文档库 最新最全的文档下载
当前位置:文档库 › 风力发电课程设计大学论文

风力发电课程设计大学论文

风力发电课程设计大学论文
风力发电课程设计大学论文

榆林学院

专业综合实训

题目风力发电系统设计学生姓名任刚

学号 1305310111

院 ( 系 ) 能源工程学院专业能源与动力工程指导教师胡广涛

报告日期 2016年 12 月23日

风力发电系统设计 (1)

引言 (1)

1设计概述 (2)

1.1风力发电的意义 (2)

1.2明确风力发电系统设计的要求和条件 (2)

1.3风力发电系统设计方案的拟定 (3)

1.3.1风力发电机的类型及选择原则 (3)

1.3.2风电场类型 (3)

1.3.3安装地点 (4)

2风力发电系统结构组成设计 (4)

2.2风力发电系统设计参数 (5)

2.2.1风力发电机类型选择 (5)

2.2.2 风力机的功率 (6)

2.2.3控制方式 (6)

2.2.4最大功率追踪 (7)

3.1风力机设计计算 (7)

3.1.1叶片设计计算 (7)

3.1.2轮毂选型 (7)

3.1.3塔架设计计算 (8)

3.1.4齿轮箱的选择确定: (9)

3.1.5机舱设计 (9)

3.2控制系统选型设计 (9)

3.3变流器功率选择: (10)

3.4逆变器选型计算 (11)

3.5接触器的选择: (11)

3.6熔断器的选择: (12)

3.7传感器、继电器的选择: (12)

4设计体会 (12)

5主要参考文献 (13)

风力发电系统设计

引言

自然界的风,是由于大气运动而产生的自然形式。大气运动则是因为大气受到太阳的辐射,能量来源于大气吸收的部分太阳能,太阳到达地球辐射的20%会转变成风能。人类对于风能利用的历史久远,可以追溯到公元10世纪,波斯就出现了种水平转动的风磨,即为以风车为动力的磨坊。风能是种取之不尽、用之不竭的可再生能源之一。它的特点是生产运用过程安全清洁,成本花费较低,来源不受限制。风能也是种最具商业潜力,最具发展活力的绿色能源,运用于发电这一领域有很大的运用空间。

风电是目前技术最成熟、最具市场竞争力且极具发展潜力的可再生清洁能源,发展风电对于改善能源结构、保护生态环境、保障能源安全和实现经济的可持续发展等方面有着及其重要的意义。

风力发电具有装机容量增长快,成本下降快,安全环保等优势。风力发电在为社会发展和经济增长提供稳定可靠的电力供应的同时,可以有效地缓解空气污染、水体污染和温室效应问题。在各类新能源开发利用中,风力发电技术相对于其他能源开发是比较成熟的,并且具有大规模场地开发和商业经济开发的条件。风力发电可以完全避免像石油、煤炭等化石燃料发电所产生的大量污染物和二氧化碳排放。

我国的风能资源分布:我国风能资源的地区区域差异大。沿海、内蒙古和甘肃北部、黑龙江南部和吉林东部三个区域风能最多;青藏高原中部和北部、西北、华北、东北三区域的北部,东南沿海的风能资源丰富;山区,例如南岭、武夷山地区,辽河、华北、长江中下游平原、西北高原地区,风能可待开发利用;云贵川陕西、豫西、鄂北、湘西、福建广东,盆地地形区等风能贫乏。我国风能资源的分布除了具有空间上的差异以外,在时间上也有很大的差异。东部沿海地区,夏季风势力强劲,风能资源主要集中在夏季。而北方以及西北内陆地区,冬季风势力强劲,所以这些地区风能资源主要集中在冬季。海上风电场是最近世界范围内广泛推广使用的大型有效利用风能资源的

形式,在1980年初在美国加利福尼亚首先兴起。在海陆线附近由于陆地、海洋吸热量差异大,表体温度差异大而产生丰富的风能资源,风力强大,可以大规模采取进行发电。不过在海陆线上建设风力发电厂还存在技术的难度,需要投入巨额资金装备和维护,所以在美国,德国,中国等这样的大国才进行投产建设。

1设计概述

1.1风力发电的意义

随着电力和能源改革逐步深入,在国家倡导节能减排的大背景下,风

力发电成为新能源开发利用的重要领域。在有风力资源的地区,建设小型

风力发电或风光互补独立电站(集中供电系统或户用系统)成为为小型负

荷供电一种新选择。研究中小型风力发电系统的设计显得十分必要。

1.2明确风力发电系统设计的要求和条件

在烟台地区设计一个装机容量100KW的风电场,一台风力发电机的功率为10KW,需要10台风机。

中小型风力发电机一般应在风力资源较丰富的地区使用。烟台地区气象设计参数:如表:2014

2003年烟台市,全市平均气温

~

由此可得,历年平均气温为7.

12℃年平均温度(℃):12.7最高温度(℃):38最低温度(℃):-12.8平均风速(m/s):5.0 通过查取风功率密度等级表,得知烟台地区风功率密度为200~2502

/

W m(高度为30米)、W m(高度为10米)、320~4002

/

400~5002

W m(高度为50米)

/

1.3风力发电系统设计方案的拟定

1.3.1风力发电机的类型及选择原则

风力发电机组是将风能转化为电能的装置,按其容量可大小以划分为小型风电机组(10KW以下),中型风电机组(1划分为水平轴0~100KW),大型风电机组(100KW以上);按其主轴与地面的相对位置,可以风力发电机组(主轴与地面平行),垂直轴风力发电机组(主轴与地面垂直)。

目前国内一些厂家研发生产采用永磁同步发电机的风机,由于永磁同步电机容易实现多极化,可省去或简化齿轮增速箱结构,其叶轮主轴与发电机可以直接祸合,不经齿轮增速而直接驱动发电机,因此这类风机又称为直驱(半直驱)式。直驱式风机由塔架、轮毂、桨叶、发电机、变频器、偏航系统、液压系统和电气控制等组成。直驱式风机均采用低速永磁同步发电机。

本设计考虑采用永磁同步发电机。

1.3.2风电场类型

并网型:接入电力系统运行,规模较大的风力发电场。

本设计选“并网型”风力发电,可以省去蓄电池等储能装置。选

用同步发电机间接并网方式,电压经历了交流—直流—交流的变化,避免了同步发电机直接并网可能出现失步的问题。

1.3.3安装地点

安装地点的确定主要就是风资源和具体安装位置选择。风能资源丰富,具有较稳定的风向,风力发电机尽可能的装在风向和风速比较稳定,季节变化比较小的地方,湍流小,自然灾害小。

根据设计的要求,主要设计内容拟包括风力发电机组控制系统中的偏航系统、齿轮箱系统、液压系统、温度控制等。最早最简单的风力发电机由叶轮和发电机两个部分组成,站立于一定高度的塔上。由于外界因素影响风很不稳定,这类风力发电机电压、频率差异很大且效率低下,没有实际运用价值。所以在原有的基础上,增加了偏航系统,齿轮箱,控制系统,停机系统等部件更加有效地使用风能。

2风力发电系统结构组成设计

2.1风力发电系统原理及结构组成

风力发电机是一种将风能转换为电能的能量转换装置,主要包括风力机和发电机。空气流动的能动作用在风力机风轮上,从未推动风轮旋转,将空气动力能转换风轮的机械能,通过传动装置,发电机将机械能转换为电能,输送给电力系统。

风力发电系统的组成:风轮(风能转化为机械能的核心部件)、发电机、传动机构、偏航系统、限速安全机构、制动装置、机舱和塔架等。

在现有技术基础上大致可以把一个普通的风电机分为四大部分:风轮组件,机舱组件,塔架组件以及控制部分。

2.2风力发电系统设计参数

2.2.1风力发电机类型选择

本设计选取水平轴螺旋桨式风力机。

水平轴风力机主要由风轮、塔架、对风装置、齿轮箱组成。

(1)风轮:由1~3个叶片组成,这是吸收风能的主要部件。当风轮旋转时,叶片受到离心力和气动力的作用,离心力对叶片是一个拉力,而气动力使叶片弯曲。当风速高于风力机的设计风速时,为防止叶片损坏,需对风轮进行控制,控制风轮有三种方法:a,使风轮偏离主方向;b,改变叶片角度;利用扰流器,产生阻力,以降低风轮转速。

(2)塔架:为了让风轮能在较高的风速中运行,需要塔架把风轮支撑起来。这时塔架需要承受两个主要的载荷:一个是风力机的重力,向下压在塔架上;另一个是阻力,使塔架向风的下游方向弯曲。选择塔架时要必须考虑其成本,根据实际情况而定。

(3)对风装置:自然界的风向及风速一直变化,为了得到较高的风能利用率,应使风能的旋转面经常对准风向为此需要对风装置。小型风力机的对风装置,利用尾舵控制对风。由尾翼带东水平轴旋转,是风轮总朝向风吹来的方向。

(4)齿轮箱:由于风轮的转速比较低,而且风力的大小经常变化着,这又使得转速不稳定。所以,在带动发电机之前,还必须附加一个齿轮箱,再加一个调速装置使得转速保持稳定,然后在连接到发电机上。齿轮箱的主要作用是将风轮在风力作用下所产生的动力传递

给发电机,通过齿轮副的增速作用使其得到相应的转速。在装机是应使其与轮毂相连。为了增加齿轮箱的制动能力,在齿轮箱的输入端或输出端设置刹车装置配合叶尖制动装置实现联合制动。

2.2.2 风力机的功率

风的动能和风速的平方成正比,功率是力和速度的乘积,也可用于风轮功率的计算。风力与速度平方成正比,所以风的功率与风度的三次方成正比。如果风速增加一倍,风的功率便会增加8倍。

风轮从风中吸收的功率如下:

3p P C A v ρ= 2A R π=

式中:P 为输出功率,

p C 为风轮机的功率系数,ρ为空气密度, ρ为空气密度, R 为风轮半径, v 为风速。

众所周知,如果接近风力机的空气全部动能都被风力机全部吸收,那么风轮后的空气就不动了,然而空气当然不能完全停止,所以风力机的效率总是小于1。

2.2.3控制方式

(1)偏航系统的控制方式:

偏航系统用于在风向变化时,可以保证风轮跟着转动,一般由风向传感器和伺服电机组合而成。

并网型风力发电机组采用主动偏航的齿轮驱动形式。

(2)变桨系统的控制方式: 所以,选用电机驱动。

2.2.4最大功率追踪

叶尖速比控制算法:

为了表示风轮机运行速度的快慢,通常采用叶尖速比来表征,计算公式如下: V

Rn V R

602πωλ== (2-3) 其中: λ—为叶尖速比,n —风轮机转速, ω—风轮机旋转角速度, R —风轮机半径, 最佳叶尖速比控制算法是保持风轮机的叶尖速比始终在最优值处,从而使风力发电机输出功率最大值。

3设备计算及选型

3.1风力机设计计算

3.1.1叶片设计计算

风轮半径:

R = (3-1) 式中:P ——一台风力机功率,W ρ——空气密度,取1.2353/kg m v ——风速,m/s P C ——功率系数

解得R=5.98m 风轮的转速:60v n D

λπ=

(3-2) 式中:λ—叶尖速比,取值6 解得:n =67.07r/min

3.1.2轮毂选型

风轮轮毂是连接叶片与风轮转轴的部件,用于传递风轮的力和力矩到后面的机构。轮毂通常由球墨铸铁制成。主要有三种结构:

(1)固定式轮毂:三叶片风轮大多采用固定式轮毂,制造成本

低,维护少,不存在磨损问题。

(2)叶片之间相对固定的铰链式轮毂,驱动力距变化很大产生很大噪音,风轮具有阻尼器的作用。

(3)各叶片自由的铰链式轮毂,风轮可保持恒速运转。

综合考虑本设计轮毂选用固定式。

3.1.3塔架设计计算

塔架高度:

塔架高度要满足风机叶片运转的要求,而且要考虑经济方面的因素,塔架一般高度为:

=++(3-3)

H h C R

式中:h—接近风轮叶片的地面障碍物的高度,m

C—风轮叶扫落到障碍物最高点的距离1.5~2m 解得:H=12m

塔架结构:

根据塔架最大承受的载荷及风能资源利用效率、成本的综合比较选择塔架的高度、材料及结构。

塔架设计参数如下:

3.1.4齿轮箱的选择确定:

由上述求得:m D 28.11= 所以:

2748.2528.514.322m R A =??==π (3-4)

其中:A -为扫风面积,2m ;R -为风轮半径,m ; 所以,风力机的有效功率为:3121AV C P p ρ= (3-5) W P 43.56771000748.25225.136.0211=????=

取齿轮箱效率为95.0,则:

齿轮箱的增速比为:43.5677

1000010P P n n i == (3-6) min /2.20543.56775.116100000r n =?= 齿轮箱前段低速轴由风轮驱动,而输出端高速轴与发电机轴连接。

3.1.5机舱设计

机舱一般包容了将风轮获得的能量进行传递、转换的全部机械和电气部件。机舱多为铸铁结构,或采用带加强筋的板式焊接结构。设计机舱要求尽可能减小机舱质量而增加其刚度;兼顾舱内各部件安装、检修便利与机舱空间要紧凑,满足通风、散热、检查等维护需求,机舱对流动空气的阻力要小。

水平轴风力机常采用单级或多级定轴线直齿齿轮或行星齿轮增速器。

3.2控制系统选型设计

ZK460-W 12/10型控制器主要用于风电系统组成的供电网络,

控制器操作比较简单,性能可靠。风机可接最大容量为12kW

技术参数如表3—2所示:

整个控制器的主要组成部分有:液晶显示器、指示灯、显示仪表、内部接线、

内部操作开关和泄荷器等。

3.3变流器功率选择:

变流器将主发电机发出来的电能整流成直流电,在逆变成与电网匹配的交流电,电能谐波少,质量高。

变流器的功率通常为风电机组的额定功率的1/2~1/3,考虑到风电机组的可靠性,通常为风电机组额定功率的1/2。

由此得:

kw 521==P P 变

3.4逆变器选型计算

用于风力发电的逆变器输出交流电的频率为50Hz。

逆变开关电路是逆变器的核心,它通过半导体开关器件的导通与关断完成逆变的功能。完整的逆变电路由主逆变电路、输入电路、输出电路、控制电路、辅助电路和保护电路组成。

选用逆变器的型号为;GNW12K3G—CN(致远公司产)主要参数如表3—4所示:

3.5接触器的选择:

发电机的开关使用交流接触器。选用西门子的3TB系列接触器。

电机的过载保护需要使用继电器进行保护。选用继电器型号为LCD-84发电机差动型,它适应于大型交流发电机差动保护电路中。

3.6熔断器的选择:

熔断器保护作为电路过载保护最常用的一个手段运用于本文各个电路模块中。在发电机处可以选用型号为LMZD2-20的高压熔断器;偏航、变桨距以及温度控制模块选用RT18低压熔断器。

3.7传感器、继电器的选择:

风速风向传感器使用PH100SX型号[12]。温度传感器选用PT100风管式温度传感器。

4设计体会

通过这次风力发电设计,让我了解了风力发电系统发电的基本原理和系统组成,学到了很多风电场建设的相关知识。设计过程中掌握了风电系统的运行过程,对风力发电有了更进一步的深入了解。通过这次设计让我懂得了理论和实践相结合的重要性。虽然在设计的过程中出现了一些问题,发现了自己在这方面知识的欠缺,如在选型计算中,自己设计考虑的因素毕竟有限,得出的计算结果和选用的部件会有一定的误差。

其实这次的风力发电系统设计要计算的包括很多方面,但是由于对风力发电系统没有过实体的考察,很多比较材料系数,及结构组成、当地的风资源情况方面不是很清楚,所以不是做的很详细。我个人觉得课程设计相当于模拟训练,实战演习,我们每一位同学也转而变成了研究院里的一名设计师,承包了一项大工程,从实地考察到确定设

计方案,从设计计算到施工绘图每个过程我们都要认认真真,实事求是,本着负责谨慎的态度,使我们的设计合理实用,经济舒适。尽管如此,由于理论知识储备不足和实践经验的严重缺乏,设计中不可避免地出现了各种错误。还好我们有所认识,有所领悟,我们会在以后的工作中加以改正,补充不足。不管怎样,课程设计还算顺利,能够按时完成。

实践出真知。失败是成功之母。从错误中吸取经验和教训,保证以后不再犯类似错误。经验丰富了,知识也就成熟了。随着课程设计的不断深入,我也逐渐发现自己所学的专业知识不够用,对风力发电系统、控制系统、并网系统的了解并不透彻,总之有许多不足。通过这次设计,我确实提高了各方面的能力,增长了许多知识,积累了丰富的经验,对以后的工作有很大的帮助。

在此谢谢指导老师和同学们的悉心教导和帮助。

5主要参考文献

1.《风电场工程技术手册》,宫靖远主编,机械工业出版社

2.《风能技术》,[美] Tony Burton 等著,武鑫译,科学出版社

3.《中国风资源测量和评估实务》,高虎,刘薇,王艳等编著,化学工业出版社

4.《风能—可再生能源与环境》,[美]Vaughn Nelson著,李建林肖志东等译,人民邮电出版社

5.《风能技术与应用》,钱伯章编,科学出版社

风力发电场课程设计报告

课程设计(综合实验)报告( 2014 -- 2015 年度第1学期) 名称:风力发电场 院系:可再生能源学院 班级:风能1101班 学号: 学生姓名: 指导教师:韩爽刘永前 设计周数:2周 成绩: 提交日期:2014 年1月23 日

目录 一、课程设计目的 (1) 二、课程设计任务 (1) 三、课程设计要求 (1) 四、课程设计内容 (1) (一)测风数据处理 (1) (二)导入文件准备 (2) (三)W AsP软件计算 (3) 1.New Projection建立以及场址地图导入 (3) 2.风图谱的计算 (3) 3.测风塔的选定 (4) 4.宏观选址与风资源预测 (6) 5.Wind farm的建立与微观选址 (6) 6.风电场年发电量预测 (7) (四)WindFarmer优化计算 (9) 1.建立文件向导 (9) 2.载入地图文件 (10) 3.载入风资源数据 (10) 4.在栅格区域确定计算边界 (11) 5.安插风机 (12) 6.载入风力发电机机型文件 (13) 7.优化计算 (13) 8.生成报告 (14) (五)计算结果分析对比 (20) 1.年发电量 (20) 2.布机图 (21) 3.分析 (22) 五、课程设计个人总结 (22)

一、课程设计目的 通过使用W AsP、WindFarmer等软件,掌握风电场风能资源评估、微观选址原理及方法。 二、课程设计任务 根据风场测风数据及地形图,分别使用W AsP和WindFarmer软件,进行风资源评估和微观选址。具体包括: 1.对给定的风场测风数据进行处理; 2.使用经过处理后的测风数据,进行风资源评估,得到风图谱; 3.依据微观选址的基本原则,进行优化布机; 4.对两套不同软件的计算结果进行对比分析; 5.撰写设计报告。 三、课程设计要求 1.掌握风资源评估和微观选址的基本原理和方法; 2.掌握上述软件的使用方法; 3.独立撰写设计报告。 四、课程设计内容 (一)测风数据处理 分别选取各组数据,查看平均风速,70米高度处平均风速分别为7.574m/s 和 6.535m/s,在其他各高度处读出的平均风速分别为7.475m/s、7.219m/s、 6.897m/s、6.223m/s。由此判断70米高度处数据有一组异常。选取该组数据,应 用表格数据栏里的筛选功能,只选取0.3m/s、0.4m/s两个值,发现其他组数据有相应变化的风速,而该组数据始终为0.3m/s、0.4m/s。 删除异常数据,利用Windographer软件打开剔除后的测风数据,在相关性一栏查看两组70米高度处的数据相关性,得到相关性公式,在表格中利用该公式计算出需要修正的数据。至此,异常数据处理完成。 图4.1.1 测风数据

风力发电毕业论文

风力发电毕业论文 目录 摘要............................................................ I 前言 (1) 1 风力发电的现状背景和意义 (2) 1.1 风力发电的现状 (2) 1.2 风力发电的潜力 (3) 1.3 发展风电刻不容缓 (4) 2 风力发电机 (5) (一)风力发电机主要类型 (5) 2. 1 恒速风力发电机 (5) 2. 2 有限变速风力发电机 (5) 2. 3 变速风力发电机 (5) (二)不同风力发电机的综合比较 (7) 2. 4 年能量利用率和经济性的对比分析 (7) 2. 5 不同类型风力发电机市场应用情况 (7) 3 风力发电控制技术 (9) 3.1 变桨距风力发电技术 (9) 3.2 主动失速/混合失速发电技术 (9) 3.3 变速风力发电技术 (9) 3.4风力发电系统的智能控制 (10) 3.5 模糊控制 (10)

3.6 神经网络控制 (10) 3.7技术发展趋势展望 (11) 4 未来发展的建议 (12) 参考文献 (13) 致谢 (14)

前言 自然界的风是可以利用的资源,然而,我们现在还没有很好的对它进行开发。这就向我们提出了一个课题:我们如何开发利用风能?自然风的速度和方向是随机变化的,风能具有不确定特点,如何使风力发电机的输出功率稳定,是风力发电技术的一个重要课题。迄今为止,已提出了多种改善风力品质的方法,例如采用变转速控制技术,可以利用风轮的转动惯量平滑输出功率。由于变转速风力发电组采用的是电力电子装置,当它将电能输出输送给电网时,会产生变化的电力协波,并使功率因素恶化。因此,为了满足在变速控制过程中良好的动态特性,并使发电机向电网提供高品质的电能,发电机和电网之间的电力电子接口应实现以下功能:一,在发电机和电网上产生尽可能低的协波电波;二,具有单位功率因素或可控的功率因素;三,使发电机输出电压适应电网电压的变化;四,向电网输出稳定的功率;五,发电机磁转距可控。此外,当电网中并入的风力电量达到一定程度,会引起电压不稳定。特别是电网发生短时故障时,电压突降,风力发电机组就无法向电网输送能量,最终由于保护动作而从电网解列。在风能占较大比例的电网中,风力发电机组的突然解列,会导致电网的不稳定。因此,用合理的方法使风力发电机组电功率平稳具有非常重要的意义。

风力发电机的设计及风力发电系统的研究毕业设计论文

毕 业 论 文 题 目: 风力发电机的设计及风力发电系统的研究

诚信声明 本人声明: 1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果; 2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料; 3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。 作者签名:日期:年月日

毕业设计(论文)任务书 题目: 风力发电机的设计及风力发电系统的研究 一、基本任务及要求: 1)基本数据:额定功率 600=N P KW 连接方式 Y 额定电压 V U N 690= 额定转速 min /1512r n N = 相数 m=3 功率因数 88.00=?s c 效率 96.0=η 绝缘等级 F 极对数 P=2 2、本毕业设计课题主要完成以下设计内容: (1) 风力发电机的电磁设计方案; (2) 风力发电系统的研究; (3) 电机主要零部件图的绘制; (4) 说明书。 进度安排及完成时间: 2月20日——3月10日:查阅资料、撰写文献综述、撰写开题报告 3月13日——4月25日:毕业实习、撰写实习报告 3月27日——5月30日:毕业设计 4月中旬:毕业设计中期抽查 6月1日——6月14日:撰写毕业设计说明书(论文) 6月15日——6月17日:修改、装订毕业设计说明书(论文),并将电子文档上传FTP 6月17日——6月20日:毕业设计答辩

目录 摘要 ..............................................................................................I ABSTRACT ......................................................................................II 第1章绪论 .. (1) 1.1 开发利用风能的动因 (1) 1.1.1 经济驱动力 (1) 1.1.2 环境驱动力 (2) 1.1.3 社会驱动力 (2) 1.1.4 技术驱动力 (2) 1.2 风力发电的现状 (2) 1.2.1 世界风力发电现状 (2) 1.2.2 中国风力发电现状[13] (3) 1.3风力发电展望 (3) 第2章风力发电系统的研究 (5) 2.1 风力发电系统 (5) 2.1.1 恒速恒频发电系统 (5) 2.1.2 变速恒频发电机系统 (6) 2.2 变速恒频风力发电系统的总体设计 (10) 2.2.1 变速恒频风力发电系统的特点 (10) 2.2.2 变速恒频风力发电系统的结构 (10) 2.2.3 变速恒频风力发电系统运行控制的总体方案 (20) 第3章风力发电机的设计 (27) 3.1 概述[11] (27) 3.2 风力发电机 (28) 3.2.1 风力发电机的结构 (28) 3.2.2 风力发电机的原理 (29) 3.3 三相异步发电机的电磁设计 (29) 3.3.1 三相异步发电机电磁设计的特点 (30) 3.3.2 三相异步发电机和三相异步电动机的差异[2] (30) 3.3.3 三相异步发电机的电磁设计方案 (31) 3.3.4 三相异步发电机电磁计算程序 (32)

风电考试题

一、简答题 ★1、哪一个力产生使叶轮转动的驱动力矩? 答:升力使叶片转动,产生动能。 ★2、说出用于定义一台风力发电机组的4个重要参数。 答:轮毂高度、叶轮直径或扫掠面积、额定功率、额定风速。 ★3、简述风力发电机组的组成。 答:大型风力发电机组一般由风轮、机舱、塔架和基础四个部分组成。 ★4、风力发电机组产品型号的组成部分主要有什么? 答:风力发电机产品型号的组成部分主要有:风轮直径和额定功率。 ★5、什么叫风速? 答:空间特定的风速为该点周围气体微团的移动速度。 ★6、什么叫平均风速? 答:给定时间内顺势风速的平均值,给定时间从几秒到数年不等。 ★7、什么叫额定风速? 答:风力发电机达到额定功率输出时规定的风速。 ★8、什么叫切入风速? 答:风力发电机开始发电时的最低风速。 ★9、什么叫水平轴风力发电机的轮毂高度? 答:从地面到风轮扫掠面中心的高度,叫水平轴风力发电机的轮毂高度。 ★10、什么是风力发电机的控制系统? 答:接受风力发电机信息和环境信息,调节风电机,使其保持在工作要求范围内的系统。 ★11、什么叫水平轴风力发电机? 答:风轮轴线基本上平行于风向的发电机。 13、什么叫风力发电机组的额定功率? 答:在工作条件下,风力发电机组的设计要达到的最大连续输出电功率。 ★14、什么叫风力发电机组的扫掠面积? 答:垂直于风矢量平面上的,风轮旋转时叶尖运动所产生园的扫掠面积。 ★15、什么叫风力发电机组的浆距角? 答:在指定的叶片径向位置(通常为100%叶片半径处)叶片玄线与风轮旋转面间的夹角。 ★16、在风力发电机组的机械刹车最常用的形式是哪几种? 答:在风力发电机组中,最常用的机械刹车形式为盘式、液压、常闭式制动器。 ★17、风轮的作用是什么? 答:风轮的作用是把风的动能转换成风轮的旋转机械能。 ★18、风电机组的齿轮箱常采用什么方式润滑? 答:风电机组的齿轮箱常采用飞溅润滑或强制润滑,一般以强制润滑为多见。 ★★21、风形成的主要因素是什么? 答:地球表面受热不均使得赤道区的空气变热上升,且在两极区冷空气下沉,引起大气层中空气压力不均衡;地球的旋转导致运动的大气层根据其位置向东方和西方偏移。 ★★22、风力发电的经济效益主要取决于哪些因素? 答:风力发电的经济效益主要取决于风能资源、电网连接、交通运输、地质条件、地形地貌和社会经济多方面复杂的因素。 26、简要说明并网风力发电机组的发电原理。 答:并网风力发电机组的原理是将缝中的动能转换成机械能,再将机械能转换成电能,以固定的电能频率输送到电网中的过程。

风电场电气系统课程设计报告

风能与动力工程专业 风电场电气系统课程设计报告 题目名称:48MW(35/110KV升压站)风 电场电气一次系统初步设计指导教师:贾振国 学生姓名: 班级: 设计日期:2014年07月 能源动力工程学院

课程设计成绩考核表

摘要 根据设计任务书的要求及结合工程实际,本次设计为48MW风电场升压变电站电气部分设计。本期按发电机单台容量2000kW计算,装设风力发电机组24台。每台风力发电机接一台2000kVA升压变压器,将机端690V电压升至35kV 并接入35kV集电线路,经3回35kV架空线路送至风电场110kV升压站。 变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是由变压器、断路器、隔离开关、互感器、母线、避雷器等电气设备按一定顺序连接而成的,电气主接线的不同形式,直接影响运行的可靠性、灵活性,并对电气设备的选择、配电装置的布置、继电保护和控制方式的拟定等都有决定性的影响。 本文是小组成员的配合下和老师的指导下完成的,虽然时间很短,没有设计出特别完整的成果,可是我们学会了如何查找对自己有用的资料,如何设计一个完整的风电场电气系统。并且我们设计出了三张图,包括风机与箱式变电站接线图、35KV风电场集电线路接线图、110KV变电所电气主接线图,在这里感谢小组成员们的辛勤付出和贾老师的耐心指导。 关键词:主接线电气设备配电装置架空线路防雷与接地

Abstract According to the requirements of the design task and combined with the engineering practice, the design is part of the 48MW wind power booster substation electrical design. This period in accordance with the generator unit capacity of 2000kW calculation, installation of 24 wind turbine units. Each wind generator with a 2000kV A step-up transformer, the terminal 690V voltage to 35kV and access 35kV integrated circuit, the 3 35kV overhead transmission line to the wind farm 110kV booster station. Substation is an important part of power system, which directly affects the safety and economic operation of the whole power system, is the intermediate link between power plants and users, plays a role in transformation and distribution of electricity. The main electrical wiring is composed of a transformer, circuit breaker, isolating switch, transformer, bus, surge arresters and other electrical equipment according to a certain order which is formed by the connection of different form, the main electrical wiring, directly affect the operation reliability,flexibility, and the choice of electrical equipment, power distribution equipment arrangement, relay protection and control to have a decisive impact. This paper is combined with team members and under the guidance of teachers completed, although time is very short, no design particularly integrity achievements, but we learned how to find useful on its own data, how to design a complete wind farm electrical system. And we designed the three pictures, including fans and box type substation wiring diagram, 35KV wind farm set wiring diagram of an electric circuit, 110KV substation main electrical wiring diagram.Thanks to the team members to work hard and Jia teacher's patient instructions here. Key word:The main wiring Electrical equipment Distribution device Overhead line Lightning protection and grounding

风电专业考试题库(带答案)

风电专业考试题库 以下试题的难易程度用“★”的来表示,其中“★”数量越多表示试题难度越大,共526题。 一、填空题 ★1、风力发电机开始发电时,轮毂高度处的最低风速叫。 (切入风速) ★2、严格按照制造厂家提供的维护日期表对风力发电机组进行的预防性维护是。(定期维护) ★3、禁止一人爬梯或在塔内工作,为安全起见应至少有人工作。(两) ★4、是设在水平轴风力发电机组顶部内装有传动和其他装置的机壳。(机舱) ★5、风能的大小与风速的成正比。(立方)E=1/2(ρtsυ3)式中:ρ!———空气密度(千克/米2);υ———风速(米/ 秒);t———时间(秒);S———截面面积(米2)。 ★6、风力发电机达到额定功率输出时规定的风速叫。(额定风速)★7、叶轮旋转时叶尖运动所生成圆的投影面积称为。 (扫掠面积) ★8、风力发电机的接地电阻应每年测试次。(一) ★9、风力发电机年度维护计划应维护一次。(每年) ★10、SL1500齿轮箱油滤芯的更换周期为个月。(6) ★11、G52机组的额定功率KW。(850) ★★12、凡采用保护接零的供电系统,其中性点接地电阻不得超

过。(4欧) ★★13、在风力发电机电源线上,并联电容器的目的是为了。(提高功率因素) ★★14、风轮的叶尖速比是风轮的和设计风速之比。(叶尖速度)★★15、风力发电机组的偏航系统的主要作用是与其控制系统配合,使风电机的风轮在正常情况下处于。(迎风状态) ★★16、风电场生产必须坚持的原则。 (安全第一,预防为主) ★★17、是风电场选址必须考虑的重要因素之一。(风况) ★★18、风力发电机的是表示风力发电机的净电输出功率和轮毂高度处风速的函数关系。(功率曲线) ★★19、风力发电机组投运后,一般在后进行首次维护。 (三个月) ★★20、瞬时风速的最大值称为。(极大风速) ★★21、正常工作条件下,风力发电机组输出的最高净电功率称为。 (最大功率) ★★22、在国家标准中规定,使用“downwind”来表示。 (主风方向) ★★23、在国家标准中规定,使用“pitch angle”来表示。 (桨距角) ★★24、在国家标准中规定,使用“wind turbine”来表示。 (风力机) ★★25、风力发电机组在调试时首先应检查回路。(相序)

风力发电机组设计与制造课程设计报告

《风力发电机组设计与制造》 课程设计报告 院系:可再生能源学院 班级:风能0902班 姓名:陈建宏 学号 指导老师:田德、王永 提交日期: 一、设计任务书 1、设计内容 风电机组总体技术设计 2、目的与任务 主要目的: 1)以大型水平轴风力机为研究对象,掌握系统的总体设计方法; 2)熟悉相关的工程设计软件; 3)掌握科研报告的撰写方法。 主要任务: 每位同学独立完成风电机组总体技术设计,包括: 1)确定风电机组的总体技术参数; 2)关键零部件(齿轮箱、发电机和变流器)技术参数; 3)计算关键零部件(叶片、风轮、主轴、连轴器和塔架等)载荷和技术参数;

4)完成叶片设计任务; 5)确定塔架的设计方案。 每人撰写一份课程设计报告。 3、主要内容 每人选择功率范围在1.5MW至6MW之间的风电机组进行设计。 1)原始参数:风力机的安装场地50米高度年平均风速为7.0m/s,60米高度年平均风速为7.3m/s,70米高度年平均风速为7.6 m/s,当地历史最大风速为48m/s,用户希望安装1.5 MW至6MW之间的风力机。采用63418翼型,63418翼型的升力系数、阻力系数数据如表1所示。空气密度设定为1.225kg/m3。 2)设计内容 (1)确定整机设计的技术参数。设定几种风力机的C p 曲线和C t 曲线,风力机基本 参数包括叶片数、风轮直径、额定风速、切入风速、切出风速、功率控制方式、传动系统、电气系统、制动系统形式和塔架高度等,根据标准确定风力机等级; (2)关键部件气动载荷的计算。设定几种风轮的C p 曲线和C t 曲线,计算几种关键 零部件的载荷(叶片载荷、风轮载荷、主轴载荷、连轴器载荷和塔架载荷等);根据载荷和功率确定所选定机型主要部件的技术参数(齿轮箱、发电机、变流器、连轴器、偏航和变桨距电机等)和型式。以上内容建议用计算机编程实现,确定整机和各部件(系统)的主要技术参数。 (3)塔架根部截面应力计算。计算暴风工况下风轮的气动推力,参考风电机组的整体设计参数,计算塔架根部截面的应力。最后提交有关的分析计算报告。 4、进度计划

风力发电原理论文汇总

风力发电的基本原理 1 引言 风是最常见的自然现象之一,是太阳对地球表面不均衡加热而引起的“空气流动”,流动空气具有的动能称之为风能。因此,风能是一种广义的太阳能。据世界气象组织(WMO)和中国气象局气象科学研究院分析,地球上可利用的风能资源为200亿kW,是地球上可利用水能的20倍。中国陆地10m高度层可利用的风能为2.53亿kW,海上可利用的风能是陆地上的3倍,50m高度层可利用的风能是10m高度层的2倍,风能资源非常丰富。 2 风力发电基本理论知识 2.1 风能的计算公式 空气运动具有动能。风能是指风所具有的动能。如果风力发电机叶轮的断面积为A,则当风速为V的风流经叶轮时,单位时间风传递给叶轮的风能为 其中:单位时间质量流量m=ρAV 在实际中, 式中: P W—每秒空气流过风力发电机叶轮断面面积的风能,即风能功率,W; C p—叶轮的风能利用系数; m—齿轮箱和传动系统的机械效率,一般为0.80—0.95,直驱式风力发电机为1.0; e—发电机效率,一般为0.70—0.98; ρ—空气密度,kg/m3; A—风力发电机叶轮旋转一周所扫过的面积,m2; V—风速,m/s。 2.2 贝茨(Betz)理论 第一个关于风轮的完整理论是由德国哥廷根研究所的A·贝茨于1926年建

立的。 贝茨假定风轮是理想的,也就是说没有轮毂,而叶片数是无穷多,并且对通过风轮的气流没有阻力。因此这是一个纯粹的能量转换器。此外还进一步假设气流在整个风轮扫掠面上的气流是均匀的,气流速度的方向无论在风轮前后还是通过时都是沿着风轮轴线的。 通过分析一个放置在移动空气中的“理想”风轮得出风轮所能产生的最大功率为 式中: P max—风轮所能产生的最大功率; ρ—空气密度,kg/m3; A—风力发电机叶轮旋转一周所扫过的面积,m2; V—风速,m/s。 这个表达式称为贝茨公式。其假定条件是风速与风轮轴方向一致并在整个风轮扫掠面上是均匀的。 将式除以气流通过扫掠面A时风所具有的动能,可推得风力机的理论最大效率 式即为有名的贝兹(Betz)理论的极限值。它说明,风力机从自然风中所能索取的能量是有限的,其功率损失部分可以解释为留在尾流中的旋转动能。 能量的转换将导致功率的下降,它随所采用的风力机和发电机的型式而异,因此,风力机的实际风能利用系数Cp<0.593。 2.3 温度、大气压力和空气密度 通过温度计和气压计测试出实验地点的环境温度和大气压,由下式计算出空气密度。 式中:ρ—空气密度,kg/m3; h—当地大气压力,Pa;

风力发电系统控制技术发展历程

摘要 风力发电正在中国蓬勃发展,即使在金融危机的大形势下,风力发电行业仍然不断的加大投资。在2008年,风力发电仍然保持着30%以上的强劲增长势头,包括Vestas、Gemsa、GE、国内的金风科技、华锐、运达工程等其订单交付已经到2011年后。在风力发电系统中需要解决的基本矛盾是如何在风速变化的情况下,获得较稳定的电压输出。既要考虑到风能的特点,又要考虑到用户的需要,达到实用、可靠、经济的运行效果,关键环节之一就是要有一个稳定、可靠、功能齐全的控制系统。 本文介绍了世界风力发电控制系统的发展历程和我国的研究现状以及对风力发电系统控制技术的前景分析。分析并得出风力发电系统中,控制系统是确保机组安全可靠运行、优化机组效率的关键。关键词:风力发电、控制系统技术、发展历程。

目录 第一章风力发电技术的前景 (1) 第二章风力发电系统控制技术的介绍 (3) 一风电控制系统简述 (4) 二风力发电控制技术的发展历程 (4) 三控制目的 (5) 结束语 (6) 参考文献 (7)

风力发电系统控制技术发展历程 第一章风力发电技术的前景 人类对于风能的开发利用也很早就开始了。但是,近代火力、水力发电机的广泛应用和20世纪50年代中东油田的发展,使风力发电机的发展缓慢下来。在我国风力发电机组的研制工作开展较早,但是没得到足够的重视与支持,因而发展较慢。五十年代后期有过一个兴旺时期,吉林、辽宁、内蒙古、江苏、安徽和云南等省都研制过千瓦级以下的风车,但是没有做好巩固和发展成果的工作。七十年代后,随着国民经济的较快发展出现了能源供应紧张、环境污染严重等现象,另外由于科技意识日渐深入人心,可再生无污染的风能利用受到了足够的重视。在浙江、黑龙江、福建研制出了较大功率的机组;内蒙古的有关单位研制的小型风力发电机已有批量生产,用于解决地处偏远、居住分散的农牧民住户、蒙古包的生活用电和少量生产用电。八十年代以来,风力发电在我国得到了相应的发展。目前微型(<1KW)、小型(1-10 KW)风力发电机的技术日渐成熟,已经达到商品化程度。同时大型风力发电机组(600 KW)也研制成功,并已投入了运行。此外,从国外引进了大型风力发电机组建设了20余个风电场。总装机容量达到了近25MW。从统计资料来看,在我国风能利用与风力发电技术虽然有了一定的进展,与国外先进国家相比较仍然存在差距,尤其是在大型风力发电机组的开发与研制方面。 从统计资料来看,在我国风能利用与风力发电技术虽然有了一定

基于PLC的风力发电控制系统设计毕业设计

学号: 2010509044 浙江大学 毕业设计(论文)题目基于PLC的风力发电控制系统设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

《风力发电技术》复习题

《风力发电技术》复习题 1、风能的大小与风速的成正比。(B) A、平方; B、立方; C、四次方; D、五次方。 2、风能是属于的转化形式。(A) A、太阳能; B、潮汐能; C、生物质能; D、其他能源。 3、在正常工作条件下,风力发电机组的设计要达到的最大连续输出功率叫。(D) A、平均功率; B、最大功率; C、最小功率; D、额定功率。 4、风力发电机开始发电时,轮毂高度处的最低风速叫。(D) A、额定风速; B、平均风速; C、切出风速; D、切入风速。 5、风能的大小与空气密度。(A) A、成正比; B、成反比; C、平方成正比; D、立方成正比。 6、按照年平均定义确定的平均风速叫。(C) A、平均风速; B、瞬时风速; C、年平均风速; D、月平均风速。 7、风力发电机达到额定功率输出时规定的风速叫。(B) A、平均风速; B、额定风速; C、最大风速; D、启动风速。 8、当风力发电机飞车或火灾无法控制时,应首先。(C) A、回报上级; B、组织抢险; C、撤离现场; D、回报场长。 9、风力发电机组开始发电时,轮毂高度处的最低风速叫。(B) A、启动风速; B、切入风速; C、切出风速; D、额定风速。 10、给定时间内瞬时风速的平均值叫做该时间段内的。(C) A、瞬时风速; B、月平均风速; C、平均风速; D、切出风速。 11、在变桨距风力发电机组中,液压系统主要作用之一是,实现其转速控制、功率控制。(A) A、控制变桨距机构; B、控制机械刹车机构; C、控制风轮转速; D、控制发电机转速。 12、风力发电机组规定的工作风速范围一般是。 (C) A、0~18m/s; B、0~25m/s; C、3~25m/s; D、6~30m/s。 13、在某一期间内,风力发电机组的实际发电量与理论发电量的比值,叫风力发电机组的。(A) A、容量系数; B、功率系数; C、可利用率; D、发电率。 14、风力发电机电源线上,并联电容器组的目的是。(C) A、减少无功功率; B、减少有功功率; C、提高功率因数; D、减少由有

风力发电课程设计

1.风力发电发展的现状 1.1世界风力发电的现状 近20年风电技术取得了巨大的进步。1995—2006年风力发电能力以平均每年30%以上的速度增长,已经成为各种能源中增长速度最快的一种。今年来欧洲、北美的风力发电装机容量所提供的电力2成为仅次于天然气发电电力的第二大能源。欧洲的风力风力发电已经开始从“补充能源”向“战略替代能源”的方向发展。 到2008年,世界风能利用嘴发达的国家是德国、美国和西班牙,中国名列世界第四位。丹麦是世界上使用风能比例最高的国家,丹麦能源消费的1/5来自于风力。 欧洲在开发海上风能方面也依然走在世界前列,其中丹麦、美国、爱尔兰、瑞典和荷兰等国家发展较快。尤其是在一些人口密度较高的国家,随着陆地风电场殆尽,发展海上风电场已成为新的风机应用领域而受到重视。丹麦、德国、西班牙、瑞典等国家都在计划较大的海上风电场项目。目前海上风电机组的平均单机容量在3MW左右,最大已达6MW。世界海上风电总装机容量超过80万千瓦。 有余风力发电技术已经相对成熟,因此许多国家对风发电的投入较大,其发展较快,从而使风电价格不断下降。若考虑环保及地理因素,加上政府税收优惠政策和相关支持,在有些地区风力发电已可与火力发电等展开竞争。在全球范围内,风力发电已形年产值超过50亿美元的产业。 1.2我过风力发电的发展现状 我国风力发电从20世纪80年代开始起步,到1985年以后逐步走向产业化发展阶段。 自2005年起,我国风电规模连续三年实现翻倍增长。风电新增容量每年都增加超过100%,仅次于美国、西班牙,成为世界风电快速增长的市场之一。根据国家能源局2009年公布的统计数据,截止2008年底,我国风电装机容量已达1271万千瓦,居世界第4位,但是风电在我国整个电力能源结构中所占的比重仍然比较低。 我国将在内蒙古、甘肃、河北、吉林、新疆、江苏沿海等省区建设十多个百万千瓦级和几个千瓦级风电基地。根据目前国内增长趋势,预计到2020年,中国风电总装机容量将达到1.3亿~1.5亿千瓦。 2 风力发电机 2.1恒速恒频的笼式感应发电机 恒速恒频式风力发电系统,特点是在有效风速范围内,发电机组的运行转速变化范围很小,近似恒定;发电机输出的交流电能频率恒定。通常该类风力发电系统中的发电机组为鼠笼式感应发电机组。 恒速恒频式发电机组都是定桨距失速调节型。通过定桨距失速控制的风力机使发电机转速保持在恒定的数值,继而使风电机并网后定子磁场旋转频率等于电网频率,因而转子、风轮的速度变化范围较小,不能保持在最佳叶尖速比,捕获风能的效率低。 2.2变速恒频的双馈感应式发电机 变速恒频式风力发电系统,特点是在有效风速范围内,允许发电机组的运行转速变化,而发电机定子发出的交流电能的频率恒定。通常该类风力发电系统中的发电机组为双馈感应式异步发电机组。 双馈感应式发电机结合了同步发电机和异步发电机的特点。这种发电机的定子和转子都可以和电网交换功率,双馈因此而得名。 双馈感应式发电机,一般都采用升级齿轮箱将风轮的转速增加若干倍,传递给发电机转子转速明显提高,因而可以采用高速发电机,体积小,质量轻。双馈交流器的容量仅与发电机的转差容量相关,效率高、价格低廉。这种方案的缺点是升速轮箱价格贵,噪声大、易疲劳损坏。

风力发电机论文关于风力发电的论文

风力发电机论文关于风力发电的论文 影响风力发电机组功率的因素 摘要:风力发电机作为一种绿色能源有着改善能源结构、经济环保等方面的优势,也是未来能源电力发展的一个趋势。但风力发电机在工作时由于受到环境或本身结构的影响,其功率会受到影响。文章就影响风力发电机组功率的各方面因素进行探讨。 关键词:风力发电机;功率影响因素;功率曲线;发电量 一、功率曲线与发电量 功率曲线反映了风力发电机组的功率特性,是衡量机组风能转换能力的指标之一,设备验收时功率曲线往往是被重点考核的对象。其实,评价一种机型功率曲线的好坏不应单纯地只关注那些图表中所给定的“风速—功率”对应值,还应根据现场情况进行具体分析:风力机组的功率特性关键取决于叶片的气动特性和机组的控制策略。众所周知,叶片的气动设计实际上是一个优化的结果,受其他条件限制,无法达到所有风速工况下效率均最好的目标。而机组实际运行的外部条件可能与设计存在较大差异,因此需要采取技术措施以实现发电量最大。一般来讲,失速型机组应根据风频分布调整合适的安装角,使风频最高的风速段出力最好。而变桨距机组则应根据湍流等风速特性优化控制策略。因此为了追求发电量优化的目标,实际的功率曲线与理论值会存在一个合理的偏差。

二、风力发电机组实际功率曲线与标准功率曲线的差异 根据风力发电机组在一段时间内输出功率和同一时刻的风速之间的对应关系,即可得到风电机组的实际功率曲线,比较理想的状况是单独设立一套独立的测量系统,对机组的功率数据进行记录,同时测量环境气温、大气压力和风速等环境参数,根据记录的数据,绘制出风力发电机组的实际功率曲线,同时根据环境气温、大气压力对实际功率曲线进行修正,观察机组实际功率曲线与标准功率曲线的差异是否在正常的范围内。在实际工作中,由于受现场条件和机组数量较大的限制,多利用机组控制系统的测量数据,通过中央监控系统进行记录,这种方式存在两个弊端:一是多数风力机的风速仪位于叶轮的后部,风速的测量准确度受到影响,其次机组控制系统没有环境气温、大气压力等环境参数的测量或测量值不准确,需要补充其它辅助装置进行数据的补充。因此采用这种方式分析处理得到的机组实际功率曲线应允许有一定的误差。 本文所有数据源于一套为上海电气的SEG—1250风机监控系统,数据存储时间间隔为1分钟。 选定这种风力机的数据,是因为这种风力机在风力机类型上比较普遍,同属于三叶片、上风向、定桨距失速调节型风力机,额定功率相同,叶轮转速相同,均为33rpm,叶轮直径普遍。 在图1中,风力机的实际功率曲线均未经过环境温度和大气压力

风力发电机控制原理

风力发电机控制原理 本文综述了风力发电机组的电气控制。在介绍风力涡轮机特性的基础上介绍了双馈异步发电系统和永磁同步全馈发电系统,具体介绍了双馈异步发电系统的运行过程,最后简单介绍了风力发电系统的一些辅助控制系统。 关键词:风力涡轮机;双馈异步;永磁同步发电系统 概述: 经过20年的发展风力发电系统已经从基本单一的定桨距失速控制发展到全桨叶变距和变速恒频控制,目前主要的两种控制方式是:双馈异步变桨变速恒频控制方式和低速永磁同步变桨变速恒频控制方式。 在讲述风力发电控制系统之前,我们需要了解风力涡轮机输出功率与风速和转速的关系。 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。

涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统 双馈异步风力发电系统的示意见图4,绕线异步电动机的定子直接连接电网,转子经四象限IGBT电压型交-直-交变频器接电网。 转子电压和频率比例于电机转差率,随着转速变化而变化,变频器把转差频率的转差功率变为恒压、恒频(50HZ)的转差功率,送至电网。由图4可知: P=PS-PR;PR=SPS;P=(1-S)PS P是送至电网总功率;PS和PR分别是定子和转子功率 转速高于同步速时,转差率S<0,转差功率流出转子,经变频器送至电网,电网收到的功率为定、转子功率之和,大于定子功率;转速低于同步转速食,S>0,转差功率从电网,

小型风力发电机毕业设计论文

小型风力发电机毕业设计 摘要 基于开发风能资源在改善能源结构中的重要意义,本论文对风力发电机的特性作了简要的介绍,且对风力发电机的各种参数和风力机类型作了必要的说明。在此基础上,对风力发电机的原理和结构作了细致的分析。首先,对风力发电机的总体机械结构进行了设计,并且设计了限速控制系统。本课题设计的是一种新型的立式垂直轴小型风力发电机,由风机叶轮、立柱、横梁、变速机构、离合装置和发电机组成。这种发电机有体积小、噪音小、使用寿命长、价格低的特点,适合在有风能资源地区的楼房顶部,供应家庭用电,例如照明:灯泡,节能灯;家用电器:电视机、收音机、电风扇、洗衣机、电冰箱。 关键词:风力发电限速控制系统小型风力发电机

Abstract Exploiting wind energy resources is of great significance in improving energy structure. In the discourse,the characters of wind generator are introduced briefly,while parameters and types of wind generators are also narrated. Base on these,the theory and constitution of the wind generator are meticulously analyzed. Firstly,Has carried on the design to wind-driven generator's overall mechanism, And has designed the regulating control system. What I design is one kind of new vertical axis small wind-driven generator, by the air blower impeller, the column, the crossbeam, the gearshift mechanism, the engaging and disengaging gear and the generator is composed. This kind of generator has the volume to be small, the noise is small, the service life is long, the price low characteristic, suits in has the wind energy resources area building crown, the supply family uses electricity, For example illumination: The light bulb, conserves energy the lamp; Domestic electric appliances: Television, radio, electric fan, washer, electric refrigerator. Key words:Wind power generation, Regulating control system, Small wind-driven generator

相关文档