文档库 最新最全的文档下载
当前位置:文档库 › 有机异氰酸酯的生产方法_朱红梅_杨向东

有机异氰酸酯的生产方法_朱红梅_杨向东

有机异氰酸酯的生产方法_朱红梅_杨向东
有机异氰酸酯的生产方法_朱红梅_杨向东

最新丙烯酸甲酯的生产工艺资料

5000t/a 丙烯酸甲酯的生产工艺组织与实施 1:丙烯酸甲酯的生产工艺路线选择 丙烯酸甲酯,别名败脂酸甲酯,分子式 C4H6O2或CH2CHCOOCH3,熔 点 -75℃ ,沸点:80.0℃,微溶于水。用于作为有机合成中间体,也是合成高分子聚合物的单体,用于橡胶、医药、皮革、造纸、粘合剂等。 无色液体。有辛辣气味。水中溶解度在20℃时为6G/100ml ,40℃时5G/100ml 、水在丙烯酸甲酯中溶解度为1.8ml/100G 。溶于乙醇和乙醚。在贮存过程中易聚合,光、热和过氧化物能加速其聚合作用。纯粹的单体在低于10℃时不聚合。通常加入对苯二酚单甲醚0.1%作阻聚剂。相对密度(d204)0.9561。熔点-76.5℃。沸点70℃(81.06kPA)。折光率(n20D)1.401。闪点(开杯)-4℃。易燃。中等毒,半数致死量(大鼠,经口)0.3G/kG 。有催泪性。对呼吸系统和皮肤有刺激性。 丙烯酸甲酯(Methyl Acrylate ,简写为MA)是重要的精细化工原料之一,主要用作有机合成中间体及合成高分子单体,丙烯酸甲酯可以和各种硬单体(如:甲基丙烯酸甲酯、苯乙烯、丙烯腈、醋酸乙烯等)及官能性单体[如: (甲基)丙烯酸羟乙酯、羟丙酯、缩水甘油酯、 (甲基)烯酰胺]及其衍生物等进行交换、共聚、接枝等,做成上千种丙烯酸类树脂产品(主要是乳液型、溶剂型及水溶型),广泛用作涂料、胶粘剂、睛纶纤维改性、塑料改性、纤维及织物加工、皮革加工、造纸以及丙烯酸类橡胶等许多方面。 现有生产方式 乙炔法(雷珀(Reppe)法) 是先将乙炔溶解于四氢呋喃溶剂中,用溴化镍为催化剂(作为羰基镍的来源),溴化铜为助催化剂,反应条件为:8~10 MPa ,200~225℃,丙烯酸的产率为90% (对乙炔)或85% (对CO),BASF 和Dow-Badische 相继于1960年进行工业生产,两者略有不同之处,前者用酸作催化剂进行甲醇酯化,后者用Dowex 。50强酸性阳离子交换树脂为催化剂。此法的特点是不用高压处理乙炔,用镍盐作催化剂,而不用有毒的羰基镍。 丙烯睛水解 这是丙烯腈水解,酯化后制取丙烯酯化的方法。 424242222242SO H NH COOR CH CH SO H CONH CH CH O H CN CH CH ROH SO H +?=??→???=??→?+? 反应分为两步,由利用丙烯腈水解的酰胺化反应与利用醇的酯化反应组成。在第一步反应中,是在70~100度将丙烯腈添加到硫酸水溶液中以合成丙烯酰胺硫酸盐,然后加适量的水和醇进行酯化。生成的酯用来蒸馏分离掉副产物硫酸氢铵后再送到精制工序。 这种方法所制得的丙烯酸酯的收率系随醇的种类有所不同,使用甲醇的时候,丙烯酸甲酯的收率按丙烯腈计高于85%,以甲醇计高于75%。至于用丁醇以上的高级醇,在经济上还存在问题。 这种方法的缺点是副产品是丙烯酸甲酯的二倍。(重量)即以硫酸氢铵为主要成分的废液,而处理这种废液有很多困难。因为不能将其扔掉,只能用于硫酸回收,或用来制造硫酸铵。另一个缺点是丙烯腈直接合成高级酯有一定的困难。因此这种方法不能用于大规模工厂的生产。 烯酮法

我国C4烃和芳烃及其下游产品发展机会分析

我国C4烃和芳烃及其下游产品发展机会分析(上) 摘要:对我国C4烃和芳烃及其下游产品的生产和消费做了分析,并针对其未来发展机会给出了建议。 关键词:丁二烯,丁烯,丁烷,苯,甲苯,混合二甲苯,对二甲苯,市场需求分析,机会,建议 1C4烃及其下游产品发展分析 C4馏分的主要成分是丁二烯、异丁烯和正丁烯。C4馏分中各组分的沸点十分接近,1—丁烯、异丁烯和丁二烯的相对挥发度差别极小,采用简单蒸馏的方法难以分离。工业上采用的C4馏分分离方法主要有:分子筛吸附分离(中试阶段)、萃取精馏(抽提)法、化学反应法(已在工业上应用),其中抽提法是工业上应用最广泛的方法。 根据不同的应用目的,可以分离出各种C4组分,乙烯厂C4馏分中丁二烯含量较高,多采用丁二烯抽提装置,首先分离出丁二烯。炼油厂C4馏分中异丁烯含量较多,多采用甲醇醚化方法生成MTBE,再分离得到高纯异丁烯,精馏脱除MTBE后可以得到正丁烯—丁烷组分。 混合C4烃来源有以下几个方面:

(1)炼油厂的催化裂化装置、减粘裂化装置、焦化装置和热裂化装置都能够生产C4烃,但以催化裂化装置生产的C4烃最多,占60%以上。 (2)裂解制乙烯工艺的联产物C4馏分的特点是丁二烯含量高,约占裂解C4馏分近50%。 (3)油田气里的C4馏分以烷烃为主。 (4)乙烯齐聚制。烯烃时可以联产得到1—丁烯。 (5)酒精脱水双聚、脱氢制丁二烯等都可以产生C4烃组分。 目前,世界上的C4烃资源主要来自于乙烯生产和炼油厂的催化裂化等装置,其中约82%来自炼油副产。世界最大的混合C4烃生产地区是美国,占世界总产量的41.9%;其次是西欧,占世界总产量的18.2%;亚洲占17.1%。 1.1丁二烯消费 世界丁二烯主要用于合成橡胶、丁苯胶乳、ABS、己二腈等产品的生产。合成橡胶是丁二烯第一大消费领域,占总消费量的68%,以丁二烯为原料的合成橡胶主要有顺丁橡胶、丁苯橡胶、丁腈橡胶。其中,丁苯橡胶是最大的消费品种,ABS树脂是丁二烯第二大消费市场,第三位是丁苯胶乳。

印度博帕尔药厂异氰酸甲酯毒气泄漏事故分析

印度博帕尔农药厂异氰酸甲酯毒气泄漏事故分析 一、事故概况及经过 1984年12月4日美国联合碳化物公司在印度博帕尔(Bhopal,Indian)的农药厂发生异氰酸甲酯(CH3NCO,,简称MIC)毒气泄漏事故,造成12.5万人中毒,6495人死亡、20万人受伤,5万多人终身受害的让世界震惊的重大事故。 MIC是生产氨基甲酸酯类杀虫剂的中间体。甲氨基甲酸萘酯是一种杀虫剂。MIC极不稳定,需要在低温下贮存。博帕尔的MIC贮存在两个地下冷冻贮槽中,第三个贮槽贮存不合格的MIC。博帕尔的联合碳化物印度有限公司(UCIL)建设过程正处于城市的快速发展时期,80年代因为对杀虫剂的需求减少,UCIL装置关闭。 三个MIC贮槽的进料是用带氮气夹套的不锈钢管从精制塔送来,并用普通管道将其送到甲氨基甲酸萘酯反应器,在反应器上装有安全阀。不合格的MIC循环至贮槽,含MIC的废物送至放空气体洗涤器(VGS)被中和。每个MIC贮槽都有温度和压力显示仪表,以及液位指示和报警,如图7-1。MIC贮槽上装有固定的水监视器和致冷单元。当VGS中有大量释放时可使用燃烧系统,VGS和燃烧系统的排放高度为15~20m。1984年6月不再使用贮槽的致冷系统,而且把致冷剂放出。1984年12月停止生产MIC,而且裁员50 9/5。 1984年12月2日,第二班负责人命令MIC装置的操作工用水清洗管道。在操作前应该进行隔离,但被忽略了;而且几天前刚进行了检修,加上其他可能性,冲洗水进入了其中一个贮槽。 23时贮槽的压力在正常范围,23时30分操作工发现MIc和污水从MIc贮槽的下游管道流出,O时15分贮槽的压力升至206.84kP孙(30 psi),几分钟后达到379·21kPa(55 psi),即最高极限;当操作工走近贮槽时,他听到了隆隆声并且感受到贮槽的热辐射;在控制室操作工试图启动vGS系统,并通知总指挥;当总指挥到来时命令将装置关闭;水喷淋系统已打开但只能达到15m的高度,MIC

C5C9C10醇

由C4合成C5、C9、C10醇 1、C5、C9、C10 醇的用途 C5醇主要是指2一甲基丁醇,因具有旋光性又称为旋光戊醇,用它作添加剂生产出来的液晶,色泽艳丽,性能稳定,可用来做新型彩色电视。以2一甲基丁醇为原料合成的产品的应用也相当广泛,如香料、特殊增塑剂、农药等。 C9和C10饱和脂肪醇主要用于增塑剂生产,因此,也称之为增塑剂醇。在目前使用的增塑剂中,邻苯二甲酸二辛酯(DOP)是一种通用增塑剂,它具有增塑性能好、价格相对低廉的优点。但由于用DOP增塑的PVC制品其致雾性、高温性能、耐油、耐水性能较差,同时对环境的毒害作用也使其应用可能空间越来越小。与DOP相比,采用异壬醇生产的邻苯二甲酸二异壬酯(DINP)、异癸醇生产的邻苯二甲酸二异癸酯(DIDP)等增塑剂能较好地满足上述要求,但其价格比DOP贵,一度影响了其应用。但是,随着市场对DINP和DIDP使用安全性的逐步认可,DINP作为DOP的环保代用品,其需求量将快速增长,从而推动异壬醇和异葵醇的消费量快速上升。同时,由于生产DINP的投资成本较生产DIDP为低,因此,目前以生产DINP 型增塑剂为主。 2、供需情况 2.1国外供需现状及预测 目前,全球异壬(葵)醇的生产主要控制在少数几个生产商手中,包括埃克森美孚化学公司、OXENO、BASF、Shell、日本Kyowa Yuka公司和中国台湾南亚塑料公司,总生产能力约为119.9万t/a。其中主要供应商是埃克森美孚化学公司和OXENO,两者生产能力分别占全球总产能的34.6%和28.4%。全球异壬(葵)醇主要用于生产DINP和DIDP,占到异壬(葵)醇总消费量的85%以上。世界主要异壬(葵)醇生产公司能力见表1 表1 世界主要异壬(葵)醇生产企业情况 公司名称产能(万t)工艺备注 壳牌化学 4.5 OXO Repsol-YPF 3.4 OXO/C O 埃克森化学公司12.0 OXO/C O壬醇、葵醇

石油化工的简单产品路线全解

石油化工的简单产品路线 一石油的蒸馏 由于地壳变迁,石油储藏分布在陆地和海洋的地层以下,开采须经过钻井取油,由油井喷出的石油(原油)很少直接用做燃料,只有经过炼制以后才能使用。炼制时,先将

原油中所含有的氯化钙(CaCl2)、氯化镁(MgCl2)等水溶液经脱盐、脱水处理后,再进行蒸馏,将其各组分如汽油和煤油等分开。所谓石油炼制就是给石油加热,石油中沸点不同的各组分先后蒸馏出来,从而得到分离,如上图所示。 二石油的裂化和裂解 1 石油裂化 石油的裂化是将石油中高沸点、高分子的物质断裂为低费点、小分子的物质,这些主要是烷烃、芳香烃等。 催化裂化:在有催化剂的条件下,将相对分子质量大、沸点高的烃断裂为相对分子质量小、沸点低的烃. 原料:重油或石蜡 主要产品:汽油、煤油、柴油等轻质油 2石油裂解 石油的裂解:在高温下,将石油产品中具有长链分子的烃断裂为各种短链的气态烃和液态烃. 原料:石油分馏产物 主要产品:主要是乙烯、丙烯、异丁烯 石油裂解的产物主要是含碳碳双键的烯烃,其中以乙烯为主要产物。而且乙烯的产量也是衡量一个国家化工产业的标准。 在石油化工生产过程里,常用石油分馏产品(包括石油气)作原料,采用比裂化更高的温度(700~800℃,有时甚至高达1000℃以上),使具有长链分子的烃断裂成各种短链的气态烃和少量液态烃,以提供有机化工原料。工业上把这种方法叫做石油的裂解。所以说裂解就是深度裂化,以获得短链不饱和烃为主要成分的石油加工过程。石油裂解的化学过程是比较复杂的,生成的裂解气是一种复杂的混合气体,它除了主要含有乙烯、丙烯、丁二烯等不饱和烃外,还含有甲烷、乙烷、氢气、硫化氢等。裂解气里烯烃含量比较高。

危险化学品重大危险源辨识(GB18218-2018)上课讲义

危险化学品重大危险源辨识(G B18218- 2018)

危险化学品重大危险源辨识 GB18218-2018 (2018年11月19日发布2019年3月1日起实施) 前言 本标准的全部技术内容为强制性的。 本标准按照GB/T1.1-2009给出的规则起草。 本标准代替GB 18218—2009《危险化学品重大危险源辨识》,与GB 18218—2009相比,主要技术变化如下: ——适用范围中明确厂外运输不包括在辨识范围内【见第1章d,2009年版本的第1章d】; ——修改了危险化学品、危险化学品重大危险源的定义(见3.1、 3.4,2009年版的3.1、3.4); ——增加了混合物的定义(见3.7); ——修改了重大危险源分类,分为生产单元重大危险源和储存单元危险源(见4.1.1,2009年版的4.1.1); ——修改了危险化学品名称(见表1,2009年版的表1); ——修改了危险化学品分类方法(见4.1.2,2009年版的4.1.2); ——增加了危险化学品实际存在量的确定方式(见4.2.2); ——增加了对混合物的辨识要求(见4.2.3); ——增加了重大危险源的分级方法(见4.3) 本标准由中华人民共和国应急管理部提出并归口。 本标准负责起草单位:中国安全生产科学研究院、中国石油化工股份有限公司青岛安全工程研究院.。

本标准主要起草人:魏利军、王如君、多英全、师立晨、张圣柱、于立见、罗艾民、杨春生、宋占兵、杨国梁、李运才、赵文芳、王家见。 本标准所替代标准的历次版本发布情况为: ——GB18218-2000、GB18218-2009 危险化学品重大危险源辨识 1 范围 本标准规定了辨识危险化学品重大危险源的依据和方法。 本标准适用于生产、储存、使用和经营危险化学品的生产经营单位。 本标准不适用于: a) 核设施和加工放射性物质的工厂,但这些设施和工厂中处理非放射性 物质的部门除外; b) 军事设施; c) 采矿业,但涉及危险化学品的加工工艺及储存活动除外; d) 危险化学品的厂外运输(包括铁路、道路、水路、航空、管道等运输 方式; e) 海上石油天然气开采活动。 2 规范性引用文件 下列文件对本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

异壬醇行业发展现状调研及投资前景分析报告(2020-2026)

异壬醇行业发展现状调研及投资前景分析报告(2020-2026) 恒州博智(QYResearch) 2020年

2019年全球异壬醇市场总值达到了129亿元,预计2026年可以增长到178亿元,年复合增长率(CAGR)为4.7%。 本报告研究全球与中国异壬醇的发展现状及未来发展趋势,分别从生产和消费的角度分析异壬醇的主要生产地区、主要消费地区以及主要的生产商。重点分析全球与中国的主要厂商产品特点、产品产品类型、不同产品类型产品的价格、产量、产值及全球和中国主要生产商的市场份额。 主要生产商包括: ExxonMobil Evonik Oxeno BASF Nan Ya PLASTICS KH NEOCHEM 按照不同产品类型,包括如下几个类别: C4化学品工艺 埃克森美孚工艺 按照不同应用,主要包括如下几个方面: 邻苯二甲酸二异壬酯 环保型增塑剂 其他 重点关注如下几个地区: 北美

欧洲 日本 东南亚 印度 中国 完整报告请参考恒州博智最新发表《2020-2026全球及中国异壬醇行业发展现状调研及投资前景分析报告》,详细内容可联系发布者(L&D)。著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 重要声明 本报告仅供本公司的客户使用,不对外公开发布。本公司不会仅因接收人收到本报告而视其为客户。 恒州博智拥有自己的研究方法和信息渠道,研究报告保持独立性。图表中所包含数据为过去数据,而过往表现并非未来结果的可靠指标。 如有特殊信息要求,可自行定制。 分析师声明 本报告分析师对报告的内容和观点负责,无论全文还是部分内容,分析师

均保证信息来源合法合规,研究方法专业审慎、研究观点独立公正、分析结论具有合理依据。 研究方法 恒州博智拥有一套独特的研究方法以保证报告的准确性和质量。分析师需要经过为期6个月的培训以使其研究水平满足恒州博智的要求。具体研究方法可以分为5个阶段: 阶段一:次级研究 研究小组首先研究相关产业的杂志、工贸企业等,然后利用我们公司的内部资料进行进一步的研究。我们富有经验和知识的团队可以利用现有资源准确和有效地提取信息。 阶段二:主要研究--贸易人员采访 第一阶段完成后,分析团队开始进行大量面对面或电话采访。采访对象主要为行业中具有代表性的公司。无论大型企业还是中小规模企业,分析师都会尽量对其进行详实的采访。上游供应商、生产商、经销商、进出口商以及消费者都在采访的范围之内。采访中获得的数据将会被仔细地检查甄别,并与之前的二次研究进行比对以求真实有效。 阶段三:已收集数据分析 研究团队检查、综合、整理之前获得的数据,并对其进行验证,如有需要,

有机硅环氧树脂的制备及其性能研究

有机硅环氧树脂的制备及其性能研究 有机硅环氧树脂兼有环氧树脂和有机硅的优点而成为一种重要的热固性树脂。以Karstedt催化剂催化不同氢含量的含氢硅油与烯丙基缩水甘油醚间的硅氢加成反应制备了4种不同环氧值的有机硅环氧树脂,利用红外光谱对其化学结构进行了表征。用甲基六氢苯酐分别固化4种有机硅环氧树脂,研究分析它们的初始热分解温度均高于300 ℃,具有优异的耐热性能。 标签:硅氢加成反应;环氧树脂;有机硅;制备 环氧树脂具有机械强度高、粘附力强、电绝缘性好、热稳定性好等优点,广泛应用于涂料、胶粘剂、电子绝缘材料等领域[1~3]。但其耐热性偏低,常在环氧树脂中引入硅原子形成有机硅环氧树脂,提高耐热性[4,5]。有机硅环氧树脂[6]可通过热缩合法、水解缩合法和硅氢加成法[7]等技术来制备,前2种技术易使环氧基团开环而影响环氧值和材料的强度,硅氢加成法具有反应条件温和、活性高,并不影响环氧基团的含量等优势而成为合成有机硅环氧树脂的首选办法[8,9]。 本文将不同氢含量的含氢硅油与烯丙基缩水甘油醚通过硅氢加成反应制备不同环氧值的有机硅环氧树脂,并对其结构进行表征,研究固化产物的耐热性能。 1 实验部分 1.1 主要原料 含氢硅油(氢质量分数分别为0.5%、1.0%、1.5%和1.6%)、甲基六氢苯酐和四甲基二乙烯基硅烷,质量分数均大于99%,开化县弟兄硅酮材料厂;烯丙基缩水甘油醚(AGE)(使用前用分子筛干燥),化学纯,天津市鸿业化工有限公司;氯铂酸,分析纯,沈阳市金科试剂厂;碳酸氢钠、异丙醇、乙酸乙酯(使用前无水硫酸钠干燥),分析纯,国药集团化学试剂有限公司。 1.2 实验仪器 FT-IR傅立叶红外光谱仪,美国Nicolet公司Nexus470型,经KBr压片,扫描范围4 000~500 cm-1,扫描次数32次;NETZSCH TG209热重分析仪,德国耐驰仪器制造有限公司,测试条件为:氮气条件,升温速率为10 ℃/min,从30 ℃升温到700 ℃。 1.3 有机硅环氧树脂的制备 1.3.1 合成原理 以不同氢含量的含氢硅油与烯丙基缩水甘油醚为原料通过硅氢加成反应合

丙烯酸甲酯工艺说明

15000吨/年丙烯酸甲酯生产工艺 第一章生产原理及工艺特点 在该单元中丙烯酸与甲醇反应,生成丙烯酸甲酯,磺酸型离子交换树脂被用作催化剂。 1.1 酯化反应原理 丙烯酸与醇的酯化反应是一种生产有机酯的反应。其反应方程式如下: CH 2=CHCOOH+CH 3 OH <==>CH 2 =CHCOOCH 3 +H 2 O 这是一个平衡反应,为使反应有向有利于产品生成的方向进行,采用一些方法,一种方法是用比反应量过量的酸或醇,另一种方法是从反应系统中移除产物。 1.2 丙烯酸与甲醇的酯化反应 (1)酯化反应器的主反应 酯化反应器的主反应的化学方程式如下: H+(IER)* CH 2=CHCOOH+CH 3 OH <==> CH 2 =CHCOOCH 3 +H 2 O AA MEOH MA *IER指离子交换树脂(2)酯化反应器的副反应 CH 2=CHCOOH十2CH 3 OH———> (CH 3 O)CH 2 CH 2 COOCH 3 +H 2 O MPM:(3-甲氧基丙酸甲酯) H+(IER)* 2CH 2=CHCOOH十CH 3 OH ———> CH2=CHCOOC 2 H 4 COOCH 3 +H 2 O D-M(3-丙烯酰氧基丙酸甲酯/二聚丙烯酸甲酯)

H+(1ER) CH 2=CHCOOH+CH 3 OH———>HOC 2 H 4 COOCH 3 HOPM(3-羟基丙酸甲酯) H+(1ER) CH 2=CHCOOH+CH 3 OH ——>CH 3 OC 2 H 4 COOH MPA(3-甲氧基丙酸) H+(1ER) 2CH 2=CHCOOH———>CH 2 =CHCOOC 2 H 4 COOH D-AA(3·丙烯酰氧基丙酸/二聚丙烯酸) 其他副产物是由于原料中的杂质的反应而形成的。典型的丙烯酸中的杂质的反应如下: CH 3COOH+R-OH——>CH 3 COOR十H 2 O C 2H 5 COOH+R-OH——>C 2 H 5 COOR十H 2 O 丙烯酸甲酯的酯化反应在固定床反应器内进行,它是一个可逆反应,本工艺采用酸过量使反应向正方向进行。 反应在如下情况下进行: 温度:75℃(MA) 醇/酸摩尔比:0.75(MA) 由于甲酯易于通过蒸馏的方法从丙烯酸中分离出来,从经济性角度,醇的转化率被设在60%-70%的中等程度。未反应的丙烯酸从精制部分被再次循环回反应器后转化为酯。 用于甲酯单元的离子交换树脂的恶化因素有:金属离子的玷污、焦油性物质的覆盖、氧化、不可撤回的溶涨等。因此,如果催化剂有意被长期使用,这些因素应引起注意。被金属铁离子玷污导致的不可撤回的溶涨应特别注意。 1.3 丙烯酸回收 丙烯酸回收是利用丙烯酸分馏塔精馏的原理,轻的甲酯、甲醇和水从塔

最常用的危险化学品名录

常用危险化学品名录 第1类爆炸品 1.1具有整体爆炸危险的物质和物品 硝酸铵[含可燃物﹥0.2%](别名:硝铵) 1.3具有燃烧危险和较小爆炸或较小抛射危险,或两者兼有、但无整体爆炸危险的物质和物 品 1.4无重大危险的爆炸物质和物品 第2类压缩气体和液化气体 2.1 易燃气体 丙烯,1,3-丁二烯(别名:联乙烯),丁烯(别名:正丁烷),环氧乙烷(别名:氧化乙烯;噁烷),甲烷,硫化氢,氯乙烯(别名:乙烯基氯),氢(别名:氢气),天然气,液化石油气,一甲胺(别名:甲胺;氨基甲烷),一氧化碳,乙硼烷(别名:二硼烷),乙炔(别名:电石气),乙烯,异丁烷(别名:2-甲基丙烷) 2.2 不燃气体 氯化氢,氧气 2.3 有毒气体 氨(别名:液氨;氨气),二氧化硫(别名:亚硫酸酐),光气(别名:碳酰氯),磷化氢,氯甲烷(别名:一氯甲烷;甲基氯),氰化氢(别名:氢氰酸),溴甲烷(别名:甲基溴),液氯(别名:氯气;氯) 第3类易燃液体 汽油 3.1 低闪点液体 丙酮(别名:二甲基酮;阿西通),丙烯醛(别名:烯丙醛),二硫化碳,环氧丙烷(别名:氧化丙烯),己烷(别名:正己烷),戊烷(别名:正戊烷),乙醚(别名:二乙醚),乙醛(别名:醋醛),异丁醛 3.2 中闪点液体 苯,丙烯醇(别名:烯丙醇;2-丙烯-1-醇;蒜醇),丙烯腈(别名:氰基乙烯;乙烯基氰),丙烯酸甲酯(别名:败脂酸甲酯),甲苯,甲醇(别名:木醇;木精),甲基肼(别名:甲基联胺;甲肼),甲基乙基酮(别名:甲乙酮;2-丁酮;甲基乙基甲酮;MEK),氯甲基甲醚(别名:甲基氯甲醚),溶剂油,石脑油(别名:粗汽油),乙醇(别名:酒精),乙腈(别名:甲基氰),异氰酸甲酯(别名:甲基异氰酸酯),原油(别名:石油) 3.3 高闪点液体 苯乙烯(别名:乙烯基苯),二甲苯(别名:二甲基苯),环己酮

化肥厂工艺反应原理简介

化肥厂生产装置工艺反应原理简介 化肥厂技术科 2008-12-15

第一章合成氨装置工艺原理 1、合成氨工艺反应机理 化肥厂合成氨装置工艺采用烃类蒸汽转化法。整套工艺共有七个主反应,按照工艺流程顺序分别为钴钼加氢反应、氧化锌脱硫反应、转化反应(包括一段转化和二段转化反应)、变换反应(包括高温变换和低温变换反应)、脱碳反应、甲烷化反应、合成氨反应。合成氨装置的原料为油田伴生气、空气和水蒸气,这三种原料经过上述七个主反应最后生成产品氨。 合成氨工艺主反应汇总表(按反应发生的前后顺序排列)

注: ①第三步转化反应分为一段和二段转化反应的原因是:如果要求在一段转化反应就使原料气中的甲烷完全转化为氢气、一氧化碳和二氧化碳,则必须要加大水碳比或者提高温度。前一种方法必将导致耗用过多的水蒸气,而后一种方法对于采用外加热方式的一段反应炉来说对设备材质的要求也会更高。因此在自热式的二段转化炉内通过气体自身燃烧放热,只需要在炉内做一层耐火衬里就能既解决高温对设备材料的要求又能增加反应温度,可使原

料气中的甲烷完全转化,同时二段转化工段在加入空气助燃的同时又加入了合成氨反应所需的氮气。 ②第四步变换反应分为高温变换和低温变换反应的原因是:采用Fe3O4催化剂的高变反应只能使96-98%的一氧化碳转化为二氧化碳,要想使一氧化碳含量降低到的指标范围内,只有在单质铜催化剂存在下的低温变换反应才能达到,如果在高温变换反应中应用单质铜催化剂,由于单质铜催化剂较昂贵会增加催化剂的使用成本,而且由于单质铜催化剂的作用温度低将导致废热的利用价值降低。 2、工艺流程简述 油田伴生气加压至,经预热升温到371℃在脱硫工序脱硫后与水蒸汽混合,进入一段转化炉进行转化制H2反应,一段转化炉出来的转化气进入二段转化炉,在此引入空气,转化气在二段炉内燃烧掉一部分H2,放出热量以供进一步转化,同时获得N2。二段转化气经余热回收后,进入变换系统,气体中的CO与水蒸汽反应,生成CO2和H2,从变换系统出来的气体经脱碳、甲烷化后为合成氨提供纯净的氢氮混合气,氢氮混合气经压缩至,送入合成塔进行合成氨反应。

异壬醇的主要生产方法

异壬醇的主要生产方法 本网消息:目前异壬醇的生产方法主要有传统工艺、埃克森美孚化学公司工艺、Oxeno工艺以及Johnson Matthey 工艺等。 (1)传统工艺。在20世纪40-50年代,许多公司开发并在生产中使用了最初的氢甲酰化工艺。这些工艺采用未改性的钴催化剂,由此在丙烯反应中得到的正异构比为80/20。BASF采用Co催化剂的工艺,现仍用于辛烯的氢甲酰化。其工艺过程为:将预制的氢化钴羰基物质与烯烃和合成气一起导入到反应器,反应后废气首先在高压条件下被排出,随后粗产品在去除钴的过程中从催化剂中被分离出来。脱气后的反应产品在容器中与氧气、富马酸或乙酸接触反应,含钴的水随后从反应产品中被分离出来。然后浓缩,通过使钴在减压合成气作用下预活化,再一次形成氢化羰基质,然后循环到反应器,分离钴后得到粗产品。 (2)埃克森美孚化学公司工艺。对长链烯烃进行氢甲酰化的改进工艺是埃克森美孚化学公司工艺。在该工艺中,钴的氧化段在分离上没有变化。分离是采用Kuuhlmenn技术来进行,在其中钴以钠的形式从工艺中被回收,四羰基钴盐随后被转化成氢化钴羰基物质。目前埃克森美孚化学公司的Co催化技术是生产异壬醇的主导技术。工艺流程是辛烯(由丙烯、乙烯或丁烯异构化)高压下在羰基化反应器中与合成气接触反应。从羰基化反应器排出的未反应的合成气循环使用,用清扫物流来控制惰性成分的浓度。首先去掉粗醛产品中挥发性的四羰基钴,然后用水洗除去水溶形式的钴。脱钴后的醛加氢后通过两个串联的分馏器脱出轻重组分。用最后的加氢反应器精制醇产品,然后储存起来。理论上可将Co催化剂以四羰基氢钴(HCo(CO)4)的形式加以回收利用。 (3)Oxeno工艺。Oxeno开发了一种以异构烯烃混合物为原料,生产高碳羰基醇的工艺。该工艺的特点氢甲酰化反应分两阶段进行,所用催化剂可以是钴或铑。系统会选择性地对第一反应器中的混合物加氢生成醇,而未反应的烯烃进入第二个反应器继续进行氢甲酰化反应,并选择性加氢生成醇。与传统工艺相比,Oxeno工艺的投资成本稍高,但反应原料利用率较高。如果用钴作为催化剂,第一反应器的反应产物含量8%-45%,尾馏段馏分含量15%-35%,主要产物是烯烃;第二反应器中产物含量10%-40%,尾馏段馏分含量15%-30%,产物包括少量烯烃、大量饱和烃、水和甲醇。如果以铑为催化剂,反应产物中石蜡和甲酸盐含量要少些。该工艺加氢阶段的转化率大于98%,选择性大于99%,整个工艺的转化率在97%,选择性为91.5%。

有机硅型环氧树脂固化剂的制备及性能研究

有机硅型环氧树脂固化剂的制备及性能研究 以氨丙基三乙氧基硅烷(KH550)为反应单体,通过水解缩合反应合成了以Si—O—Si为主要链段,—NH2为活泼基团的环氧树脂固化剂。利用—NH2与环氧基团的反应将耐热性较好的Si—O—Si链段引入到交联网络中。通过反应原料和产物的红外吸收光谱和核磁共振波谱对比分析证明了水解缩合反应的发生;通过非等温DSC分析和T-β外推法确定了反应体系的固化特征温度;用环氧树脂E51混合体系粘接的黄铜板,其相对最大剪切强度为14.4 MPa,固化物在N2氛围中失重10%的温度为378.6 ℃,残炭率为26.2%。 标签:环氧树脂;有机硅;固化剂;耐热性 环氧树脂具有优异的粘接性能、力学性能和化学稳定性,是现代高新工程领域不可或缺的高性能材料[1],而且环氧树脂固化剂对树脂固化物的性能有很大影响[2~4]。 环氧树脂固化后呈三维网络结构,交联密度较高,且存在耐热温度较低、韧性不足等缺陷。通过物理共混或化学聚合的方式改性环氧树脂的柔韧性和耐高低温性能使其获得更广泛的应用一直是研究重点。有机硅材料具有良好的柔韧性、优异的耐高低温和电绝缘性能,而且有机硅化合物可以被赋予多种反应性功能基团,如烷氧基、羟基等,利用功能化的有机硅化合物来改性其他聚合物材料,将使得被改性聚合物材料具有某些独特的性能,尤其是在提高光通率、耐高温降解以及耐烧蚀等方面具有显著的优势[5]。 利用有机硅化合物或聚合物改性环氧树脂一直是国内外研究的热点领域,环氧树脂含有的环氧基、羟基等官能团,可与有机硅中的胺基、羟基、烷氧基以及引入的其他功能基团进行反应,生成改性环氧共聚物或交联固化材料[4]。有机硅类固化剂可以在固化物中引入稳定和柔性的Si—O—Si链,能够改善环氧树脂的柔韧性、热稳定性能,同时还能增强有机硅链段与环氧树脂的相容性[6]。 本研究以氨丙基三乙氧基硅烷(KH550)为主要原料,通过水解缩合得到Si—O—Si为主要链段、以—NH2为活性基团的环氧树脂固化剂,以此提高改性环氧树脂的耐高温性能。 1 实验部分 1.1 实验原料 氨丙基三乙氧基硅烷(KH550),工业级,南京优普化工有限公司;环氧树脂(E51),工业级,巴陵石化有限公司;无水乙醇、甲苯、盐酸,分析纯,北京化工厂;去离子水,自制。 不锈钢板、铝板、铜板,市售。

毕业设计丙烯酸甲酯

安徽职业技术学院毕业论文 论文题目:丙烯酸甲酯 所属系部:化工系 专业:应用化工技术 姓名:陈小帅 班级:应化1022班 学号: 2010272252 指导老师:汪武 完成日期: 2013-3-24

丙烯酸甲酯制备工艺流程

摘要 作为有机合成中间体,也是合成高分子聚合物的单体,用于橡胶、医药、皮革、造纸、粘合剂等。丙烯酸甲酯拥有很强的功用。 工艺描述:丙烯酸甲酯是由粗丙烯酸和甲醇在作为酸性酯化催化剂的硫酸存在下直接生产。反应热约为-25.1KJ/mol,即酯化反应只是轻微的放热反应,反应物开始反应时不会出现剧烈的反应。相反,会形成一个平衡的混合物,其中除了需要的产物,还存在相当数量的原料。为了加速这个典型的平衡反应,得到需要的产物,通过蒸馏不断地从反应系统中移去两个反应产物,水和丙烯酸甲酯,蒸馏塔塔顶物中含有没反应的甲醇被回收,没反应的丙烯酸甲酯留在酯化反应器中。酯化反应在均态液相下进行,既不需要有机溶剂,也不需要搅拌。通过蒸馏分离出高纯度丙烯酸甲酯。 将甲醇(来自甲醇回收塔C5200和罐区)、硫酸(来自罐区)、成品塔C5500底部馏分和(来自罐区)加化学处理剂联氨改性的粗丙烯酸送入酯化反应器R5010中。来自甲醇回收塔5200的新鲜及循环甲醇以气态进入R5010;然后,塔顶物(丙烯酸甲酯,水,轻组分)被送到抽提塔(C5100),在C5100,用工艺水洗去甲醇,被洗过的丙烯酸甲酯从底部去抽提塔分离器V5110,底部物流送醇回收塔C5200,在C5200中轻组分从顶部蒸出,回收的醇送回C5200。基本没有有机物的水冷却后用作抽提塔C5100的循环水,多余的通过废水罐送废水处理厂。分离器V5110中的粗酯被送往初馏塔(C5300),也作为酯化塔的回流。少量含有丙烯酸甲酯的初馏塔塔顶低沸物在冷凝器E5330中冷凝并收集在相分离器V5340中。有机相的大部分在塔上部温度控制下作为回流返回初馏塔C5300,一小部分有机相通过容器V5460送初馏物蒸馏塔C5400,以得到合格产品。为进一步精制,C5300塔底物送成品塔C5500,这个塔的塔顶物是最终产品,送到罐区的检验罐,5500塔底物送回酯化部分。 关键词:丙烯酸甲酯;工艺节能描述;工艺化学反应;工艺操作流程;节能技术的应用。

《危险化学品重大危险源辨识》(GB18218-2009)

危险化学品重大危险源辨识 (GB18218-2009) 2009年3月31日发布2009年12月1日实施 前言 本标准的全部技术内容为强制性的。 本标准代替GB18218—2000《重大危险源辨识》。 本标准与GB18218—2000相比主要变化如下: ———将标准名称改为《危险化学品重大危险源辨识》; ———将采矿业中涉及危险化学品的加工工艺和储存活动纳入了适用范围; ———不适用范围增加了海上石油天然气开采活动; ———对部分术语和定义进行了修订; ———对危险化学品的范围进行了修订; ———对危险化学品的临界量进行了修订; ———取消了生产场所与储存区之间临界量的区别。 本标准由国家安全生产监督管理总局提出。 本标准由全国安全生产标准化技术委员会化学品安全标准化分技术委员会(TC288/SC3)归口。 本标准负责起草单位:中国安全生产科学研究院。 本单位参加起草单位:中石化青岛安全工程研究院。 本标准主要起草人:吴宗之、魏利军、刘骥、多英全、师立晨、高进东、孙猛、于立见、张海峰、杨春笋、彭湘潍。 本标准于2000年首次发布,本次修订为第一次修订。 危险化学品重大危险源辨识 1范围 本标准规定了辨识危险化学品重大危险源的依据和方法。 本标准适用于危险化学品的生产、使用、储存和经营等各企业或组织。 本标准不适用于: a)核设施和加工放射性物质的工厂,但这些设施和工厂中处理非放射性物质的部门除外;b)军事设施; c)采矿业,但涉及危险化学品的加工工艺及储存活动除外; d)危险化学品的运输; e)海上石油天然气开采活动。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本

复合肥生产工艺介绍

复合肥的生产工艺介绍 目前颗粒状复混肥料的生产方法主要有料浆法、固体团粒法、部分料浆法、融熔法等,下面对这几种典型的生产方法作以介绍。 1.料浆法 以磷酸、氨为原料,利用中和器、管式反应器将中和料浆,在氨化粒化器中进行涂布造粒,生产过程中添加部分氮素和钾素以及其他物质,再经干燥、筛分、冷却而得到NPK复合肥产品,这是国内外各大化肥公司和大规模生产常采用的生产方法。 磷酸可由硫酸分解磷矿制取,有条件时也可直接外购商品磷酸,以减少投资和简化生产环节。该法的优点是: 既可生产磷酸铵也可生产NPK复合肥,同时也充分利用了酸、氨的中和热,蒸发物料水份,降低造粒水含量和干燥负荷,减少能耗,生产规模大,生产成本较低,产品质量好,产品强度较高。 由于通常需配套建设磷酸装置及硫酸装置,建设不仅投资大,周期长,而且涉及磷、硫资源的供应和众多的环境保护问题(如磷石膏、氟、酸沫、酸泥等),一般较适用于在磷矿加工基地和较大规模生产、产品品数不多的情况。如以外购的商品磷酸为原料,则目前稳定的来源和运输问题及价格因素是不得不考虑的,近年来,由于我国磷酸工业技术和装备水平的提高,湿法磷酸作为商品进入市场有了良好的条件,在有资源和条件的地区建立磷酸基地,以商品磷酸满足其它地区发展高浓度磷复肥的需要,正在形成一种新的思路和途径,市场需求必将促进这一行业发展,也必将解决众多地区原料磷酸的需求问题。拥有该种生产技术的外国公司主要有挪威的norsk hydro、西班牙incro、espindsea、法国的AZ F、KT、美国的Davy/TVA等。国内的主要生产厂家有: 中阿化肥有限公司、江西贵溪化肥厂、云南云峰化工公司、南京南化磷肥厂、大连化工厂、金昌化工公司、广西鹿寨磷肥厂等。

项目一:年产5000吨丙烯酸甲酯的生产技术

项目1:500吨\年丙烯酸甲酯的生产技术 任务点01 丙烯酸甲酯生产工艺路线选择――――生产现状、生产方法分析比较(原料来源,催化剂性能,安全、环保分析,经济性分析); 丙烯睛水解乙酸甲酯法原料来源石油石油 安全、环保分析;经济性分析这种方法所制的的丙烯酸甲酯 的收率系随醇的种类而有所不 同,使用甲醇时,丙烯酸甲酯的 收率按丙烯晴计高于85%,以甲 醇计高于75%。 此法在技术上是可行的,其 发展取决于催化剂和分离方 法的改进。 缺点至于用丁醇以上的高级醇时,在 经济上海存在着问题。这种方法 的缺点是副产物高于丙烯酸甲 酯2倍(重量)以上的副产物, 即以硫酸氢铵为主要成分的废 酸,而处理这种废酸有很多困 难。因为不能将其抛弃,而只能 用于硫酸回收,或用来制造硫酸 铵。另一缺点是从丙烯晴直接合 成高级酯类有一定的困难。因此 不能用这种方法来建设大规模 的工厂。虽然此法在技术上是可行的,但有大量未转化的原料必须回收。 总结选择:丙烯氧化法 随着丙烯酸酯需要量的增加及丙烯价格的下降,近来很多厂家都企图用价格较低而又适合于大型化的空气氧化合成丙烯酸的方法来实现工业化(流程如图所示)。 以丙烯作原料的丙烯酸合成法有以下两种方法:一种是先将丙烯氧化成丙烯醛,再由丙烯醛氧化成丙烯酸的二步法,另一种是丙烯酸一步空气氧化直接合成丙烯酸的一步法。第一种方法中,在丙烯酸氧化上又可分为气相法和液相法,可是从收率及连续化难易方面考虑,几乎都愿意采用气相接触氧化。至于一步法中除了丙烯酸以外,实际上也同时产生丙烯醛,因此很难将一步法和二步法的第一步反应加以明确区分。 二步法的第一步反应是合成丙烯醛,其中以壳牌开发公司所采用的方法最早引起工业上的注意,这种方法以Cu2O作催化剂,反应系统中氧气浓度保证很低,转化率低到1%左右。此后,酿酒(Distillers)公司发明了Se—CUO催化剂,曾当作丙烯晴新和成的第一步反应催化剂而引起注意。以后自标准油公司(俄亥俄)[The Standard Oil(Ohio)]发表Mo—Bi系催化剂以来,接着出现了很多高转化率及高收率 的催化剂。反应条件根据催化剂而有所不同,一般温度为400~500℃,压力接近于常压,氧/丙烯(克分子)为2~5,接触时间是0.5~4秒。使用最多的是Mo系催化剂,也有不少是在Mo—Bi、Mo—As、Mo—Co、Sb—Sn、Sb—V、Sb—U等体系中加入其他多价金属。有不少专利着重对加在Cu上的助催化剂进行了研究。 第二步反应与第一步反应相比,可以在稍低的温度下进行氧化,即在350~400℃

异壬醇的主要生产方法

异壬醇的主要生产方法 Revised as of 23 November 2020

本网消息:目前异壬醇的生产方法主要有传统工艺、埃克森美孚化学公司工艺、Oxeno工艺以及JohnsonMatthey工艺等。(1)传统工艺。在20世纪40-50年代,许多公司开发并在生产中使用了最初的氢甲酰化工艺。这些工艺采用未改性的钴催化剂,由此在丙烯反应中得到的正异构比为80/20。BASF采用Co催化剂的工艺,现仍用于辛烯的氢甲酰化。其工艺过程为:将预制的氢化钴羰基物质与烯烃和合成气一起导入到反应器,反应后废气首先在高压条件下被排出,随后粗产品在去除钴的过程中从催化剂中被分离出来。脱气后的反应产品在容器中与氧气、富马酸或乙酸接触反应,含钴的水随后从反应产品中被分离出来。然后浓缩,通过使钴在减压合成气作用下预活化,再一次形成氢化羰基质,然后循环到反应器,分离钴后得到粗产品。(2)埃克森美孚化学公司工艺。对长链烯烃进行氢甲酰化的改进工艺是埃克森美孚化学公司工艺。在该工艺中,钴的氧化段在分离上没有变化。分离是采用Kuuhlmenn技术来进行,在其中钴以钠的形式从工艺中被回收,四羰基钴盐随后被转化成氢化钴羰基物质。目前埃克森美孚化学公司的Co催化技术是生产异壬醇的主导技术。工艺流程是辛烯(由丙烯、乙烯或丁烯异构化)高压下在羰基化反应器中与合成气接触反应。从羰基化反应器排出的未反应的合成气循环使用,用清扫物流来控制惰性成分的浓度。首先去掉粗醛产品中挥发性的四羰基钴,然后用水洗除去水溶形式的钴。脱钴后的醛加氢后通过两个串联的分馏器脱出轻重组分。用最后的加氢反应器精制醇产品,然后储存起来。理论上可将Co催化剂以四羰基氢钴(HCo(CO)4)的形式加以回收利用。(3)Oxeno工艺。Oxeno开发了一种以异构烯烃混合物为原料,生产高碳羰基醇的工艺。该工艺的特点氢甲酰化反应分两阶段进行,所用催化剂可以是钴或铑。系统会选择性地对第一反应器中的混合物加氢生成醇,而未反应的烯烃进入第二个反应器继续进行氢甲酰化反应,并选择性加氢生成醇。与传统工艺相比,Oxeno工艺的投资成本稍高,但反应原料利用率较高。如果用钴作为催化剂,第一反应器的反应产物含量8%-45%,尾馏段馏分含量15%-35%,主要产物是烯烃;第二反应器中产物含量10%-40%,尾馏段馏分含量15%-30%,产物包括少量烯烃、大量饱和烃、水和甲醇。如果以铑为催化剂,反应产物中石蜡和甲酸盐含量要少些。该工艺加氢阶段的转化率大于98%,选择性大于99%,整个工艺的转化率在97%,选择性为%。(4)JohnsonMatthey羰基醇工艺。21世纪初,Davy和JohnsonMatthey开发出JohnsonMatthey羰基醇工艺,该工艺的前身是ICI的高压羰基醇工艺,JohnsonMatthey催化剂公司2002年收购了ICI公司的Synetix公司。JohnsonMatthey羰基醇工艺适合生产C7-C15高碳羰基醇,尤其适合生产以异辛烯和异壬烯为原料的异壬醇和异癸醇。与其他工艺的区别是,以无配位体的铑为催化剂及高效的铑回收技术。这使得工艺灵活性很强,可根据需要连续地在C7-C15高碳羰基醇之间实现无缝切换,大大减少了投资成本,而且副产物非常少(以烯烃为基准,C8-C10羰基醇的产率可达87%-93%)。另外,该工艺对环境的影响很小。JohnsonMatthey羰基醇工艺于2002年实现工业化,主要生产异壬醇。不久的将来,JohnsonMatthey羰基醇工艺可能会逐渐替代其他工艺,成为生产异壬醇的主导工

异氰酸酯的性质及危害

异氰酸酯的性质及危害 单异氰酸酯是有机合成的重要中间体,可制成一系列氨基甲酸酯类杀虫剂、杀菌剂、除草剂,也用于改进塑料、织物、皮革等的防水性。二官能团及以上的异氰酸酯可用于合成一系列性能优良的聚氨酯泡沫塑料、橡胶、弹力纤维、涂料、胶粘剂、合成革、人造木材等。 目前应用最广、产量最大的是有:甲苯二异氰酸酯(Toluene Diisocyanate,简称TDI);二苯基甲烷二异氰酸酯(Methylenediphenyl Diisocyanate,简称MDI)。 甲苯二异氰酸酯(TDI)为无色有强烈刺鼻味的液体,沸点251°C,比重1.22,遇光变黑,对皮肤、眼睛有强烈刺激作用,并可引起湿疹与支气管哮喘,主要用于聚氨酯泡沫塑料、涂料、合成橡胶、绝缘漆、粘合剂等。根据其成分,甲苯二异氰酸酯属含氮基的有机化合物。 二苯基甲烷二异氰酸酯(MDI)分为纯MDI和粗MDI。纯MDI 常温下为白色固体,加热时有刺激臭味,沸点196°C,主要用于聚氨酯硬泡沫塑料、合成纤维、合成橡胶、合成革、粘合剂等。根据其成分,纯二苯基甲烷二异氰酸酯也属含氮基的有机化合物。 还有非黄变型的HDI 理化性质 品名:HMDI; (1,6-Hexamethylene Diisocyanate); 六亚甲基-1,6-二异氰酸酯

CAS NO.: 822-06-0 品名:MIC Methyl isocyanate; Isocyanatomethane; 异氰酸甲酯; 甲基异氰酸酯; CAS:624-83-9 分子式:C2-H3-N-O 分子量:57.06 相对密度:0.9599(20/20℃) 沸点:39.1℃ 闪点:<-15℃(闭杯)。自燃点:534℃ 蒸气密度:1.42 蒸气压:46.39kPa(348mmHg20℃) 15℃时水中溶解度:1%;20℃时6.7% 无色清亮液体, 有强刺激性。 除不锈钢、镍、玻璃、陶瓷外其他材料与其接触均有被腐蚀危险。 尤其不能使用铁、钢、锌、锡、铜或其合金作为盛装容器。 容易与包含有活泼氢原子的化合物: 胺、水、醇、酸、碱发生反应。 与水反应生成甲胺、二氧化碳; 在过量水存在时, 甲胺再与MIC 反应生成1,3-二甲基脲, 在过量MIC时则形成1,3,5-三甲基缩二脲。这二个反应均为放热反应。 纯物在有触媒存在条件下, 发生自聚反应并放出热能。

相关文档