图4A,4B和4C描述了不同环境温度下,冷却水流量随

燃机负荷的变化。

在设计管路、阀门和泵等时,需考虑20%的余量。

(*3):三菱公司假定

TCA冷却器出口温度和需要的冷却水流量需要根据入口温度确定。

在设计点(100%燃机负荷,15℃环境温度)下,入口温度假定为138℃,设计范围为118℃~158℃。

TCA冷却器冷却水条件应根据三菱和合作间在详细设计阶段确定。

(*4):出口温度可以通过换热量、流量、压力、入口温度计算得到。

(*5):若有其他疑问,可咨询三菱。

2.启机需求

1)TCA冷却水操作

TCA冷却器冷却水的入口温度应控制的尽量低。因此,需要控制低压除氧器&汽包旁路阀的开度。并且,在此阶段,TCA冷却器冷却水需要排入凝汽器二不是高压省煤器出口。

2)冷却水条件

TCA冷却水条件如下:

流量:参考图5A

入口温度:不大于60℃

热负荷:约 27GJ/h 最大值

出口温度:参考图5B

(*6):若还有其他条件,可咨询三菱。

在设计管路、阀门和泵等时,需考虑20%的余量。

图6. TCA冷却系统图

发动机冷却系统设计规范

编号: 冷却系统设计规范 编制:万涛 校对: 审核: 批准: 厦门金龙联合汽车工业有限公司技术中心 年月曰

第2页 一、概述 要使发动机正常工作,必须使其得到适度的冷却,冷却不足或冷却过度均会带来严 重的影响。 发动机过热,会破坏各运动机件原来正常的配合间隙,导致摩擦阻力增 特别是活塞 环和气缸壁之间的运动,严重时会发生烧蚀、卡滞,使发动 “拉缸”现象,刮伤活塞或气缸,更严重时还会发生连杆打烂气缸体现 油变稀,运动机件间的油膜破坏,造成干摩擦或半干摩擦,加速磨损。 同时会降低发动 机充气量,使发动机功率下降。 发动机过度冷却时,由于冷却水带走太多热量,使发动机功率下降、动力性能变差。 发动机过冷,气缸磨损加剧。同时,由于过冷,混合气形成的液体,容易进入曲轴箱使 润 滑油变稀,影响润滑作用。 由此可见,使发 动机工作温度保持在最适宜范围内的冷却系,是何其重要。一般地, 发动机最适宜的工作温度是其气缸盖处冷却水温度保持在 80C ~90C ,此时发动机的动力 性、经济性最好。 、冷却系统设计的总体要求 a )具有足够的冷却能力,保证在所有工况下发动机出水温度低于所要求的许用值( 般为55°); 冷却系统的设计应保证散热器上水室的温度不超过99 Co 采用105 kPa 压力盖,在不连续工况运行下,最高水温允许到 110 C,但一年中 水温达到和 超过99 C 的时间不应超 过50 ho 冷却液的膨胀容积应等于整个系统冷却液容量的 6 %o 冷却系统必须用 不低于19 L/min 的速度加注冷却液,直至达到应有的冷却液平面, 以保证 所有工作条件下气缸体水套内冷却液能保持正常的压力。 三、冷却系统的构成 液体冷却系主要由以下部件组成:散热器、风扇、风扇护风罩、皮带轮、风扇离合器、 水泵、节温器、副水箱、发动机进水管、发动机出水管、散热器除气管、发动机除气管冷却不足, 加,磨损加剧, 机停转或者发生 象。也会使润滑 a) C ) d) e)

抽水蓄能发电电动机冷却方式研究

抽水蓄能发电电动机冷却方式研究 发表时间:2017-11-16T20:13:11.903Z 来源:《电力设备》2017年第20期作者:钱敏[导读] 摘要:随着电网容量的不断增大和用电需求的多样化,电网对安全性、稳定性、经济性和调节能力有了更高的要求,从电力系统的电力电量平衡和提高电网稳定性考虑,抽水蓄能发电电动机在现代电力系统中占有相当重要的位置。 (江苏国信溧阳抽水蓄能发电有限公司江苏 213300)摘要:随着电网容量的不断增大和用电需求的多样化,电网对安全性、稳定性、经济性和调节能力有了更高的要求,从电力系统的电力电量平衡和提高电网稳定性考虑,抽水蓄能发电电动机在现代电力系统中占有相当重要的位置。我国抽水蓄能发电电动机已逐渐从依赖进口,走上自主研发的道路,关键技术的创新正是大批将要兴建的抽水蓄能电站所用机组开发的基础。 关键词:发电电动机;通风系统;冷却方式引言 抽水蓄能发电电动机的每极容量、转速等参数一般高于常规电机,相对地,通风系统的设计难度也很大。冷却方式是决定发电电动机参数及结构的重要因素,采用模拟试验与计算分析相结合的方法研究不同的冷却方式能够达到的冷却效果,不仅可以掌握电机内流场现象的特点,而且能够预期电机各发热部件的温度分布。 1模拟试验方法 在通风冷却系统内具有流体流动相似特点的通风模拟试验能够反映电机整体流场现象的特点,本文分别对旋转挡风板结构、固定挡风板结构及带风扇的固定挡风板结构进行了通风模拟试验研究。掌握了不同冷却方式下的风量及上、下风道风量分配,检验是否存在空气流动漩涡和死区等流场现象,从而论证了三种冷却方式的优缺点。 试验的理论依据是相似法则,利用量纲分析的方法决定相似准则并正确处理试验数据。量纲分析的目的之一就是找出影响过程的各独立物理量正确地组合成无量纲数的方法。 电机通风系统包括旋转的压力元件和各种形状的风阻元件,但它有以下几个方面的流动特性:(1)风路全是由短的风道组成,截面多变化,因此局部阻力为主,沿程阻力很小只占10%左右; (2)全部压头由转子产生,压头正比于转子周速平方; (3)电机中转动部件中的气流产生很大的搅动作用,在风道中造成很高紊流度,深圳发电电动机的雷诺数约为4.29×107,处于充分紊流状态; (4)由于封闭循环系统中空气周而复始,没有外来气流影响,边界条件可以自动建立。 根据相似法则,深圳发电电动机通风模型以几何相似为基础,尺寸比例选用1∶2.5,使得模型具有适中的尺寸,安装方便,满足试验测量要求。 2冷却方式研究 通风系统的设计不仅要冷却各发热部件,使其温升低于要求的温升限值,更要控制温度的不均匀度,以避免定子铁心的翘曲、绝缘脱壳等问题。在通风系统的设计中,由通风系统各部分尺寸的选择来决定风量的大小,通过结构的优化来改善流道的条件以降低流道的压力损失,对于通风系统局部挡板、密封结构的设计可以避免流体产生风堵、死区、涡流等现象,因此,通风系统的设计是提供高效冷却条件,较小通风损耗的基础。本文涉及的深圳抽水蓄能发电电动机应用通风模型试验对固定挡风板和旋转挡风板的结构进行了试验论证,为深圳发电电动机通风冷却系统的选择提供了依据。另外,还进行了带离心式风扇的固定挡风板结构的试验,考核风量的增加及在阳江、敦化等发电电动机上应用的可能性。固定挡风板结构的通风模型示意见图1;旋转挡风板结构的通风模型示意见图2;带风扇固定挡风板结构的通风模型示意见图3。

直流电机调速控制系统设计

成绩 电气控制与PLC 课程设计说明书 直流电机调速控制系统设计 . Translate DC motor speed Control system design 学生姓名王杰 学号20130503213 信电工程学院13自动 学院班级 化 专业名称电气工程及其自动化 指导教师肖理庆

201 6年 6 月 14 日

目录 1 直流电机调速控制系统模型 0 1.1 直流调速系统的主导调速方法 0 因此,降压调速是直流电机调速系统的主导调速方法。 0 1.2 直流电机调速控制的传递函数 0 1.2.1 电流与电压的传递函数 (1) 1.2.2 电动势与电流的传递函数 (1) 由已学可知,单轴系统的运用方程为: (1) 1.3 直流调速系统的控制方法选择 (3) 1.3.1 开环直流调速系统 (3) 1.3.2 单闭环直流调速系统 (3) 由前述分析可知,开环系统不能满足较高的调速指标要求,因此必须采取闭环控制系统。图1-4所示的是,转速反馈单闭环调速系统,其是一种结构相对复杂的反馈控制系统。转速控制是动态性能的控制,相比开环系统,速度闭环控制的控制精度及控制稳定性要好得多,但缺乏对于静态电流I的有效控制,故这类系统被称之为“有静差”调速系统。 (4) 1.3.3 双闭环直流调速系统 (4) 图1-4 双闭环控制直流调速控制系统 (4) 1.3.3.1 转速调节器(ASR) (4) 1.3.3.1 电流调节器(ACR) (4) 1.4 直流电机的可逆运行 (5) 1.2 ×××××× (7) 1.2.1 电流与电压的传递函数 (7) (8) 3 PLC在直流调速系统中的应用 (8) 2 ××××× (9) 2.1 ×××××× (9) 2.1.1 ×××× (9) 3 ××××× (11) 3.1 ×××××× (11) 3.1.1 ×××× (11) 参考文献 (12) 附录 (13) 附录1 (13)

船舶冷却水系统设计指导

编制大纲: 需要补充的内容:1,水泵(定速离心泵,变频泵);2,温控阀;3,节流孔板;4,热平衡计算的理论公式,温升热量水量公式;5,特殊案例的区分(温控阀,板冷,变频泵对整个冷却系统形式选定的影响;分离封闭式,高低温混流式,配置变频海水泵没有温控阀的中央式。)6,利用目前的实船进行计算公式的验证,还有一些经验系数的反推导(特别是一些厂家自己的经验系数)7,膨胀水箱;8,补充开发设计需要的部分,参考《船舶管舾装设计工艺实用手册》 前言(目的) 以《船舶设计实用手册---轮机分册》---国防工业出版社为蓝本,将其中的冷却水系统做了进一步内容扩展和深化描述,提供给详细设计人员参考。 参考《船舶管舾装设计工艺实用手册》,补充一部分工程计算公式; 系统发展核心: 1,稳定调节; 2,节省能源,余热循环利用; 3,节省成本,替代方案的方式; 关键词: 将冷却水稳定可靠的输送到需要冷却的设备中:这个可靠和稳定来源于几个参数:稳定的压力,稳定的流量,稳定的温度,稳定的水质(这个水质包含化学成分稳定不结垢,物理成分稳定,极少气泡,气泡会影响热交换器的效率)

冷却水系统 目录 1,范围 2,冷却水系统的基本形式 3,系统形式的选择 4,冷却水系统实例 5,中央冷却系统热平衡计算 6,冷却水系统的主要设备配置要点 7,制淡装置(造水机) 8,具有冰区航行船级符号船舶的冷却水系统特殊要求9,海水进水阀操纵位置的要求 10,冷却水系统的温控阀 11,冷却水系统的节流孔板 12,冷却水系统的泵 13,冷却水系统的膨胀水箱

冷却水系统 1,冷却水系统的基本形式 冷却水系统的基本形式见表1, 注解: (1),所谓开式和闭式冷却水系统是指柴油机本身冷却水系统而言。开式系统是指柴油机本身直接用舷外海水或者江水冷却。如今除江河小船之外,基本不采用开式系统。海拖(海洋港口拖轮)还在使用海水直接冷却柴油机。(潜在问题:船内海水泄露,在与柴油机连接的弹性管配置不正确时容易出现,已有其他公司的海拖因为这个弹性管破裂造成沉船)

电动机水冷却结构设计

煤矿井下用隔爆型三相异步电动机水冷却结构设计 姜瑞杰 2008级机电一体化专业 摘要对煤矿井下用隔爆型三相异步电动机水冷却系统及结构的设计进行探讨。围绕电动机温度场分析、热平衡计算、冷却系统水流参数计算、冷却水箱结构设计几个方面,并结合实践阐述了相关设计理论和设计方法。 关键词煤矿井下用隔爆型三相异步电动机:水冷却系统;水冷式结构 0 引言 煤矿井下设备采用的隔爆型三相异步电动机其冷却系统常采用水冷式结构(通常为ICW37)。这是基于煤矿井下特殊的环境条件和煤矿设备特殊的运行状况决定的。煤矿井下水冷式电动机具有以下特点: (1)煤矿井下作业场狭窄,设备留给时机的安装空间较小,环境空气流动性差。电动机采用风(空气)冷却结构,效果受到很大影响。尤其是在采掘面,当煤块、粉尘等堆积物阻塞电动机外部的通风散热通道时,电动机通风散热状况将更加恶劣。而采用水冷静却结构,则避免了这个缺点。煤矿井下一般不缺压力源,水的导热系数远远大于空气。只要时机的水冷静系统流道结构设计合理,其冷却效果和可靠性优于风冷静式电动机。

(2)煤矿井用电动机因受设备安装要求限制,往往要求有较小的外形体积和简单的外形结构。水冷式电动机结构上没有风扇、风罩、散热片等零件,并且水道布置在封闭的壳体之内,因此其外形简约,体积小于相同功率的风冷式电动机。 (3)煤矿井下采掘、运输等设备,因其特殊的工作条件,往往负荷波动很大,所用电动机超负荷运行状况进有发生,造成电动机温升增高。另外在设计这些设备使用的电动机时,考虑到其外形体积和功率大小两方面要求,往往采用减小电动机定、转子铁心外径,加长定、转子铁心长度的设计方案。由典型的时机温升设计理论可知,铁心较长的时机其热负荷往往偏高,温升计算误差也较大,这两方面的原因致使电动机的温升处于不可靠状态。尽管采用提高电动机绝缘等级的方法进行弥补,但电动机使用寿命也将大打折扣。而水冷式结构的电动机具有较好的冷却效果,可弥补电动机温升设计误差及超负荷运行带来的缺点。 (4)水冷式电动机无风扇、风罩等零件,因此不会产生风摩损耗和噪声,并且冷却水箱还具有吸振减振效果,这些又形成了电动机效率较高、噪声低、振动小的优点。 从以上分析可以看出水冷却系统在煤矿井下用电动机上的重要作用,因此对其系统和结构的设计研究必要。目前国内许多电机厂家都积累了各自在此方面的宝贵经验,亟待进行理论性的整理和提高。本文试对此问题展开初步探讨。

智能电机转速控制显示系统设计

电子技术课程设计 题目:智能电机转速控制显示系统设计 学院计算机与通信工程学院 专业 学号 姓名Lei Ke 指导老师leike

摘要 当今社会,电动机在工农业生产与人们日常生活中都起着十分重要的作用。直流电机作为最常见的一种电机,具有非常优秀的线性机械特性、较宽的调速范围、良好的起动性以及简单的控制电路等优点,因此在社会的各个领域中都得到了广泛的应用。我希望通过对电子电路设计及制作课程设计等环节,力求达到以下作用和目的:即进一步掌握模拟数字电子技术的理论知识,培养工程设计能力和综合分析问题、解决问题的能力;基本掌握常用电子电路的一般设计方法,提高对电子电路的设计和实验能力;熟悉并学会使用电子元器件,为以后从事生产和科研工作打下一定基础。 以下设计是以单片机为核心设计一个电动机转速测定以及数据显示系统,要求对转速范围在0—166r/min的直流调速电动机进行测量并显示,转速数据显示精度要达到转速个位数和加速、减速、定速、电机正转和反转的实时控制。本设计使用12V直流电机,将直流电机测速装置产生的脉冲信号输入到单片机外部中断0口,单片机工作在内部定时器工作方式0,对周期信号进行计数,调用计算公式计算出每秒的转速。调用显示程序在数码管上,其主要内容是单片机部分主要完成转速的测量,数码管显示部分主要把转速显示出来,显示范围在0—166r/min之间。 关键词:直流电机单片机转速控制数据显示

目录 摘要 (2) 目录 (3) 1.引言 (4) 2总体设计 (5) 2.1基本原理 (5) 2.2系统总体框图及设计思路 (6) 3.详细设计 (6) 3.1 硬件设计 (7) 3.2 软件设计. (8) 3.2.1程序设计思路 (8) 3.2.2 程序流程图 (9) 3.2.3 程序代码 (11)

船用柴油机冷却水系统处理

船用柴油机冷却水系统处理 摘要船用柴油机是船舶心脏,在航行过程中有着举足轻重的作用,为使柴油机在合适的温度下能够安全有效的工作,对于冷却水系统就显得尤为重要,本文结合日常工作实际,对船用柴油机冷却水系统在检修、清洗及防腐步骤进行论述,使从事柴油机工作人员在进行柴油机的日常维护有所启迪。 关键词船用柴油机;冷却水系统;检查 0引言 柴油机冷却系统的主要功能是用来控制发动机的工作温度和驱散多余的热能(含润滑系统的散热)。系统好坏对发动机的工作和使用寿命有着直接的关系。因此,日常检查和清洗及防腐就显得尤为重要。在船舶柴油机使用过程中,由于缺乏对冷却系统的科学认识,不能正确检查和对冷却水及时去做防腐,甚至误认为冷却水温越低越好,影响了冷却系统的正常功能,造成了柴油机运行不稳定,使其使用寿命大大降低。 1冷却水系统 1.1冷却水系统的防腐保护 柴油机冷却水必须仔细处理,保存和检测,以避免腐蚀或形成沉淀,从而使热传热效率降低。因此很有必要对冷却水进行处理。应按如下步骤进行处理:1)清洗冷却水系统;2)注满带防腐剂的无离子水或蒸馏水(来自淡水发生器的水);3)对冷却水系统和冷却水状况进行定期检查。遵守这些预防规定,确保系统排泄良好,就会使由冷却水引起的故障降至最低。 1.2冷却水系统的清洁处理 1)在防腐处理之前,必须除去系统中的石灰沉淀层,铁锈和油泥,以改善热传导和确保防腐剂对表面进行保护的均匀性; 2)清洁处理应包括除油泥,酸洗除锈和清除水垢; 3)水乳化清洁剂和弱碱性清洁剂一样可以用于除油污过程; 4)不得使用含有易燃物的预混合清洁剂。用酸除锈时,推荐采用以氨基硫酸,柠檬酸,酒石酸为基础的专门产品,这些酸通常固态易溶于水且不会散发出有毒的蒸汽; 5)清洁剂不应直接混合,而应溶于水后再加入到冷却水系统中; 6)清洗时一般不必拆卸柴油机零件,水在柴油机中循环才能达到最佳的效果; 7)清洁可使不良配合的结合处或有缺陷的垫片部位渗漏更明显,因此在净化过程中应进行检查。在清洁后的24小时要检查滑油系统的含酸量。 1.3未净化的水 1)建议使用无离子水或蒸馏水(如由淡水发生器产生水)作为冷却水。由于硬度较低,这种水还具有相当的腐蚀性,应不断加入防腐剂; 2)如果没有无离子水或蒸馏水,特殊情况下可使用饮用水。但是水的总硬度不得超过9°DH。要检查水中的氯化物,氯,硫酸盐,硅酸盐的含量。它们不能超过下列值:氯化物:50ppm(50mg/L);氯:10ppm(10mg/L);硫酸盐:100ppm (100mg/L);硅酸盐:150ppm(150mg/L); 3)水中不得含有硫化物和氨。绝对不能使用雨水,因为雨水可能已被严重污染。应该注意的事,对水的软化处理不会降低硫酸盐和硅酸盐的含量。

发动机冷却系统设计规范..

发动机冷却系统设计规范..

号: 冷却系统设计规范 编制:万涛 校对: 审核: 批准: 第1页

第1页

水泵、节温器、副水箱、发动机进水管、发动机出水管、散热器除气管、发动机除气管等。 四、主要部件的设计选型 1、散热器 散热器的散热量(Q)和散热器散热系数(K)、散热器散热面积(A)及气液温差(⊿T)有关: Q=K·A·⊿T 其中:Q---散热器的散热量(kcal/h) K---散热器散热系数(kcal/m2?h?oC) A---散热器散热面积(m2) ⊿T---气液温差:散热器进水温度和散热器进风温度之差(oC)散热器的散热系数是代表散热效率的重要指标,主要影响因素如下: ①冷却管内冷却液的流速---据试验结果,冷却液流速由0.2m/s提高到0.8m/s,散热效 率有较大提高,但超过0.8m/s后,效果不大; ②通过散热器芯部的空气流量---空气的导热系数很小,因此散热器的散热能力主要取决 于空气的流动,通过散热器芯部的风量起了决定性作用; ③散热器的材料和管带的厚度---国内散热器的材料目前基本上已标准化; ④制造质量---主要是冷却管和散热带之间的贴合性和焊接质量; 第1页

1.1 散热器是冷却系统中的重要部件,其主要作用是对发动机进行强制冷却,以保证发动机能始终处于最适宜的温度状态下工作,以获得最高的动力性、经济性和可靠性。 1.2 发动机最适宜的冷却液温度为85 ℃~95 ℃,测量位置在散热器的上水室。 1.3 散热器和风扇组合匹配效率是当散热器芯子未被气流扫过的面积最小时为最高,因此,最好采用接近正方形的散热器芯子。 1.4 散热器的总散热面积、芯子的迎风面积、结构形状和结构尺寸要通过发动机冷却系统所需最大散热量来计算确定,并应通过试验评价来最终确定。但一般可按散热器芯子的迎风面积来估算:0.31~0.38m2/100kW,载货车和前置客车通风良好时,可取下限值;后置客车通风欠佳时可取上限值;城市公交车长期低速运转可偏下限值;自卸车、牵引车、山区长途客运车等经常大负荷运行的车辆可偏上限值。 1.5 散热器进风口的实际面积不得小于散热器芯子迎风面积的80 %,以防止散热能力下降。后置客车散热器的进风通道要与发动机舱密封隔离,散热器周围要安装密封橡胶,以防止发动机舱的热风回流到进风通道,影响散热性能;进风通道的面积应不小于散热器芯子的迎风面积。 1.6 在灰尘多的脏环境下使用时,应选用直排或斜排冷却管,且管子间隔要大,以避免散热器芯子堵塞,影响散热效果。 1.7 散热器安装时,紧固必须牢靠,与车架的连接必须采用减振垫,采用减振垫的目的是为了隔离和吸收来自车架的部份振动和冲击,使散热器在车辆运行中,不致发生振裂、扭曲等非正常损坏,延长散热器寿命。 1.8 因为散热器与车架之间安装有隔振橡胶,因而形成了绝缘状态,通过冷却液介质,在散热器与车架之间产生了电位差,在冷却液中产生了微弱电流,使冷却系统的零部件发生电腐蚀。因此,一定要采取散热器负极接地等措施,消除电位差,防止电腐蚀。 2 冷却风扇 风扇选型主要考虑风扇的风量、噪声和功率消耗。 风扇风量(G)与风扇直径(D)、风扇转速(n)之间存在如下比例关系: G=K1?n?D3------其中K1为比例系数 而风扇噪声的声压级(SPL)和风扇直径(D)、风扇转速(n)之间存在如下比例关系: SPL= K2?n3?D2------其中K2为比例系数 根据上述比例关系可得:SPL= K3?Q?n2/D------其中K3为比例系数 第2页

电机调速控制系统设计

一、问题描述 针对电机调速控制系统,设计计算机可实现的PID 控制器,利用simulink 平台实验研究,确定最佳的离散周期并给出实验结果分析和与连续PID 控制器的比较。离散控制器输出连续的受控过程时加零阶保持器。 有余力的同学可尝试设计最小拍无波纹控制器。 二、理论方法分析 离散控制系统所特有的一个参数就是采样周期。可以说离散控制系统的采样周期的选择的基本原则是活的最高的体统性能性价比。 由于采样周期的选择是众多因素的折中考虑,所以一般中有一些近似的计算公式和经验数值可以利用。 在PID 整定完的系统中,对于输入阶跃响应信号可以用两种方法计算出采样周期; ⑴考虑系统阶跃响应的上升时间r t ,则有采样周期24 r s r t T t ≤≤;r t 表示系统的反映速度。 ⑵知道系统是有自平衡的过程,采用过程时间常数 95T ,95T 定义为阶跃响应)(t y 从0变到95%)(∞y 的时间,它综合反映了过程的自平衡能力,其经验公式为 95 9517.007.0T T T s ≤≤。 三、实验设计与实现 搭建Simulink 图后,观测输出波形,发现,上升至95%所需时间约为0.268s

因为959517.007.0T T T s ≤≤。故取Ts 为0.02. 再搭建离散控制系统Simulink 图 四、实验结果与分析 PID 控制器与离散控制比较。见下图:

比较后发现:利用离散控制系统设计的系统性能指标能够达到PID所要求的水平。 五、结论与讨论 利用离散控制系统设计方法设计的离散控制系统与PID整定法设计的连续控制系统性能基本接近。 但在某些场合,特别是现代的工业过程控制中,利用数字电子元件设计的系统有诸多优势:例如方便与计算机相连,便于历史、实时数据存储和传输等 事后感: 由于这部分理论知识学习的不扎实,实验过程中似有“云里雾里”之感…… 参考文献: [1] 杨平等编著,自动控制原理实验与实践. 北京:中国电力出版社,2005 [2] 杨平等编著,自动控制原理理论篇. 北京:中国电力出版社,2009

柴油机冷却水系统处理

柴油机冷却水系统处理 【摘要】柴油机是柴油车的心脏,在车辆行驶过程中有相当重要的作用,为使柴油机在合适的温度下能够安全有效的工作,对于冷却水系统就显得格外重要。本文对柴油机冷却水在检修、清洗及防腐步骤进行论述。 【关键词】柴油机冷却水系统清洗防腐 柴油机冷却系统的主要功能是用来控制发动机的工作、温度和驱散多余的热能(含润滑系统的散热),系统的好坏对发动机的工作和使用寿命有直接关系,因此,日常检查和清洗及防腐就显得尤为重要。 1 冷却水系统的防腐保护 冷却水必须仔细处理、保存和检测,以避免腐蚀或形成沉淀,从而使热传导效率降低。因此要进行对冷却水处理。 1.1 处理步骤 (1)清理冷却水系统。(2)注满带防腐剂的无离子水或蒸馏水。(3)对冷却水系统和状况进行定期检查。遵守以上规定,会使冷却水引起的故障降至最低。 1.2 冷却水系统的清洁处理 (1)在防腐处理前,必须除去系统中的石灰沉淀层、铁锈和油泥,以改善热传导和确保防腐剂对表面进行保护的均匀性。(2)清洁处理应包括油泥酸洗除锈和清洗水垢。(3)水乳清洁剂和弱碱性清洁剂一样可以用于除油污过程。(4)不得使用含有易燃物的预混合清洁剂,通常采用氨基酸、柠檬酸、酒石酸为主,这些易溶于水,不会散发有害蒸汽,清洁剂不直接使用,要溶于水后再加入系统中。(5)清洗时不必拆卸发动机零件,水在发动机循环才能达到最佳效果。(6)清洁可使不良配合的结合处或有缺陷的垫片部位渗漏更明显,因此在净化过程中应进行检查,在清洁后的24小时要检查润滑系统的含酸量(机油)。 2 未净化的水 (1)建议使用无离子水或蒸馏水作为冷却水,由于硬度较低,这种冷却水还具有相当的腐蚀性p (1)加满清洁的自来水,原有的水可以放掉,将水加热到60℃在发动机中连续循环,按规定剂量加入除油化学剂在规定周期循环清洁化学制剂。(2)冷却水系统必须在无压力状态下检查并排除任何泄露,放掉系统中的水再加满清洁的自来水,将水循环两小时后放掉。 4.2 酸洗除锈

发动机冷却系统总体参数设计

一、冷却系统说明 二、散热器总成参数设计 三、膨胀箱总成参数设计 四、冷却风扇总成参数设计 五、水泵总成参数设计 六、橡胶水管参数设计 七、节温器选择 八、冷却液选择 一、冷却系统说明 内燃机运转时,与高温燃气相接触的零件受到强烈的加热,如不加以适当的冷却,会使内燃机过热,充气系数下降,燃烧不正常(爆燃、早燃等),机油变质和烧损,零件的摩擦和磨损加剧,引起内燃机的动力性、经济性、可靠性和耐久性全面恶化。但是,如果冷却过强,汽油机混合气形成不良,机油被燃烧稀释,柴油机工作粗爆,散热损失和摩擦损失增加,零件的磨损加剧,也会使内燃机工作变坏。因此,冷却系统的主要任务是保证内燃机在最适宜的温度状态下工作。 1.1 发动机的工况及对冷却系统的要求 一个良好的冷却系统,应满足下列各项要求: 1)散热能力能满足内燃机在各种工况下运转时的需要。当工况和环境条件变化时,仍能保证内燃机可靠地工作和维持 最佳的冷却水温度;

2)应在短时间内,排除系统的压力; 3)应考虑膨胀空间,一般其容积占总容积的4-6%; 4)具有较高的加水速率。初次加注量能达到系统容积的90%以上。 5)在发动机高速运转,系统压力盖打开时,水泵进口应为正压; 6)有一定的缺水工作能力,缺水量大于第一次未加满冷却液的容积; 7)设置水温报警装置; 8)密封好,不得漏气、漏水; 9)冷却系统消耗功率小。启动后,能在短时间内达到正常工作温度。 10)使用可靠,寿命长,制造成本低。 1.2 冷却系统的总体布置 冷却系统总布置主要考虑两方面:一是空气流通系统;二是冷却液循环系统。在设计中必须作到提高进风系数和冷却液循环中的散热能力。 提高通风系数:总的进风口有效面积和散热器正面积之比≥30%。对于空气流通不顺的结构,需要加导风装置使风能有效的吹到散热器的正面积上,提高散热器的利用率。 在整车空间布置允许的条件下,尽量增大散热器的迎风面积,减薄芯子厚度。这样可充分利用风扇的风量和车的迎面风,提高散热器的散热效率。一般货车芯厚不超过四排水管,轿车芯厚不超过二排水

论纯电动客车驱动电机冷却系统匹配及控制

论纯电动客车驱动电机冷却系统匹配及控制 摘要:本文主要对论纯电动客车驱动电机冷却系统匹配及控制进一步分析了解。新能源汽车产业作为我国汽车工业的发展战略,能够有效地解决日益严峻的能源 危机与环境污染问题。 关键词:纯电动客车;驱动电机;冷却系统;控制;现状 引言: 纯电动客车因具有零排放、低噪音等突出特点也成为各大客车生产商着重发 展的车型。纯电动客车驱动电机作为汽车唯一的动力源,其可靠性直接影响着电 动汽车的性能。为了防止由于温度过高的原因使得电机永磁体产生退磁现象,甚 至影响到电机及其控制器的寿命和整车安全性,驱动电机及其控制系统的温度控 制显得尤为重要。因此,对纯电动客车驱动电机冷却系统进行合理的匹配并制定 科学有效的控制策略具有重要工程实际意义。 一、纯电动客车发展现状 随着国家对新能源汽车产业的大力推广,补贴优惠政策相继出台,推动了我 国纯电动汽车行业的发展,各大汽车企业纷纷制定新能源汽车发展规划,电动汽 车产品产销量逐年稳步提升,纯电动客车现已成为我国城市公交、中短途客运、 观光旅游等众多领域备受关注的新兴产品。 纯电动汽车所使用的驱动电机主要可分为:直流电机、异步电机、永磁同步 电机、开关磁阻电机。早期电动汽车大多采用直流电机作为能量转换装置,直流 电机具有控制容易、调速方便、技术较为成熟等优点,但是机械结构较为复杂, 其瞬时过载能力较差,长时间工作损耗较大,维护成本高,运转时电刷易使转子 产热,并产生高频电磁干扰。异步电机主要由定子、转子、端盖、轴承基座风扇 等几部分组成。相对于永磁同步电机其突出优点是成本低、制造简单、转速范围广、可靠性强、维修方便。但由于异步电机的转速与其旋转磁场转速有一定的转 差关系,其调速性能较差。开关磁阻电机作为一种新型驱动电机,其结构简单、 转速范围广、整个转速范围内效率高、系统可靠性高、兼有直流、交流两种电机 的优点。其缺点是存在转矩脉动,转子上的转矩有一系列脉冲转矩的叠加,因双 凸极结构和磁路饱和非线性影响,合成转矩有一定的谐波分量,影响开关磁阻电 机的低速性能。永磁同步电机(PMSM)具有结构坚固、功率密度大、电机效率高、转矩密度高、控制精度高、良好的转矩平稳性及低振动噪声的特点。在新能 源汽车驱动方面具有很高的应用价值。其缺点是永磁体成本高、对温度敏感,在 温度较高时会产生不可逆的退磁现象影响其使用性能。 二、电动汽车驱动电机冷却系统简述 根据冷却系统所选用冷却介质不同,驱动电机的冷却形式可以分为风冷和液 冷两种方案。风冷可分为自然风冷和强迫风冷。液冷方案常用水、油等作为冷却液。由于纯电动客车驱动电机安装位置特殊,风冷不能满足其散热需求,目前普 遍采用液冷方式,包括油冷和水冷;冷却油的导热系数及热容量均小于水,且成 本较高。因此,纯电动客车驱动电机多采用冷却液冷却的形式。冷却液的主要成 分为:乙二醇、防腐蚀添加剂、抗泡沫添加剂、水。在电机机壳体中设计出水道 结构,通过冷却液在水道中的流动与机壳进行换热从而实现冷却功能。根据电机 水道布置方式的不同有以下四种结构方案:螺旋结构、半螺旋结构、圆周结构、 轴向结构。由于电动客车驱动电机散热环境的特殊性,电机的温度控制对冷却系 统有较高的要求。因此,结合电机布置方案和电动车行驶工况,设计有效的冷却

直流电动机调速系统设计方案

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 直流电动机调速系统设计 初始条件: 采用MC787组成触发系统,对三相全控桥式整流电路进行触发,通过改变直流电动机电压来调节转速。 要求完成的主要任务: (1)设计出三相全控桥式整流电路拓扑结构; (2)设计出触发系统和功率放大电路; (3)采用开环控制、转速单闭环控制、转速外环+电流内环控制。 (4) 器件选择:晶闸管选择、晶闸管串联、并联参数选择、平波和均衡电抗 器选择、晶闸管保护设计 参考文献: [1] 周渊深.《电力电子技术与MATLAB仿真》.北京:中国电力出版社, 2005:41-49、105-114 时间安排: 2011年12月5日至2011年12月14日,历时一周半,具体进度安排见下表 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1概述 0 2转速、电流双闭环直流调速系统的组成及其静特性 0 2.1转速、电流双闭环直流调速系统的组成 0 2.2 稳态结构框图和静特性 (1) 3双闭环直流调速系统的数学模型与动态过程分析 (2) 3.1双闭环直流调速系统的动态数学模型 (2) 3.2双闭环直流调速系统的动态过程分析 (3) 4转速电流双闭环直流调速系统调节器的工程设计 (5) 4.1转速和电流两个调节器的作用 (5) 4.2调节器的工程设计方法 (5) 4.2.1设计的基本思路 (6) 4.3 触发电路及晶闸管整流保护电路设计 (6) 4.3.1触发电路 (6) 4.3.2整流保护电路 (7) 4.3.2.1 过电压保护和du/dt限制 (7) 4.3.2.2 过电流保护和di/dt限制 (8) 4.4 器件选择与计算 (8) 5心得体会 (13) 参考文献 (14) 附录:电路原理图 (15)

柴油机冷却水系统

30. 冷却水系统 说明 冷却水系统…………………………………………………………第30-191页 工作卡 30 101-01冷却水恒温阀…………………………………………第30-193页 30 102-02冷却水泵的检修和更换………………………………第30-195页 备件图页 高温冷却水泵,顺时针方向……………………………………….图页号1 3010 高温冷却水泵,逆时针方向……………………………………….图页号1 3010 低温循环系统的冷却水恒温阀 手动越控………………………………………………………图页号1 3012 高温循环系统的冷却水恒温阀 手动越控………………………………………………………图页号1 3012 高温冷却水管……………………………………………………..图页号1 3016 发布号TOC_1 30 第30-189页

第30-190页 发布号TOC_1 30

冷却水系统 本柴油机只设计为淡水冷却,因此冷却水系统必须是中央/闭式冷却系统。 本柴油机设计几乎是无管子的,即水在前端 箱和气缸组件内部的水腔、水道中流动。所有大的管接头均设在前端箱中。在柴油机后端,供应齿轮箱滑油冷却器的淡水应由船厂连接上。 发布号1 30 A1-01 第30-191页

本柴油机的高、低温冷却水系统配有机带Array 高、低温淡水泵。为加强备用泵的自动启动功能,系统内设置了双作用式止回阀。 淡水泵安装在柴油机前端箱中,由曲轴通过齿轮系驱动。 泵的轴承由柴油机的滑油系统供油自动进行润滑。 控制高、低温冷却水系统的恒温元件也置于前端箱中。 增压空气冷却器分为二级,第一级由高温冷却水系统进行冷却,从增压器出来的高温空气传给冷却水的热量有可能较多地回收。第二级由低温冷却水系统进行冷却,使进入柴油机的空气温度得到进一步的降低。 在北极高寒地区航行时,直接从甲板进入的空气温度低,可采用一种调节系统来控制空气冷却器的第二级冷却水流量,以提高低负 荷下的增压空气温度。

电机水冷系统设计与散热计算

螺旋形电机水冷系统设计与散热计算 孙利云 四川建筑职业技术学院四川德阳 618000 摘要:本文从传热基本理论出发,针对表面冷却中小型电机体积小,功率大,能量密度高的特点,给出了电机水冷螺旋型结构的详细计算过程,为电机冷却设计提供参考方案。 关键词:水冷,散热,螺旋型 1.引言 现代工业的发展对电机性能要求越来越高。电机热损耗问题制约着大容量电机设计发展。 根据冷却介质是否通过电机内部,电机冷却方式分为内部冷却和表面冷却[1]。中小型电机由于体积的限制,常采用表面冷却的方式。按冷却介质的不同,可以把电机分为分为空气冷却和液体(水或油)冷却。空气冷却,运行成本低,摩擦损耗大,散热效率低,常用在能量密度低,发热较低的电机结构中。水冷电机,运行成本高,摩擦损耗小,散热效率高,常用在能量密度高,发热量大的电机结构中。 水冷技术应用于电机散热具有很好的冷却效果。电机水冷结构设计的核心任务是电机散热计算,使得电机损耗生热与冷却介质带走的热量达到平衡,从而控制电机温升再允许范围内。此外,冷却介质流速是散热能力重要影响因素之一。冷却介质的流速与压头及流经管道阻力有关。压头由水循环系统的泵产生。流经管道阻力取决于冷却结构的具体形式。螺旋型结构是指水槽在壳体中成螺旋型分布以往的设计过程[2]是首先设计好水槽的机构尺寸,设定入水口温度、水槽温度、水流速度等参数,计算出水口温度,进而校核冷却系统的散热情况。这种方法,把设计的散热方案的散热功率作为计算结果,与实际需求的散热功率对比。设计方案的散热能力高于实际需要的散热能力,则视为方案可行;反之,方案失败。修改预先设计的水槽尺寸并重新计算直到满足散热条件。散热能力在设计之初是未知的,计算之后才能知道其散热能力。本文采用另一种方法,对散热结构进行设计。 2.水冷计算 2.1结构设计 电机的基本结构尺寸如图1所示,水套外径200mm,水套截面尺寸为宽24mm,高4mm , 图1 1.转子 2.定子 3.外壳 4.水套 电机的功率为7.5KW。经过电磁计算,电机总的损耗为 KW P137 .1 = 损 (1)设所有损耗都转化为热能,在电机稳定运行过程中,热能被水带走。因此实际需要的散热功率为 KW P P137 .1 = = 损 散 (2)冷却水相关参数见表1, 表1 水的相关物理参数 名称单位符号数值 流量 min L Q10

直流电动机调速系统设计综述

概述 (2) 1 设计任务与分析 (3) 1.1 任务要求 (3) 1.2 任务分析 (3) 2方案选择及论证 (4) 2.1 三相可控整流电路的选择 (4) 2.2 触发电路的选择 (4) 2.3 电力电子器件的缓冲电路 (5) 2.4 电力电子器件的保护电路 (5) 3主电路设计 (7) 3.1 整流变压器计算 (7) 3.1.1 U2的计算 (7) 3.1.2一次侧和二次侧相电流I1和I2的计算 (8) 3.1.3变压器的容量计算 (8) 3.2 晶闸管元件的参数计算 (9) 3.2.1晶闸管的额定电压 (9) 3.2.2晶闸管的额定电流 (9) 3.3 电力电子电路保护环节 (10) 3.3.1交流侧过电压保护 (10) 3.3.2直流侧过电压保护 (11) 3.3.3晶闸管两端的过电压保护 (11) 3.3.4过电流保护 (11) 4触发电路设计 (11) 4.1 触发电路主电路设计 (11) 4.2 触发电路的直流电源 (13) 5电气原理图 (14) 小结与体会 (15) 参考文献 (16) 附录 (16)

直流电动机具有良好的起动和制动性能,广泛应用于机械、纺织、冶金、化工、轻工等工业系统。随着电力电子技术的发展,晶闸管在直流电动机的调速系统中得到广泛应用。晶闸管直流电动机调速系统,可实现电动机的无级调速,具有调节范围宽,控制精度高,使用寿命长、成本低等优点。正确掌握晶闸管直流电动机调速系统的设计方法,对系统的可靠运行及应用有重大意义。 本设计以晶闸管直流电动机调速装置为主,介绍了系统的各个部件的组成及主要器件的参数计算。调速装置以可控整流电路作为直流电源,把交流电变换成大小可调的单一方向直流电。通过改变触发电路所提供的触发脉冲送出的早晚来改变直流电压的平均值。 关键词:可控整流晶闸管触发电路保护电路

电机调速控制设计

系统设计专题之电机调速控制设计 学院:自动化与电气工程学院 班级:******** 姓名:***** 学号:******* 日期:*******

1CPLD系统简介 1.1CPLD简介 CPLD(Complex Programmable Logic Device)复杂可编程逻辑器件,是从PAL 和GAL器件发展出来的器件,相对而言规模大,结构复杂,属于大规模集成电路范围。是一种用户根据各自需要而自行构造逻辑功能的数字集成电路。其基本设计方法是借助集成开发软件平台,用原理图、硬件描述语言等方法,生成相应的目标文件,通过下载电缆(“在系统”编程)将代码传送到目标芯片中,实现设计的数字系统。 1.2CPLD系统的基本构架 主要包括有处理器、外围电路及接口和外部设备三大部分其中外围电路一般包括有时钟、复位电路、。程序存储器、数据存储器和电源模块等部件组成。外部设备一般应配有USB、显示器、键盘和其他等设备及接口电路。在一片CPLD 微处理器基础上增加电源电路、时钟电路和存储器电路,就构成了一个CPLD核心控制模块。其中操作系统和应用程序都可以固化在ROM中。 1.3CPLD系统的特点 采用32位EPM3032A微处理器和实时操作系统组成的CPLD控制系统,与传统基于单片机的控制系统和基于PC的控制方式相比,具有以下突出优点:性能方面:采用32位RISC结构微处理器,主频从30MHz到1200MHz以上,接近PC机的水平,但体积更小,能够真正地“嵌入”到设备中。 实时性方面:CPLD机控制器内嵌实时操作系统(RTOS),能够完全保证控制系统的强实时性。 人机交互方面:CPLD控制器可支持大屏幕的液晶显示器,提供功能强大的图形用户界面,这些方面的性能也接近于PC,优于单片机。 系统升级方面:CPLD控制器可为控制系统专门设计,其功能专一,成本较低,而且开放的用户程序接口(API)保证了系统能够快速升级和更新。 1.4CPLD技术的应用领域 CPLD技术可应用在:工业控制;交通管理;信息家电;家庭智能管理;网络及电子商务;环境监测;机器人等领域。 在工业和服务领域中,大量CPLD技术也已经应用于工业控制、数控机床、智能工具、工业机器人、服务机器人等各个行业,正在逐渐改变着传统的工业生产和服务方式。例如,飞机的电子设备、城市地铁购票系统等都可应用CPLD系统来实现。

发动机冷却系统设计规范

编号:
冷却系统设计规范
编制: 万 涛
校对: 审核: 批准:
厦门金龙联合汽车工业有限公司技术中心 年月日

一、概述 要使发动机正常工作,必须使其得到适度的冷却,冷却不足或冷却过度均会带来严重
的影响。 冷却不足,发动机过热,会破坏各运动机件原来正常的配合间隙,导致摩擦阻力增加,
磨损加剧,特别是活塞环和气缸壁之间的运动,严重时会发生烧蚀、卡滞,使发动机停转 或者发生“拉缸”现象,刮伤活塞或气缸,更严重时还会发生连杆打烂气缸体现象。也会 使润滑油变稀,运动机件间的油膜破坏,造成干摩擦或半干摩擦,加速磨损。同时会降低 发动机充气量,使发动机功率下降。
发动机过度冷却时,由于冷却水带走太多热量,使发动机功率下降、动力性能变差。 发动机过冷,气缸磨损加剧。同时,由于过冷,混合气形成的液体,容易进入曲轴箱使润 滑油变稀,影响润滑作用。
由此可见,使发动机工作温度保持在最适宜范围内的冷却系,是何其重要。一般地, 发动机最适宜的工作温度是其气缸盖处冷却水温度保持在 80℃~90℃,此时发动机的动力 性、经济性最好。 二、冷却系统设计的总体要求
a)具有足够的冷却能力,保证在所有工况下发动机出水温度低于所要求的许用值(一 般为 55°); b) 冷却系统的设计应保证散热器上水室的温度不超过 99 ℃。 c) 采用 105 kPa 压力盖,在不连续工况运行下,最高水温允许到 110 ℃,但一年中
水温达到和超过 99 ℃的时间不应超过 50 h。 d) 冷却液的膨胀容积应等于整个系统冷却液容量的 6 %。 e) 冷却系统必须用不低于 19 L/min 的速度加注冷却液,直至达到应有的冷却液平面,
以保证所有工作条件下气缸体水套内冷却液能保持正常的压力。 三、冷却系统的构成
液体冷却系主要由以下部件组成:散热器、风扇、风扇护风罩、皮带轮、风扇离合器、 水泵、节温器、副水箱、发动机进水管、发动机出水管、散热器除气管、发动机除气管等。

电动车电机冷却水道计算

螺旋形电机水冷系统设计 庞瑞 上海联孚新能源科技集团有限公司 摘要:本文从传热基本理论出发,针对表面冷却中小型电机体积小,功率大,能量密度高的特点,给出了电机水冷螺旋型结构的详细计算过程,为电机冷却设计提供参考方案。 关键词:水冷,散热,螺旋型 1.引言 现代工业的发展对电机性能要求越来越高。电机热损耗问题制约着大容量电机设计发展。 根据冷却介质是否通过电机内部,电机冷却方式分为内部冷却和表面冷却[1]。中小型电机由于体积的限制,常采用表面冷却的方式。按冷却介质的不同,可以把电机分为分为空气冷却和液体(水或油)冷却。空气冷却,运行成本低,摩擦损耗大,散热效率低,常用在能量密度低,发热较低的电机结构中。水冷电机,运行成本高,摩擦损耗小,散热效率高,常用在能量密度高,发热量大的电机结构中。 水冷技术应用于电机散热具有很好的冷却效果。电机水冷结构设计的核心任务是电机散热计算,使得电机损耗生热与冷却介质带走的热量达到平衡,从而控制电机温升再允许范围内。此外,冷却介质流速是散热能力重要影响因素之一。冷却介质的流速与压头及流经管道阻力有关。压头由水循环系统的泵产生。流经管道阻力取决于冷却结构的具体形式。螺旋型结构是指水槽在壳体中成螺旋型分布以往的设计过程[2]是首先设计好水槽的机构尺寸,设定入水口温度、水槽温度、水流速度等参数,计算出水口温度,进而校核冷却系统的散热情况。这种方法,把设计的散热方案的散热功率作为计算结果,与实际需求的散热功率对比。设计方案的散热能力高于实际需要的散热能力,则视为方案可行;反之,方案失败。修改预先设计的水槽尺寸并重新计算直到满足散热条件。散热能力在设计之初是未知的,计算之后才能知道其散热能力。本文采用另一种方法,对散热结构进行设计。 2.水冷计算 2.1结构设计 电机的基本结构尺寸如图1所示,水套外径200mm,水套截面尺寸为宽24mm,高4mm, 图1 1.转子 2.定子 3.外壳 4.水套 电机的功率为7.5KW。经过电磁计算,电机总的损耗为 KW P137 .1 = 损 (1)设所有损耗都转化为热能,在电机稳定运行过程中,热能被水带走。因此实际需要的散热功率为 KW P P137 .1 = = 损 散 (2)冷却水相关参数见表1, 表1 水的相关物理参数 名称单位符号数值 流量 min L Q10 进口温℃ in t30

相关文档
相关文档 最新文档