文档库 最新最全的文档下载
当前位置:文档库 › 阻变存储器概述

阻变存储器概述

阻变存储器概述
阻变存储器概述

阻变存储器概述

阻变存储器(RRAM)是利用脉冲电压对存储单元进行写入和消除,进而导致记忆单元电阻改变,这就是电脉冲诱使阻变效应。

2.1 电阻转换现象

利用一些薄膜材料在电激励条件下薄膜电阻在不同电阻状态(高阻态(HR S)、低阻态(LRS))之间的相互转换来实现数据存储。根据电阻转换所需外加电压极性的不同,RRAM器件的电阻转变特性可以分为两种切换模式:单极转换和双极转换。从HRS到LRS的转换被称为“SET”过程。相反,从LRS到H RS的转换被称为“RESET”过程。单极转换是指器件在高低组态之间转变时外加电压极性相同。如果器件能在任意极性的电压实现高低阻态的转变,它被称作为无极性转换。双极开关的切换方向取决于所施加的电压的极性。

图2.2.1 (a)RRAM基本结构示意图和RRAM转换特性,(b)单极性转换,(c)

双极性转换

对于单极转换必须设置限制电流,对于双极转换,不一定需要设置限定电流的大小。施加在RRAM上的电压可以是脉冲电压或扫描电压,实际应用中利用扫描电压改变记忆单元电阻是不行的。除了使用直流电压改变阻态,还可以用电脉冲诱导电阻转变(EPIR)效应实现记忆单元阻值转换。利用改变脉冲电压的极性完成高低阻态的转变,如图1.2.2所示。

图2.2.2 脉冲诱使电阻转换的可重复现象

2.2 RRAM器件的阻变机制

到目前为止,电阻转换的真正机制还未确定,机制的不明确严重影响阻变存储器的应用步伐[6]。阻变效应属于材料的体效应还是氧化物与电极间的界面效应是需要解决的重大难点。目前,对于电阻转换现象的解释,研究人员提出了下面几种模型,主要有:导电细丝模型,界面接触势垒模型,缺陷能级模型。

2.2.1 导电细丝模型

导电细丝(CF,conducting filament)机制是一种局域化的效果,仅在介质薄膜的局部发生电阻的转变。从目前报道来看,固态电解液和大多数金属氧化物RRAM的电阻转变都与局部导电细丝的形成与断裂有关[7]。

图2.2.1 导电细丝模型

导电细丝主要原理:电路导通时,薄膜内部会形成传导路径,使通过电流变大,这时薄膜器件处于开启状态(ON state);当导电通道断裂后,薄膜电流变小,这时薄膜器件处于关闭状态(OFF state)。图2.2.1为C.C Lin et al.人提出的导电细丝模型。(a)处于ON state,(b)、(c)、(d)都处于OFF state。

2.2.2 界面接触势垒模型

当RRAM单元有电极/半导体薄膜接触面时,界面接触电阻的变化可能来自于界面处肖特基势垒变化,界面处氧空位缺陷俘获和释放电荷导致界面势垒变化原理图如图2.2.2所示。当有负向电压施加界面处时,电子进入氧化物和氧空位结合,导致界面处势垒增加并造成隧穿电流减小,器件为HRS;当正向电压施加界面处时,电荷从氧空位中释放,造成氧空位累积而是肖特基势垒降低,隧穿电流增加,器件变为LRS.

图2.2.2 金属与半导体材料界面处电荷被俘获与释放导致界面势垒的变化原理图[8]

2.2.3 缺陷能级模型

在实际的薄膜材料中,总存在一些杂质和缺陷,这些杂质和缺陷会在材料中引入相应的杂质能级和缺陷能级,因此,在电荷传输的过程中会俘获和释放电荷,从而影响电子或空穴的传输。目前用以解释阻变现象的缺陷能级模型主要包括:SV模型、SCLC模型和Poole-Frenkel模型。本节主要说明SV模型。

早在1967年,J. G. Simmons和R. R. Verderber为解释Au/SiO2/Al 结构中的阻变现象,提出了SV模型[9]。他们认为,在初始的电激励作用下,Au电极的原子扩散进SiO2,SiO2的带隙中将形成由金原子引入的一系列的缺陷能级,此时器件为低阻态。当注入的电子逐渐占据了缺陷能级,会形成一个自建电场,阻止后续电子的注入,器件转变为高阻态。当施加相反的电场时,缺陷能级中的电子会逐步释放,器件转变回低阻态。D.Lee等人和W. GuAn等人用这个模型解释了基于非化学配比和掺杂ZrO2器件的阻变特性[10]。

图2.2.3 ZrO2薄膜的电阻转变机制:(a) forming成功后的能带图,(b)没有正电

荷时的高阻态,(c)有正电荷时的低阻态[10]

在非化学配比的ZrO2薄膜中,在大的正向forming电压下,Zr原子被电离成

Zr+离子,正电荷使得ZrO的能带弯曲使电流更容易通过过渡层,器件呈低阻态,如图2.2.3(c)所示。当施加反向电场时,注入的电子被Zr+俘获并在过渡层积累,削弱了施加的电场,限制了电流渡过器件,器件转为高阻态,如图2.2.3(b)所示。

2.3 漏电流机制分析

漏电流机制一般可以分为两大类:界面效应;体效应。界面效应(指阻变现象主要发生在电极与阻变材料表面)包括三种机制:肖特基效应、隧穿效应、热场效应。体效应主要发生在阻变功能层内部,又称为传输限制,主要包括以下几种机制:普尔-法兰克发射、空间电荷限制电流、跳跃传导、本质传导、离子传导。

基于不同的氧化物RRAM器件,其HRS电流一般都是非线性的,非线性导电机制一般包括空间电荷限制电流效应、Poole-Frenkel效应和肖特基发射效应;RRAM处于LRS时电流传导机制一般是欧姆传导效应。下面主要介绍以上三种漏电流机制。

2.3.1 空间电荷限流效应

一些宽禁带金属氧化物导带中电荷非常少,电流由于受到导带中电荷数量限制,产生空间电荷限制效应(SCLC, space charge limit current)[11]。在电极上加上偏压,载流子会穿过界面势垒进入绝缘体中,载流子会被陷阱(trap)俘获,造成电流急剧上升,产生非线性传导效应。不同偏压下阻变薄膜中电流大小服从不同的定律。

低压下(外偏压

外加偏压增加至VTFL时,薄膜材料中的陷阱被注入的电子填满,电流急剧增大。当外加偏压继续增加到V’TFL时,注入的可移动载流子浓度与材料自身的本征热载流子浓度基本相等,I-V特性曲线满足莫特-格尼定律。

图2.3.1 空间电荷限流效应原理

当外加偏压远大于V ’TFL 时,导带中的电子浓度远远大于陷阱中的电子浓度,薄膜材料呈现低阻现象,如果撤去外加偏压,陷阱仍被电子填满,薄膜继续保持低阻状态。外加相反的大偏压,被陷阱俘获的电子会被高电场激发出来,薄膜材料回到高阻态。

2.3.2 Poole-Frenkel 效应

Poole-Frenkel 效应是一种与陷阱有关的热电子发射机制[12],通常情况下,介质中的电子被束缚在陷阱等局域态中,只有当随机的热扰动给了电子足够的能量后,电子才能摆脱陷阱的束缚,进入导带并传输。当对其施加大偏压,使得材料内部势垒减小,此刻降低了陷阱之间势垒高度,被陷阱俘获的电子被激发到半导体的导带,从而使遂川现象容易发生,所以半导体材料的电阻变小,电流增大。

Poole-Frenkel 效应通常在高压条件下发生,公式如下【13】:

)/ex p(0rKT qE q KT q E qN J r t c επεμ+Φ-=

化简后得到:

从上式中可以看出ln(J/E)与E1/2呈线性相关。Φt 为陷阱势垒,εr 代表动态介电常数,ε0代表真空介电常数,K 为玻尔兹曼常数,T 代表温度,r 为1~2之间的数。半导体材料含有较少缺陷(r=1),导电机制为正常的Poole-Frenkel 效应;半导体材料含有较多缺陷(r=2),这时导电机制称为修正型Poole-Frenkel 效应

2.3.3 肖特基发射效应

肖特基发射(Schottky Emissi o n effect )是一种与界面态有关的机制,在外电场的作用下,界面处的势垒高度发生变化[14]。I-V 曲线服从下面的表达式[15]:

????????-Φ-=T k qE q T A J B i B )4/(ex p 2

*πε 其中,A *=4πqm n *k 02/h 3为有效理查逊常数,E 是电场,ΦB 是界面势垒高度,εi 是材料的介电常数。

2.3.4 欧姆传导效应

欧姆传导效应是材料的本征导电特性,是价带或缺陷能级上的电子通过热激发到导带上,导致导电[14]。外加电压很小时,自由电子移动所形成的电流占主导地位,欧姆传导的表达式为:J=qun 0V/d 。

2.4 阻变存储器的集成

作为下一代非易失性存储器的候选者之一,RRAM 技术的突出优势在于优秀的可缩小性,采用交叉阵列的RRAM 集成结构具有结构、制备工艺简单等优点。最简单的结构是采用单个RRAM 器件进行集成1R 结构,通常采用上、下电极交叉后形成二维阵列,称为crossbar ,如图2.4.1 所示。这种交叉阵列的优势在于结构简单,制备工艺流程少,成本低廉等。由于采用这种结构时阵列的密度主要取决于特征线宽F ,1R 结构单元面积为4F 2,因此1R 结构具有很大的存储密度。另一方面,通过三维堆叠的方式,可以进一步的提高存储密度。

图2.4.1 1R 结构组成的无源交叉阵列

尽管1R 结构具有较高的存储密度,这种1R 基本结构形成的交叉存储阵列却存在着比较严重的串扰(Crosstalk )问题(如图2.4.2 所示):在一个2×2 的

交叉存储阵列中,坐标为(1,1)的存储器件处于高阻态(HRS),其余三个相邻器件(1,2)、(2,2)和(2,1)都处于低阻态(LRS),如果在(1,1)器件所在的字线(Word Line)上加上读电压时,理论的电流通路如图2.3.2 中实线所示,但实际上电流沿着低阻通道(2,1)→(2,2)→(1,2)(图3 中虚线所示)进行传导,形成一个漏电通道,使得这时本来为HRS 的(1,1)器件会被误读成LRS,此即交叉阵列中所谓的“串扰”。这种串扰问题会导致的要访问的RRAM 存储单元信息误读,大大降低RRAM 存储器件的可靠性。解决串扰的办法有两种:一种是在每个RRAM 单元上串入一个选择器件,如二极管或三极管,目的使得非寻址单元在不被访问时不被选中;另一种方法是采用非线性电阻作为RRAM 单元的选择器件。

图2.4.2 Crossbar结构中的串扰现象

RRAM的集成一般有1D1R结构、1T1R结构、1S1R结构。

2.4 阻变存储器的基本参数[19]

电阻状态

阻变存储器中,存储信息是以器件的电阻值来表示。一般器件分为高阻态(HRS)和低阻态(LRS)。

存储窗口

存储窗口是表示存储器存储能力的参数,体现不同的信息存储状态之间的区分程度。对于阻变存储器,存储窗口指器件高低阻态下的电阻比值:R HRS/R LRS。

操作电压

操作电压指的是使RRAM器件电阻发生变化的电压,即从高阻态转变到低阻态(Set)过程,或从低阻态转变到高阻态(Reset)过程,对应的电压称为Set 电压(V Set)和Reset电压(V Reset)。

操作电流

对SET过程来说,操作电流指的是为防止电流过大对器件造成损伤而施加的限流值,因此又被称为“电流限流”(CC)。通常,限流值会影响RRAM器件的低阻值(R LRS)。对于Reset过程来说,则是指使器件从低阻态转变为高阻态所需的电流大小。

操作速度

操作速度也即编写/擦除速度,是指对器件编写或擦除时所用的最短时间,一般情况下编写速度要快于擦除速度。

耐受力

耐受力是反映存储器耐反复擦写的能力。

数据保持特性

数据保持特性反映存储信息能保持的时间。

读干扰

读干扰是指连续的读取过程中存储状态是否会发生变化。

多值存储

多值存储是反映器件存储多个状态的能力。

可缩小性

可缩小性是指在保持原有特性不变的前提下器件尺寸能够缩小的能力。

阻变存储器概述

阻变存储器概述 阻变存储器(Resistive Random Access Memory, RRAM)是一种基于非电荷存储机制的新型存储技术。RRAM的上下电极之间是能够发生电阻转变的阻变层材料。在外加偏压的作用下,器件的电阻会在高低阻态之间发生转换从而实现“0”和“1”的存储。在二进制存储中,一般将低阻态代表“1”,高阻态代表“0”。器件从高阻变化为低阻的过程称为Set,从低阻变为高阻的过程称为Reset。Set 过程中,一般需要限制通过器件的最大电流,以避免器件完全损坏。虽然阻变存储器的研究自2000年后才兴起,但薄膜的阻变现象早在1967年就由英国Standard Telecommunication Laboratories的J. G. Simmons等人发现[1]。1971年,美国加州大学伯克利分校的华裔教授Leon Chua就在理论上预言了除了电阻、电容、电感之外的第四种基本器件——忆阻器(Memristor)的存在[2]。在2008年的Nature杂志上,惠普公司报道已成功制备出忆阻器原型器件并提出了相应的物理模型。他们模拟了(a)有动态负微分现象的电阻器件、(b)无动态负微分现象的电阻器件、(c)存在非线性离子运动的电阻器件三种不同器件的工作机制:(a)中当所加正电压到达最大值时,器件还未完全发生电阻转变,在正电压逐渐减小的过程中器件继续发生电阻转变(电阻减小),因此观察到了明显的负微分电阻现象;在(b)中所加正向电压到达最大值之前,器件已经完全发生电阻转变,之后在未加负偏压之前器件电阻一直保持不变,因此没有负微分电阻现象;在(c)器件中,离子运动是非线性的,其到达上下电极两种边界条件是突变的,因此其一般只有两种状态(OFF和ON态)。阻变存储器RRAM可以归为忆阻器(c)类器件中的一员。 2.1 阻变存储器的材料体系 2.1.1 固态电解质材料 固态电解质体系中包含两个要素:一是固态电解质层,二是可在固态电解质层中发生氧化还原反应的金属。基于这类体系的RRAM器件被称为PMC (programmable metallization cell)或CBRAM(Conductive Bridging RAM)[5],其特征是两个电极一边是惰性金属如Pt,另一边是易于发生氧化还原反应的活泼金属如Cu和Ag。两电极中间是固态电解质层,金属离子可以在固态电解质中移动。当Cu或Ag等活泼金属作为阳极时,这些易氧化的金属原子失去电子成为金

存储器知识点小结知识讲解

CPU工作的实质即为不断从内存中取指令并执行指令的过程。 一、8086CPU构成 CPU的工作:取指令和执行指令 1.CPU内部两大功能部件:总线接口部件BIU和执行部件EU(2部件并行工作提高了CPU的工作效率) 重点:理解2个独立功能部件的分工和协同配合关系。 理解BIU内地址加法器的作用,理解指令队列的作用。 2.掌握CPU内部寄存器的作用 包括:通用寄存器AX,BX,CX,DX,BP,SP,SI,DI 段寄存器CS,DS,SS,ES 指令指针寄存器IP 标志寄存器FLAG 二、存储器的基础知识 1.物理地址 8086的存储器是以字节(即每个单元存放8位二进制数)为单位组织的。8086CPU具有20条地址总线,所以可访问的存储器地址空间容量为220即1M字节(表示为1MB)。每个单元对应一个唯一的20位地址,对于1MB存储器,其地址范围用16进制表示为00000H~0FFFFFH,如图1所示。 地址低端 地址高端 图1 1MB存储器地址表示 物理地址:存储器的每个单元都有一个唯一的20位地址,将其称为物理地址。 2.字节地址与字地址 存储器内两个连续的字节,定义为一个字,一个字中的每个字节,都有一个字节地址,每个字的低字节(低8位)存放在低地址中,高字节(高8位)存放在高地址中。字的地址指低字节的地址。各位的编号方法是最低位为位0,一个字节中,最高位编号为位7;一个字中最高位的编号为位15。 字数据在存储器中存放的格式如图2所示。

地址低端 地址高端 图2 字数据在存储器中的存放 3.单元地址与内容 内容 单元地址 图3 如图3,地址是00100H 的字节单元的内容为27H,表示为(00100H)= 27H。 图3中字数据3427H存放在地址是00100H和00101H的两个字节单元中,其中低字节27H在低地址的字节单元00100H中,高字节34H在高地址的字节单元00101H中,字数据3427H的地址是低地址00100H。地址是00100H的字单元的内容为3427H,表示为(00100H)= 3427H 可见一个地址既可作字节单元的地址,又可作字单元的地址,视使用情况而定。 总结: 字节单元:(00100H)=27H 字单元:(00100H)=3427H 设寄存器DS=0000H, 用MOV指令访问字节单元:MOV AL,[0100H] 用MOV指令访问字单元:MOV AX,[0100H] 三、存储器的分段 1.为什么要分段

SiO2的阻变存储特性测试

SiO2的阻变存储特性测试 信息存储一直伴随着人类历史发展,如今阻变式存储器在众多存储器的比较中显现出了巨大优势,有望成为新一代的存储器。本文比较了阻变式存储器与其他存储器的优缺点,阐述了阻变式存储器的工作机制和储存结构;对阻变式存储器的前景进行了展望。 第一章绪论 1.1 引言 信息存储的发展一直伴随着人类历史的发展。从结绳记事到甲骨文,再到现代的磁介质存储、光介质存储和纳米存储。信息存储技术一直在向着大容量、高速度、小尺寸和长寿命等特性发展。在如今的大数据信息时代,人们对更加优秀的存储器提出了迫切的需求。目前的RAM(随机存取存储器)主要分为三种:静态RAM、动态RAM和闪存。静态RAM集成度低、功耗大,动态RAM集成度高,但二者断电后将会丢失信息,并不能永久保存信息;闪速存储器能永久储存信息但速度很慢。在迫切的需求下,一些新兴的存储器被提出了。主要有磁阻存储器、铁电存储器、相变存储器和阻变存储器。近几年,研究者们把注意力主要集中在新型的阻变存储器,基本原理为利用高阻态和低阻态来存储0和1,并且这两种状态能够被控制和转换。 Resistive RAM,简称RRAM,中文翻译为阻变存储器,是一种具有记忆功能的非线性电阻。结构为上下两层为金属电极层,中间为氧化物绝缘层。氧化物在上下两层电极电压作用下会呈现出电阻转变特性。RRAM具有高速、低压低功耗、结构简单、可高密度集成、数据保存时间长、尺寸小等优点。还与传统的CMOS工艺兼容。 1.2 新型非挥发性存储器 1.2.1 铁电存储器(FRAM) 铁电材料具有自发极化的特性,在外加电场的作用下可以改变极化方向。当施加正反电场再撤去后,会剩余两种极化状态[1],可以用此来代表0和1。工作

阻变存储器可靠性的研究

龙源期刊网 https://www.wendangku.net/doc/ee5091673.html, 阻变存储器可靠性的研究 作者:沈冬云 来源:《科学与财富》2017年第21期 摘要:随着我国现代化建设的不断发展,各种存储器设备在工业生产与民用消费中得到了广泛应用。我国在集成电路制造领域不断进步的过程中,以浮栅结构为基础的FLASH存储器在物理尺寸上已经达到物理极限,如何对储存器进行进一步的开发已经成为相关机械十分重要的研究课题之一。 中阻变存储器以结合简单、高速度、低功耗等方面的特点得到了广泛的关注。然而,中阻变存储器在技术与应用上还没有十分成熟,在可靠性方面也没十分充分的保证。本文对阻变存储器在可靠性方面的问题进行了详细的阐述与分析,并根据具体的问题提出了相关的解决方法,希望可以起到参考作用。 关键词:问题分析;可靠性国;阻变存储器 阻变存储器属于三明治结构器件的一种,内部结构中的电极材料对于器件的性能也有一定的影响。对于阻变存储器的研究目前主要集中在电极材料与功能层材料上。 一、器件的工艺制备 本次实验研究所采用的器件结构为1T1R,通常情况下,晶体管能够起到限流与形状两方面的作用,阻变存储器结构为Pt/Ti/HfOx/Cu结构,其中Cu是阻变存储器的下电极,在CMP 工艺处理下,该部件能够起到电极的作用。功能层FfOx,离子束或ALD蒸发生长。Ti/Pt为上电极,粘附层为Ti层,能够使功能层与Pt的粘附性得到提,上电极Ti/Pt与功能层HfOx,厚度分别为70nm与6nm。具体工艺流程如下。 (一)硅片清洗 以硅片为衬底,阻态越高越好,去掉硅片表面所附着的有机物,具体操作方法为通过双氧水与浓硫酸对硅片进行冲洗,再对氢氟酸溶液进行稀释处理,将自然氧化层去除掉,再用气氛将水分吹干。 (二)SiO2层的生长 SiO2能够对硅片起到决绝作用,在对硅片清洗干净后将其置于热氧化炉,经过4-5小时的干法氧化后,SiO2会得到生长,可以达到200nm的厚度; (三)ZrO2或HfO2原子层或原子层沉积或离子束溅射

阻变存储器电阻开关特性的测量与分析

一、实验目的 1.掌握阻变存诸器(resistive random access memory,ReRAM)原型器件的基本结构, 了解其存储原理。 2.学会使用Keithley 2400源-测单元来测量阻变存储单元的电流一电压特性,并进行 定性的分析。 二、实验原理概述 随着集成电路的技术节点不断向前推进,目前国际上非易失性存储技术研究的走势主要是两个大方向:一是尽可能将目前的主流Flash技术向更高技术代(45nm甚至32nm)推进,纳米晶存储解决方案就是其代表。另一个研究趋势就是在Flash技术达到其物理极限而无法继续推进后,采用完全不同的新的存储原理和新技术,以电阻转变存储(ReRAM)技术为代表[1]。阻变存储器是通过电流/电压信号直接调制存储材料的电阻状态以实现布尔代数(Boolean)中“1”和“0”码的编制,从而实现信息的写入与擦除。它兼具动态随机存储器(DRAM)快速写入/擦除的能力以及Flash存储器非易失性存储的特点,同时具有低工作电压及低能耗,并可实现高存储密度,能够为计算机主存和外存提供新的技术方案。在2003年国际半导体技术路线图(International Technology Roadmap for Semiconductor(ITRS))中,电子学专家将各种新型材料及器件作了详尽的分析及比较,列出了它们的可行性及风险性。从中可以看到阻变存储器件被认为是可行性高而风险较小的纳米记忆器件[2]。 固体电解质材料是阻变存储器的主要存储材料之一。固体电解质中的导电粒子可以是阴离子,也可以是阳离子。由于导电离子需要在固体内迁移,而小的离子半径对于获得高的迁移率十分重要。因此,一般迁移离子相对于构成骨架的离子而言具有小的半径。担当电荷载流子的阳离子有Ag+、H+、Cu+、Li+、Na+等;担当电荷载流子的阴离子有O2-、F-、Cl-、I-、Br-等[3]。 阻变存储器的基本结构如图1所示。一般由导电性良好的Pt作为底电极,它不参与固体电化学反应。一般选用与固体电解质内导电离子一致的金属材料作为上电极。在电场的作用下,基于固体电化学反应机理,金属离子在介质中可自由传输,导致纳米金属丝或纳米金属颗粒团簇的形成与消失,从而实现双稳态电阻的存储,其原理示意图如图2。以金属阳离子Ag+为例,在反应电极Ag上加正电压的作用下发生氧化反应,电极Ag原子不断电离进入固体电解质,出现过饱和态,过多的金属Ag+离子在阴极附近获得电子电化学沉积,从而逐步形成导电的金属Ag纳米丝(filament)构造,这些纳米丝将正、负电极连通从而形成导电通道产生低阻态。反之,在反应金属电极Ag上加负偏压,Ag离子便不断退出固体电解质,导致其中沉积的Ag溶解,而化学稳定的非反应金属电极Pt不能变成离子进入固体电解质,这便使元件恢复为高电阻态[4]。

阻变随机存储器(RRAM)综述(自己整理)

目录 引言 (1) 1 RRAM技术回顾 (1) 2 RRAM工作机制及原理探究 (4) 2.1 RRAM基本结构 (4) 2.2 RRAM器件参数 (6) 2.3 RRAM的阻变行为分类 (7) 2.4 阻变机制分类 (9) 2.4.1电化学金属化记忆效应 (11) 2.4.2价态变化记忆效应 (15) 2.4.3热化学记忆效应 (19) 2.4.4静电/电子记忆效应 (23) 2.4.5相变存储记忆效应 (24) 2.4.6磁阻记忆效应 (26) 2.4.7铁电隧穿效应 (28) 2.5 RRAM与忆阻器 (30) 3 RRAM研究现状与前景展望 (33) 参考文献 (36)

阻变随机存储器(RRAM) 引言: 阻变随机存储器(RRAM)是一种基于阻值变化来记录存储数据信息的非易失性存储器(NVM)器件。近年来,NVM器件由于其高密度、高速度和低功耗的特点,在存储器的发展当中占据着越来越重要的地位。硅基flash存储器作为传统的NVM器件,已被广泛投入到可移动存储器的应用当中。但是,工作寿命、读写速度的不足,写操作中的高电压及尺寸无法继续缩小等瓶颈已经从多方面限制了flash存储器的进一步发展。作为替代,多种新兴器件作为下一代NVM器件得到了业界广泛的关注[1、2],这其中包括铁电随机存储器(FeRAM)[3]、磁性随机存储器(MRAM)[4]、相变随机存储器(PRAM)[5]等。然而,FeRAM及MRAM 在尺寸进一步缩小方面都存在着困难。在这样的情况下,RRAM器件因其具有相当可观的微缩化前景,在近些年已引起了广泛的研发热潮。本文将着眼于RRAM 的发展历史、工作原理、研究现状及应用前景入手,对RRAM进行广泛而概括性地介绍。 1 RRAM技术回顾 虽然RRAM于近几年成为存储器技术研究的热点,但事实上对阻变现象的研究工作在很久之前便已开展起来。1962年,T. W. Hickmott通过研究Al/SiO/Au、Al/Al2O3/Au、Ta/Ta2O5/Au、Zr/ZrO2/Au以及Ti/TiO2/Au等结构的电流电压特性曲线,首次展示了这种基于金属-介质层-金属(MIM)三明治结构在偏压变化时发生的阻 变现象[6]。如图1所示,Hickmott着重研究了基于Al2O3介质层的阻变现象,通

EEPROM存储器概述

非易失性存储器概述 一、介绍 这篇文章论述了非易失性存储器(NVM)基本概况。第1部分介绍了非易失性存储器的主要背景以及一些存储器的基本术语。第2部分主要阐述了非易失性存储器的工作原理(通过热电子注入实现编程)。第3部分包含了非易失性存储器的擦除原理,以及隧道效应。第4部分介绍了用于预测非易失性存储器的编程特性的模型,用“幸运电子”模型来表述热电子注入模式。第5部分主要介绍非易失性存储器可靠性,包括在数据保存、耐受力和干扰影响下的可靠性。 关键词:非易失性,存储器,热电子注入,隧道效应,可靠性,保存,存储干扰,EEPROM,Flash EEPROM。 存储器分为两大类:易失性存储器和非易失性存储器。易失性存储器在掉电后会失去其所存储的数据,故而需要继续不断的电源才能保存数据。大部分的随机存取存储器(RAM)都是易失性的。非易失性存储器则在掉电后不会丢失数据。一个非易失性存储器(NVM)本质上是一个MOS管,由一个源极、一个漏极、一个门极,以及一个浮栅。与常用的MOSFET 不同的是,NVM多了一个浮栅,浮栅与其它部分是绝缘的。非易失性存储器又细分为两个主要的分类:浮栅型和电子俘获型。Kahng 和Sze在1967年发明了第一个浮栅型器件。在这种器件中,电子受隧道效应的影响,通过一个3nm厚的二氧化硅层,从一个浮栅中转移到基层中。通过隧道效应,非易失性存储器可以更容易地被擦除或改写,通常隧道效应只在厚度小于12nm的氧化物中存在。浮栅中存储电子后,可以使得阈值电压被降低或者提高,而阈值电压的高低也就分别代表了逻辑值1或0。 在浮栅型存储器件中,电子(也即是数据)存储在浮栅中,故而掉电后,数据不会丢失。所有的浮栅型存储器件都是一样的存储单元结构,如下图1所示,一个存储单元由门极MOS 管堆叠而成。第一个门是浮栅门,被埋在栅氧化层(Gate Oxide)和内部多晶硅绝缘层(IPD)之间,位于控制门(Control Gate)的下方。内部多晶硅绝缘层将浮栅隔绝起来,它可以是氧化物,或者氧化物-氮化物-氧化物层(ONO)。SiO2绝缘层将MOS管包围起来,作为保护层,使其免受划伤和杂质污染。第二个门极是控制门,这个门是可以被外部所接触到的。浮栅门常用在EPROM里(Electrically Programmable Read Only Memory)和EEPROM 里(Electrically Erasable and Programmable Read Only Memory)。 图1:基本的浮栅门结构

阻变存储器单元结构及集成

阻变存储器单元结构及集成 1.1 交叉阵列中的串扰 图1. 1.1 交叉阵列结构集成中的串扰现象 阻变存储器被认为是很有潜力的下一代存储器的候选者。它具有电阻转变速度快、功耗低、存储密度高和良好的可缩小性特点。由于具有最小的单元面积4F2,交叉阵列结构被认为是存储器最经济的集成方式。但是,目前所报道的阻变存储器的低阻态I-V特性曲线几乎是线性且对称的(类似于电阻特性),在一个最简单的2×2交叉阵列结构中,如果有一个存储器单元处于高阻态而其他三个单元处于低阻态,在读取该高阻态的存储单元状态时电流将沿着三个处于低阻态的存储器单元形成一条漏电通道,如图1. 1.1所示,这就是串扰。当阵列m×n(m, n>2)变得很大时,所述漏电通道将增多,漏电流增大从而导致误读。目前解决误读最有效的方法就是在每个存储单元上集成一个晶体管或者二极管构成有源结构和无源结构。 1.1.1 有源结构 在有源结构单元中,使用一个晶体管和阻变存储器串联来形成one transistor one resistor(1T1R)。如图1.1.1所示,在1T1R结构中,晶体管起到选通和隔的作用。当对阻变存储器单元操作时,晶体管导通,这样就选择了所需操作的单元;而其他阻变存储器单元的晶体管关闭,这样能够避免对周围单元产生串扰和误操作,起到隔离的作用。1T1R结构中器件的最小面积取决于选择晶体管的大小,最小单元面积为6F2。2002年Zhuang等人首次采用0.5 μm CMOS工艺制备了基于1T1R结构的64位的RRAM阵列。1T1R结构集成时是将晶体管在前端工艺完成,而RRAM存储器件则在后端工艺完成,由于RRAM存储器在后端工艺完成,所以必须考虑热预算,工艺温度不可过高。 图1.1.1 1T1R 结构阻变存储器单元示意图 1.1.2 无源交叉阵列结构 相比于有源结构单元,由于具有最小的单元面积4F2,无源的交叉阵列结构被认为是存储器最经济的集成方式。在交叉阵列结构中,通过相互垂直的上下电

阻变随机存储器(RRAM)综述(自己汇总整编)

.- 目录 引言 (1) 1 RRAM技术回顾 (1) 2 RRAM工作机制及原理探究 (4) 2.1 RRAM基本结构 (4) 2.2 RRAM器件参数 (6) 2.3 RRAM的阻变行为分类 (7) 2.4 阻变机制分类 (9) 2.4.1电化学金属化记忆效应 (11) 2.4.2价态变化记忆效应 (15) 2.4.3热化学记忆效应 (19) 2.4.4静电/电子记忆效应 (23) 2.4.5相变存储记忆效应 (24) 2.4.6磁阻记忆效应 (26) 2.4.7铁电隧穿效应 (28) 2.5 RRAM与忆阻器 (30) 3 RRAM研究现状与前景展望 (33) 参考文献 (36)

阻变随机存储器(RRAM) 引言: 阻变随机存储器(RRAM)是一种基于阻值变化来记录存储数据信息的非易失性存储器(NVM)器件。近年来,NVM器件由于其高密度、高速度和低功耗的特点,在存储器的发展当中占据着越来越重要的地位。硅基flash存储器作为传统的NVM器件,已被广泛投入到可移动存储器的应用当中。但是,工作寿命、读写速度的不足,写操作中的高电压及尺寸无法继续缩小等瓶颈已经从多方面限制了flash存储器的进一步发展。作为替代,多种新兴器件作为下一代NVM器件得到了业界广泛的关注[1、2],这其中包括铁电随机存储器(FeRAM)[3]、磁性随机存储器(MRAM)[4]、相变随机存储器(PRAM)[5]等。然而,FeRAM及MRAM 在尺寸进一步缩小方面都存在着困难。在这样的情况下,RRAM器件因其具有相当可观的微缩化前景,在近些年已引起了广泛的研发热潮。本文将着眼于RRAM 的发展历史、工作原理、研究现状及应用前景入手,对RRAM进行广泛而概括性地介绍。 1 RRAM技术回顾 虽然RRAM于近几年成为存储器技术研究的热点,但事实上对阻变现象的研究工作在很久之前便已开展起来。1962年,T. W. Hickmott通过研究Al/SiO/Au、Al/Al2O3/Au、Ta/Ta2O5/Au、Zr/ZrO2/Au以及Ti/TiO2/Au等结构的电流电压特性曲线,首次展示了这种基于金属-介质层-金属(MIM)三明治结构在偏压变化时发生的阻 变现象[6]。如图1所示,Hickmott着重研究了基于Al2O3介质层的阻变现象,通

存储系统概述

存储系统概述 第3章存储系统第3章存储系统3.1存储器概述3.2半导体读写存储器3.3半导体只读存储器和闪速存储器3.4主存储器与CPU的连接3.5并行存储器3.6高速缓冲存储器(Cache)3.7虚拟存储器3.8外存储器典型习题与解答 3.1存储器概述 3.1.1存储器分类 3.1.2存储系统的设计及分级结构 3.1.3主存储器的性能指标 3.1.1存储器分类存储器:计算机硬件系统中用于存放程序和数据等二进制信息的部件。 1、按存储介质分类 2、按存取方式分类 3、按在计算机中的功能分类 4、其他分类1、按存储介质分类(1)由半导体器件组成的半导体存储器; (2)由磁性材料做成的磁表面存储器,例如磁盘存储器和磁带存储器; (3)由光介质构成的光介质存储器,一般做成光盘。 2、按存取方式分类(1)随机存取存储器RAM(Random Access Memory) 存储单元都能按地址访问,而且存取时间与存储单元的物理位置无关的存储器,称为RAM。 例如半导体读写存储器

主要用途:主存、Cache、外设缓存。 (2)顺序存取存储器SAM(Sequential Access Memory) 信息按顺序写入或读出的存储器,称为SAM。以记录块为单位编址。例如:磁带存储器 特点:存储容量大,位价格低廉,存取速度慢。 主要用途:辅助存储器。 (3)直接存取存储器DAM(Direct Access Memory) 首先按存取信息的区域随机访问,然后在指定区域用顺序方式存取的存储器,称为DAM。例如:磁盘存储器 特点:容量较大,速度和位价格介于SAM和RAM之间 主要用途:辅助存储器。 3、按在计算机中的功能分类(1)主存储器(主存) 用于存放计算机运行期间的大量程序和数据的存储器,CPU能直接访问。 由动态MOS存储器构成 (2)高速缓冲存储器Cache Cache:介于CPU和主存之间的高速小容量存储器,用于存放最活跃的程序块和数据。特点:速度快,但容量小。(3)辅助存储器(外存储器)存放当前暂不参与运行的程序和数据,需要时再与主存成批交换 信息的存储器。 组成:磁表面存储器,光盘存储器。 特点:容量大,可存放大量的程序和数据,但速度慢。 外存的信息需要调入主存后才能被CPU使用。(4)控制存储器CM

练好基本功,加强高性能器件研究—国家自然科学基金2009(精)

Vol.31,No.2Journal of Semiconductors February2010 练好基本功,加强高性能器件研究—国家自然科学基金2009年半导体科学领域 申请项目概况分析 何杰 (国家自然科学基金委员会信息科学部,北京100085) 摘要:2009年度半导体科学领域申请项目数维持了稳步增长的势头,但各学科分支的发展仍不平衡。虽然经过近几年的迅猛发展,半导体学科在基础研究和应用研究方面都取得了丰硕的成果,与其他学科相互交叉渗透的项目逐年增多,有关新材料、新器件的探索层出不穷,但在很多关键科学问题和基础工艺方面的进展尚很不尽如人意,制约了学科的进一步发展,也导致许多成果难以转化为可实用化的技术,形成生产力。这需要引起广大科研人员的注意,如何在申请和评审基金过程中很好地把握这一点,需要我们今后几年不断地思索和探究。本文将简述2009年半导体领域基金申请与资助概况,分析近期动态及学科对策,并附2009年半导体学科领域资助的项目清单,供有关科技工作者参考。 关键词:自然科学基金;半导体科学;项目申请 国家自然科学基金委员会信息科学部半导体科学与信息器件学科组2009年度共受理面上基金申请557项(2008年482项),青年基金323项(2008年268项),地区基金16项(2008年9项),三类项目合计896项(2008年759项),总数较2008年小幅增长8.4%。表1列出了这三类项目的申请和资助情况。表中资助率和资助强度两列中括号内的数据是包含一年执行期的小额资助项目,括号外的数据只算了三年期的大额资助项目。从表1可以看出青年基金和地区基金的平均资助强度与面上基金存在较大差距,从2007年青年基金和地区基金划归人才系列后,青年基金将注重维持并逐步提高资助率,面上基金则会使其平均资助强度逐步向50万元靠拢。由于青年基金每人只有一次获资助机会,今后将尽量不安排小额资助;地区基金的申请规模太小,今后将加大宣传力度,鼓励符合条件地区的科研人员申请地区基金。2010年面上基金平均资助强度可能会在42万元左右,请广大申请人和评议人注意。 表2列出了面上基金和青年基金在各二级申请代码所代表的分支领域中的分布。从表中可以看出,与2008年相比面上基金中“半导体光电子器件”和“半导体微纳机电器件与系统”两个分支领域申请项目数增长较大,青年基金中“集成电路设计与测试”和“半导体物理”两个分支领域申请项目数增长较大;“新型信息器件”领域的申请项目数也显示出良好的增长势头,但总量尚小,今后还需要进一步地鼓励和倾斜支持,欢迎大家踊跃申请,促进各学科均衡发展。特别需要指出的是,“半导体晶体与薄膜材料”和“新型信息器件”两个分支领域面上基金比青年基金明显强势,长此以往可能不利于学科可持续发展。 2009年申请项目的一个突出特点是器件类项目大幅增加,特别是太阳电池、传感器件、微波功率器件方面的项目增加较多。这类项目通常给人的印象是在前沿性、基础性、学术创新性方面略显不足,但工艺技术性较强,具有重要应用前景和意义。但实际上这类项目在器件物理、结构、工艺及封装等方面都存在着深层次的问题且不易被人们轻易认识,也难以被人们解决,由于这类项目的应用意义较大,文献中通常很少述及这些深层次问题及其解决方案。今后我们将对这类器件研究予以倾斜支持,鼓励大家深入挖掘各类高性能信息器件方面的科学问题,大力开展器件物理、工艺、失效机理和可靠性方面的研究,为实现高性能的信息器件奠定科学基础,只有“练好基本功,加强高性能器件研究”,才能改变我国在高端器件方面短缺的现状。希望广大科研人员在申请和评审基金项目时能够充分关注这一点。 随着微电子技术的发展,32纳米工艺已经步入产业阶段,有关小尺寸器件的探索愈发迫切,关于SoC、NoC 和SiP的研究也会越来越走向现实;随着无线传感网和物联网的兴起,相关的芯片研究也将逐步受到重视,特别是射频技术和低功耗技术更是其中的关键;自旋器件和量子比特器件等新型器件的研究会更加活跃,相关的新材料、新器件探索会层出不穷,相关器件工艺和建模的研究也会增多;微纳结构光子学的研究是今后几年的热点,必将会促进光电集成和光子集成的发展;化石能源的日渐匮乏,使太阳能的利用愈发引人关注,半导体科学与信息器件领域太阳电池的研究大幅增加。但所有这些研究的进展都受制于我们的微纳加工能力和器件工艺,如何深入挖掘微纳加工和器件工艺中的深层次科学问题,加强对这方面研究的支持,突破困扰我们发展的瓶颈,将是我们今后几年工作的重点目标。希望广大科研人员多提好的项目和建议,为我国半导体科学与信息器件领域基础研究的发展献计献策,贡献智慧。 2010年修订了多项基金管理办法,特此提醒广大申请者注意查询最新规定,认真阅读2010年项目指南和申请书填写须知,不要只凭经验,造成不必要的失误,影响项目申请的受理和送审。特别提请申请人填写真实的个人信息,所有参加人员亲笔签名,申请代码填写至第三级。 表3、4、5、6分别列出了2009年半导体科学与信息器件学科组获资助的面上、青年、地区和重点项目,供感兴趣的科技工作者参考。 通信作者.Email:hejie@https://www.wendangku.net/doc/ee5091673.html, Received21January2010c 2010Chinese Institute of Electronics

存储器知识点小结

CPU工作的实质即为不断从存中取指令并执行指令的过程。 一、8086CPU构成 CPU的工作:取指令和执行指令 1.C PU部两大功能部件:总线接口部件BIU和执行部件EU(2部件并行工作提高了CPU的工作效率) 重点:理解2个独立功能部件的分工和协同配合关系。 理解BIU地址加法器的作用,理解指令队列的作用。 2.掌握CPU部寄存器的作用 包括:通用寄存器AX,BX,CX,DX,BP,SP,SI,DI 段寄存器CS,DS,SS,ES 指令指针寄存器IP 标志寄存器FLAG 二、存储器的基础知识 1.物理地址 8086的存储器是以字节(即每个单元存放8位二进制数)为单位组织的。8086CPU具有20条地址总线,所以可访问的存储器地址空间容量为220即1M字节(表示为1MB)。每个单元对应一个唯一的20位地址,对于1MB存储器,其地址围用16进制表示为00000H~0FFFFFH,如图1所示。

地址低端 地址高端 图1 1MB存储器地址表示 物理地址:存储器的每个单元都有一个唯一的20位地址,将其称为物理地址。 2.字节地址与字地址 存储器两个连续的字节,定义为一个字,一个字中的每个字节,都有一个字节地址,每个字的低字节(低8位)存放在低地址中,高字节(高8位)存放在高地址中。字的地址指低字节的地址。各位的编号方法是最低位为位0,一个字节中,最高位编号为位7;一个字中最高位的编号为位15。 字数据在存储器中存放的格式如图2所示。 地址低端 地址高端 图2 字数据在存储器中的存放

3.单元地址与容 内容 单元地址 图3 如图3,地址是00100H的字节单元的容为27H,表示为(00100H)= 27H。 图3中字数据3427H存放在地址是00100H和00101H的两个字节单元中,其中低字节27H在低地址的字节单元00100H中,高字节34H在高地址的字节单元00101H中,字数据3427H的地址是低地址00100H。地址是00100H的字单元的容为3427H,表示为(00100H)= 3427H 可见一个地址既可作字节单元的地址,又可作字单元的地址,视使用情况而定。 总结: 字节单元:(00100H)=27H 字单元:(00100H)=3427H 设寄存器DS=0000H, 用MOV指令访问字节单元:MOV AL,[0100H] 用MOV指令访问字单元:MOV AX,[0100H] 三、存储器的分段 1.为什么要分段

嵌入式存储器发展现状

嵌入式存储器发展现状 北京芯技佳易微电子科技有限公司 薛霆 李红 摘要:文章中简要介绍了嵌入式存储器技术发展历程,详细地介绍了基于标准工艺上嵌入式存储器的技术 关键词:IP SOC 存储器eDRAM OTP MTP 嵌入式闪存 1T-SRAM 2T-SRAM Abstract: Paper reviews historic development of embedded memory technologies. A few of embedded memory technologies based on standard process is introduced in more details. Keywords: IP SOC Memory eDRAM OTP MTP eFlash 1T-SRAM 2T-SRAM 1、引言 嵌入式存储器不同于片外存储器,它是集成在片内与系统中各个逻辑、混合信号等IP共同组成单一芯片的基本组成部分。嵌入式存储器包括嵌入式静态存储器,动态存储器和各种非挥发性存储器。几乎今天每一个SOC芯片中都含有或多或少多种嵌入式存储器的应用。 图1 嵌入式存储器的分类 嵌入式存储器大体分为两类,一类是挥发性存储器,另一类是非挥发性存储器,挥发性存储器包括速度快,功耗低,简单的SRAM和高密度的DRAM;而非挥发性存储器在实际使用中有更多种类,常用的包括OTP,ROM和EEPROM 及越来越普及的eFlash技术。非挥发性存储器主要用于存储器掉电不丢失的固定数据和程式。 嵌入式存储器和分立式存储器重要不同之处在于嵌入式存储器往往受限于应用IC的本身工艺特性条件,而分立式存储器件主要是围绕存储器器件进行优化工 图1-嵌入式存储器的分类

存储器的发展与技术现状.

存储器的发展史及技术现状 蔡文杰计科 3 班 20122352 1. 存储器发展历史 1.1 存储器简介 存储器( Memory)是计算机系统中的记忆设备,用来存放程序和数据。计算机中 的全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。自世界上第一台计算机问世以来,计算机的存储器件也在不断的发展更新,从一开始的汞延迟线,磁带,磁鼓,磁芯,到现在的半导体存储器,磁盘,光盘,纳米存储等,无不体现着科学技术的快速发展。 1.2 存储器的传统分类 从使用角度看, 半导体存储器可以分成两大类: 断电后数据会丢失的易失性存储 器和断电后数据不会丢失的非易失性存储器。过去都可以随机读写信息的易失性存储器称为RAM(Randoo Aeeess Memory),根据工作原理和条件不同,RAM又有静态和动态之分, 分别称为静态读写存储器SR AM(St ate RAM)和动态读写存储器DRAM(Dynamie RAM而); 过去的非易失控存储器都是只读存储RoM(Readon一y Memo-ry), 这种存储器只能脱机写人信息, 在使用中只能读出信息而不能写人或改变信息.非易失性存储器包含各种不同原理、技术和结构的存储器. 传统的非易失性存储器根据写人方法和可写人的次数的不同, 又可分成掩模只读存储器MROM(Mask RO、M一) 次性编程的OTPROM(one Time Programmable ROM和)可用萦外线擦除可多次编程的Uv EPROM(Utravio-let ErasableProgrammable ROM). 过去的OTP ROM都是采用双极性熔丝式,这种芯片只能被编程一次, 因此在测试阶段不能对产品进行编程性检侧, 所以产品交付用户后,经常在编程时才会发现其缺陷而失效,有的芯片虽然能被编程,但由于其交流性不能满足要求, 却不能正常运行. 故双极性熔丝式PROM产品的可信度不高. 2. 半导体存储器 由于对运行速度的要求,现代计算机的内存储器多采用半导体存储器。半导体存储器包括只读存储器( ROM)和随机读写存储器( RAM)两大类。 2.1 只读存储器 ROM是线路最简单的半导体电路,通过掩模工艺,一次性制造,在元件正常工作的情况下,其中的代码与数据将永久保存,并且不能够进行修改。一般地,只读

F28335存储器功能概述

F28335存储器功能概述 班级: 姓名: 学号:

F28335芯片整体功能框图 存储器映射 1、F28335使用32位数据地址线和22位程序地址线。 2、32位数据地址线可访问4GB的数据空间, 16位/32位 3、22位程序地址线可访问4MB的程序空间。 16位/32位。 4、存储器模块采用统一编址方式映射到程序空间和数据空间。F28335的存储器分为以下几部分: 1. 单周期访问RAM(SARAM) 2. Flash存储器 3. OTP存储器 4. Boot ROM(装载了引导程序) 5. 安全模块 6. 外设存储器(片内的外设) 7. 片外存储器 一、单周期访问RAM(SARAM) 共分10部分: (1)M0和M1,可映射到数据空间或程序空间

(2)L0~L3、 L4~L7,可映射到数据空间或程序空间 二、flash存储器 闪存的英文名称是"Flash Memory",一般简称为"Flash",它属于内存器件的一种,是一种不挥发性( Non-Volatile )内存。闪存的物理特性与常见的内存有根本性的差异:目前各类 DDR 、 SDRAM 或者 RDRAM 都属于挥发性内存,只要停止电流供应内存中的数据便无法保持,因此每次电脑开机都需要把数据重新载入内存;闪存在没有电流供应的条件下也能够长久地保持数据,其存储特性相当于硬盘,这项特性正是闪存得以成为各类便携型数字设备的存储介质的基础。是非易失存储器,可以对称为块的存储器单元块进行擦写和再编程。任何flash器件的写入操作只能在空或已擦除的单元内进行,所以大多数情况下,在进行写入操作之前必须先执行擦除。F28335的Flash存储器一般可以把程序烧写到Flash中,以避免带着仿真器试调。F28335器件包含256K*16位的嵌入式闪存存储器,被分别放置在8个32k*16位扇区内。 三、OTP存储器 OTPROM(One Time Programmable Read-Only Memory),可以进行片内编程操作,而且可以增强加密功能。然而OTP ROM MCU的OTPROM 存在一个缺点:不可擦除,也就是说只能编程一次,不能实现重复编程,不利于大量普及使用。当程序从仿真器移植到单片机的OTPROM 时,并不能保证程序的一次成功性,由于单片机的不可擦除性,若程序脱机一次就使用一片单片机,显然将造成巨大的资源浪费。另一方面,对于复杂系统,16 KB的OTPROM容量如果不够,则需要采用扩展外部存储器,为了保证有效实现加密功能,应保留一部分程序在

阻变存储器概述

阻变存储器概述 阻变存储器(RRAM)是利用脉冲电压对存储单元进行写入和消除,进而导致记忆单元电阻改变,这就是电脉冲诱使阻变效应。 2.1 电阻转换现象 利用一些薄膜材料在电激励条件下薄膜电阻在不同电阻状态(高阻态(HR S)、低阻态(LRS))之间的相互转换来实现数据存储。根据电阻转换所需外加电压极性的不同,RRAM器件的电阻转变特性可以分为两种切换模式:单极转换和双极转换。从HRS到LRS的转换被称为“SET”过程。相反,从LRS到H RS的转换被称为“RESET”过程。单极转换是指器件在高低组态之间转变时外加电压极性相同。如果器件能在任意极性的电压实现高低阻态的转变,它被称作为无极性转换。双极开关的切换方向取决于所施加的电压的极性。 图2.2.1 (a)RRAM基本结构示意图和RRAM转换特性,(b)单极性转换,(c) 双极性转换 对于单极转换必须设置限制电流,对于双极转换,不一定需要设置限定电流的大小。施加在RRAM上的电压可以是脉冲电压或扫描电压,实际应用中利用扫描电压改变记忆单元电阻是不行的。除了使用直流电压改变阻态,还可以用电脉冲诱导电阻转变(EPIR)效应实现记忆单元阻值转换。利用改变脉冲电压的极性完成高低阻态的转变,如图1.2.2所示。

图2.2.2 脉冲诱使电阻转换的可重复现象 2.2 RRAM器件的阻变机制 到目前为止,电阻转换的真正机制还未确定,机制的不明确严重影响阻变存储器的应用步伐[6]。阻变效应属于材料的体效应还是氧化物与电极间的界面效应是需要解决的重大难点。目前,对于电阻转换现象的解释,研究人员提出了下面几种模型,主要有:导电细丝模型,界面接触势垒模型,缺陷能级模型。 2.2.1 导电细丝模型 导电细丝(CF,conducting filament)机制是一种局域化的效果,仅在介质薄膜的局部发生电阻的转变。从目前报道来看,固态电解液和大多数金属氧化物RRAM的电阻转变都与局部导电细丝的形成与断裂有关[7]。 图2.2.1 导电细丝模型 导电细丝主要原理:电路导通时,薄膜内部会形成传导路径,使通过电流变大,这时薄膜器件处于开启状态(ON state);当导电通道断裂后,薄膜电流变小,这时薄膜器件处于关闭状态(OFF state)。图2.2.1为C.C Lin et al.人提出的导电细丝模型。(a)处于ON state,(b)、(c)、(d)都处于OFF state。

计算机存储器概述

计算机存储器概述 位(bit)是二进制数的最基本单位,也是存储器存储信息的最小单位,8位二进制数称为一个字节(byte)。当一个数作为一个整体存入或取出时,这个数叫做存储字。存储字可以是一个字节,也可以是若干个字节。若干个忆记单元组成一个存储单元,大量的存储单元的集合组成一个存储体(MemoryBank)。 为了区分存储体内的存储单元,必须将它们逐一进行编号,称为地址。地址与存储单元之间一一对应,且是存储单元的唯一标志。应注意存储单元的地址和它里面存放的内容完全是两回事。 存储器在计算机中处于不同的位置,可分为主存储器和辅助存储器。在主机内部,直接与CPU交换信息的存储器称主存储器或内存储器。在执行期间,程序的数据放在主存储器内,各个存储单元的内容可通过指令随机访问,这样的存储器称为随机存取存储器(RAM)。另一种存储器叫只读存储器(ROM),里面存放一次性写入的程序或数据,仅能随机读出。RAM和ROM共同分享主存储器的地址空间。 因于结构、价格原因,主存储器的容量受限。为满足计算的需要而采用了大容量的辅助存储器或称外存储器,如磁盘、光盘等。 存储器的主要技术指标 存储器的特性由它的技术参数来描述。 一、存储容量:存储器可以容纳的二进制信息量称为存储容量。主存储器的容量是指用地址寄存器(MAR)产生的地址能访问的存储单元的数量。如N位字长的MAR能够编址最多达2N个存储单元。一般主存储器(内存)容量在几十K到几M字节左右;辅助存储器(外存)在几百K到几千M字节。 二、存储周期:存储器的两个基本操作为读出与写入,是指将信息在存储单元与存储寄存器(MDR)之间进行读写。存储器从接收读出命令到被读出信息稳定在MDR的输出端为止的时间间隔,称为取数时间TA;两次独立的存取操作之间所需的最短时间称为存储周期TMC。半导体存储器的存储周期一般为100ns-200ns。 三、存储器的可靠性:存储器的可靠性用平均故障间隔时间MTBF来衡量。MTBF可以理解为两次故障之间的平均时间间隔。MTBF越长,表示可靠性越高,即保持正确工作能力越强。 四、性能价格比:性能主要包括存储器容量、存储周期和可靠性三项内容。性能价格比是一个综合性指标,对于不同的存储器有不同的要求。对于外存储器,要求容量极大,而对缓冲存储器则要求速度非常快,容量不一定大。因此性能/价格比是评价整个存储器系统很重要的指标。(俞欣)

阻变随机存储器(RRAM)综述(自己整理)

目录 引言 (1) 1R R A M技术回顾 (1) 2 RRA M工作机制及原理探究 (4) 2.1R R A M基本结构 (4) 2.2R R A M器件参数 (6) 2.3 RR A M的阻变行为分类 (7) 2.4阻变机制分类 (9) 2.4.1电化学金属化记忆效应 (11) 2.4.2价态变化记忆效应 (15) 2.4.3热化学记忆效应 (19) 2.4.4静电/电子记忆效应 (23) 2.4.5相变存储记忆效应 (24) 2.4.6磁阻记忆效应 (26) 2.4.7铁电隧穿效应 (28) 2.5R R A M与忆阻器 (30) 3R RA M研究现状与前景展望 (33) 参考文献 (36)

阻变随机存储器(RRAM) 引言: 阻变随机存储器(RRAM)是一种基于阻值变化来记录存储数据信息的非易失性存储器(NVM)器件。近年来,NVM器件由于其高密度、高速度和低功耗的特点,在存储器的发展当中占据着越来越重要的地位。硅基flash存储器作为传统的NVM器件,已被广泛投入到可移动存储器的应用当中。但是,工作寿命、读写速度的不足,写操作中的高电压及尺寸无法继续缩小等瓶颈已经从多方面限制了flash存储器的进一步发展。作为替代,多种新兴器件作为下一代NVM器件得到了业界广泛的关注[1、2],这其中包括铁电随机存储器(FeRAM)[3]、磁性随机存储器(MRAM)[4]、相变随机存储器(PRAM)[5]等。然而,FeRAM及MRAM在尺寸进一步缩小方面都存在着困难。在这样的情况下,RRAM器件因其具有相当可观的微缩化前景,在近些年已引起了广泛的研发热潮。本文将着眼于RRAM的发展历史、工作原理、研究现状及应用前景入手,对RRAM进行广泛而概括性地介绍。 1 RRAM技术回顾 虽然RRAM于近几年成为存储器技术研究的热点,但事实上对阻变现象的研究工作在很久之前便已开展起来。1962年,T. W. Hickmott通过研究 Al/SiO/Au、Al/Al2O3/Au、Ta/Ta2O5/Au、Zr/ZrO2/Au以及Ti/TiO2/Au等结构的电流电压特性曲线,首次展示了这种基于金属-介质层-金属(MIM)三明治结构在

相关文档