文档库 最新最全的文档下载
当前位置:文档库 › 管内强制对流传热

管内强制对流传热

管内强制对流传热
管内强制对流传热

4.3.4管内强制对流传热

对于流体在圆形直管内作强制对流传热时, 研究表明,Nu 数与Pr 数和Re 数之间存

在如图4-18所示的关系。由图可见,管内强制对流存在三个不同的区域:

当Re<2300时,

流体的流动为层流状态,当 Re>10000时,流体的流动为旺盛湍流状态,一般认为

2300

对于湍流状态的对流传热规律是较容易关联的,

过渡状态的对流传热很难关联成一

个准确的计算式,而层流状态的强制对流还与自然对流有关,即与 Gr 数有关。由于强

制对流的流体流动中存在温度差异,必将同时引起附加的自然对流。当雷诺数较大时, 自然对流的影

响很小,可以忽略不计。一般认为 时,就可忽略自然对流的影响; 当 时,

则按单纯自然对流处理,介于其间的情况称为混合对流传热。

应当指出,图4-18的对流传热规律是在流动充分发展的情况下的结论。从第一章 可知,当流体由大空间流入一圆管时, 流动边界层有一个从零开始增长直到汇合于圆管

中心线的过程。类似地,当流体与管壁之间有热交换时,管内壁上的热边界层也有一个 从零开始增长直到汇合于圆管中心线的过程。 通常将流动边界层及热边界层汇合于圆管

中心线后的流体流动或对流传热称为已经充分发展的流动或对流传热,

从进口到充分发

展段之间的区域则称为入口段。

入口段的热边界层较薄,

局部对流传热系数比充分发展

段的高,随着入口的深入,对流传热系数逐渐降低。如果边界层中出现湍流,则因湍流 的扰动和混合作用会使局部对流传热系数有所提高,再逐渐趋向一定值,上述规律如图 4-19所示。图中 为远离入口段得局部对流传热系数渐进值。

对于管内强制对流,实验表明,热入口段的长度 It 与管内径d 之间存在以下关系

层流时

^ = 0,0J5 RePr

管壁上温度恒定

(4-71a ) 0.07 Re Pr

管壁上热通量恒定

(4-71b )

湍流时

(或 40 ?60) (4-72) 通常,工程上的对流传热主要讨论全管长上的平均对流传热系数。 当热入口段的长

度远小于管长时,入口段的传热对全管长的传热影响可以忽略, 总的平均对流传热系数

与充分发展条件下的局部对流传热系数非常吻合。 当入口段的影响不能忽略时,则应引

入管径与管长的比值加以修正。

下面将针对不同情况下流体在管内作强制对流传热时的实验关联式分别进行讨论。

一、流体在圆形直管内作湍流时的对流传热系数

由于流体呈湍流时有利于传热,故工业上一般使对流传热过程在湍流条件下进行。 实用上使用最广的关联式是迪图斯-贝尔特公式,即

式中,当流体被加热时,n=0.4 ;当流体被冷却时,n=0.3。上式适用于流体与管壁 温差不大的场合,对于气体,其温差不超过

50C ;对于水,其温差不大于 20C ?30C ; 对于粘度随温度变化较大的油类其值不超过

10 C 。上式适用的条件为:

Re=1.0X 104?

1.2 X 105, Pr=0.7?120,管长与管内径之比

。所采用的特征长度为管内径 d ,

定性温度则为流体的平均温度(即管道进、出口截面平均温度的算术平均值)。

二、-V 或

;

(4-73) k 户J

三、流体在圆形直管内作层流时的对流传热系数

流体在圆形直管中作层流强制对流传热的情况比较复杂,

因为附加的自然对流往往

会影响层流对流传热。只有在小管径,且流体与管壁的温度差别不大的情况下,即 ?V 廿ODD 时,自然对流的影响才能忽略。在工程实际中,可采用下述经验关联式计算

0.H

对流传热系数为

d

0站 “ '

四、流体在圆形弯管内的流动

返回目录

Nv-L8fiRe 1A Pt 1/3

JL

(4-78)

式中,除了 mW 以外,定性温度均取流体的平均温度,特征长度为管内径

d 。适用范

f 卫】4

上]> 2

,且管壁

RePr"?'3 ±1 = 0.0044 -9.73

围为:Re<2300, Pr=0.48 ?16700,吒 处于均匀壁温。

当Gr < 25000时,可按式(4-78 )计算出对流传热系数,然后再乘以修正系数得到

l/d )

a^C.8(l + 0.015Gp^>x

(4-79)

流体作层流时的对流传热系数关联式有多种不同的形式,但到目前为止还不成熟, 计算误差较大。

例4-4在内径为50mm 长3m 的圆形直管内,5C 的水以50kg/h 的流量流过,管内壁 的温度为

90C ,水的出口温度为 35C 。试计算水与管内壁之间的对流传热系数。

解 管内水的定性温度为(

5+35) /2=20 C,根据定性温度,查取水的物性为

^ = 1 005x1 [Tfe-E

1 = 0.599W/tti K

% ■ 4.133U/kg K

由管内壁的温度可得

JO /360C r ,

pu =;——: --- 二 7E4

由题设可得,)』?「「 kg/ (m2- s )

A 1.005 xlO"3

叭址二竺仝竺竺七2

0J99

从而可应用式(4-78)计算水与管壁之间的对流传热系数

1/3 f >0.14

=l.Sd x351 严幻竝m x

3.19°14

管强制对流传热计算

管强制对流传热计算公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

管内强制对流传热 对于流体在圆形直管内作强制对流传热时,研究表明,Nu数与Pr数和Re数之间存在如图4-18所示的关系。由图可见,管内强制对流存在三个不同的区域:当Re<2300 时,流体的流动为层流状态,当 Re>10000时,流体的流动为旺盛湍流状态,一般认为2300

管式加热炉之在对流室中的辐射传热(1)

管式加热炉之在对流室中的辐射传热(1) 在对流室中的辐射传热 对流室中的辐射传热有两种情况:一是在对流室的人口处,即所谓遮蔽段的对流管,要接受由辐射室带人的辐射热;二是对流室的其他对流管,除主要接受烟气的对流传热外,同时还接受烟气本身的辐射热和炉墙的辐射热。所以,在分析对流室的传热时,最好将遮蔽段与对流段分别加以讨论。同时,将对流方式的传热量与辐射方式的传热量,一并计人对流管 的管外综合传热系数h rc之中。故在计算总传热系数k c时,式(5-11)的光管管外膜传热系数h。,或式(5-59)中的翅片管(或钉头管)的表面膜传热系数h f,都应用h rc来代替。 由辐射段带入的辐射热一一遮蔽段的传热 参见图5-18,一般为了提高对流段的传热速率,对流管多采用翅片管或钉头管,但遮蔽段的管子,则由于上述的原因,原则上不能采用翅片管和钉头管,而只能采用光管。遮蔽管的管心距与管外径之比一般小于2,大多在1 .6~1.8之间。例如,当管心距与管外径之比等于1.8时,查双排管的有效吸收因素α图表可知,第一排管的平均吸收因数为0.72,第二排管的平均吸收因数为0.21,两排合计为0.93,即辐射热量有93%被两排管子所吸收,剩下仅有7%的热量为后面数排管子吸收了。所以可以认为遮蔽段只包括了两排炉管,而其余的管排则按对流段处理。 关于遮蔽管的详细计算方法,见第四章4t节,这里不再重复。另外,还有一种简化处理法,即在计算辐射室传热量时,把遮蔽管视为一个平均吸收因数为1的当量冷平面管排,认为它是辐射吸热面的一部分;而在计算对流室传热量时,又把遮蔽管视为两排对流光管,认为它是对流吸热面的一部分。这样计算足以保证整个炉子总吸热量的计算精度,但它不能直接反映出遮蔽管本身的详细工作状态。

对流换热计算式

关系式 返回到上一层以下汇总了工程中最常见的几类对流换热问题的对流换热计算关系式,适用边界条件,已定准则的适用范围,特征尺寸与定性温度的选取方法。 一、掠过平板的强迫对流换热 应注意区分层流和湍流两种流态 ( 一般忽略过渡流段 ) ,恒壁温与恒热流两种典型的边界条件,以及局部 Nu 数和平均 Nu 数。 沿平板强迫对流换热准则数关联式汇总 注意:定性温度为边界层的平均温度,即。 二、管内强迫对流换热 (1) 流动状况不同于外部流动的情形,无论层流或者湍流都存在流动入口段和充分发展段,两者的长度差别很大。计算管内流动和换热时,速度必须取为截面平均速度。 (2) 换热状况管内热边界层也同样存在入口段和充分发展段,只有在流体的 Pr 数大致等于 1 的时候,两个边界层的入口段才重合。理解并准确把握两种典型边界条件 ( 恒壁温与恒热流 ) 下流体截面平均温

度的沿程变化规律,对管内对流换热计算有着特殊重要的意义。 (3) 准则数方程式要注意区分不同关联式所针对的边界条件,因为层流对边界条件的敏感程度明显高于湍流时。还需要特别指出,绝大多数管内对流换热计算式 5f 对工程上的光滑管,如果遇到粗糙管,使用类比率关系式效果可能更好。下表汇总了不同流态和边界条件下管内强迫对流换热计算最常用的一些准则数关联式。 (4) 非圆截面管道仅湍流可以用当量直径的概念处理非圆截面管道的对流换热问题。层流时即使用当量直径的概念也无法将不同截面形状管道换热的计算式全部统一。 常热流 层流,充分发展段, 常壁温 层流,充分发展段, 充 - 充分发展段,气体, - 充分发展段,液体, ; 紊流,充分发展段,

(完整版)加热炉计算

4.加热炉的计算 管式加热炉是一种火力加热设备,它利用燃料在炉膛内燃烧时产生的高温火焰和烟气作为热源,加热在管道中高速流动的介质,使其达到工艺规定的温度,保证生产的进行。在预加氢中需要对原料进行加热,以达到反应温度。预加氢的量较小,因此采用圆筒炉。主要的参数如下: 原料:高辛烷值石脑油; 相对密度: 20 40.7351 d = 进料量:62500/kg h 入炉温度:I τ=350C o ; 出炉温度:o τ=490C o ; 出炉压强:2 15/kg cm 气化率: e=100%; 过剩空气系:α:辐射:1.35 对流段:1.40 燃料油组成: 87%,11.5%,0.5%,1%C H O W ==== 加热炉基本参数的确定 4.1加热炉的总热负荷 查《石油炼制工程(上)》图Ⅰ-2-34可知,在入炉温度t1=350℃,进炉压力约15.0㎏/㎝2条件下,油料已完全汽化,混合油气完全汽化温度是167℃。 原料在入炉温度350C o ,查热焓图得232/i I kJ kcal = 原料的出炉温度为490C o ,查热焓图得377/v I kcal kg =。 将上述的数值代入得到加热炉的总热负荷 Q = m[eIV+(1-e)IL-Ii]

=[1377232]62500 4.184?-?? 37917500/kJ h = 4.2燃料燃烧的计算 燃料完全燃烧所生成的水为气态时计算出的热值称为低热值,以Ql 表示。在加热炉正常操作中,水都是以气相存在,所以多用低热值计算。 (1) 燃料的低发热值 1Q =[81C+246H+26(S-O)-6W] 4.184? =[8187+24611.5+26(0-0.5)-61] 4.184????? 41241.7/(kJ kg =燃料) (2) 燃烧所需的理论空气量 0 2.67823.2C H S O L ++-= 2.6787811.500.52 3.2?+?+-= 13.96kg =空气/kg 燃料 (3) 热效率η 设离开对流室的烟气温度 s T 比原料的入炉温度高100C o ,则 350100450s T C =+=o 由下面的式子可以得到 , 100L I q q η=--, 取炉墙散热损失 , 1 0.05L L q q Q = =并根据α和s T 查相关表,得烟气出对流室时 带走的热量123% L q Q =, 所以 1(523)%72%η=-+= (4) 燃料的用量 1379175001277/0.7241241.7 Q B kg h Q η= ==?;

4-5 对流传热系数关联式

知识点4-5 对流传热系数关联式 【学习指导】 1.学习目的 通过本知识点的学习,了解影响对流传热系数的因素,掌握因次分析法,并能根据情况选择相应的对流传热系数关联式。理解流体有无相变化的对流传热系数相差较大的原因。 2.本知识点的重点 对流传热系数的影响因素及因次分析法。 3.本知识点的难点 因次分析法。 4.应完成的习题 4-11 在一逆流套管换热器中,冷、热流体进行热交换。两流体进、出口温度分别为t1=20℃、t2=85℃;T1=100℃、T2=70℃。当冷流体流量增加一倍时,试求两流体的出口温度和传热量的变化情况。假设两种情况下总传热系数不变,换热器热损失可忽略。 4-12 试用因次分析法推导壁面和流体间自然对流传热系数α的准数方程式。已知α为下 列变量的函数: 4-13 一定流量的空气在蒸汽加热器中从20℃加热到80℃。空气在换热器的管内湍流流动。压强为180kPa的饱和蒸汽在管外冷凝。现因生产要求空气流量增加20%,而空气的进出口温度不变,试问应采取什么措施才能完成任务,并作出定量计算。假设管壁和污垢热阻可忽略。 4-14 常压下温度为120℃的甲烷以10m/s的平均速度在列管换热器的管间沿轴向流动,离开换热器时甲烷温度为30℃,换热器外壳内径为190mm,管束由37根ф19×2的钢管组成,试求甲烷对管壁的对流传热系数。

4-15 温度为90℃的甲苯以1500kg/h的流量流过直径为ф57×3.5mm、弯曲半径为0.6m的蛇管换热器而被冷却至30℃,试求甲苯对蛇管的对流传热系数。 4-16 流量为720kg/h的常压饱和蒸汽在直立的列管换热器的列管外冷凝。换热器的列管直径为ф25×2.5mm,长为2m。列管外壁面温度为94℃。试按冷凝要求估算列管的根数(假设列管内侧可满足要求)。换热器的热损失可以忽略。 4-17 实验测定列管换热器的总传热系数时,水在换热器的列管内作湍流流动,管外为饱和蒸汽冷凝。列管由直径为ф25×2.5mm的钢管组成。当水的流速为1m/s时,测得基于管外表面积的总传热系数为2115W/(m2.℃);若其它条件不变,而水的速度变为1.5m/s时,测得系数为2660 W/(m2.℃)。试求蒸汽冷凝的传热系数。假设污垢热阻可忽略。 对流传热速率方程虽然形式简单,实际是将对流传热的复杂性和计算上的困难转移到对流传热系数之中,因此对流传热系数的计算成为解决对流传热的关键。 求算对流传热系数的方法有两种:即理论方法和实验方法。前者是通过对各类对流传热现象进行理论分析,建立描述对流传热现象的方程组,然后用数学分析的方法求解。由于过程的复杂性,目前对一些较为简单的对流传热现象可以用数学方法求解。后者是结合实验建立关联式,对于工程上遇到的对流传热问题仍依赖于实验方法。 一、影响对流传热系数的因素 由对流传热的机理分析可知,对流传热系数决定于热边界层内的温度梯度。而温度梯度或热边界层的厚度与流体的物性、温度、流动状况以及壁面几何状况等诸多因素有关。 1.流体的种类和相变化的情况 液体、气体和蒸汽的对流传热系数都不相同,牛顿型流体和非牛顿型流体也有区别。本书只限于讨论牛顿型流体的对流传热系数。 流体有无相变化,对传热有不同的影响,后面将分别予以讨论。 2.流体的特性

对流换热与准则数

单相流体对流换热及准则关联式部分 返回一、基本概念 主要包括对流换热影响因素;边界层理论及分析;理论分析法(对流换热微分方程组、边界层微分方程组);动量与热量的类比;相似理论;外掠平板强制对流换热基本特点。 1、由对流换热微分方程知,该式中没有出现流速,有人因此得出结论:表面传热系数h与流体速度场无关。试判断这种说法的正确性? 答:这种说法不正确,因为在描述流动的能量微分方程中,对流项含有流体速度,即要获得流体的温度场,必须先获得其速度场,“流动与换热密不可分”。因此表面传热系数必与流体速度场有关。 2、在流体温度边界层中,何处温度梯度的绝对值最大?为什么?有人说对一定表面传热温差的同种流体,可以用贴壁处温度梯度绝对值的大小来判断表面传热系数h的大小,你认为对吗? 答:在温度边界层中,贴壁处流体温度梯度的绝对值最大,因为壁面与流体间的热量交换都要通过贴壁处不动的薄流体层,因而这里换热最剧烈。由对流换热微分方程,对一定表面传热温差的同种流体λ与△t均保持为常数,因而可用绝对值的大小来判断表面传热系数h的大小。3、简述边界层理论的基本论点。 答:边界层厚度δ、δt与壁的尺寸l相比是极小值; 边界层内壁面速度梯度及温度梯度最大; 边界层流动状态分为层流与紊流,而紊流边界层内,紧贴壁面处仍将是层流,称为层流底层; 流场可以划分为两个区:边界层区(粘滞力起作用)和主流区,温度同样场可以划分为两个区:边界层区(存在温差)和主流区(等温区域); 对流换热热阻主要集中在热边界层区域的导热热阻。层流边界层的热阻为整个边界层的导热热阻。紊流边界层的热阻为层流底层的导热热阻。 4、试引用边界层概念来分析并说明流体的导热系数、粘度对对流换热过程的影响。

实验四---强制对流下传热膜系数的测定Word版

实验四强制对流下传热膜系数的测定 一、实验目的 1.掌握圆形光滑直管(或波纹管)外蒸汽、管内空气在强制对流条件下的对流传热膜系数的测定; 2.根据实验数据整理成特征数关联式。 二、实验原理 1.特征数关联 影响对流传热的因素很多,根据量纲分析得到的对流传热的特征数关联式的一般形式为: (4-1)式中C、m、n、l为待定参数。参加传热的流体、流态及温度等不同,待定参数不同。目前,只能通过实验来确定特定范围的参数、本实验是测定空气在圆管内做强制对流时的对流传热系数。因此,可以忽略自然对流对对流传热系数的影响,则G r为常数。在温度变化不太大的情况下,空气的P r可视为常数、所以,准数关联式(4-1)可写成 (4-2) 或 待定参数C和m可通过实验测定蒸汽、空气的有关数据后,根据原理计算、分析求得。 2.传热量计算 努赛尔数N u和雷诺数R e都无法直接用试验测定,只能测定相关的参数并通过计算求得。当通过套管环隙的饱和蒸汽与冷凝壁面接触后,蒸汽将放出冷凝潜热,冷凝成水,热量通过间壁传递给套管内的空气,使空气的温度升高,空气从管的末端排除管外,传递的热量由下式计算。 (4-3)根据传热速率方程: (4-4)所以 (4-5)式中:Q——换热器的热负荷(或传热速率),kJ/s; q m——冷流体(空气)的质量流量,kg/s; t1——空气的进口温度,℃; t2——空气的出口温度,℃; q V1——冷流体(空气)的体积流量,m3/s;

ρ1——冷流体(空气)的密度, kg/m 3; K ——换热器总传热系数, W/(m 2. ℃); c pc ——冷流体(空气)的平均定压比热容, kJ/(kg.K); A ——传热面积, m 2; Δt m ——蒸汽与空气的对数平均温度差,℃。 T ——蒸汽温度,K 。 空气的体积流量及两种流体的温度等可以通过各种测量仪表测得,由式(4-5)即可算出传热系数K 。 3.对流传热系数的计算 当传热面为平壁,或者当管壁很薄时,总传热系数和与各对流传热系数的关系可表示为: (4 -6) 式中: α1——管内壁对空气的对流传热系数,W/(m 2 . ℃); α2——蒸汽冷凝时对管外壁的对流传热系数,W/(m 2 . ℃); 当管壁热阻可以忽略(内管为黄铜管,黄铜导热系数λ比较大,而且壁厚b 较小)时: (4-7) 由于蒸汽冷凝时的对流传热系数远大于管内壁对空气的对流传热系数,即α 2 ﹥﹥α1,所以K ≈α1。因此,只要在实验中测得冷、热流体的温度及空气的体积流量,即可通过热量衡算求出套管换热器的总传热系数K 值,由此求得管内壁对空气的对流传热系数α1。 4.努塞尔数和雷诺数的计算 (4 -8) (4-9) 式中:λ——空气导热系数;W/(m. ℃);

传热学 热对流 计算 (1)

1、水以1.5m /s 的速度流过内径为25mm的加热管。管的内壁温度保持100℃,水的进口温度为15℃。若要使水的出口温度达到85℃,求单位管长换热量(不考虑修正)。已知50℃的水λf =0.648 W/(m.K),νf =0.566×10-6m2/s,Pr =3.54。 2、取外掠平板边界层的流动由层流转化为湍流的临界雷诺数5×105,试计算25℃的空气和水达到临界雷诺数时所需要的平板长度,取u =1m/s,ν空气=15.53×10-6m2/s,ν水=0.905×10-6。 3、试推导努谢尔特关于层流膜状凝结的理论解 4、用实验测定一薄壁管流体平均对流换热系数。蒸汽在管外凝结并维持管内壁温度为100℃。水在管内流动流量为G=0.5Kg/s,水温从15℃升到45℃。管的内径d=50mm,长L=4.5m。试求管内流体与壁面间的平均换热系数。已知水在30℃时c p=4.174KJ/(Kg.K)

5、以0.8m/s 的流速在内径为2.5cm 的直管内流动,管子内表面温度为60℃,水的平均温度为30℃,管长2m ,试求水所吸收的热量。已知30℃时水的物性参数为:Pr =5.42,c p =4.17KJ/(Kg.K),λ=61.8×10-2 W/(m.K),ρ=995.7Kg/m 3,μ =80.15×10-6 Kg/(m.s);水60℃ 时的ν=0.4699×10-6 m 2/s ,水在管内流动准则方程式为 4 .08.0Pr Re 027.0f f f Nu =,适用条件:Re f =104-1.2×105,Pr f =0.6-120,水与壁面间的换热温差Δt ≤30℃。 6、计算一空气横掠管束换热的空气预热器的对流换热量。已知管束有25排,每排12根光管,管外径25mm ,管长 1.5m ,叉排形式,横向管间距S 1=50mm ,纵向管间距S 2=38mm ,管壁温度120℃,空气来流速度u f =4m/s ,空气进口温度20℃,出口温度40℃。已知空气物性:λf =0.0267W/(m.K),νf =16.0×10-6m 2/s ,Pr f =0.701。最大流速u max = u f S 1/(S 1-d);推荐关联式:m w f f n f f c Nu ??? ? ??=Pr Pr Pr Re 36.0(公式适 用条件:N ≥20,光管管束,Pr f =0.7~500,除Pr w 的定性温度为壁温外,其余定性温度为流体在管束中的平均温度。指数m 对气体m =0,对液体m =0.25,

对流换热系数的确定.doc

对流换热系数的确定 核心提示:1.自然对流时的对流换热系数炉墙、炉顶和架空炉底与车间空气间的对流换热均属自然对流换热。2.强制对流时的对流换热系数(1)气流沿 1.自然对流时的对流换热系数 炉墙、炉顶和架空炉底与车间空气间的对流换热均属自然对流换热。 2.强制对流时的对流换热系数 (1)气流沿平面强制流动时气流沿平面流动时,烧结炉其对流换热系数可按表1-1的近似公式计算。 表1-1对流换热系数计算 vo=C4.65(m/s) x;o>4.65(m/s) 光滑表面a=5.58+4.25z'o a^V.Slvg78 轧制表面a-=5.81+4.25vo a=7.53vin. 粗糙表面o=6.16+4.49vo a=T.94vi78 气流沿长形工件强制流动时当加热长形工件时,循环空气对工件表面的对流换热系数可用下述近似公式计算 气流在通道内层流流动时气流呈层流流动时,对流换热系数主要决定于炉气的热导率,而与炉气的流速无关。 绝对黑体的概念 当物体受热后一部分热能转变为辐射能并以电磁波的形式向外放射,其波长从lfmi到若干m。各种不同波长的射线具有不同性质,可见光和红外线能被物体吸收转化为热能,称它们为热射线。各种物体由于原子结构和表面状态的不同,其辐射和吸收热射线的能力有明显差别。 当能量为Q的一束热射线投射到物体表面时,也和可见光一样,一部分能量Qa将被吸收,一部分能量Qr被反射,还有一部分能量Qu透射过物体(如图1-5)。按能量守恒定律则有

图1-5辐射能的吸收、反射和透过 如果A=l,则R=D=0,即辐射能全部被吸收,这种物体称绝对黑体,简称黑体。 如果R=l,则A=D=0,即辐射能全部被反射,这种物体称绝对白体,简称白体。如果D= 1,则A=K=0,即辐射能全部被透过,这种物体称绝对透过体,简称透过体。 自然界中,黑体、白体和透过体是不存在的,它们都是假定的理想物体。对于一种实 际物体来说数值,不仅取决于物体的特性,还与表面状态、温度以及投射射线的波长等有关。为研究方便,人们用人工方法制成黑体模型。在温度均匀、不透过热射线的空心壁上开一小孔,此小孔即具有绝对黑体性质:所有进入小孔的辐射能,在多次反射过程中几乎全部被内壁吸收。小孔面积与空腔内壁面积之比越小,小孔越接近黑体。当它们的面积比小于0.6%,空腔内壁的吸收率为0.8时,则小孔的吸收率A大于0.998,非常接近黑体。

对流换热公式汇总与分析..

对流换热公式汇总与分析 【摘要】流体与固体壁直接接触时所发生的热量传递过程,称为对流换热,它已不是基本传热方式。本文尝试对对流换热进行简单分类并对无相变对流换热公式简单汇总与分析。 【关键词】对流换热 类型 公式 适用范围 对流换热的基本计算形式——牛顿冷却公式: )(f w t t h q -= )/(2m W 或2Am 上热流量 )(f w t t h -=Φ )(W 上式中表面传热系数h 最为关键,表面传热系数是众多因素的函数,即 ),,,,,,,,(l c t t u f h p f w μαρλ= 综上所述,由于影响对流换热的因素很多,因此对流换热的分析与计算将分类进行,本文所涉及的典型换热类型如表1所示。 表1典型换热类型 1. 受迫对流换热 1.1 内部流动 对流换热 无相变换热 受迫对流换热 内部流动换热 圆管内受迫流动 非圆形管内受迫流动 外部流动 外掠平板 外掠单管 外掠管束(光管;翅片管) 自然对流换热 无限空间 竖壁;竖管 横管 水平壁(上表面与下表面) 有限空间 夹层空间 混合对流换热 — — — — 受迫对流与自然对流并存 相变换热 凝结换热 垂直壁凝结换热 水平单圆管及管束外凝结换热 管内凝结换热 沸腾换热 大空间沸腾换热 管内沸腾换热(横管、竖管等)

1.1.1 圆管内受迫对流换热 (1)层流换热公式 西德和塔特提出的常壁温层流换热关联式为 14 .03/13/13/1)()(Pr Re 86.1w f f f f l d Nu μμ= 或写成 14 .03/1)()(86.1w f f f l d Pe Nu μμ= 式中引用了几何参数准则 l d ,以考虑进口段的影响。 适用范围:16700Pr 48.0<<,75.9)(0044.0<

管内强制对流传热膜系数的测定

装 订 线 实验报告 课程名称: 过程工程原理实验 指导老师: 成绩:__________________ 实验名称: 管内强制对流传热膜系数的测定 实验类型:________________同组学生姓名:__________一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、了解套管式换热器的结构和传热热阻的组成。 2、学习测定流体间壁换热总传热系数的实验方法。 3、掌握近似法和简易Wilson 图解法两种从传热系数实验数据求取对流传热膜系数的数据处理方法。 4、掌握根据实验数据获得传热准数经验公式的方法和数学工具。 5、掌握热电偶、UJ-36电位差计的长图式自动记录仪的使用方法。 二、实验内容 1、在空气-水套管换热器中,测定一系列空气流量条件下冷、热流体进、出口温度。 2、通过能量衡算方程式和传热速率基本方程式计算总传热系数K i 的实验值。 3、分别用近似法、简易Wilson 图解法求取空气侧对流传热膜系数αi 。 4、根据实验获得的对流传热膜系数αi 和空气流速u i ,整理得到努赛尔数Nu 与雷诺数Re 之间的幂函数型经验公式。 5、把实验获得的经验公式与化工原理教材和参考书中的列出的同类公式进行比较,讨论其异同点。 6、根据实验装置情况分析实验测试数据的误差来源。 三、实验原理 流体与固体壁面间的对流传热过程可以用牛顿冷却定律描述: ()w Q A t A T t αα=?=? (1) 式中 Q ——总传热速率,W ; α——对流传热膜系数,W/ m 2?K ;A——传热面积,m 2 ; T ——流体温度,K ;

传热过程的计算

第五节 传热过程的计算 化工生产中广泛采用间壁换热方法进行热量的传递。间壁换热过程由固体壁的导热和壁两侧流体的对流传热组合而成,导热和对流传热的规律前面已讨论过,本节在此基础上进一步讨论传热的计算问题。 化工原理中所涉及的传热过程计算主要有两类:一类是设计计算,即根据生产要求的热负荷,确定换热器的传热面积;另一类是校核计算,即计算给定换热器的传热量、流体的流量或温度等。两者都是以换热器的热量衡算和传热速率方程为计算基础。 4-5-1 热量衡算 流体在间壁两侧进行稳定传热时,在不考虑热损失的情况下,单位时间热流体放出的热量应等于冷流体吸收的热量,即: Q=Q c =Q h (4-59) 式中 Q ——换热器的热负荷,即单位时间热流体向冷流体传递的热量,W ; Q h ——单位时间热流体放出热量,W ; Q c ——单位时间冷流体吸收热量,W 。 若换热器间壁两侧流体无相变化,且流体的比热容不随温度而变或可取平均温度下的比热容时,式(4-59)可表示为 ()()1221t t c W T T c W Q pc c ph h -=-= (4-60) 式中 c p ——流体的平均比热容,kJ/(kg ·℃); t ——冷流体的温度,℃; T ——热流体的温度,℃; W ——流体的质量流量,kg/h 。 若换热器中的热流体有相变化,例如饱和蒸气冷凝,则 ()12t t c W r W Q pc c h -== (4-61) 式中 W h ——饱和蒸气(即热流体)的冷凝速率,kg/h ; r ——饱和蒸气的冷凝潜热,kJ/kg 。 式(4-61)的应用条件是冷凝液在饱和温度下离开换热器。若冷凝液的温度低于饱和温度时,则式(4-61)变为 ()[] ()122t t c W T T c r W Q pc c s ph h -=-+= (4-62) 式中 c ph ——冷凝液的比热容,kJ/(kg ·℃); T s ——冷凝液的饱和温度,℃。 4-5-2 总传热速率微分方程 图4-20为一逆流操作的套管换热器的微元管段d L ,该管段的内、外表面积及平均传热面积分别为d S i 、d S o 和d S m 。热流依次经过热流体、管壁和冷流体这三个环节,在稳定传热

管内强制对流体传热膜系数的测定

取点对数分割: ΔX=(Xmax/Xmin)1/(n-1) = (80/25)1/ (5-1) X i+1=X i×ΔX X1=25 X2=33.4 X3=44.7 X4=59.8 X5=80 V1(mv) V2(mv) V W1(mv) V W2 (mv) V0(mv) V(mv) 压强 (MPa) T1(℃) T2(℃) t w1 t w2 T0ρ0W 3.75 2.3 1.15 0.95 1.55 4 0 87.33 55.09 28.03 23.13 37.52 1.138 0.0168 3.65 2.2 1.1 0.95 1.75 3 0 85.18 52.78 26.81 23.13 42.27 1.121 0.0139 3.55 2.15 1.1 0.95 1.85 2.2 0.003 83.02 51.63 26.81 23.13 4 4.62 1.112 0.0111 3.5 2.05 1.05 0.95 1.95 1.6 0.004 81.93 49.30 2 5.59 23.13 4 6.97 1.104 0.0085 3.45 1.95 1.05 0.95 2.15 1.3 0.005 80.85 46.97 25.59 23.13 51.63 1.088 0.0069 下面举例计算均以第一组为例子: T1=-0.5436×3.752+25.522×3.75-0.7334=87.33 T2=-0.5436×2.32+25.522×2.3-0.7334=87.18 t w1=-0.9247×1.152+26.434×1.15-1.1502=28.03 t w2=-0.9247×0.952+25.522×0.95-1.1502=23.13 T0=-0.5436×1.552+25.522×1.55-0.7334=37.52 W=C√[ρ0(a×V-b)] [㎏/s] 已知C——孔板流量计的校正系数,这里的C=2.303×10-3 a=14.202 b=10.262 ρ0为孔板处的空气密度;[㎏/m3] ρ0=PM/RT0=101.33×103×29×10-3/[8.314×(37.52+273.15) ]=9.420 故W=2.303×10-3[1.138 (14.202×4-10.262)]^1/2=0.048 空气的质量流量W [㎏/s]比热容 C p J/(kg.C) T1(K) T2(K)Q Δt1Δt2Δt mα1 空气的 导热系 数λ w/(m. ℃) 换热 管内 径 d[m] Nu Re 0.0168 1009360.48328.24546.5159.331.9644.23195.040.02966 0.029 92.9336274.29 0.0139 1009358.33325.93454.4158.3729.6542.40282.440.02966 0.029 80.6030012.66 0.0111 1009356.17324.78351.5656.2128.540.79866.290.02966 0.029 64.8123966.94 0.0085 1009355.08322.45279.8556.3426.1739.34754.710.02966 0.029 53.4918353.06 0.0069 1009354320.12235.8855.2623.8437.37448.550.02966 0.029 47.4714898.37 Q= W.C p. (T1- T2) [W] 所以:Q=0.0168×1009(360.48-328.24)= 546.51 因为根据牛顿冷却定律:Q=α 1.A1.Δt m 即:α1= Q /A1.Δt m Δt m=(Δt1-Δt2)/㏑(Δt1/Δt2) ;Δt1= T1-t w1=87.33-28.03=59.3 ; Δt2=55.09-23.13=31.96 Δt m=(59.3-31.96)/㏑(59.3/31.96)= 44.231 A1=π×d×L=(33-2×2) ×10-3×1.43=0.130㎡ α1= 546.51 /(0.130.*44.231)= 95.04

换热器的传热计算

换热器的传热计算 换热器的传热计算包括两类:一类是设计型计算,即根据工艺提出的条件,确定换热面积;另一类是校核型计算,即对已知换热面积的换热器,核算其传热量、流体的流量或温度。这两种计算均以热量衡算和总传热速率方程为基础。 换热器热负荷Q 值一般由工艺包提供,也可以由所需工艺要求求得。Q=W c p Δt ,若流体有相变,Q=c p r 。 热负荷确定后,可由总传热速率方程(Q=K S Δt )求得换热面积,最后根据《化工设备标准系列》确定换热器的选型。 其中总传热系数K= 0011 h Rs kd bd d d Rs d h d o m i i i i ++++ (1) 在实际计算中,总传热系数通常采用推荐值,这些推荐值是从实践中积累或通过实验测定获得的,可以从有关手册中查得。在选用这些推荐值时,应注意以下几点: 1. 设计中管程和壳程的流体应与所选的管程和壳程的流体相一致。 2. 设计中流体的性质(粘度等)和状态(流速等)应与所选的流体性质和 状态相一致。 3. 设计中换热器的类型应与所选的换热器的类型相一致。 4. 总传热系数的推荐值一般范围很大,设计时可根据实际情况选取中间的 某一数值。若需降低设备费可选取较大的K 值;若需降低操作费用可取较小的K 值。 5. 为保证较好的换热效果,设计中一般流体采用逆流换热,若采用错流或 折流换热时,可通过安德伍德(Underwood )和鲍曼(Bowman )图算法对Δt 进行修正。 虽然这些推荐值给设计带来了很大便利,但是某些情况下,所选K 值与实际值出入很大,为避免盲目烦琐的试差计算,可根据式(1)对K 值估算。 式(1)可分为三部分,对流传热热阻、污垢热阻和管壁导热热阻,其中污垢热阻和管壁导热热阻可查相关手册求得。由此,K 值估算最关键的部分就是对流传热系数h 的估算。

对流传热

4.3对流传热 对流传热是指流体中质点发生相对位移而引起的热交换。对流传热仅发生在流体中,与流体的流动状况密切相关。实质上对流传热是流体的对流与热传导共同作用的结果。 4.3.1对流传热过程分析 流体在平壁上流过时,流体和壁面间将进行换热,引起壁面法向方向上温度分布的变化,形成一定的温度梯度,近壁处,流体温度发生显 著变化的区域,称为热边界层或温度边界层。 由于对流是依靠流体内部质点发生位移来进 行热量传递,因此对流传热的快慢与流体流动的 状况有关。在流体流动一章中曾讲了流体流动型 态有层流和湍流。层流流动时,由于流体质点只 在流动方向上作一维运动,在传热方向上无质点 运动,此时主要依靠热传导方式来进行热量传递, 但由于流体内部存在温差还会有少量的自然对 流,此时传热速率小,应尽量避免此种情况。 流体在换热器内的流动大多数情况下为湍 流,下面我们来分析流体作湍流流动时的传热情 况。流体作湍流流动时,靠近壁面处流体流动分 别为层流底层、过渡层(缓冲层)、湍流核心。 层流底层:流体质点只沿流动方向上作一维运动,在传热方向上无质点的混合,温度变化大,传热主要以热传导的方式进行。导热为主,热阻大,温差大。 湍流核心:在远离壁面的湍流中心,流体质点充分混合,温度趋于一致(热阻小),传热主要以对流方式进行。质点相互混合交换热量,温差小。 过渡区域:温度分布不像湍流主体那么均匀,也不像层流底层变化明显,传热以热传导和对流两种方式共同进行。质点混合,分子运动共同作用,温度变化平缓。 根据在热传导中的分析,温差大热阻就大。所以,流体作湍流流动时,热阻主要集中在层流底层中。如果要加强传热,必须采取措施来减少层流底层的厚度。 4.3.2 对流传热速率方程 对流传热大多是指流体与固体壁面之间的传热,其传热速率与流体性质及边界层的状况密切相关。如图在靠近壁面处引起温度的变化形成温度边界层。温度差主要集中在层流底层中。假设流体与固体壁面之间的传热热阻全集中在厚度为δt有效膜中,在有效膜之外无热阻存在,在有效膜内传热主要以热传导的方式进行。该膜既不是热边界层,也非流动边界层,而是一集中了全部传热温差并以导热方式传热的虚拟膜。由此假定,此时的温度分布情况如下图所示。 建立膜模型:δδδ =+ t e

对流受热面的换热计算

锅炉对流受热面的换热计算 大型电站锅炉的对流受热面是指对流换热为主的对流过热器和再热器、省煤器、空气预热器、直流锅炉的过渡区等,也包括辐射份额较大的屏式受热面。尽管这些受热面的结构布置、工质和烟气的参数都有着很大的不同,辐射传热所占的份额不同,但为了简化计算,均采用对流传热计算的规律,将辐射传热部分折算到对流传热,各个不同受热面的计算方法有所不同。 对流受热面的换热计算,不论是设计计算还是校核计算,都是利用对流传热方程和烟气侧与工质侧的热平衡方程,分别从对流传热和热平衡的角度来表达对流受热面的对流换热量。 对流受热面换热计算的基本方程 1.受热面的对流传热方程 d j , kJ/kg K tH Q B ?= 式中d Q ——以对流方式由烟气传递给受热面内工质的热量,以1kg 燃料(固体、液体)或31m ;燃料(气体)为基准;K ——传热系数,W/(m 2·℃);t ?——传热温压,℃;H ——参与对流换热的受热面面积,m 2;j B ——锅炉计算燃料量,kg/s 。 2.烟气侧热平衡方程 对各段受热面,烟气侧热平衡方程是基本相同的,为 ()0d y y lk ,kJ/kg Q h h h ?α'''=-+? 式中 ?——保热系数,考虑散热损失的影响;y h '、y "h ——烟气在该受热面入口及出口截面上的平均焓值,kJ/kg ;0lk h ——对应于过量空气系数1α=时,漏入该段受热面烟气侧 的冷空气焓值,kJ/kg ;α?——该段受热面的漏风系数。 3.工质侧热平衡方程 对于布置在不同位置、不同工质状态的受热面,工质吸热量的计算方法不同。 (1)布置在炉膛出口处的屏式过热器或对流过热器。 这一类受热面的工质总吸热量由两部分组成:屏间(或对流受热面)烟气的对流换热量和炉膛烟气的辐射换热量,所以,在计算屏(或对流受热面)的对流换热量时,应从工质吸收的热量中扣除该受热面接受的炉膛辐射热量,即 ()d f j "Q ,kJ/kg D h h Q B '-=- 式中 f Q ——受热面吸收来自炉膛的辐射热量,kJ/kg ;D ——工质流量,kg/s ;"h 、h '——受热面出口及入口的工质焓值,kJ/kg 。

传热计算习题附详细答案

传热计算题 1.在一内径为0.25cm的管轴心位置上,穿一直径为 0.005cm的细导线,用以测定气体的导热系数。当导线以0.5A 的电流时,产生的电压降为0.12V/cm,测得导线温度为167℃,空心管内壁温度为150℃。 试求充入管内的气体的导热系数 试分析仪器精度以外造成结果误差的客观原因。 2.有两个铜质薄球壳,内球壳外径为0。015m,外球壳内径为 0.1m,两球壳间装入一种其导热系数待测的粉粒料。内球用电加热,输入功率为 50w,热量稳定地传向外球,然后散发到周围大气中。两球壁上都装有热电偶,侧得内球壳的平均温度为120℃,外求壳的平均温度为50℃,周围大气环境温度为20℃;设粉粒料与球壁贴合,试求: (1)待测材料的导热系数 (2)外球壁对周围大气的传热系数 3.有一面积为10cm2带有保护套的热电偶插入一输送空气的长管内,用来测量空气的温度。已知热电偶的温度读数为300℃,输气管的壁温为 200℃,空气对保护套的对流传热系数为60w/m2.k,该保护套的黑度为 0.8,试估算由于辐射造成的气体温度测量误差。并叙述减小测量误差的途径。已知 Stefan-Bohzman常数σ=5.67×10-9w/m2k 。4.用两个结构尺寸相同的列管换热器按并联方式加热某中料液。换热器的管束由32根长 3m 的Ф25×3mm 的钢管组成。壳程为120℃的饱和蒸汽。料液总流量为20m3/h,按相等流量分配到两个换热器中作湍流流动,由 25℃加热到 80℃。蒸汽冷凝对流传热系数为8Kw/m2.℃,管壁及污垢热阻可不记,热损失为零,料液比热为 4.1KJ/kg.℃,密度为 1000kg/m3。试求: (1)管壁对料液的对流传热系数 (2)料液总流量不变,将两个换热器串联,料液加热程度有何变化? (3)此时蒸汽用量有无变化?若有变化为原来的多少倍? (两者情况下蒸汽侧对流传热系数和料液物性不变) 5.某厂现有两台单壳程单管程的列管式空气加热器,每台传热面积为A0=20m2(管外面积),均由128根Ф25×2.5mm的钢管组成。壳程为 170℃的饱和水蒸汽冷凝(冷凝潜热为r=2054KJ/kg),凝液不过冷。空气走管程,其入口温度t1=30℃,流量为4500kg/h 假定空气的物性参数不随温度、压力变化,可视为常数,分别为C P=1.005KJ/Kg.K,ρ=1.06Kg/m3,μ=20.1×10-3cp ,λ=0.029w/m.k。热损失可略,管内湍流时空气的对流给热系数可用下式计算: N u=0.02R e0.8。 (1)若两台换热器并联使用,通过两台换热器的空气流量均等,试求空气的出口温度t2(℃)及水蒸汽的总冷凝量 m1(kg/h) (2)若两台改为串联使用,试求此时空气的出口温度t2(℃)及水蒸汽的总冷凝量m1(kg/h)。 (3)试比较并联及串联时传热效率的大小,并求两种方式下总传热能力的比值 Q串/ Q并。 6.现有两台单壳程单管程的传热面积均为20m2的列管式空气加热器,每台加热器均由64根Ф57×3.5mm钢管组成,壳程为170℃的饱和水蒸汽,空气入口温度为30℃,流量为 2.5kg/s ,以湍流方式通过管内。 (1)若两台换热器并联使用,通过两台换热器的空气流量均等,此时空气的对流传热系数为38w/m2℃,求空气的出口温度t2(℃)

对流给热系数

化工原理实验报告 实验名称:对流给热系数测定实验 学院:化学工程学院 专业:化学工程与工艺 班级:化工班 姓名: 学号: 同组者姓名: 指导教师: 日期:

一、 实验目的 1. 观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型; 2. 测定空气在圆直管内强制对流给热系数i α; 3. 应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。 4. 掌握热电阻测温的方法。 二、 实验原理 在套管换热器中,环隙通以水蒸气,内管管内通以空气,水蒸气冷凝放热以加热空气,在传热过程达到稳定后,有如下关系式: VρC P (t 2-t 1)=αi A i (t w -t)m (1-1) 式中:V ——被加热流体体积流量,m 3/s ; ρ——被加热流体密度,kg/m 3; C P ——被加热流体平均比热,J/(kg·℃); αi ——流体对内管内壁的对流给热系数,W/(m 2·℃); t 1、t 2——被加热流体进、出口温度,℃; A i ——内管的外壁、内壁的传热面积,m 2; (T -T W )m ——水蒸气与外壁间的对数平均温度差,℃; 2 2112211ln )()()(w w w w m T T T T T T T T Tw T -----=- (1-2) (t w -t)m ——内壁与流体间的对数平均温度差,℃; 2211 2211ln )()()(t t t t t t t t t t w w w w m w -----=- (1-3) 式中:T 1、T 2——蒸汽进、出口温度,℃; T w1、T w2、t w1、t w2——外壁和内壁上进、出口温度,℃。 当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。 由式(1-3)可得: (1-4) 若能测得被加热流体的V 、t 1、t 2,内管的换热面积A i ,以及水蒸气温度T ,壁温T w1、

相关文档