文档库 最新最全的文档下载
当前位置:文档库 › (完整)高等量子力学习题汇总,推荐文档

(完整)高等量子力学习题汇总,推荐文档

(完整)高等量子力学习题汇总,推荐文档
(完整)高等量子力学习题汇总,推荐文档

第一章

1、简述量子力学基本原理。

答:QM 原理一 描写围观体系状态的数学量是Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是Hillbert

空间内的厄米算符(A

?);2、物理量所能取的值是相应算符A ?的本征值;3、一个任意态总可以用算符A ?的本征态i

a 展开如下:ψψi i i i

i

a C a C

==∑;而物理量A 在

ψ中出现的几率与2

i C 成正比。原理三 一个微观粒子在直角坐标下的位置算符i x ?和相应的正则动量算符i p

?有如下对易关系:[]0?,?=j i x x ,[]0?,?=j i p p ,[]

ij j i i p x δη=?,? 原理四 在薛定谔图景中,微观体系态矢量

()t ψ随时间变化的规律由薛定谔方程给

()()t H t t

i ψψ?=??η

在海森堡图景中,一个厄米算符()

()t A H ?的运动规律由海森堡

方程给出:

()()()[]

H A i t A dt d H H ?

,?1?η

= 原理五 一个包含多个全同粒子的体系,在Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念?

答:()()t x t ψψ|,x =<>式中态矢随时间而变而x 不含t ,结果波函数()t x ,ψ中的宗量t 来自()t ψ而x 来自x ,这叫做薛定谔图景.

3、 已知.10,01???

?

??=???? ??=βα (1)请写出Pauli 矩阵的3个分量; (2)证明σx 的本征态).(211121|βα±=???

? ??±>=±x S 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为:

求证:

答案:设:C 1=x 1+iy 1,C 2=x 2+iy 2

则:P x =2(x 1x 2+y 1y 2) P y =2(x 1y 2-x 2y 1) P z =x 12+y 12-x 22-y 22 P 2=P x 2+P y 2+P z 2=4(x 1x 2+y 1y 2)2+4(x 1y 2-x 2y 1)2+(x 12+y 12-x 22-y 22)2

=4(x 12x 22+y 12y 22+x 12y 22+x 22y 12)+(x 14-2x 12x 22-2x 12y 22-2x 22y 12-2y 12y 22-2x 22y 22+y 14+x 24+y 24) =(x 14+2x 12x 22+2x 12y 22+2x 22y 12+2y 12y 22+2x 22y 22+y 14+x 24+y 24) =(x 12+y 12+x 22+y 22)2 =(|C 1|2+|C 2|2)2 5、

6、证明不确定关系.————答案:对于两个可观测量A ∧

和B ∧

成立不等式:

(1)先证明一个引理----schwarz 不等式:对

于两个态矢|α?和|β?,必有:

(2)

此不等式类似于对实欧式空间的两个矢量a,b ,必有:

(3)

对任意复常数λ,我们有:

(4)

取||βαλββ??

=-

??

,代入上式可得(2).现在证明(1)式:取

(5)

这里用态|?来强调对任何ket 矢量都适用,于是(2)式给出:

(6)因:

(7)其中对易子,,A B A B ∧∧∧∧????

??????=?????????

是一个反厄米算符,它的平方值恒为纯虚数,而反

对易子}

,A B ∧∧

?????

是厄米算符,它的平方值恒为实数,于是:

的模的平方等于

7、证明:幺正算符的本征态互相正交.

解: 设 |n ? 是幺正算符S 的一个本征态, 本征值为 n, 则 ?n|S |n ? = n => ?n|S = ?n|n => S +|n ? = n +|n ?

即|n ? 也是S +的本征态,而 H = S + S + 是厄米算符, H |n ? = (n + n +)|n ?

故|n ? 也是H 的本征态,而厄米算符的本征态相互正交, 所以幺正矩阵的本征态相互正交. 8、试证明:若体系在算子变换Q 下保持不变,则必有[H,Q]=0。这里H 为哈密顿算符,变换Q 不显含时间,且存在逆变换Q -1。

9、论述态矢,波函数与图景,表象的关系,并说明薛定谔图景和海森堡图景的区别.

答案: 态矢与图景有关而与表象无关,波函数作为态矢在基态上的投影却与表象有关和图

景无关。海森堡图景,态矢|t S ?

?()依赖时间t 而基矢|x ?不含t,而对于海森堡图景而言,|H

??不含t ,于是时间依赖性完全转移到|x,t H

?中去了。 10、求证

11、请写出一维谐振子的经典哈密顿量 答:一维谐振子的经典哈密顿量:22221

()2H P m w q m

=

+

12、产生,湮灭算符的定义,为什么把它们叫产生湮灭算符? 答案: 产生,湮灭算符的定义如下:

定义粒子数算符

可以得到:

由此可知?

|a n ∧?和|a n ∧

?分别是N ∧

的本征值为(n+1)和(n-1)的本征态。故称其为产生湮灭算符。

13、证明谐振子在激发态中

()

()

2

2

2

212x p n ?

???=+ ???h 证明:,22m x a a p a a m ωω++∧∧∧∧∧∧??=+=-????

h h

0,0x p ∧

==2

2

2

2

x x x

x ∧

∧∧

∧??????=-= ? ? ???

??

??

V

同理: 2

2

2

2

p p p

p ∧∧∧

∧??

????=-= ?

? ?????

??

V

222221222x a a a a a a a a a a m m ωω+++++∧∧∧∧∧∧∧∧∧∧∧??????

=

+++=+++ ? ? ???????h h 2

22122m p a a a a ω++∧

∧∧

∧∧????=--++ ? ?????h 对于激发态n

()2

122x n m ω∧??

=+ ???

h ()2

122

m p n ω

∧??=

+ ???

h 2

2

2

212x p n ∧

??????=+ ? ? ???

??

??

h 14、请构造相干态.

解:相干态为最小不确定态,同时是的本征态,记为

在N表象中解此方程,展开:

由得

又有,所以

由归一化条件得:

15、简述:从经典力学过渡到量子力学的三种途径————

薛定谔的表述形式,即波动力学,它重视描述粒子“波粒二重性”运动的波函数。 (1) 海森波的矩阵力学,它重视可观察量。把可观察量和算符间建立了一一的对应关系,

研究算符的运动方程,它包含有对易关系的运算。

(2) 第三种是狄拉克和费曼发现的,他们着眼于经典作用量和量子力学中相位之间的关

系,重视“传播函数”或“传播子”的作用。

16、由最小作用量原理推导拉格朗日方程。

第二章

17、势散射:两粒子的相互作用,可以是能用二者的相互作用势能12()V r r 表达的引力或斥力,这时的散射称为势散射.

18、证明S 算符是么正的 证明:因为)()()()(+--++

ΩΩΩΩ

=+

+

s s

所以

所以算符S 是么正的

第三章

19、试证明任意个相互独立的角动量算符之和仍是角动量算符。 轨道角动量 ?

[,]x y z L r p L L i L =?=r r r

h ;

自旋角动量 ?

[,]x y z S S S i S =r h ; [,]0L S =r r →J L S =+r r r 仍为角动量

证:[,][,]

[,][,]

x y x x y y x y x y

z z z

J J L S L S L L S S i L i S i J =++=+=+=h h h

一般地若两角动量满足12[,]0J J =r r 则12J J J =+r r r

也是角动量

进一步:任意个两两对易的角动量算符之和仍为角动量算符 设n m n nm J J i J δ?=r r r

h 即[,]nx my nz nm J J i J δ=h

则对于1

1

?;,,k k n n n n J J J J x y z μμ

μ===?==∑∑r

r

1

111

11

1

[,][,][,]

k

k

k

k

x y nx my nx my n m n m k k

k

n nm nz z

n m n J J J J J J i J i J i J δ============∑∑∑∑∑∑∑h h h

喀兴林高等量子力学习题6、7、8

练习 6.1 在ψ按A 的本征矢量{}i a 展开的(6.1)式中,证明若ψ 是归一化的,则 1=∑*i i i c c ,即A 取各值的概率也是归一化的。(杜花伟) 证明:若ψ是归一化的,则1=ψψ。根据(6.1)式 ∑=i i i c a ψ, ψi i a c = 可得 1===∑∑* ψψψψ i i i i i i a a c c 即A 取各值的概率是归一化的。 # 练习6.2 (1) 证明在定态中,所有物理量取各可能值的概率都不随时间变化,因而,所有物理量的平均值也不随时间改变. (2) 两个定态的叠加是不是定态? (杜花伟 核对:王俊美) (1)证明:在定态中i E i H i = , Λ3,2,1=i 则 ()t E i i i i t η -=ψ 所以 i A i e i A e A t E i t E i i i ==-η η ψψ. 即所有物理量的平均值不随时间变化. (2)两个定态的叠加不一定是定态.例如 ()()()t E i t E i e x v e x u t x 21,η η --+=ψ 当21E E =时,叠加后()t x ,ψ是定态;当21E E ≠时, 叠加后()t x ,ψ不是定态. # 6.3证明:当函数)(x f 可以写成x 的多项式时,下列形式上含有对算符求导的公式成立: ) (]),([)()](,[X f X i P X f P f P i P f X ?? =?? =ηη (解答:玉辉 核对:项朋) 证明:(1)

) ()()()()()()()()](,[P f P i P i P f P i P f P f P i P i P f P f P i X P f P Xf P f X ??=??-??+??=??-??=-=ηηηηηηψψ ψψψ ψψ ψψ 所以 )()](,[P f P i P f X ?? =η (2) ) () ()())(())(()()())(()()(]),([X f X i X f X i X i X f X i X f X f X i X i X f X Pf P X f P X f ??=?? --??--??-=?? --??-=-=ηηηηηηψψψψψ ψψ ψψ 所以 )(]),([X f X i P X f ?? =η # 练习6.4 下面公式是否正确?(解答:玉辉 核对:项朋) ),()],(,[P X f P i P X f X ?? =η 解:不正确。 因为),(P X f 是X 的函数,所以)],(,[P X f X =0 # 练习6.5 试利用Civita Levi -符号,证明:(孟祥海) (1)00=?=?L X ,L P (2)[]0=?P X L, (3)()()P X X P P X P X L ?-??-=ηi 22 2 2 证明: (1)∑∑∑∑=== ?ijk k j i ijk k j jk ijk i i i i i P X P P X P L P εε L P

量子力学考试题

量子力学考试题

量子力学考试题 (共五题,每题20分) 1、扼要说明: (a )束缚定态的主要性质。 (b )单价原子自发能级跃迁过程的选择定则及其理论根据。 2、设力学量算符(厄米算符)∧ F ,∧ G 不对易,令∧K =i (∧F ∧G -∧G ∧ F ),试证明: (a )∧ K 的本征值是实数。 (b )对于∧ F 的任何本征态ψ,∧ K 的平均值为0。 (c )在任何态中2F +2 G ≥K 3、自旋η/2的定域电子(不考虑“轨道”运动)受到磁场作用,已知其能量算符为 S H ??ω= ∧ H =ω∧ z S +ν∧ x S (ω,ν>0,ω?ν) (a )求能级的精确值。 (b )视ν∧ x S 项为微扰,用微扰论公式求能级。 4、质量为m 的粒子在无限深势阱(0

' 11 H =0,'22 H =0,'12H ='21 H =ν η21 E 1=E 1(0)+'11H +)0(2)0(12 '21 E E H -=-ωη21+0-ωνηη2241=-ωη21-ων241η E 2=E 2 (0) +' 22H + )0(1)0(22'12 E E H -=ωη21 +ων241η 4、E 1=2 22 2ma ηπ,)(1x ψ=?????0sin 2a x a π a x x a x ≥≤<<,00 x =dx x a ?021ψ=2sin 20 2a dx a x x a a =?π x p =-i η?=a dx dx d 011ψψ-i ?=a a x d a 020)sin 21(2πη x xp =-i η??-=a a a x d a x x a i dx dx d x 00 11)(sin sin 2ππψψη = ?-a a x xd a i 02) (sin 1πη =0sin [12a a x x a i πη--?a dx a x 0 2]sin π =0+?=a i dx ih 0 2 122ηψ 四项各5分 5、(i ),(ii )各10分 (i )s =0,为玻色子,体系波函数应交换对称。 ),(21→ →r r ψ有:)(1→ r a ψ→ )(2r a ψ,)(1→ r b ψ→ )(2r b ψ,)(1→ r c ψ→ )(2r c ψ, )] ()()()([21 2121→ →→→+r r r r a b b a ψψψψ a c c a b c c b 共6种。 (ii )s =21 ,单粒子态共6种: ? ?????0 1a ψ, ? ?????1 0a ψ, ? ?????0 1b ψ, ? ?????1 0b ψ, ? ?????0 1c ψ, ? ?????1 0c ψ。

量子力学讲义第二章讲义

第二章 一维势场中的粒子 §2.2 方 势 一、一维运动 当粒子在势场V (x ,y ,z )中运动时,其 Schrodinger 方程为: 22 [(,,)](,,)(,,)2V x y z x y z E x y z m ψψ-?+= 若势可写成: V (x ,y ,z ) = V 1(x ) + V 2(y ) + V 3(z ) 形式, 2212 [()]()()2x d V x X x E X x m dx -+= 2222 [()]()()2y d V y Y y E Y y m dy -+= 2232 [()]()()2z d V z Z z E Z z m dz -+= ψ(x ,y ,z ) = X (x ) Y (y ) Z (z ) ψ1(x ) x y z E E E E =++ 二、一维无限深势阱 0(0)()(0,) x a V x x x a ?<?? 这是定态问题 一维无限深势阱(0~a )的求解 解:(1)列出各势域的 S — 方程 22 2 [()]()()2d V x x E x m dx ψψ-+= 20222 2 2202 22()0202()0I I II II III III d m V E dx d mE dx d m V E dx ψψψψψψ?--=???+=???--=?? 00E V << 0()V →∞ ,令k = )(0>k ,β=方程可简化为:22 2 222 222 000I I II II III III d dx d k dx d dx ψβψψψψβψ?-=????+=???-=??

高等量子力学习题汇总(可编辑修改word版)

2 i i i j i j ± 第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是 Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是 Hillbert 空间内的厄米算符( A ? );2、物理量所能取的值是相应算符 A ? 的本征值;3、 一个任意态总可以用算符 A ? 的本征态 a i 展开如下: = ∑C i a i i C i = a i ;而 物理量 A 在 中出现的几率与 C i 成正比。原理三 一个微观粒子在直角坐标下的位置 算符 x ? 和相应的正则动量算符 p ? 有如下对易关系: [x ? , x ? ]= 0 , [p ? , p ? ] = 0 , [x ?i , p ? j ]= i ij 原理四 在薛定谔图景中,微观体系态矢量 (t ) 随时间变化的规律由薛定谔方程给 i ? ?t (t ) = H ? (t ) 在海森堡图景中,一个厄米算符 A ?(H ) (t ) 的运动规律由海森堡 方程给出: d A ?(H ) (t ) = 1 [A ?(H ), H ? ] 原理五 一个包含多个全同粒子的体系,在 dt i Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答: (x, t ) =< x |(t )>式中态矢随时间而变而 x 不含 t ,结果波函数ψ(x ,t )中的宗量 t 来自 ψ(t ) 而 x 来自 x ,这叫做薛定谔图景. ?1 ? ? 0? 3、 已知 = ?,= ?. 0 1 (1)请写出 Pauli 矩阵的 3 个分量; (2)证明σ x 的本征态 ? ? ? ? 1 ?1 ? 1 | S x ± >= ? = ? 1? (± ). 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求 证: 2 2

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集 量子力学期末试题及答案(A) 选择题(每题3分共36分) 1.黑体辐射中的紫外灾难表明:C A. 黑体在紫外线部分辐射无限大的能量; B. 黑体在紫外线部分不辐射能量; C.经典电磁场理论不适用于黑体辐射公式; D.黑体辐射在紫外线部分才适用于经典电磁场理论. 2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度; B. Ψ归一化后, ψψ* 代表微观粒子出现的几率密度; C. Ψ一定是实数; D. Ψ一定不连续. 3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片; B.偏振光子先改变偏振方向,再通过偏振片; C.偏振光子通过偏振片的几率是不可知的; D.每个光子以一定的几率通过偏振片. 4.对于一维的薛定谔方程,如果 Ψ是该方程的一个解,则:A A. *ψ 一定也是该方程的一个解; B. *ψ一定不是该方程的解; C. Ψ 与* ψ 一定等价; D.无任何结论. 5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒. 6.如果以∧ l 表示角动量算符,则对易运算] ,[y x l l 为:B A. ih ∧ z l B. ih ∧ z l C.i ∧ x l D.h ∧ x l 7.如果算符 ∧A 、∧B 对易,且∧ A ψ =A ψ,则:B A. ψ 一定不是∧B 的本征态; B. ψ一定是 ∧ B 的本征态; C.*ψ一定是∧ B 的本征态; D. ∣Ψ∣一定是∧ B 的本征态.

高等量子力学复习题

上册 1.3 粒子在深度为0V ,宽度为a 的直角势阱(如图1.3)中运动,求 (a)阱口刚好出现一个束缚态能级(即0V E ≈)的条件; (b)束缚态能级总和,并和无限深势阱作比较 . 解 粒子能量0V E 小于时为游离态,能量本征值方程为: []0)(22''=-+ ψψx V E m (1) 令002k mV = ,β=- )(20E V m (2) 式(1)还可以写成 ?? ???≥=-≤=+)(阱外)(阱内4)(2,03)(2,022''2''a x a x mE ψβψψψ 无限远处束缚态波函 数应趋于0,因此式(4)的解应取为()2,a x Ce x x ≥=-βψ 当阱口刚好出现束缚态能级时,0,0≈≈βV E ,因此 2,0)('a x Ce x x ≥≈±=-ββψ (6) 阱内波函数可由式(3)解出,当0V E ≈解为 ()()2,s i n ,c o s 00a x x k x x k x ≤?? ?==ψψ奇宇称 偶宇称 (7) 阱内、外ψ和ψ应该连续,而由式(6)可知,2a x =处,0'=ψ, 将这条件用于式(7),即得 ,5,3,,02cos ,6,4,2,02 sin 0000ππππππ====a k a k a k a k 奇宇称偶宇称(8) 亦即阱口刚好出现束缚能级的条件为 ,3,2,1, 0==n n a k π (9) 即2 22202π n a mV = (10) 这种类型的一维势阱至少有一个束缚能级,因此,如果 2 2202π< a mV ,只存在一个束缚态,偶宇称(基态)。如果22202π = a mV ,除基态外,阱口将再出现一个能级(奇宇称态),共两个能级。如() 222022π= a mV ,阱口将出现第三个能级(偶宇称)。依此类推,由此可知,对于任何20a V 值,束缚态能级总数为 其中符号[A]表示不超过A 的最大整数。 当粒子在宽度为a 的无限深方势阱中运动时,能级为 ,3,2,1,212 =?? ? ??=n a n m E n π 则0V E ≤的能级数为 120-=?? ????=N mV a n π (12) 也就是说,如果只计算0V E ≤的能级数,则有限深)(0V 势阱的能级数比无限深势阱的能级数多一个。注意,后者的每一个能级均一一对应的高于前者的相应能级。

清华大学量子力学讲义Lecture14[1]

3. 系综与密度算符 1)纯系综和混合系综 相同的物理体系构成系综,例如由具有自旋的粒子构成的系综。 一个自旋为1/2的粒子的自旋态(方位角,αβ) /2/2(,)(,)(,)cos sin 22i i c c e e ααβ β χαβαβχαβχχχ-++--+-=+=+, 其中,χχ+-是?z s 的本征态, cos(/2)sin(/2) i c c e αββ+-=。 如果所有粒子的自旋都取相同方向,则称体系是极化系统,构成的系综是纯系综。 如果粒子的自旋不在同一方向,则构成的系综叫混合系综。例如自旋向上的粒子数占70%,自旋向下的粒子数占30%,体系是部分极化。一个自旋方向完全随机的系综,其自旋向上,向下的几率各有50%,整的表现是相互抵销,自旋为零,完全没极化。 2)系综平均与态密度算符 系统的力学量平均值 ?A A ααα=, 这里态α是固定的,是量子平均。进入任意表象B , ,' ?''b b A b b A b b ααα=∑, 对表象的维数求和。 系综平均 [ ]A w A ααα=∑ , 这里w α是体系处于态α的几率,显然满足归一化条件 1w αα =∑, 是统计平均,求和指标不是对表象的维数,而是对态。例如自旋1/2的粒子构成的系综,自旋表象的维数为2,但不同粒子的自旋态可以有很多取向,求和就是对不同的取向。

[],,','??''''b b b b A w b b A b w b b b A b αααααααα??== ??? ∑∑∑。 定义态密度算符 ?w αα ρ αα=∑, 它在表象B 的矩阵元 '?''bb b w b b αα ρρ αα==∑, []() ,'??????''b b b A b b b A b b A b tr A ρ ρρ==≡∑∑。 这是量子统计力学的基本公式。注意:表象变换不改变矩阵的求迹,上式不依赖于表象的选取。 在连续表象,例如坐标表象,密度算符的矩阵元 *'?''()(')xx x x w x x w x x αααααα ρρααψψ===∑∑ , 系综平均 []() 3????A tr A d x x A x ρρ==? 。 密度矩阵满足归一化条件 ,,? 1 b b tr w b b w b b w w αααααααα ρ ααα α=====∑∑∑∑完备性条件 态的量子归一化条件 态的统计归一化条件 这里用到了归一化条件1α=和表象的完备性条件1b b b =∑。 设密度算符?ρ的本征态为θ, 22 ?,??ρ θθθρθρθθθθ=== 对于纯系综,所有系统都取同一个态n ,

高等量子力学习题.

高等量子力学习题 1、 对于一维问题,定义平移算符()a D x ,它对波函数的作用是() ()()a x x a D x -=ψψ,其中a 为实数。设()x ψ的各阶导数存在,试证明()dx d a x e i p a a D -=?? ? ??= ?exp 。 2、 当体系具有空间平移不变性时,证明动量为守恒量。 3、 若算符()x f 与平移算符()a D x 对易,试讨论()x f 的性质。 4、 给定算符B A ,,证明[][][]....,,! 21 ,++ +=-B A A B A B Be e A A ξξ。 5、 给定算符C B A 和、,存在对易关系[]C B A =,,同时[][]0,,0,==C B C A 。证明Glauber 公式C A B C B A B A e e e e e e e 2 12 1 ==-+。 6、 设U 为幺正算符,证明U 必可分解成iB A U +=,其中A 和B 为厄密算符,并满足 122=+B A 和[]0,=B A 。试找出A 和B ,并证明U 可以表示为iH e U =,H 为厄密 算符。 7、 已知二阶矩阵A 和B 满足下列关系:02 =A ,1=+++AA A A ,A A B + =。试证明 B B =2,并在B 表象中求出矩阵A 、B 。 8、 对于一维谐振子,求湮灭算符a ?的本征态,将其表示为谐振子各能量本征态n 的线性叠加。已知1?-=n n n a 。 9、 从谐振子对易关系[ ]1,=+ a a 出发,证明a e ae e a a a a λλλ--=+ +。 10、 证明谐振子相干态可以表示为 0*a a e ααα-+=。 11、 谐振子的产生和湮灭算符用a 和+ a 表示,经线性变换得+ +=va ua b 和 ++=ua va b ,其中u 和v 为实数,并满足关系122=-v u 。试证明:对于算符b 的任 何一个本征态,2 =???p x 。 12、 某量子体系的哈密顿量为,() 223 2 35++++= a a a a H ,其中对易关系[]1,=-≡++ + a a aa a a 。试求该体系的能量本征值。 13、 用+ a ?和a ?表示费米子体系的某个单粒子态的产生和湮灭算符,满足基本对易式

量子力学讲义第三章讲义

第三章 力学量用算符表达 §3.1 算符的运算规则 一、算符的定义: 算符代表对波函数进行某种运算或变换的符号。 ?Au v = 表示?把函数u 变成 v , ?就是这种变换的算符。 为强调算符的特点,常常在算符的符号上方加一个“^”号。但在不会引起误解的地方,也常把“^”略去。 二、算符的一般特性 1、线性算符 满足如下运算规律的算符?,称为线性算符 11221122 ???()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。 例如:动量算符?p i =-? , 单位算符I 是线性算符。 2、算符相等 若两个算符?、?B 对体系的任何波函数ψ的运算结果都相同,即??A B ψψ=,则算符?和算符?B 相等记为??A B =。 3、算符之和 若两个算符?、?B 对体系的任何波函数ψ有:?????()A B A B C ψψψψ+=+=,则???A B C +=称为算符之和。 ????A B B A +=+,??????()()A B C A B C ++=++ 4、算符之积 算符?与?B 之积,记为??AB ,定义为 ????()()AB A B ψψ=?C ψ= ψ是任意波函数。一般来说算符之积不满足交换律,即????AB BA ≠。 5、对易关系 若????AB BA ≠,则称?与?B 不对易。 若A B B A ????=,则称?与?B 对易。 若算符满足????AB BA =-, 则称?A 和?B 反对易。 例如:算符x , ?x p i x ? =-? 不对易

证明:(1) ?()x xp x i x ψψ?=-? i x x ψ? =-? (2) ?()x p x i x x ψψ?=-? i i x x ψψ?=--? 显然二者结果不相等,所以: ??x x xp p x ≠ ??()x x xp p x i ψψ-= 因为ψ是体系的任意波函数,所以 ??x x xp p x i -= 对易关系 同理可证其它坐标算符与共轭动量满足 ??y y yp p y i -= ,??z z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。 ??0??0y y z z xp p x xp p x -=??-=?,??0??0x x z z yp p y yp p y -=??-=?,??0??0x x y y zp p z zp p z -=???-=?? ????0x y y x p p p p -=,????0y z z y p p p p -=,????0z x x z p p p p -= ????0xy yx -=,????0y z z y p p p p -=,????0z x x z p p p p -= 写成通式(概括起来): ??x p p x i αββααβδ-= (1) ????0x x x x αββα-= ????0p p p p αββα-= 其中,,,x y z αβ=或1,2,3 量子力学中最基本的对易关系。 注意:当?与?B 对易,?B 与?对易,不能推知?与?对易与否。 6、对易括号(对易式) 为了表述简洁,运算便利和研究量子力学与经典力学的关系,人们定义了对易括号: ??????[,]A B AB BA ≡- 这样一来,坐标和动量的对易关系可改写成如下形式: ?[,]x p i αβαβδ= 不难证明对易括号满足下列代数恒等式: 1) ????[,][,]A B B A =- 2) ???????[,][,][,]A B C A B A C +=+ 3) ?????????[,][,][,]A BC B A C A B C =+ ,?????????[,][,][,]AB C A B C A C B =+,]?,?[]?,?[B A k B k A = 4) ?????????[,[,]][,[,]][,[,]]0A B C B C A C A B ++= ——称为 Jacobi 恒等式。

吉林大学高等量子力学习题答案共11页word资料

高等量子力学习题和解答 ? 量子力学中的对称性 1、 试证明:若体系在线性变换Q ?下保持不变,则必有0]?,?[=Q H 。这里H ?为 体系的哈密顿算符,变换Q ?不显含时间,且存在逆变换1?-Q 。进一步证明,若Q ?为幺正的,则体系可能有相应的守恒量存在。 解:设有线性变换Q ?,与时间无关;存在逆变换1?-Q 。在变换 若体系在此变换下不变,即变换前后波函数满足同一运动方程 ?''?t t i H i H ?ψ=ψ?ψ=ψ h h 进而有 2、 令坐标系xyz O -绕z 轴转θd 角,试写出几何转动算符)(θd R z e ρ的矩阵表示。 解: 'cos sin 'sin cos 'O xyz z d x x d y d y x d y d z z θθθθθ -=+=-+=考虑坐标系绕轴转角 用矩阵表示 '10'10'00 1x d x y d y z z θθ?????? ? ???=- ? ??? ? ?????? ??? 还可表示为 '()z e r R d r θ=r 3、 设体系的状态可用标量函数描述,现将坐标系绕空间任意轴n ρ 转θ d 角, 在此转动下,态函数由),,(z y x ψ变为),,(),()',','(z y x d n U z y x ψθψρ =。试导出转动算符),(θd n U ρ 的表达式,并由此说明,若体系在转动),(θd n U ρ 下保持不变,则体系的轨道角动量为守恒量。 解:从波函数在坐标系旋转变换下的变化规律,可导出旋转变换算符

()z e U d θr 利用 (')()()z e r U d r θψ=ψ 及 (')()r Rr ψ=ψr r 可得 ()1z e z i U d d L θθ=-r h 通过连续作无穷多次无穷小转动可得到有限大小的转动算符 绕任意轴n 转θ角的转动算符为 1U U U -+=? 为幺正算符 若 (')()()z e r U d r θψ=ψr r r 则必有 1 (')()()()()[,] z z e e z H r U d H r U d i H r d H L θθθ-==+r r r r r h 若哈密顿量具有旋转对称性,就有[,]0z H L =→角动量守恒 4、 设某微观粒子的状态需要用矢量函数描述,试证明该粒子具有内禀自旋 1=S 。 解:矢量函数在旋转变换下 后式代入前式 '(')(')[](')[](')x x y y x y z z r r e d e r d e e r e θθψ=ψ++ψ-++ψr r r r r r r r r r 又 '(')'(')'(')'(')x x y y z z r r e r e r e ψ=ψ+ψ+ψr r r r r r r r 比较得 '(')(')(') ?[1]()[1]()[1]()() x x y z x z y z x y r r d r i i d L r d d L r i d L r d r θθ θθθθψ=ψ-ψ=-ψ--ψ=-ψ-ψr r r r r h h r r h 类似可得 ?'(')()[1]()?'(')[1]()y x z y z z z i r d r d L r i r d L r θθθψ=ψ+-ψψ=-ψr r r h r r h

高等半导体物理讲义

高等半导体物理 课程内容(前置课程: 量子力学,固体物理) 第一章能带理论,半导体中得电子态 第二章半导体中得电输运 第三章半导体中得光学性质 第四章超晶格,量子阱 前言:半导体理论与器件发展史 1926 Bloch 定理 1931 Wilson 固体能带论(里程碑) 1948 Bardeen, Brattain and Shokley 发明晶体管,带来了现代电子技术得革命,同时也促进了半导体物理研究得蓬勃发展。从那以后得几十年间,无论在半导体物理研究方面,还就是半导体器件应用方面都有了飞速得发展。 1954半导体有效质量理论得提出,这就是半导体理论得一个重大发展,它定量地描述了半导体导带与价带边附近细致得能带结构,给出了研究浅能级、激子、磁能级等得理论方法,促进了当时得回旋共振、磁光吸收、自由载流子吸收、激子吸收等实验研究。 1958 集成电路问世 1959 赝势概念得提出,使得固体能带得计算大为简化。利用价电子态与原子核心态正交得性质,用一个赝势代替真实得原子势,得到了一个固体中价电子态满足得方程。用赝势方法得到了几乎所有半导体得比较精确得能带结构。1962 半导体激光器发明 1968 硅MOS器件发明及大规模集成电路实现产业化大生产 1970 * 超晶格概念提出,Esaki (江歧), Tsu (朱兆祥) * 超高真空表面能谱分析技术相继出现,开始了对半导体表面、界面物理得研究 1971 第一个超晶格Al x Ga1x As/GaAs 制备,标志着半导体材料得发展开始进入人工设计得新时代。 1980 德国得V on Klitzing发现了整数量子Hall 效应——标准电阻 1982 崔崎等人在电子迁移率极高得Al x Ga1x As/GaAs异质结中发现了分数量子Hall 效应 1984 Miller等人观察到量子阱中激子吸收峰能量随电场强度变化发生红移得量子限制斯塔克效应,以及由激子吸收系数或折射率变化引起得激子光学非线性效应,为设计新一代光双稳器件提供了重要得依据。 1990 英国得Canham首次在室温下观测到多孔硅得可见光光致发光,使人们瞧到了全硅光电子集成技术得新曙光。近年来,各国科学家将选择生成超薄层外延技术与精细束加工技术密切结合起来,研制量子线与量子点及其光电器件,预期能发现一些新得物理现象与得到更好得器件性能。在器件长度小于电子平均自由程得所谓介观系统中,电子输运不再遵循通常得欧姆定律,电子运动完全由它得波动性质决定。人们发现电子输运得AharonovBohm振荡,电子波得相干振荡以及量子点得库仑阻塞现象等。以上这些新材料、新物理现象得发现产生新得器件设计思想,促进新一代半导体器件得发展。 半导体材料分类: ?元素半导体, Si, Ge IV 族金刚石结构 Purity 10N9, Impurity concentration 1012/cm3 , Dislocation densities <103 /cm3 Size 20 inches (50 cm) in diameter P V 族 S, Te, Se VI 族 ?二元化合物, 1.IIIV族化合物: GaAS系列,闪锌矿结构, 电荷转移 GaAs, 1、47 eV InAs 0、36 eV GaP, 2、23 eV GaSb, 0、68 eV GaN, 3、3 eV BN 4、6 eV AlN 3、8 eV

喀兴林高等量子力学习题EX2.算符教学提纲

喀兴林高等量子力学习题E X2.算符

EX2.算符 2.1证明下列常用公式 (陈玉辉解答 项鹏核对 ) (1)C B A C A B BC A ],[],[],[+= 证明: C B A C A B C BA AB CA AC B BAC ABC BCA BAC BCA ABC BC A ],[],[][][] ,[+=-+-=-+-=-= (2)B C A C B A C AB ],[],[],[+= 证明: B C A C B A B CA AC CB BC A CAB ACB ACB ABC CAB ABC C AB ],[],[][][],[+=-+-=-+-=-= 2.2 若算符B 与],[B A 对易,证明: (陈玉辉解答 项鹏核对 ) ],[],[1B A nB B A n n -= 证明:],[],[],[],[111---+=?=n n n n B A B B B A B B A B A 将n 换成(n-1),就有 ],[],[],[221---+=n n n B A B B B A B A ],[],[2],[],[],[],[2212211-----+=++=?n n n n n n B A B B B A B A B B B A B B A B A 重复这种递推过程(n-1)次,即得 ] ,[],[],)[1(] ,[],)[1(],[111)1(11B A nB B A B B B A n B A B B B A n B A n n n n n n n n -------=+-=+-= #

练习2.3 证明: (输入人:杜花伟 核对人:王俊美) (1)若A 有逆,a ≠0,则aA 也有逆,且1 11)(--= A a aA ; (2)若A,B 都有逆,则AB 也有逆,且111)(---=A B AB ; (3)})(1{)(111---+-=+B A B A B A ; (4)???+++=--------11121111)(BA BA A BA A A B A λλλ.(λ为复数); 证明:(1)若A 有逆,a ≠0,满足1,111==--aa AA ,则 11111==----AA aa A aAa 所以aA 有逆,且111)(--= A a aA . (2) 若A,B 都有逆,满足1,111==--BB AA ,则 1111==---AA A ABB 所以AB 有逆,且111)(---=A B AB . (3) } )(1{})())({(}))({(})({)()(111111 1 11111 ------------+-=+-++=+-+=+=+=+B A B A B A B B A B A A B A B B A A B A A A B A A A B A (4) 由于1)1(--χ(x 极小,即x →0时)展为级数: ???++++=--3211)1(χχχχ 故(? ??+++=???+++=-=-=----------------111211********* 11 )1() 1()]1([)(BA BA A BA A A BA BA BA A BA A BA A B A λλλλλλλ #

量子力学习题汇集

第一章习题 1.证明下列算符等式 [][][][][][][][][][][][][][][]0 ,,,,,,,,,,,,,,,=+++=+=+=+B A C A C B C B A B C A C B A C AB C B A C A B BC A C A B A C B A 2.设粒子波函数为),,(z y x ψ,求在()dx x x +, 范围内找到粒子的几率. 3.在球坐标中,粒子波函数为()??ψ,,r ,试求: 1)在球壳(r,r+dr)中找到粒子的几率; 2)在()??,方向的立体角Ωd 中找到粒子的几率. 4.已知力学量F 的本征方程为 n n n F ?λ?= 求在状态波函数 332211???ψc c c ++= 下测力学量F 的可能值,相应的几率及平均值(假设波函数ψ已归一或不归一的情况). 第二章习题 1.一粒子在二维势场

???∞=,,0),(y x V 其它b y a x <<<<0,0 中运动,求粒子的能级和波函数.能级是否简并 2.由哈密顿算符 () 2232 22221222 2z y x m m H ωωω+++?-=η 所描述的体系,称各向异性谐振子.求其本征态和本征值. 3.利用递推关系 ??? ? ??--=+-1121 2)(n n n n n x dx d ψψαψ 证明 ( ) 222 22)2)(1()12()1(2 +-++++--=n n n n n n n n n dx d ψψψαψ 并由此证明在n ψ态下 2 ,0n E T P = = 第 四 章 习 题 1. 证明 )cos sin (cos ???i A +=ψ 为2L 和y L 的共同本征态,并求相应的本征值。说明当体系处在此状态时, z L 没有确定值。

高等量子力学习题汇总

第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是Hillbert 空间内的厄米算符(A ?);2、物理量所能取的值是相应算符A ?的本征值;3、一个任意态 总可以用算符A ?的本征态i a 展开如下:ψψi i i i i a C a C ==∑,;而物理量A 在 ψ 中出现的几率与2 i C 成正比。原理三 一个微观粒子在直角坐标下的位置算符i x ?和相应的正则动量算符i p ?有如下对易关系:[]0?,?=j i x x ,[]0?,?=j i p p ,[] ij j i i p x δ =?,? 原理四 在薛定谔图景中,微观体系态矢量()t ψ随时间变化的规律由薛定谔方程给 ()()t H t t i ψψ?=?? 在海森堡图景中,一个厄米算符() ()t A H ?的运动规律由海森堡 方程给出: ()()()[] H A i t A dt d H H ? ,?1? = 原理五 一个包含多个全同粒子的体系,在Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答:()()t x t ψψ|,x =<>式中态矢随时间而变而x 不含t ,结果波函数()t x ,ψ中的宗量t 来自()t ψ而x 来自x ,这叫做薛定谔图景. 3、 已知.10,01??? ? ??=???? ??=βα (1)请写出Pauli 矩阵的3个分量; (2)证明σx 的本征态).(211121|βα±=??? ? ??±>=±x S 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求证: 答案:设:C 1=x 1+iy 1,C 2=x 2+iy 2

高等量子力学作业题

1).H 为厄米算符,iH S e =.证明:(1)S 是幺正算符;(2)det exp(i tr )S H =. 2).求()||0za x x e ψ+=<>的表达式. 3).求相干态|0za z a e +*->的时间反演态. 4).求解一维系统2 0()2p H V x m δ=+的隧道效应. 5).哈密顿量22211()222i i i i j i ij p H m x V x x m ω=++∑∑,写出其二次量子化形式. 1.设一维受扰动的谐振子的哈密顿量为2221122 H p m x gx m ω=++,其中,x p 分别为坐标、动量算符,其他的量为常数.(1)在海森堡绘景中写出坐标、动量算符所满足的运动方程;(2)求出上述坐标、动量算符随时间的变化. 2.(1)请写出谐振子相干态;(2)计算任意两个相干态之间的内积;(3)证明全体谐振子相干态是过完备的,即: 21|| d 1z z z π><=?,其中|z >为相干态, 2d z dxdy =,而,x y 分 别为z 的实部和虚部. 3.通过量子化条件[,]x p i = 计算出坐标算符x 和动量算符p 的本征值,以及坐标表象中的动量的本征态. 4.(a)请写出氢原子的定态狄拉克方程,以及狄拉克方程中(1,2,3)i i α=和β矩阵所满足的关系.(b)证明系统的角动量守恒. 5.设有N 个全同费米子组成的系统,其哈密顿量为222,11()222i i i i j i i j i p H m x V x x m ω≠=++∑∑. (a)在谐振子基矢下计算出哈密顿量的二次量子化形式;(b)在坐标表象中写出哈密顿量的二次量子化形式. 6. 证明动能算符在空间转动变换下是不变的. 7.(a) 设系统的哈密顿量为H ,请写出含时推迟全格林算符'()G t t +-和超前全格林算符'()G t t --以及相应的定态全格林算符()G E +和()G E -.

高等量子力学第一章习题

?k ijk j i S i S S ε=],[2322212S S S S ++=> >=+0|)(!1 |n b n n ∫=++?x x x x e e d ****2φφφφπ φ高等量子力学第一章习题: 1、两个态矢量|+>和|->形成完全集。在它们所构成的Hilbert 空间中定义如下三个算符: 试证明它们满足如下对易和反对易关系: 并求出两个态矢量|+>和|->之间的翻转变换算符及算符的表 达式 2、二能级系统的哈密顿算符一般可表达为: H =a|1><1|+b|2><2|+c|1><2|+d|2><1| 其中|1>和|2>分别表示二能级的状态,形成正交归一集。 问:H 的厄密性对系数a,b,c,d 有何限制?求该系统的能量本征值及相应的本征态矢量(表示为|1>和|2>的线性叠加)。 3、已知一线性谐振子在其哈密顿表象中的本征态矢量为 其中,基态|0>满足b|0>=0,并且b 和b +与其坐标和动量算符的关系为 试求态矢量|n>转换到坐标表象表达式。 4、设某系统的哈密顿算符为:H(t)=a 1(t)J ++a 2(t)J 0+a 3(t)J - 其中a i (t),i=1,2,3为任意时间t 的函数,J +,J 0,J -为SU(1,1)群的生成元,其满足下述对易 关系:[J +,J -]=-2J 0,[J 0,J ±]=±J ± 试证明该系统的时间演化算符可表示为: U(t,0)=exp[C 1(t)J +]exp[C 2(t)J 0]exp[C 3(t)J -],并导出确定C i (t)的方程.。 5、已知算符b 和b +的对易关系为[b ,b +]=1,在b +b 对角表象的本征态矢量为 且基态满足b|0>=0,引入算符b 的本征态b|z>=z|z> 试求归一化态矢量|z>在b +b 对角表象的表示式,由基矢量组|z>构成的表象称作为相干态表象,试求态矢量|n>在相干态表象的波函数 6、题的已知条件与题5相同,并可利用题5的结果,试证明: (i )相干态表象的基矢量不具有正交性,并说明其原因。(ii)相干态表象的基矢组是完备的,完备性条件由下式给出式中,积分元由z=x+iy d 2z=dxdy 给出,证明过程中可以利用的公式有: (iii)不存在算符b +的本征右矢量。)(||||2 1+><+=?S )(||||2 3?><+=?S )(||||22?><+?+> >=+0|)(!1 |n b n n )(2b b x +=+μω?)(2 b b i p ?=+?μω∫=><1 ||2z z z d π

高等量子力学

研究生课程教学大纲 高等量子力学 一、课程编码:21-070200-B01-17 课内学时: 64 学分: 4 二、适用学科专业:理学,工学 三、先修课程:数理方法,理论力学,电动力学,量子力学,热力学统计物理 四、教学目标 通过本课程的学习,使研究生掌握希尔伯特空间,量子力学基本理论框架,了解狄拉克 方程,量子力学中的对称性与守恒定律,二次量子化等理论知识,提升在微观体系中运用量 子力学的基本能力。 五、教学方式:课堂讲授 六、主要内容及学时分配 1 希尔伯特空间10学时 1.1 矢量空间 1.2 算符 1.3 本征矢量和本征值 1.4 表象理论 1.5 矢量空间的直和与直积 2 量子力学基本理论框架20学时 2.1 量子力学基本原理 2.2 位置表象和动量表象 2.3 角动量算符和角动量表象 2.4 运动方程 2.5 谐振子的相干态 2.6 密度算符 3 狄拉克方程 6学时 4 量子力学中的对称性 5学时 5 角动量理论简介 5学时 6 二次量子化方法16学时 6.1 二次量子化 6.2 费米子 6.3 玻色子 复习 2学时七、考核与成绩评定:以百分制衡量。 成绩评定依据: 平时作业成绩占30%,期末笔试成绩占70%。 八、参考书及学生必读参考资料 1. 喀兴林,《高等量子力学》,.[M]北京:高等教育出版社,2001 2. Franz Schwabl,《Advanced Quantum Mechanics》,.[M]北京:世界图书出版公司:2012 3. 曾谨言,《量子力学》,.[M]北京:科学出版社:第五版2014或第四版2007 4. https://www.wendangku.net/doc/ef2630028.html,ndau, M.E.Lifshitz,《Quantum Mechanics (Non-reativistic Theory)》,.[M]北京:世界 图书出版公司:1999 5. 倪光炯,《高等量子力学》,. [M]上海:复旦大学出版社:2005 九、大纲撰写人:曾天海

相关文档
相关文档 最新文档