文档库 最新最全的文档下载
当前位置:文档库 › 喷丸强化对25MoCr5钢渗碳齿轮组织及性能的影响

喷丸强化对25MoCr5钢渗碳齿轮组织及性能的影响

喷丸强化对25MoCr5钢渗碳齿轮组织及性能的影响
喷丸强化对25MoCr5钢渗碳齿轮组织及性能的影响

喷丸强化对25MoCr5钢渗碳齿轮组织及性能的影响

作者:上海大学 郭锐 王荣华

摘要:研究了喷丸参数对残余压

应力的影响,分析了喷丸对渗碳层硬度和显微组织的影响,初步探讨了喷丸后进行应力松驰低温回火所对应的残余应力场。 关键词:喷丸强化;残余应力;低温回火

1 引言

喷丸强度通常采用弧高值法,即根据试片弧高值与同等条件下金属表面内应力间有对应关系这一原理来测定的。这个方法的不足之处是不能精确测量距表面50μm 以内的内应力值。而对材料的疲劳寿命起决定性作用的恰恰是此表面层内的内应力值。我们采用RICH SEIFERT&Co 公司的7轴衍射(7-Axes-Diffractometer )X 射线应力分析仪,就喷丸参数对残余内应力的影响进行了研究,分析了喷丸对渗碳层硬度和显微组织的影响,初步探讨了喷丸后经低温回火使应力松弛所对应的残余应力场。

2 试验材料和方法

2.1 试验材料

试验采用上海汽车齿轮总厂生产的桑塔纳轿车变速箱一档从动齿,材料为25MoCr5钢,化学成分见表1。

2.2 热处理工艺及喷丸工艺

齿轮在上海汽车齿轮总厂的Aichelin 多用炉中渗碳处理,碳势1%,温度900℃,

淬火油温

70℃(G油),回火170℃,在叶轮式抛丸机(wheel labrator)上进行喷丸处理。

2.3 组织形貌、硬度及应力测定

在RICH SERFERT&Co公司的X射线应力分析仪上测定残余应力沿层深分布,显微硬度在AKASI MVK-E上测量,载荷砝码50g。每一深度测3次,取平均值。用日立S-500型扫描电镜和蔡氏NEOPHOT-21型光学显微镜进行显微组织分析。残留奥氏体量在理学电机(Rigaku)株式会社的转靶X射线衍射仪上测定。

3 试验结果及分析

3.1 喷丸参数对残余压应力的影响

改变喷丸时间,并保持喷丸速度为2900r/min,丸粒硬度为57HRC,所得应力值如图1所示。改变喷丸速度,并保持喷丸时间15s,丸粒硬度为57HRC,所得应力值如图2所示。

图1 残余应力随时间的变化规律

图2 残余应力随转速的变化规律

由图1看出,随着喷丸时间的增加,距试样表层5μm、25μm、50μm处的残余压应力都逐渐增加,在10s以后,25μm深处的残余应力的递增速度超过5μm处。正是因为,随着喷丸时间的延长,残余应力由表层向材料内部逐渐渗透,但表层的组织在喷丸的作用下遭到了一定的损坏,粗糙度增加,可能产生微小裂纹使残余应力值有所降低。由图2看出,随

着钢丸转速增加,残余应力值也随之增加。但当转速超过3000r/min,距表层5μm处的残余应力值有所下降。这是因为,钢丸转速增加,喷丸作用增大,残余应力值上升明显,但超过一定喷丸强度后,表层组织遭到破坏,产生微小裂纹,使残余应力值下降。由图1、2可看出,在喷丸过程中,过度喷丸对表层有损害作用,因此选择喷丸参数时,既要考虑到残余应力要达到一定的数值,又要防止过度喷丸。

3.2 喷丸对渗碳层硬度的影响

对喷丸前后的显微硬度的分布进行测试,其结果见图3。

由图3曲线可以看出,喷丸件表层显微硬度明显提高,心部组织硬度基本相同。硬度发生变化区域均为距表面0.1mm范围以内,最大变化区域在距表面0.1mm附近,表层的硬度显著提高是受到高的残余压应力、加工硬化和组织变化综合作用的结果,其中残留奥氏体的显著减少对硬度提高也作出了贡献。

3.3 喷丸对渗碳表层内显微组织的影响

用扫描电子显微镜对未喷丸和喷丸(转速为2900r/min)的样品进行分析观察,试验结果见图4。

图4 喷丸对渗层组织的影响

(a)未喷丸(b)经喷丸

试验观察发现,未喷丸的马氏体片间保留有较多的残留奥氏体组织如图4a;喷丸后如图

4b,马氏体的微观亚结构被细化,残留奥氏体诱发转变为马氏体,该马氏体针非常细小。喷丸细化了金属表面的微观亚结构,使金属表面位错密度增加,亚晶细化,晶格畸变加剧。用光学显微摄影仪对未喷丸和喷丸的样品进行分析观察,试验结果见图5。

图5 渗层光学显微组织x400

(a)未喷丸(b)喷丸

试验观察发现,未喷丸试样的残留奥氏体(白色)较喷丸后的残留奥氏体含量多。因为喷丸使试样中的残留奥氏体转变为马氏体,用来提高表面硬度。就表层组织来看,喷丸后的马氏体针明显较未喷丸试样细小致密,这也进一步说明喷丸起到了细化马氏体亚结构的作用。

用X射线衍射仪对未喷丸和经喷丸(转速为2900r/min)的样品进行分析观察,试验结果见图5。从图6中可以看出,喷丸前残留奥氏体的衍射峰在衍射后基本上消失了,说明喷丸能有效地使残留奥氏体转变为马氏体,有利于残余压应力的提高,从而提高齿轮的寿命。

图6 试样的X射线衍射图

(a)未喷丸样品(b)喷丸样品

4 残余应力场的松弛

为了研究喷丸残余应力场的稳定性问题,对两组上海汽车齿轮总厂生产的桑塔纳轿车变速箱一档从动齿试样分别进行了两种处理:一种处理为喷丸强化(3000r/min,15s,57HRC);另一种处理为喷丸强化X应力松弛低温回火。

在RICH SERFERT&Co公司生产的7-Axes-Diffractometer X射线应力分析仪上测定距表面25μm处的残余应力。

喷丸引入的表层残余压应力场在其后的疲劳加载过程中会发生松弛,如图7所示。在疲劳加载初期,喷丸残余应力场会发生急剧的松弛,而在疲劳加载后期,残余应力场的松弛很

缓慢,松弛量也很小,并逐渐趋于稳定态。

图7 残余应力场的松弛

残余应力的迅速松弛是工件服役加载后表层材料剧烈塑性变形的结果。在疲劳加载初期,试样表层的位错密度迅速降低,一方面是由于在外载作用下一部分异号位错在运动中相互抵消;另一方面是由于晶体的大量滑移使位错首先在晶界等障碍物前塞积。当该处的应力达到断裂应力时,随即在塞积处形成一定数量的微裂纹,应力场被松弛,使工件表层造成损伤。而在随后的疲劳循环中,疲劳裂纹在上述各损伤处优先形核,这就必然会降低疲劳裂纹的萌生寿命。一旦其中某一裂纹扩展至一定长度并形成主裂纹时,其他微裂纹会因应力松弛而停止扩展。因此,残余应力的静载松弛是一种损伤性松弛[1]。如果能使喷丸强化效果下的静态残余应力场在疲劳加载前就预先非损伤性松弛到稳态应力场,则可避免残余应力场在疲劳加载初期的静载松弛,最大限度地提高工件的疲劳寿命。因此,在喷丸后又进行了一组应力松弛低温回火试验,来获得稳定的应力场。

回火温度对残余应力的影响如图8所示。试样在不同温度下回火,应力场发生不同程度的松弛。回火温度越高,松弛量越大。一定温度以后,松弛量趋于平衡,具有良好的稳定性。

图8 残余应力场的低温回火松弛

综上所述,疲劳加载和低温回火都可以使喷丸后产生的应力场得到松弛,但是后者通过加热使形变材料的组织结构发生回复,不会给材料带来损伤。低温回火后的喷丸齿轮在疲劳寿命上有所提高。

5 结论

(1)喷丸强化可显著提高渗碳齿轮表面的残余压应力,从而提高齿轮的疲劳寿命。但要对喷丸参数进行合理的选择,防止过度喷丸,以免产生表面缺陷,降低强化效果。

(2)喷丸使渗碳表面硬度增加,距表面愈近,效果愈明显。喷丸造成的表面硬度增加是由于表层组织形变强化及残余压应力值增大的综合结果。

(3)喷丸能够使试样表层的组织强化,即残留奥氏体发生诱发马氏体转变,并且能够细化马氏体的亚结构。

(4)低温回火可以使喷丸后产生的应力场得到松弛,有效地避免了残余应力的静载松弛对材料带来的损伤。

参考文献:

[1]王仁智,李向斌,吴亨喷丸残余压应力场在疲劳加载初期的松弛损伤[J]航空学报,1985,6(3):250(end)

浅谈齿轮渗碳淬火有效硬化层及硬度梯度 随着机械工业的发展,对齿轮的质量要求日益提高,而齿轮的强度寿命和制造精度与热处理质量有很大关系。为了检验齿轮材料热处理质量,在1987年以前,我国的齿轮渗碳淬火内在质量检验标准多为终态金相检验标准。由于检测仪器的精度、分辨率等因素以及检验人员的经验参差不齐,造成检验结果有很大差异和争议。为了解决金相法内在检验存在的弊端,机械部在1987年借鉴了DIN.ISO等标准中有关内容,修订了我国现行齿轮渗碳淬火内在质量检验标准。此检验标准中,其金相组织检验标准基本与原标准相似,主要是对渗碳层深度及碳浓度梯度的测定作了较大的修改。下面就渗碳层深度和碳浓度梯度分别采用金相法与硬度法测定进行简述。 一、渗碳层深度的检测 1.1、金相法 1.1.1、取本体或与零件材料成分相同,预先热处理状态基本 相似的圆试样或齿形试样进行检测。 1.1.2、送检试样热处理状态为平衡状态,即退火状态。 1.1.3、低碳钢渗层深度为:过共析层+共析层+1/2亚共析层。 1.1.4、低碳合金钢渗层深度为:过共析层+共析层+亚共析层。 1.2、硬度法 1.2.1、取样方法同金相法取样方法一致。 1.2.2、送检试样状态为淬火+回火状态。 1.2.3、渗碳深度用有效硬化层来表示,其极限硬度根据不同要

求进行选择。 1.2.4、有效硬化层深度(DCp):从试样表面测至极限硬度(如 HV550)之间垂直距离。 1.3、两种关于渗碳深度检测的方法存在着一定的对应关系,下面 用图形来描述。 从图中可看出:DCp(芯部)>DCp(HV500)>DCp(HV550) DCp(HV550)对应渗碳层中碳含量约为0.35~0.38%,此界限处即为金相法中1/2亚共析层处。 DCp(HV500)对应渗碳层中碳含量约为0.31~0.33%,此界限处为金相法中1/2亚共析层处。 DCp(芯部)对应渗碳层中碳含量为基体碳含量,一般为0.17~0.23%,此界限处为金相法中基体组织。

11111111精密机械有限公司 企业标准 YQB/4003-2016 渗碳淬火质量验收规范 发布时间:2016年 3 月 22 日实施时间:2016年 3 月 22 日11111111精密机械有限公司发布

1、目的 规范自制及委外产品渗淬质量测试的方法和依据,使得渗淬有所依循、保证检测的准确性、稳定性,从而使产品质量得到有效控制,确保本公司向客户提供满意的产品; 2、适用范围 适用于各类自制或委外产品的渗淬质量检控; 3、引用标准 (1) GB/T13299-91 金属显微组织评定方法依据; (2) JB/T 9211-1999 中碳钢与中碳合金结构钢马氏体等级标准; (3) GBT 25744-2010 钢件渗淬回火金相检验标准; (4)GB/T 9450-2005 钢件渗淬硬化层深度的测定和校核依据; (5)GB/T11354-2005 金相组织检验依据; 4、名词解释 (1) 渗淬:渗碳淬火; (2)0收1退:同批次件抽检1件,如合格则整批次接受,不合格整批次退货; (3)试块:渗淬的随炉圆柱形试块,直径25mm*长度50mm,粗糙度Ra3.2; (4)心部硬度:在齿宽中部横截面上,轮齿中心线与齿根圆相交处的硬度; 5、验收项目及标准 渗淬零部件表面硬度、心部硬度、硬化层深、金相组织、表面质量、脱碳层深等; 5.1渗淬件表面质量的检验 1)为得到较为准确的检测结果,零件的检测部位均应进行表面打磨、去掉氧化皮等杂质(成品件或不允许表面打磨的零件检测时,先不进行表面打磨直接在零件不影响外观表面检测。若检测结果不合格时,则须进行破坏性打磨检测,若打磨后检测合格,则判定合格); 2)每一零件原则上应至少检测三次,取其平均值作为评价结果。(第一针为测试针,零件较小或无法取多点除外);

管理制度参考范本 动力钳中渗碳淬火齿轮内花键孔的加工工艺 S a 撰写人:___■_! 门:__111_1111 间:___■__ / 1 / 5

石油钻井和修井动力钳(以下简称动力钳)是我公司的主要产品。 齿轮加工在动力钳的制造过程中占据了很大比例,因此我们在加工过 程中会经常遇到各种齿轮加工方面的问题。其中,渗碳淬火齿轮内花键孔的加工就是比较有代表性的问题。我们公司经过多年实践,摸索了一些比较成熟的加工工艺,取得了良好的效果。 在齿轮加工中,为解决低碳合金钢渗碳齿轮淬火后内花键孔加工 问题,一般采取以下方法。对于花键孔硬度要求不高的齿轮,可在渗碳前。内孔及孔口两端面上留2mn余量,渗碳后车去内孔及端面上的碳渗层余量,使内孔及端面达到最终或工艺尺寸。内孔及端面处的硬度低于刀具硬度,可直接用拉刀拉削内花键。如动力钳上CMf齿轮马达配对齿轮的渐开线内花键就采用了这种加工工艺。这类齿轮也可以在渗碳前,按常规工艺精加工孔。渗碳时,在内孔及孔口两端面上涂上防渗涂料,渗碳后拉削内花键。由于防渗涂料在实际运用时效果不是很好,淬火时还要采用闷头闷内孔,以延缓内孔的冷却速度,降低内孔的淬火硬度,便于淬火后修整键槽。这些方法均是通过降低内花键孔的淬火硬度以便加工,从实际运用上来看,效果不是很理想。 我公司在对动力钳输出齿轮等要求硬齿面花键孔的加工时,通过摸索和借鉴,找出一种比较符合我公司实际情况的加工方法。这就是在渗碳前拉出内花键,渗碳后直接淬火,热处理后在压机上用花键推刀推挤修正内花键。这种加工方法必须控制齿轮内花键孔渗碳淬火后的收缩变形量,以便于下道工序修整内花键。 为了能稳定渗碳淬火后齿轮内花键孔的变形量,我们首先在齿轮材料以及热加工工艺上采取了一些措施。钢材内部组织疏松是导致内孔收缩量大的原因之一。我们严格按照国家标准精选材料,同时加大锻 造比,使组织紧密,以减少内孔收缩量。在锻件中如有魏氏组织与带状组织等缺陷,常温的正火难以消除,组织不均匀使冷加工后残余应 力增加。齿轮渗碳淬火后,内孔变形量增大。因此,严格控制锻造工艺,是减小齿轮内孔变形的重要一环。对于正火温度,我们经过多次试验,将其控制在940-950C,高于渗碳温度,比较符合我们的实际要求。齿坯充分正火后得到均匀的珠光体与铁素体,晶粒度为7-8 级,齿轮内孔变形变小。 动力钳具有花键孔的齿轮形状典型的有图示两种情况。 齿轮形状不同,加热与冷却时,各截面的塑性变形抗力不一。同一材料的齿轮经渗碳淬火后,花键尺寸相同的内径径向收缩量也不同。

仪器在400倍以上的放大倍数下测量压痕。 测定应在各方约定的位置上,在制备好的试样表面上的两条或更多条硬化线上进行,并绘制出每一条线的硬度分布曲线 二.齿轮固体渗碳工艺 (一)渗碳剂的成份及其作用: 固体渗碳剂主要是由木炭粒和碳酸盐(BaCO3或Na2CO3等组成。木炭粒是主渗剂,碳酸盐是催渗剂。 木炭颗粒均匀,并要求3—6mm左右的占80%,1—3mm左右占20%左右,1mm以下的不大于1%,如果是大零件渗碳,大颗粒木炭应多些,小零件,小颗粒应多些。常用的渗碳剂成份如表1所示。 常用渗碳剂的成份 渗碳加热时,炭与其间隙中的氧作用(不完全燃烧),生成一氧化碳。 2C+O2—→2CO 一氧化碳在渗碳条件下,是不稳定的。活性碳原子被钢件表面吸收,并向内部扩散。整个反反应过程可用下式示意表示:C+CO2—→2CO—→CO2+[C]单独用木炭进行渗碳,周期长,效果差,为了增加渗碳剂的活性,增加活性碳原子数量,一般加入一定数量的碳酸盐作为催渗剂。催渗剂在高温下与木碳产生如下反应:BaCO3+C—→BaO2+CO Na2CO3 + C(木炭) —→ Na2O + 2CO 2CO —→ CO2 + [C]渗碳过程中,木炭受到了烧损,但催渗剂分解氧化物,在开箱冷却时与空气接触,如按下方程式进行还原,这使催渗剂消耗大为减少。BaO+CO2—→BaCO3,Na2O+CO2—→Na2CO3 为了提高催渗剂再生效果,在此介绍一种有效的方法,即将高温下倒出来的渗碳剂,立刻用水喷洒(水的重量是渗碳剂重量的4—5%)。通过这样的处理,碳酸盐可得较完全的再生,其原因是:BaO+CO2—→BaCO3这个过程随温度下降而缓慢,如果在高温下喷水,就能使BaO变成氢氧化钡,而氢氧化钡向碳酸钡转变

齿轮基面辨识方法 1、齿轮基面: 齿轮基面是指齿轮的一侧端面,该端面为齿轮一次装夹后车削端面时,同时车削了齿轮的内孔,即内孔与端面一刀车成的端面。 2、齿轮基面标识 (1)工件重量≤10Kg 的零件(通常此类工件无起吊孔),采用单侧打标记的方法,即在非基面侧端面环槽内刻字,基面侧端面不车90°V型基面线。 (2)工件重量>10Kg 的零件(通常此类工件均有起吊孔),采用基面标识的方法,即在工件基面侧起吊孔中心线处车 90°V型0.5mm 深的基面线(标记圆),非基面侧无标识(不车基面线),但是要在非基面侧端面环槽内刻字。 3、基面辨识方法 (1)通过齿轮基面标识的描述去辨别工件基面。 (2)基面侧的外圈端面是车光面,非基面侧的外圆端面为黑皮面。此方法作为辅助判断,不作为辨识基面的标准。 (3)基面侧不打螺纹孔。 (4)基面侧的外圈端面和内圈端面都有圆跳动位置精度的要求。(圆跳动公差

是被测要素在某一固定参考点绕基准轴线旋转一周(零件和测量仪器件无轴向位移)时,指示器值所允许的最大变动量。符号用“↗”表示。) 4、非基面辨识方法 (1)端面环槽内打标记的面都是非基面。 (2)非基面侧只有内圈端面处有圆跳动位置精度要求。

标准齿轮热前粗车留量标准与定义适用范围:减速机上使用的常规齿轮;其中,薄轮不适用本标准,薄轮为:直径/ 厚度≥8 有键齿轮粗车留量标准 1、内孔尺寸(mm) a)内孔直径=(内孔名义值-2*H)±0.1 b)其中H=CHD+0.4,CHD(或Eht)为图纸所标注热处理渗碳层厚度名义值。 c)内孔留量需根据图纸是否要求热后硬度有关联,如内孔热后不需要硬度, 则热前留量需大于有效渗碳层,如内孔热后需要硬度,则热前留量需调整。 2、内圈端面尺寸(mm) a)内圈厚度=(厚度名义值+2* H)±0.1,两侧均匀留量。 b)其中H=CHD+0.4,CHD(或Eht)为图纸所标注热处理渗碳层厚度名义值。 3、外圈端面尺寸(mm) a)外圈厚度=厚度名义值+0.3~0.5 ,余量留在基面侧;公差执行原图纸公差 要求. 4、内孔倒角 a)内孔倒钝0.2~0.5*45°

齿轮热处理工艺【详细介绍】 内容来源网络,由深圳机械展收集整理! 一、工作条件以及材料与热处理要求 1.条件: 低速、轻载又不受冲击 要求: HT200 HT250 HT300 去应力退火 2.条件: 低速(<1m/s)、轻载,如车床溜板齿轮等 要求: 45 调质,HB200-250 3.条件: 低速、中载,如标准系列减速器齿轮 要求: 45 40Cr 40MnB (5042MnVB) 调质,HB220-250 4.条件: 低速、重载、无冲击,如机床主轴箱齿轮 要求: 40Cr(42MnVB) 淬火中温回火HRC40-45 5.条件: 中速、中载,无猛烈冲击,如机床主轴箱齿轮 要求: 40Cr、40MnB、42MnVB 调质或正火,感应加热表面淬火,低温回火,时效,HRC50-55 6.条件: 中速、中载或低速、重载,如车床变速箱中的次要齿轮 要求: 45 高频淬火,350-370℃回火,HRC40-45(无高频设备时,可采用快速加热齿面淬火) 7.条件: 中速、重载 要求: 40Cr、40MnB(40MnVB、42CrMo、40CrMnMo、40CrMnMoVBA)淬火,中温回火,HRC45-50.

8.条件: 高速、轻载或高速、中载,有冲击的小齿轮 要求: 15、20、20Cr、20MnVB渗碳,淬火,低温回火,HRC56-62.38CrAl 38CrMoAl 渗氮,渗氮深度0.5mm,HV900 9.条件: 高速、中载,无猛烈冲击,如机床主轴轮. 要求: 40Cr、40MnB、(40MnVB)高频淬火,HRC50-55. 10.条件: 高速、中载、有冲击、外形复杂和重要齿轮,如汽车变速箱齿轮 (20CrMnTi淬透性较高,过热敏感性小,渗碳速度快,过渡层均匀,渗碳后直接淬火变形较小,正火后切削加工性良好,低温冲击韧性也较好) 要求: 20Cr、20Mn2B、20MnVB渗碳,淬火,低温回火或渗碳后高频淬 火,HRC56-62.18CrMnTi、20CrMnTi(锻造→正火→加工齿轮→局部镀同→渗碳、 预冷淬火、低温回火→磨齿→喷丸)渗碳层深度1.2-1.6mm,齿轮硬度HRC58-60,心部硬度HRC25-35.表面:回火马氏体+残余奥氏体+碳化物.中心:索氏体+细珠光体 11.条件: 高速、重载、有冲击、模数<5 要求: 20Cr、20Mn2B 渗碳、淬火、低温回火,HRG56-62. 12.条件: 高速、重载、或中载、模数>6,要求高强度、高耐磨性,如立车重要螺旋锥齿轮 要求: 18CrMnTi、20SiMnVB 渗碳、淬火、低温回火,HRC56-62 13.条件: 高速、重载、有冲击、外形复杂的重要齿轮,如高速柴油机、重型载重汽车,航空发动机等设备上的齿轮. 要求: 12Cr2Ni4A、20Cr2Ni4A、18Cr2Ni4WA、20CrMnMoVBA(锻造→退火

1 齿轮热处理概述众所周知,齿轮是机械设备中关键的零部件,它广泛的 用于汽车、飞机、坦克、齿轮传动是近代机它具有传动准确、结构紧凑使用寿命长等优点。轮船等工业领域。是机械产品重要器中最常见的一种机械振动是传递机械动力和运动的一种重要形式、基础零件。它与带、链、摩擦、液压等机械相比具有功率范围大,传动效率高、圆周速度高、传动比准确、使用寿命长、尺寸结构小等一系列优点。因此它已成为许多机由于齿轮在工业械产品不可缺少的传 动部件,也是机器中所占比例最大的传动形式。得益于近年来汽车、风电、. 发 展中的突出地位,使齿轮被公认为工业化的一种象征据大规格齿轮加工机床的需求增长十分耀眼。核电行业的拉动,汽车齿轮加工机床、近年来涉及齿轮加工机床制造的企业也日益增随着齿轮加工机床需求的增加,了解,多。无论是传统的汽车、船舶、航空航天、军工等行业,还是近年来新兴的高铁、铁对齿轮加工机床制都对机床工具行业的快速发展提出了紧迫需求,路、电子等行业,万吨。但 我国齿轮的质量年将达到200 2012 造商提出了新的要求。据权威部门预测主要 表现在齿轮的平均使用寿与其他发达国家的同类产品相较还是具有一定的差距,本设计是在课堂学习热处理知识后的探索和单位产品能耗、生产率这几方面上。命、并按重点是制定合理的热处理规程,尝试,其内容讨论如何设计齿轮的热处理工艺,此设计齿轮的热处理方法。齿轮是机械工业中应用最广泛的重要零件之一。其主要作用是传递动力,改变运 动速度和方向。是主要零件。其服役条件如下:齿轮工作时,通过齿面的接触来传递动力。两齿轮在相对运动过程中,既有滚动,(1)在齿根部位受因此,齿轮 表面受到很大的接触疲劳应力和摩擦力的作用。又有滑动。到很大的弯曲应力作用;word 编辑版. ⑵高速齿轮在运转过程中的过载产生振动,承受一定的冲击力或过载;⑶在一些特殊环境下,受介质环境的影响而承受其它特殊的力的作用。因此,齿轮的表面有高的硬度和耐磨性,高接触疲劳强度,有较高的齿根抗弯强度,高的心部 抗冲击能力。齿轮常用材料有。20Cr ,20CrMnTi, 18Cr2Ni4WA①20Cr降温直接淬火对渗碳时有晶粒长大倾向,有较高的强度及淬透性,但韧性较差。可切削性良好,冲击韧性影响较大,因而渗碳后进行二次淬火提高零件心部韧性;20Cr 为珠光体,焊接性较好,焊后一般不需热处理。但退火后较差;②20CrMnTi 20CrMnTi是性能良好的渗碳钢,淬透性较高,经渗碳淬火后具有高的强度和 韧性,特别是具有较高的低温冲击韧性,切削加工性良好,加工变形小,抗疲劳性能好。 ③18Cr2Ni4WA

精密机械有限公司 企业标准 YQB/4003-2016 渗碳淬火质量验收规范 发布时间:2016年 3 月 22 日实施时间:2016年 3 月 22 日 精密机械有限公司发布

1、目的 规范自制及委外产品渗淬质量测试的方法和依据,使得渗淬有所依循、保证检测的准确性、稳定性,从而使产品质量得到有效控制,确保本公司向客户提供满意的产品; 2、适用范围 适用于各类自制或委外产品的渗淬质量检控; 3、引用标准 (1) GB/T13299-91 金属显微组织评定方法依据; (2) JB/T 9211-1999 中碳钢与中碳合金结构钢马氏体等级标 准; (3) GBT 25744-2010 钢件渗淬回火金相检验标准; (4)GB/T 9450-2005 钢件渗淬硬化层深度的测定和校核依据; (5)GB/T11354-2005 金相组织检验依据; 4、名词解释 (1) 渗淬:渗碳淬火; (2)0收1退:同批次件抽检1件,如合格则整批次接受,不合格整批次退货; (3)试块:渗淬的随炉圆柱形试块,直径25mm*长度50mm,粗糙度; (4)心部硬度:在齿宽中部横截面上,轮齿中心线与齿根圆相交处的硬度; 5、验收项目及标准

渗淬零部件表面硬度、心部硬度、硬化层深、金相组织、表面质量、脱碳层深等; 渗淬件表面质量的检验 1)为得到较为准确的检测结果,零件的检测部位均应进行表面打磨、去掉氧化皮等杂质(成品件或不允许表面打磨的零件检测时,先不进行表面打磨直接在零件不影响外观表面检测。若检测结果不合格时,则须进行破坏性打磨检测,若打磨后检测合格,则判定合格); 2)每一零件原则上应至少检测三次,取其平均值作为评价结果。(第一针为测试针,零件较小或无法取多点除外); 3)当热处理零件表面产生脱碳现象时,须将零件表面磨深~2mm后再进行检测; 4)渗淬件不允许外观有任何磕碰、锈蚀、尤其是齿面不得磕碰、缺肉;硬化层深度检验 金相法测量硬化层深度 金相检验层深法是指从边界观察其金相直至金相过渡区为界限,使用此种方法检验可以借助金相显微镜,钢件可以借助4%硝酸酒精腐蚀法; 1)显微镜放大倍数为100倍(用带刻度10倍的目镜与10倍的物镜),每小格的尺度为; 2)低碳钢淬火试样要进行正火,磨抛后用4%硝酸酒精浸蚀。渗层总层深=过共析+共析+亚共析的1/2处; 3)低碳合金钢淬火试样要进行等温退火(或渗碳后缓冷试样),磨抛后用4%硝酸酒精浸蚀;

QJ B3100JQAQ(2015)003 QJ410325 上海汽车变速器有限公司 企业标准 QJ410325-2015 S-20CrMnTiH 合金渗碳齿轮钢技术规范 2015-02-28发布 2015-02-29实施 上海汽车变速器有限公司 发 布

QJ410325-2015 前言 本标准是根据GB/T 1.1-2009《标准化工作导则第1部分:标准的结构和编写》的基本规定和格式要求进行制定的。 本标准由上海汽车变速器有限公司提出。 本标准由上海汽车变速器有限公司标准化室归口。 本标准起草单位:上海汽车变速器有限公司技术中心。 本标准主要起草人:马森林。

S-20CrMnTiH合金渗碳齿轮钢技术规范 1 范围 本技术规范按照GB/T 5216,ISO 683,ISO 6336-5等相关材料标准制定,主要适用于可控气氛渗碳或碳氮共渗齿轮类零件。本技术规范适用于直径为25~100mm的热轧钢材。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 226 钢的低倍组织及缺陷酸浸检验法 GB/T 225 钢的淬透性末端淬火试验方法 GB/T 231.1 金属布氏硬度试验第1部分:试验方法 GB/T 702 热轧圆钢和方钢尺寸、外形、重量及允许偏差 GB/T 1979 结构钢低倍组织缺陷评级图 GB/T 5216 保证淬透性结构钢 GB/T 3077 合金结构钢 GB/T 4162 锻轧钢棒超声波检验方法 GB/T 13299 钢的显微组织评定方法 GB/T 20066 钢和铁化学成分测定用试样的取样和制样方法 GB/T 222 钢的化学分析用试样取样方法及成品化学成分允许偏差 ASTM A534 耐磨轴承用渗碳钢 ASTM E45 钢中非金属夹杂物显微评定方法 ASTM E112 金属平均晶粒度测定方法 3 尺寸、外形、重量及允许偏差 3.1尺寸允许偏差 3.1.1热轧不剥皮材料:尺寸及允许的尺寸偏差按照GB/T 702 I或者II组执行。 3.1.2银亮剥皮材(仅适用于?30~?70mm)的钢棒,则按照下表1执行。

齿轮材料热处理规范及其质量要求 正确选择齿轮固然很重要,但如果没有选择好适宜的热处理,那将是前功尽弃,可以说材料选择是前提,热处理方法得当是关键。 一、齿轮热处理方式与其性能特性 1、调质处理: 调质处理使材料获得优良的综合性能,这种热处理常常用于中碳钢和中碳合金钢,如45#、40Cr或40MnB材料,如果齿轮受到的冲击应力和齿面接触应力不是很大的情况下,这种热处理是适宜的,这种材料强韧性使得齿轮齿根抗弯曲能力强,抗疲劳能力也是优良的。但是调质处理齿轮齿面硬度不够,耐磨性偏差。 2、调质处理+表面淬火: 这种热处理方式补充单一调质处理的不足,使齿轮齿面硬度得到提高,耐磨性也随之增强,但是另一个问题仍未解决,就是中碳钢和中碳合金钢材料经过处理后,其冲击韧性尚不能令人满意,在高冲击应力的场合下仍不宜使用。 表面淬火有两种工艺:火焰淬火和高频淬火。 3、正火+渗碳淬火回火 这种热处理是针对低碳合金渗碳钢(如20CrMnTi、20CrNiMo等)而使用的,正火是用以改善原材料组织,便于齿轮粗加工;渗碳使齿面含碳量提高,在其后淬火回火中获得高硬度的回火马氏体组织,以提高齿轮的耐磨性。同时齿轮心部在淬火回火中获得低碳回火马氏体,强度高、韧性好,不仅可以承受高的载荷、大的冲击应力,而且抗疲劳性能也十分优异。 这种热处理也不是没有缺点,首先齿轮在渗碳淬火回火还要精加工,硬度过高会给精加工带来了困难;其次,渗碳淬火回火为了得到回火马氏体,回火温度低(200-300℃),热处理应力未能完全消除,在以后的使用中会逐渐释放造成齿轮微小变形,所以不能用于精密传动的齿轮。 这里的渗碳淬火回火,也包含碳氮共渗淬火回火。 4、调质+渗氮

齿轮材料的选择及其热处理工艺 1、齿轮材料的选择原则 齿轮材料的种类很多,在选择时应考虑的因素也很多,下述几点可供选择材料时参考: 1)齿轮材料必须满足工作条件的要求。例如,用于飞行器上的齿轮,要满足质量小、传递功率大和可靠性高的要求,因此必须选择机械性能高的合金银;矿山机械中的齿轮传动,一般功率很大、工作速度较低、周围环境中粉尘含量极高,因此往往选择铸钢或铸铁等材料;家用及办公用机械的功率很小,但要求传动平稳、低噪声或无噪声、以及能在少润滑或无润滑状态下正常工作,因此常选用工程塑料作为齿轮材料。总之,工作条件的要求是选择齿轮材料时首先应考虑的因素。 2)应考虑齿轮尺寸的大小、毛坯成型方法及热处理和制造工艺。大尺寸的齿轮一般采用铸造毛坯,可选用铸钢或铸铁作为齿轮材料。中等或中等以下尺寸要求较高的齿轮常选用锻造毛坯,可选择锻钢制作。尺寸较小而又要求不高时,可选用圆钢作毛坯。 齿轮表面硬化的方法有:渗碳、氨化和表面淬火。采用渗碳上艺时,应选用低碳钢或低碳含金钢作齿轮材料;氨化钢和调质钢能采用氮化工艺;采用表面淬火时,对材料没有特别的要求。 3)正火碳钢,不论毛坯的制作方法如何,只能用于制作在载荷平稳或轻度冲击下工作的齿轮,不能承受大的冲击载荷;调质碳钢可用于制作在中等冲击载荷下工作的齿轮。 4)合金钢常用于制作高速、重载并在冲击载荷下工作的齿轮。 5)飞行器中的齿轮传动,要求齿轮尺寸尽可能小,应采用表面硬化处理的高强度合金钢。 6)金属制的软齿面齿轮,配对两轮齿面的硬度差应保持为30~50HBS或更多。当小齿轮与大齿轮的齿面具有较大的硬度差(如小齿轮齿面为淬火并磨制,大齿轮齿面为常化或调质);且速度又较高时,较硬的小齿轮齿面对较软的大齿轮齿面会起较显著的冷作硬化效应,从而提高了大齿轮齿面的疲劳极限。因此,当配对的两齿轮齿面具有较大的硬度差时,大齿轮的接触疲劳许用应力可提高约20%,但应注意硬度高的齿面,粗糙度值也要相应地减小。 2、齿轮材料的选择 齿轮齿条是现代机械中应用最广泛的一种机械传动零件。齿轮传动通过轮齿互相啮合来传递空间任意两轴间的运动和动力,并可以改变运动的形式和速度。齿轮传动使用范围广,传动比恒定,效率较高,使用寿命。在机械零件产品的设计与制造过程中,不仅要考虑材料的性能能够适应零件的工作条件,使零件经久耐用,而且要求材料有较好的加工工艺性能和经济性,以便提高零件的生产率,降低成本,减少消耗。如果齿轮材料选择不当,则会出现零件的过早损伤,甚至失效。因此如何合理地选择和使用金属材料是一项十分重要的工作。 满足材料的机械性能,材料的机械性能包括强度、硬度、塑性及韧性等,反映材料在使用过程中所表现出来的特性。齿轮在啮合时齿面接触处有接触应力,齿根部有最大弯曲应力,可能产生齿面或齿体强度失效。齿面各点都有相对滑动,会产生磨损。齿轮主要的失效形式有齿面点蚀、齿面胶合、齿面塑性变形和轮齿折断等。因此要求齿轮材料有高的弯曲疲劳强度和接触疲劳强度,齿面要有足够的硬度和耐磨性,芯部要有一定的强度和韧性。 例如,在确定大、小齿轮硬度时应注意使小齿轮的齿面硬度比大齿轮的齿面硬度高30-50HBS,是因为小齿轮受载荷次数比大齿轮多,且小齿轮齿根较薄,强度低于大齿轮。为使两齿轮的轮齿接近等强度,小齿轮的齿面要比大齿轮的齿面硬一些。 另一方面,根据材料的使用性能确定了材料牌号后。要明确材料的机械性能或材料硬度,然后我们可以通过不同的热处理工艺达到所要求的硬度范围,从而赋予材料不同的机械性能。如材料为40Cr合金钢的齿轮,当840-860℃油淬,540-620℃回火时,调质硬度可达28-32HRC,可改善组织、提高综合机械性能;当860-880℃油淬,240—280℃回火时,硬度可达46-51HRC,则钢的表面耐磨性能好,芯部韧性好,变形小;当500-560℃氮化处理,氮化层0.15 -0.6mm时,硬度可达52-54HRC,则钢具有高的表面硬度、高的耐磨性、高的疲劳强度,较高的抗蚀性和抗胶合性能且变形极小;当通过电镀或表面合金化处里后,则可改善齿轮工作表面摩擦性能,提高抗腐蚀性能 3、齿轮常用材料 齿轮常用材料摘要:齿轮依靠结构尺寸材料强度承受载荷要求材料具有强度韧性耐磨性齿轮形状复杂齿轮精度要求要求材料工艺常用材料锻钢铸钢铸铁锻钢硬度分为大类HB称为软齿称为硬度HB工艺过程锻造毛坯正火粗车调质加工常用材料SiMnCr 液体动静压轴承常用轴壳配轴承轴承的密封类型精密轴承工序间防锈新工艺轴承寿命强化

齿轮钢性能要求及用途 齿轮钢是对可用于加工制造齿轮的钢材的统称。一般有低碳钢如20#钢,低碳合金钢如:20Cr、20CrMnTi等,中碳钢:35#钢、45#钢等,中碳合金钢:40Cr、42CrMo、35CrMo 等,都可以称为齿轮钢。下面变宝网小编为大家介绍下齿轮钢。 一、齿轮钢性能要求 淬透性是齿轮钢的重要性能指标之一,它主要是保证不同大小齿轮的心部硬度,且有利于控制齿轮热处理变形。齿轮钢的淬透性和淬透性带宽的控制,主要取决于化学成分及其均匀性。也就是对淬透性影响大的元素如碳、锰等的控制,根据钢中碳和合金元素对淬透性各点硬度值的影响,确定该钢的内控成分范围。 钢中存在的氧化物和硫化物夹杂、有害元素如氮、氢、氧等,会降低钢材的力学性能,恶化钢材的工艺性能,从而影响汽车渗碳齿轮的使用寿命。 国内外对齿轮钢的氧含量要求控制在20×10-6以下,国际先进水平是在12×10-6以下,而国内有些特钢厂已达到15×10-6以下。 晶粒大小是齿轮钢的一项重要指标。齿轮钢中细小均匀的奥氏体晶粒,淬火后得到细马氏体组织,明显改善齿轮的疲劳性能,同时减少齿轮热处理后的变形量。齿轮钢晶粒度要求≥6级,通常是在冶炼时控制钢中残余铝含量达到细化晶粒的。

二、齿轮钢用途 1)42CrMo齿轮钢具有强度高、淬透性高、韧性好、淬火时变形小、高温时有高的蠕变强度和持久强度等特点。 用于制造要求较35CrMo钢强度更高和调质截面更大的锻件,如:机车牵引用的大齿轮、压器传动齿轮、压力容器齿轮、后轴、受载荷极大的连杆及弹簧夹;也可用于2000m 以下石油深井钻杆接头与打捞工具;并且可以用于折弯机的模具等。 2)20CrMnTiH是性能良好的渗碳钢,淬透性较高、经渗碳淬火后具有硬而耐磨的表面与坚韧的心部?具有较高的低温冲击韧性、焊接性中等、正火后可切削性良好。 用于制造截面<30mm的承受高速、中等或重载荷、冲击及 摩擦的重要零件;如:齿轮、齿圈、齿轮轴十字头等。是18CrMnTi的代用钢,广泛用作渗碳零件,在汽车、拖拉机工业用于截面在30mm以下;承受高速、中或重负荷以及受冲击、摩擦的重要渗碳零件;如齿轮、轴、齿圈、齿轮轴、滑动轴承的主轴、十字头、爪形离合器、蜗杆等。

齿轮渗碳淬火工艺培训讲义 一、齿轮受力状态及失效形式: 1、受力状态:齿面摩擦力、齿面接触应力和齿根弯曲应力。 2、失效形式: 齿面剥落:表面网状碳化物和渗碳过渡区拉应力是造成齿面剥落的原因。 麻点:齿面金属的塑性变形和齿面的摩擦力导到齿面产生疲劳裂纹,润滑油挤入加速裂纹扩展,由此而产生麻点。 断裂:表现为断齿或断轴,原因为齿轮基体强度不夠。 二、齿轮渗碳淬火通用技术要求: 1、对原材料的要求要: 根据不同使用要求对材料疏松、成份偏析、非金属夹物、带状组织、原始晶粒度和材料淬透性等均有不同级别要求。 2、对预备热处理组织状态和热处理硬度的要求: 包括组织状态、基体硬度、晶粒度等。 3、对最终热处理质量的要求: 包括渗碳淬火表面硬度、渗碳层深度和渗层金相组织、工件基体组织及硬度、强度等。 三、齿轮渗碳淬火工艺规程: 1、渗碳淬火齿轮(低速重载和高速齿轮) 选材: 2、渗碳齿轮工艺流程:锻造---正火---机加工---渗碳淬火---精加工---强力喷丸。

3、齿轮渗碳淬火技术要求: 4、正火热处理:

5、齿轮渗碳工艺: 渗碳淬火工艺曲线 温度 时间 6、使用设备: 可控气氛多用炉。 7、装炉工装及装料方式:详见附图。 (1)使用工装: 工装料架应为抗渗碳、抗热疲劳、高温具有高强度的高Ni-Cr 含量材质的工装。工装结构视工件大小、结构特征而定。工装的结构应保证工件加热、冷却均匀,有利于减小工件淬火变形。 (2)、装料方式: 一般齿轮类工件垂直挂装,套类齿轮多层碼放。工件间应留有一定间隙,以保证不同工件和相同工件不同部位加热和冷却均匀。 滚动件均匀、薄层应平摊于料筛底部,采用多层料筛叠放装料的形式较好。 8、淬火介质及淬火冷却方式: (1)、淬火介质采用德润宝或好富顿淬火油较好。因为这类淬火油蒸气膜持续时间短,蒸气薄且厚度均匀,奥氏体不稳定区冷速较高,有利于避免其产生非马转变;马氏体转变温度下的冷却速度较慢,有利于减小工件淬火应力和淬火变形。 (2)、淬火介质的搅拌强度和循环方向: 选择强力向下搅拌为宜,但最终应根据工件淬火效果确定。

Fuwa广东富华重工制造有限公司Guangdong FuWa Heavy Industries Co.,Ltd. 我公司齿轮气体渗碳热处理工艺及其质量控制 主要内容与使用范围 本标准结合中国齿轮标准化技术委员会、机械工业部郑州机械研究所起草的《齿轮气体渗碳热处理工艺及其质量控制》,根据我公司齿轮材料及性能所编写的基本符合产品要求的一般规定。 本标准适用于钢制齿轮的气体渗碳、淬火和回火处理。 一、标准篇 1、GB1818金属表面洛氏硬度试验方法 2、GB1979结构钢低倍组织缺陷评级图 3、GB3077合金结构钢技术条件 4、GB5216保证淬透性结构钢技术条件 5、GB6394金属平均晶粒度测定方法 6、GB8539齿轮材料及热处理质量检验的一般规定 7、GB9450钢件渗碳淬火有效硬化层深度的测定与校核 8、GB9452热处理炉有效加热区测定方法 9、GB10561钢中非金属夹杂物显微组织评定法 10、GB/T230金属洛氏硬度试验方法 11、GB/T13299钢的显微组织评定法 12、GB/T225-88钢的末端淬透性试验方法

13、ZB G51 108钢件在吸热式气氛中的热处理 14、ZB J36 012 钢件在吸热式气氛中的热处理 15、ZB T04 001汽车渗碳齿轮金相检验 页14 共页1 第 Fuwa广东富华重工制造有限公司Guangdong FuWa Heavy Industries Co.,Ltd. 二、材料篇 1、适合我公司齿轮产品的材料(见表一) (遵循我国齿轮行业车辆齿轮钢采购标准CGMA001-2004钢号淬透能力) 表一

2、齿轮材料的冶金质量 1)化学成分 合金结构钢化学成分应符合GB/T3077-88《合金结构钢技术条件》中的有关规定,保证淬透性结构钢化学成分应符合GB/5216-85《保证淬透性结构钢条件》中的有关规定。检验标准执行GB223。 2)纯净度 页14 共页2 第 Fuwa广东富华重工制造有限公司Guangdong FuWa Heavy Industries Co.,Ltd. -6-6 ,含硫量<0.015%10,当有特殊要求时,10按双方,含氢量为≤5.0×钢材氧含量≤20.0×协议规定。 3)低倍组织 一般疏松≤2级,中心疏松≤2级,偏析≤2.5级。检验标准执行GBl979-80《结构钢低倍组织缺陷评级图》。 4)非金属夹杂物 非金属夹杂物按GB/T10561-89中Ⅸ级标准检验,A≤2,B≤2,C≤1,D ≤1。氧化物<3级,硫化物<3级,氧化物+硫化物<5.5级。检验标准执行GB/T10561-89《钢中非金属夹杂物显微评定方法》。 5)带状组织 钢中带状组织≤3级。检验标准执行GB/T13299-91《钢的显微组织评定方法》。 6)晶粒度 经930℃×3h渗碳后空冷,奥氏体晶粒度≥5级。检验标准执行GB6394-86《金属平均晶粒度测定法》。 7)末端淬透性

齿轮及齿圈渗碳淬火变形原因及其控制的措施 1 引言 齿轮渗碳淬火的变形直接关系到齿轮质量指标。对于渗碳淬火的齿轮,特别是大型齿轮,其变形量很大,且难以控制。较大的变形不仅会使磨齿加工的磨量增加,成本提高,而且影响齿轮制造精度,降低承载能力,最终寿命也会大大下降。齿轮渗碳淬火热处理变形主要是由于工件在机加工时产生的残余应力,热处理过程中产生的热应力和组织应力以及工件自重变形等共同作用而产生的。影响齿轮渗碳淬火变形的因素很多,包括齿轮的几何形状、原材料及冶金质量、锻造和机加工的残余应力、装料方式和热处理工艺及设备等诸方面。掌握变形规律,减少齿轮渗碳淬火变形,能够提高齿轮的承载能力和使用寿命,对缩短制造周期,降低生产成本也都具有重要意义。 2 齿轮渗碳淬火变形规律 对齿轮质量和寿命影响最大的变形来自齿轮外径、公法线长度和螺旋角等。一般说来,变形趋势如下: 2.1 齿轮变形规律:齿轮渗碳淬火后齿顶圆外径呈明显胀大趋势,且上下不均匀呈锥形;径长比越大,外径胀大量越大。碳浓度失控偏高时,齿轮外径呈收缩趋势。 2.2 齿轮轴变形规律:齿顶圆外径呈明显收缩趋势,但一根齿轴的齿宽方向上,中间呈缩小,两端略有胀大。 2.3 齿圈变形规律:大型齿圈经渗碳淬火后,其外径均胀大,齿宽大小不同时,齿宽方向呈锥形或腰鼓形。 3 渗碳淬火变形原因 3.1 渗碳件变形的实质 渗碳的低碳钢,原始相结构是由铁素体和少量珠光体组成,铁素体量约占整个体积的80%。当加热至AC1以上温度时,珠光体转变为奥氏体,900℃铁素体全部转变为奥氏体。910—930℃渗碳时,零件表面奥氏体区碳浓度增加至0.75—1.2%,这部分碳浓度高的奥氏体冷至Ar1以下才开始向珠光体、索氏体转变,而心部区的低碳奥氏体在900℃即开始分解为铁素体,冷至550℃左右全部转变完成。心部奥氏体向铁素体转变是比容增大的过程,表层奥氏体冷却时是热收缩量增加的变化过程。在整个冷却过程中,心部铁素体生成时总是受着表层高碳奥氏体区的压应力。此外,齿轮由于模数大、渗层深,渗碳时间较长,由于自重影响,也会增加变形。 3.2 齿轮渗碳淬火变形的原因 工件淬火时,淬火应力越大,相变越不均匀,比容差越大,则淬火变形越严重。淬火变形还与钢的屈服强度有关,塑性变形抗力越大,其变形程度就越小。 3.3齿圈变形原因 3.3.1齿圈厚薄的影响,淬火冷却时各部位冷却速度的差别而导致组织转变的不同; 3.3.2因装夹等不当及零件自重导致变形; 3.3.3淬火时产生的应力不平衡是变形的主原因。

我公司齿轮气体渗碳热处理工艺及其质量控制 主要内容与使用范围 本标准结合中国齿轮标准化技术委员会、机械工业部郑州机械研究所起草的《齿轮气体渗碳热处理工艺及其质量控制》,根据我公司齿轮材料及性能所编写的基本符合产品要求的一般规定。 本标准适用于钢制齿轮的气体渗碳、淬火和回火处理。 一、标准篇 1、GB1818金属表面洛氏硬度试验方法 2、GB1979结构钢低倍组织缺陷评级图 3、GB3077合金结构钢技术条件 4、GB5216保证淬透性结构钢技术条件 5、GB6394金属平均晶粒度测定方法 6、GB8539齿轮材料及热处理质量检验的一般规定 7、GB9450钢件渗碳淬火有效硬化层深度的测定与校核 8、GB9452热处理炉有效加热区测定方法 9、GB10561钢中非金属夹杂物显微组织评定法 10、GB/T230金属洛氏硬度试验方法 11、GB/T13299钢的显微组织评定法 12、GB/T225-88钢的末端淬透性试验方法 13、ZB G51 108钢件在吸热式气氛中的热处理 14、ZB J36 012 钢件在吸热式气氛中的热处理 15、ZB T04 001汽车渗碳齿轮金相检验

二、材料篇 1、适合我公司齿轮产品的材料(见表一) (遵循我国齿轮行业车辆齿轮钢采购标准CGMA001-2004钢号淬透能力) 表一 2、齿轮材料的冶金质量 1)化学成分 合金结构钢化学成分应符合GB/T3077-88《合金结构钢技术条件》中的有关规定,保证淬透性结构钢化学成分应符合GB/5216-85《保证淬透性结构钢条件》中的有关规定。检验标准执行GB223。 2)纯净度

钢材氧含量≤20.0×10-6,含氢量为≤5.0×10-6 ,含硫量<0.015%,当有特殊要求时,按双方协议规定。 3)低倍组织 一般疏松≤2级,中心疏松≤2级,偏析≤2.5级。检验标准执行GBl979-80《结构钢低倍组织缺陷评级图》。 4)非金属夹杂物 非金属夹杂物按GB/T10561-89中Ⅸ级标准检验,A≤2,B≤2,C≤1,D≤1。氧化物<3级,硫化物<3级,氧化物+硫化物<5.5级。检验标准执行GB/T10561-89《钢中非金属夹杂物显微评定方法》。 5)带状组织 钢中带状组织≤3级。检验标准执行GB/T13299-91《钢的显微组织评定方法》。 6)晶粒度 经930℃×3h渗碳后空冷,奥氏体晶粒度≥5级。检验标准执行GB6394-86《金属平均晶粒度测定法》。 7)末端淬透性 根据齿轮具体使用要求,按淬透性带订货,同炉钢中最大离散值为4HRC。检验标准执行GB /T225-88《钢的末端淬透性试验方法》。 三、锻件质量控制篇 1、原材料的控制 1)锻件用原材料(含钢锭)应有质量保证书,并符合工艺文件规定的材料牌号、尺寸规格和性能要求。 2)原材料或坯料进厂后需经材料检验部门复检,锻造用的锻材及锻坯,都必须有复检合格单。复检合格的原材料应有复检印记,不合格料应作出明显的标记。 3)合格料、待检料、不合格料应有明显的标记,且应分区存放,严禁混料。 4)合格料的入库、出库必须有严格的管理制度。 2、锻件的检验 1)工序检验 ①每批锻件必须进行“首检三件”制度,检验合格后方可正式投产。生产中严格执行自检、互检和专检。 ②工序检验员应对生产现场进行巡回检查,对锻件加热炉温度的控制、锻造操作情况进行监控,并定期抽检锻件的外行尺寸和表面质量。 ③锻件或坯料经检验合格后,检验员应在工序卡或记录卡上签字后方可转入下道工序。 2)锻件终检 ①模锻件终检应按锻件图及GB12361、GB12362及合同等有关规定进行。 ②自由锻锻件终检应按锻件图及JB4249、JB4385、ZB J32 003.1~003.8、ZB J32 001或合同等有关

关于《拖拉机渗碳齿轮金相检验》标准修订的说明 一、有关渗碳齿轮金相检验标准 1.意大利菲亚特公司标准: 经过表面渗碳硬化热处理的齿轮零件的机械性能和组织特征检验方法(Q.NL/0025) A.表面硬度HRC58~60 心部硬度HRC33.5~43.5 (检测部位齿根圆) B.层深有效硬化层深(硬度法),测至525HV5处。齿根有效硬化层深应 不小于节圆所示深度的70%。 C.表面非马氏体层深≤0.01mm。 D.金相组织检测6项:碳化物、残余奥氏体、心部铁素体、氧化层、贝氏 体、显微裂纹。 2 . 汽车行业渗碳齿轮检验标准: 1)汽车渗碳齿轮金相标准BR5-74 (参照50-60年代前苏联标准) A.硬度按产品图心部硬度检测部位2/3齿高处 B. 层深渗碳层深法(金相法) C. 表面非马氏体层深无规定。 D.金相组织检测4项:碳化物、残余奥氏体、马氏体、心部铁素体。 2)汽车渗碳齿轮金相检验ZB T04 001-88 A.硬度按产品图心部硬度检测部位齿根圆 B.层深有效硬化层深法测至515HV5或550HV1处。 C. 表面非马氏体层深≤0.02mm。 D. 金相组织检测3项:碳化物、残余奥氏体、马氏体。 3)汽车渗碳齿轮金相检验QC/T262-1999

A.硬度按产品图心部硬度检测部位齿根圆 B.层深有效硬化层深法测至515HV5或550HV1处。 C.表面非马氏体层深按“齿轮材料及热处理质量检验的一般规定”GB 8539 D. 金相组织检测3项:碳化物、残余奥氏体、马氏体。 3.重载渗碳齿轮标准: 重载齿轮渗碳质量检验JB/T6141.2-1992 重载齿轮渗碳金相检验JB/T6141.3-1992 A.表面硬度HRC58~62 心部硬度HRC30~46(检测部位齿根圆) B.层深有效硬化层深法测至550HV1(或HRC 52)处。允许齿根部位的 有效硬化层深度比节圆处小15%。 C.金相组织检测4项:碳化物、残余奥氏体、马氏体、心部铁素体。 4 .拖拉机渗碳齿轮检验标准: 1)拖拉机渗碳齿轮金相检验标准:YTQ310.5-90 A. 硬度按产品图心部硬度检测部位2/3齿高处 B. 层深渗碳层深法(金相法) C. 表面非马氏体层深无规定。 D.金相组织检测3项:碳化物、残余奥氏体、心部铁素体。 2)新修订的拖拉机渗碳齿轮检验标准:Q/YT 310.5-2008 A. 硬度按产品图心部硬度检测部位齿根圆 B. 层深有效硬化层深法,测至515HV5或550HV1处。 C. 表面非马氏体层深≤0.04mm。 D.金相组织检测3项:碳化物、残余奥氏体、心部铁素体。

钢的渗碳和碳氮共渗、淬火、回火工艺 1、主题内容和适用范围 本工艺规定了渗碳钢的气体渗碳氮共渗淬火回火处理的工序 准备、工艺规范、操作规程、质量检验和安全环保等方面要求。 2、引用标准 JB3999—85 钢的渗碳和碳氮共渗淬火回火处理 GB85839—87 齿轮材料及热处理质量检验一般规定 ZBJ17022—88 齿轮碳氮共渗工艺及质量控制 ZBT04001—88 汽车渗碳齿轮金相检验 JB/ZQ4038—88 重载齿轮渗碳质量检验 GB9450—88 钢件渗碳淬火有效硬化层深度的测定和校核 GB15735—1995 金属热处理生产过程安全卫生要求 3、工艺准备 3.1 工件准备 3.1.1 对照图纸了解被处理工件的材料牌号(或化学成份),予处理情况和质量要求,磨削留量,必要时检查齿轮(轴齿轮)的加工精度。 3.1.2工件表面不得有氧化皮、碰伤和裂纹,用清洗剂洗净油污后烘干。 3.1.3 工件表面不需要渗碳或碳氮共渗的部位,又无留余量,没安排剥碳层的加工工序,就要用防渗涂料保护,防渗涂料的厚度应大于0.3mm,涂层应致密,防渗涂料应符合ZB451—014的规定。 3.2 工装准备

3.3 开炉准备选用的工装应具有足够的热处理强度和刚度。 3.3.1检查热处理设备的机械和电气部分是否正常,炉子是否漏气。检查炉子需润滑油的部位,使其不断润滑。 3.3.2检查测温仪表,热电隅是否正常,要定期进行校验。 3.3.3定期清理气体渗碳炉炉罐中的碳黑和灰烬。 3.4工件的表卡和试样 3.4.1 根据工件的形状和要求,选用适当的吊具和夹具。 3.4.2 工件间要有5~10mm的间隙。 3.4.3 应随炉放置与装炉工件材质和予处理相同和符合GB8539—87“齿轮材料及热处理质量检验的一般规定”规定的样式,并放置在有代表性的位置,以备炉前操作抽样检查。 4、渗碳和碳氮共渗淬火回火处理的工艺规范和操作规程 4.1渗碳、碳氮共渗处理 4.1.1 装炉 4.1.1.1工件装炉前应把炉温升到渗碳或共渗温度,连续生产时可干上一炉出炉后立即装炉。 4.1.1.2 工件应装在炉子的有效加热区内,加热区的炉温不得超过±15℃。 4.1.1.3 每炉装载量不大于设备的装载量。 4.1.2 气体渗碳工艺规范和操作规程 4.1.2.1 气体渗碳工艺规范参照图1,低碳合金渗碳钢的渗碳温度取上限。

相关文档