文档库 最新最全的文档下载
当前位置:文档库 › Comparative Pharmacodynamics of Gentamicin against

Comparative Pharmacodynamics of Gentamicin against

A NTIMICROBIAL A GENTS AND C HEMOTHERAPY,Aug.2006,p.2626–2631Vol.50,No.8 0066-4804/06/$08.00?0doi:10.1128/AAC.01165-05

Copyright?2006,American Society for Microbiology.All Rights Reserved.

Comparative Pharmacodynamics of Gentamicin against

Staphylococcus aureus and Pseudomonas aeruginosa?Vincent H.Tam,*Samer Kabbara,Giao Vo,Amy N.Schilling,and Elizabeth A.Coyle

University of Houston College of Pharmacy,Houston,Texas

Received6September2005/Returned for modi?cation4December2005/Accepted31May2006

Aminoglycosides are often used to treat severe infections with gram-positive organisms.Previous studies

have shown concentration-dependent killing by aminoglycosides of gram-negative bacteria,but limited data are

available for gram-positive bacteria.We compared the in vitro pharmacodynamics of gentamicin against

Staphylococcus aureus and Pseudomonas aeruginosa.Five S.aureus strains were examined(ATCC29213and four

clinical isolates).Time-kill studies(TKS)in duplicate(baseline inocula of107CFU/ml)were conducted to

evaluate bacterial killing in relation to increasing gentamicin concentrations(0to16times the MIC).Serial

samples were obtained over24h to quantify bacterial burden.Similar TKS with P.aeruginosa ATCC27853

were conducted,and the time courses of the all bacterial strains were mathematically modeled for quantitative

comparison.A dose fractionation study(using identical daily doses of gentamicin)in an in vitro hollow-?ber

infection model(HFIM)over5days was subsequently used for data validation for the two ATCC strains.Model

?ts to the data were satisfactory;r2values for the S.aureus and P.aeruginosa ATCC strains were0.915and

0.956,respectively.Gentamicin was found to have a partially concentration-dependent killing effect against S.

aureus;concentrations beyond four to8times the MIC did not result in signi?cantly faster bacterial killing.In

contrast,a concentration-dependent pro?le was demonstrated in suppressing P.aeruginosa regrowth after

initial decline in bacterial burden.In HFIM,thrice-daily gentamicin dosing appeared to be superior to

once-daily dosing for S.aureus,but they were similar for P.aeruginosa.Different killing pro?les of gentamicin

were demonstrated against S.aureus and P.aeruginosa.These results may guide optimal dosing strategies of

gentamicin in S.aureus infections and warrant further investigations.

Aminoglycosides(e.g.,gentamicin)are often used clinically

in combination with other antimicrobial agents such as beta-

lactams or glycopeptides for the treatment of serious infections

with gram-negative and gram-positive organisms.Previous

studies have repeatedly demonstrated a concentration-depen-

dent killing effect of aminoglycosides against gram-negative

bacteria(5,6,14,25);optimal patient outcomes and suppres-

sion of resistance emergence are associated with peak concen-

tration(maximum concentration of drug in serum[C

max ])/MIC

ratio(3,13,15)or area under the concentration-time curve (AUC)/MIC ratio(16).There is also strong evidence suggest-ing that the?rst dose of an aminoglycoside is the most impor-tant in the course of therapy.Adaptive resistance is a phenom-enon in which bacteria exhibit down-regulation of drug uptake upon frequent and repeated exposures to antimicrobial agents (26).Consequently,the?rst dose of aminoglycoside has the most bactericidal effect on the bacterial population.It has also been reported that attainment of a pharmacodynamic target

(C

max /MIC?10)within48h of therapy is associated with an

early therapeutic response(12).Since the likelihood of amino-glycoside-induced nephrotoxicity is believed to be dependent on the cumulative drug exposure and/or concentration above a certain threshold(8,17,20,24),achieving a pharmacodynamic target early may shorten the duration of therapy and thus reduce the likelihood of drug-induced adverse effects.Conse-quently,once-daily(or extended-interval)administration of aminoglycosides has been widely adopted in many hospitals in the United States(4).

While the approach is intuitive and consistent with pharma-codynamic principles,limited data are available to describe the pharmacodynamic activity of aminoglycosides against gram-positive bacteria(e.g.,Staphylococcus aureus,viridans group streptococci,and Enterococcus spp.).Questions remain if the same dosing strategy should be used for severe infection with gram-positive bacteria(e.g.,endocarditis),and evaluation of bacterial killing with various aminoglycoside exposures is es-sential to optimize dosing strategies in the clinical setting.We explored the impact of increasing gentamicin concentrations and various dosing regimens on the drug’s activity against different bacteria.The objective of the study was to compare the in vitro pharmacodynamics of gentamicin against S.aureus and Pseudomonas aeruginosa.

(This study was presented in part at the Interscience Con-ference on Antimicrobial Agents and Chemotherapy,Wash-ington,D.C.,December16to19,2005.)

MATERIALS AND METHODS

Antimicrobial agent.Gentamicin powder was purchased from Sigma(St. Louis,MO).Stock solutions of1,024mg/liter in sterile water were prepared, aliquoted,and stored at?70°C.Prior to each susceptibility test,an aliquot of the drug was thawed and diluted to the desired concentrations with cation-adjusted Mueller-Hinton II broth(Ca-MHB)(BBL,Sparks,MD).

Microorganisms.Five strains of S.aureus were examined.Standard wild-type strain ATCC29213(American Type Culture Collection,Manassas,VA)and four clinical isolates(two oxacillin susceptible[strains55and60]and two ox-acillin resistant[strains25and62])were used.All clinical isolates of S.aureus used were wild type and were found to be clonally unrelated,as determined by

*Corresponding author.Mailing address:University of Houston College of Pharmacy,1441Moursund Street,Houston,TX77030. Phone:(713)795-8316.Fax:(713)795-8383.E-mail:vtam@https://www.wendangku.net/doc/ee18353409.html,.

?Supplemental material for this article may be found at http://aac

https://www.wendangku.net/doc/ee18353409.html,/.

2626

randomly ampli?ed polymorphic DNA testing(19).P.aeruginosa ATCC27853

was used for comparison.The bacteria were stored at?70°C in Protect(Key

Scienti?c Products,Round Rock,TX)storage vials.Fresh isolates were subcul-

tured twice on5%blood agar plates(Hardy Diagnostics,Santa Maria,CA)for

24h at35°C prior to each experiment.

Susceptibility studies and mutation frequencies.Gentamicin MICs/minimum bactericidal concentrations(MBCs)were determined for all bacterial strains in

Ca-MHB using a modi?ed broth macrodilution method,as described by CLSI

(formerly NCCLS)(18).The?nal concentration of bacteria in each broth macro-

dilution tube was approximately5?105CFU/ml of Ca-MHB.Serial twofold

dilutions of drugs were used.The MIC was de?ned as the lowest concentration

of drug that resulted in no visible growth after24h(instead of16to18h,as

recommended by CLSI)of incubation at35°C in ambient air.Samples(50?l)

from clear tubes and the cloudy tube with the highest drug concentration were

plated on Mueller-Hinton agar(MHA)plates(Hardy Diagnostics,Santa Maria,

CA).The MBC was de?ned as the lowest concentration of drug that resulted in ?99.9%killing of the initial inoculum.The drug carryover effect was assessed by visual inspection of the distribution of colonies on medium plates.The studies

were conducted in duplicate and repeated at least once on a separate day.

Mutation frequency of resistance for each isolate was determined by plating

approximately1?107CFU/ml(200?l)of bacteria on MHA plates with and

without gentamicin supplementation at3times the MIC.Since susceptibility

testing was performed in twofold dilutions and one tube(2?concentration)

difference is commonly accepted as reasonable interday variation,quantitative

cultures on drug-supplemented medium plates(at3times the MIC)would allow

reliable detection of bacterial subpopulations with reduced susceptibility.The

medium plates were incubated at35°C for up to24(total population)and72h

(subpopulations with reduced susceptibility),and then bacterial density from

each sample was estimated as described below.

Time-kill studies.Time-kill studies were conducted in duplicate on separate days with different and escalating gentamicin concentrations.Six clinically

achievable concentrations of gentamicin were used,normalized to0(control),

0.5,1,2,4,8and16times the MIC.An overnight culture of the isolate was

diluted30-fold with prewarmed Ca-MHB and incubated further at35°C until

reaching late-log-phase growth.The bacterial suspension was diluted with Ca-

MHB accordingly based on absorbance at630nm;15ml of the suspension was

transferred to50-ml sterile conical?asks,each containing1ml of a drug solution

at16times the target concentration.The?nal concentration of the bacterial

suspension in each?ask was approximately1?107CFU/ml.The high inoculum

used was to simulate the bacterial load in severe infection and to allow a resistant

subpopulation(s)to be present at baseline.The experiment was conducted for

24h in a shaker water bath set at35°C.

Serial samples were obtained from each?ask at baseline(placebo only)and at

2,4,8,12,and24h to characterize the effect of various gentamicin exposures on

the total bacterial population.Prior to culturing the bacteria quantitatively,the

bacterial samples(0.5ml)were centrifuged at10,000?g for15min and

reconstituted with sterile normal saline to their original volumes in order to

minimize the drug carryover effect.Total bacterial populations were quanti?ed

by spiral plating10-fold serial dilutions of the samples(50?l)onto MHA plates.

The medium plates were incubated in a humidi?ed incubator(35°C)for18to

24h,and the bacterial density from each sample was determined by CASBA-4

colony scanner/software(Spiral Biotech,Bethesda,MD).The theoretical lower

limit of detection was400CFU/ml.

Pharmacodynamic modeling.To provide quantitative comparison of the bac-tericidal activity of gentamicin against different bacteria,the time courses(data

from the time-kill studies)of all bacterial strains were mathematically modeled

as described previously(22).The mathematical structure of the growth dynamics

model is as follows.The rate of change of bacteria over time,dN(t)/dt,was

expressed as the difference between the intrinsic bacterial growth rate,G[N(t)],

and the(sigmoidal)kill rate provided by the antimicrobial agent,K[C(t),N(t)],

where G[N(t)]?K g·[1?N(t)/N max]·N(t),K[C(t),N(t)]?{C(t)H·K k/[C(t)H?(?·C50k)H]}·N(t),and??1??[1?e?c(t)·t·?].In these equations,G is the growth

rate function,K is the kill rate function,K g is the growth rate constant for the

bacterial population,N(t)is the concentration of the bacterial population at time

t,N max is the maximum population size,C(t)is the concentration of gentamicin

at time t,K k is the gentamicin maximal kill rate constant for the bacterial

population,C50k is the concentration to achieve50%of maximal kill rate,H is

the sigmoidicity constant for the bacterial population,?is the adaptation func-

tion,?is the maximal adaptation,and?is the rate of adaptation factor.Decline

in kill rate over time and regrowth were attributed to adaptation,which was

explicitly modeled as the increase in the concentration necessary to achieve C50k,

using a saturable function of antimicrobial agent selective pressure(both genta-

micin concentration and time).

The modeling estimation process involved two steps.For each bacterium,the intrinsic bacterial growth rate and maximal bacterial population size(to account for contact inhibition)were?rst determined from placebo(control)experiments, using the ADAPT II program(7).Using these parameter estimates,the param-eter values in the kill function were subsequently determined using data from all active treatment experiments simultaneously.An unweighted(least-squares)er-ror structure for the log-transformed data was used.

Hollow-?ber infection model.The schematic of the system has been described previously(1).The drug was directly injected into the central reservoir to achieve the peak concentration desired.Fresh(drug-free)growth medium(Ca-MHB) was infused continuously from the diluent reservoir into the central reservoir (180ml)to dilute the drug,in order to simulate drug elimination in humans.An equal volume of drug-containing medium was removed from the central reser-voir concurrently to maintain an isovolumetric system.Bacteria were inoculated into the extracapillary compartment of the hollow-?ber cartridge(Fibercell Sys-tems,Inc.,Frederick,MD);they were con?ned in the extracapillary compart-ment but were exposed to the?uctuating drug concentration in the central reservoir by means of an internal circulatory pump in the bioreactor loop.The optional absorption compartment of the system was not used.

Experimental setup.For validation purposes,only the two standard ATCC strains of S.aureus and P.aeruginosa were used.Bacterial inocula(20ml)were prepared as described above.The experiment was conducted for5days in a humidi?ed incubator set at35°C.The bacteria were subjected to various genta-micin exposures,simulating unbound steady-state pharmacokinetic pro?les re-sulting from two different gentamicin dosing regimens with identical daily doses (once-daily dosing to achieve a peak concentration of24?g/ml and3-times-daily dosing to achieve a peak concentration of8?g/ml).A third system was set up as a placebo control.Gentamicin elimination half-lives of2.5h were simulated in all systems.

Pharmacokinetic validation.Serial samples were obtained from the infection models on days0and2.Gentamicin concentrations in these samples were assayed by a validated bioassay method as described below.The concentration-time pro?les were modeled by?tting a one-compartment linear model to the observations using the ADAPT II program(7).

Bioassay.Gentamicin concentrations were determined by a microbioassay utilizing Klebsiella pneumoniae ATCC13883as the reference organism.The bacteria were incorporated into30ml of molten cation-adjusted MHA(at50°C) to achieve a?nal concentration of approximately1?105CFU/ml.The agar was allowed to solidify in150-mm medium plates.Size3cork bore was used to create nine wells in the agar per plate.Standards and samples were tested in duplicate with40?l of the appropriate solution in each well.The gentamicin standard solutions ranged from1to32?g/ml in Ca-MHB.The medium plates were incubated at35°C for24h,and the zones of inhibition were measured.The assay was linear(correlation coef?cient?0.99)using zone diameter versus the log of the standard drug concentration.The intraday and interday coef?cients of vari-ation for all standards were?4%and?6%,respectively.

Microbiologic response.Serial samples were also obtained at baseline;at4,8, and24h(predose);and daily thereafter in duplicate from each hollow-?ber system,for quantitative culture to de?ne the effect of various drug exposures on the bacterial population.The samples(0.5ml)to quantify the bacterial popula-tion were processed as described above.

RESULTS

Susceptibilities and mutation frequencies.The susceptibili-ties of the bacterial isolates to gentamicin were as shown in Table1.Baseline resistant subpopulations were detected in all isolates.The mutation frequency of gentamicin resistance (more than3times the MIC)ranged from1in3?104to1in 4?105.

Time-kill studies.The killing pro?les of gentamicin against S.aureus ATCC29213are as shown in Fig.1A.A consistent trend was apparent for all?ve S.aureus isolates(see the sup-plemental data).Overall,the bactericidal activity appeared to be concentration dependent,as gentamicin concentration was increased from0.5to4times the MIC.However,the rate of killing seemed to plateau at concentrations beyond4to8times the MIC.These observations were in direct contrast to those observed with P.aeruginosa(Fig.1B).A rapid reduction in

V OL.50,2006PHARMACODYNAMICS OF GENTAMICIN2627

bacterial burden was seen within2h of gentamicin exposure (all concentrations),which was followed by regrowth.With increasing gentamicin concentrations,a concentration-depen-dent trend was observed with respect to the suppression of regrowth,consistent with previous observations(5,6). Pharmacodynamic modeling.The model?ts to the data were satisfactory.The r2for S.aureus ATCC29213,55,60,25,and62and P.aeruginosa ATCC27853were0.915,0.946,0.942, 0.942,0.900,and0.956,respectively(Fig.2[ATCC strains only; for others see the supplemental data]).The?nal model pa-rameter estimates are as shown in Table1,and the relation-ships between gentamicin concentration and bactericidal activ-ity are as shown in Fig.3(ATCC strains only;for others see the supplemental data).Against S.aureus,killing of the

predomi-FIG.1.Time-kill studies of gentamicin(as multiples of MIC)against S.aureus ATCC29213(A)and P.aeruginosa ATCC27853(B).Data are presented as means?standard deviations based on duplicate experiments performed on different days.

TABLE1.Gentamicin susceptibilities of isolates and?nal estimates of the best-?t model parameters Strain MIC/MBC(?g/ml)K g(h?1)N max(108CFU/ml)K k(h?1)C50k(mg/liter)H??(liters/mg·h) S.aureus

ATCC292131/20.560.9520.08 5.140.7514,6200.00011 550.5/20.180.349.44 2.58 1.07166.50.00178 601/20.12 1.3810.30 1.05 1.52427.90.00277 251/20.16 1.60 5.95 3.18 1.279,9520.00002 621/10.13 1.3310.160.65 1.61336.20.00715 P.aeruginosa ATCC278532/20.489.80 4.680.72 3.7342.540.0135 2628TAM ET AL.A NTIMICROB.A GENTS C HEMOTHER.

nant bacterial population was the prominent feature observed (with minimal adaptation resulting in regrowth);the bacteri-cidal activity observed was concentration dependent at low concentrations (less than 4times the MIC),and further increase in killing activity became less substantial when the concentration was beyond 4to 8times the MIC (Fig.3A).On the other hand,our modeling analysis revealed that maximal killing of the predominant (susceptible)P.aerugi-nosa population was readily achieved with all the gentamicin concentrations used,as re?ected in a rapid decline in bac-terial burden within 2h of exposure in the time-kill studies (Fig.1B).However,the prominent feature observed was the concentration-dependent relationship with respect to the most resistant subpopulation present at baseline (full adap-tation)(Fig.3B),leading to the differential propensity of increasing gentamicin concentrations in suppressing re-growth over time.The values of the sigmoidicity constants (H )between S.aureus and P.aeruginosa were also noted to

be dissimilar,partially explaining the difference in their concentration-killing pro?les.

Pharmacokinetic validation in hollow-?ber infection mod-els.All simulated gentamicin exposures were satisfactory;the r 2values for once-and three-times-daily dosing were 0.962and 0.989,respectively (data not shown).

Microbiologic responses in hollow-?ber infection models.The effect of different concentration-time pro?les of genta-micin on S.aureus ATCC 29213and P.aeruginosa ATCC 27853were as shown in Fig.4.Against S.aureus ,gentamicin dosing given 3times daily appeared to be more bactericidal compared to once-daily administration,using identical daily doses (Fig.4A).Both dosing regimens achieved substantial killing (approximately 5-log kill)at 24h,but regrowth was apparent with repeated dosing over the next 4days for the once-daily dosing regimen.On the other hand,sustained bacterial suppression over 5days was observed with the 3-times-daily dosing regimen.This was in contrast to data for P.aeruginosa ,in which the dosing schedule did not appear to have a signi?cant impact on the killing activity of gentamicin.As long as the daily dose remained identical,the time courses of bacterial burden over 5days were

similar,

FIG.2.Correlations between observed and model-predicted bac-terial burdens for S.aureus ATCC 29213(A)and P.aeruginosa ATCC 27853

(B).

FIG.3.Relationship between gentamicin concentration (as a mul-tiple of the MIC)and bactericidal activity (as a fraction of maximal killing)against S.aureus ATCC 29213(A)and P.aeruginosa ATCC 27853(B).Full adaptation refers to the entire bacterial population replaced by the most resistant clone (subpopulation)present at base-line.

V OL .50,2006PHARMACODYNAMICS OF GENTAMICIN 2629

regardless whether the entire daily dose was given all at once or over three doses (Fig.4B).

DISCUSSION

Aminoglycoside pharmacodynamics has revolved primarily around the gram-negative bacteria.Studies have demonstrated positive outcomes utilizing an extended dosing interval of amino-glycosides in infections with gram-negative organisms (13,20).However,limited clinical experience with infections with gram-positive organisms is available (21),and aminoglycoside use has been mostly based on theory.In this study we strived to improve our understanding of their pharmacodynamic proper-ties against gram-positive bacteria,speci?cally,S.aureus .Therefore,similar to the earlier studies of ef?cacy against gram-negative bacteria (5,6),investigations with monotherapy of gentamicin were undertaken.Once the pharmacodynamic properties of the aminoglycosides are well understood,more clinically relevant studies with various antimicrobial agent combinations could be performed subsequently to improve patient care.

Our data revealed that the killing pro?les of gentamicin against S.aureus and P.aeruginosa were different.First,in time-kill studies,the killing pro?les of gentamicin against dif-ferent strains of S.aureus were comparable but different from that observed with P.aeruginosa .The often-cited concentra-tion-dependent killing was observed only in P.aeruginosa ,not in S.aureus ,over the (clinically relevant)concentration range

examined.In addition to comparing the killing pro?les against different bacteria qualitatively (visually),we modeled the ex-perimental data mathematically in order to provide an objec-tive and quantitative evaluation.The merits of our mathemat-ical modeling approach over conventional pharmacodynamic modeling have been discussed previously (22).While the ad-herence of bacteria to the surface of the conical ?asks was not considered in the evaluation of these in vitro experiments,the interpretation of the modeling results was consistent with the observations.We recognized that all S.aureus strains examined in the study had similar susceptibilities to gentamicin (0.5to 1?g/ml);using isolates with a broader range of susceptibility to gentamicin might have further enhanced the generalizability of our ?ndings.

Since the drug concentrations in time-kill studies are static (constant over time),we felt that the clinical relevance of the results might not be very evident.Therefore,a hollow-?ber infection model (in which drug concentration ?uctuates over time,resembling human elimination and repeated dosing)was used to provide further clinical insights of our ?ndings.In the hollow-?ber infection models,the impact of dosing schedules of gentamicin on the bacteria was somewhat dramatic.Based on the modeling analysis,the killing activity of gentamicin against S.aureus began to plateau at 4to 8times the MIC (Fig.3A).Consequently,high peak concentrations (beyond 8times the MIC)resulting from once-daily administration would be unlikely to result in a substantial increase in bacterial killing.Coupled with a prolonged period in which drug concentration was negligible,once-daily dosing might not suppress/eradicate the bacteria as readily as a regimen with more frequent dosing.On the other hand,we found a concentration-dependent effect of gentamicin in suppressing regrowth of P.aeruginosa (up to at least 32times the MIC,as shown in Fig.3B).An enhanced bacterial killing rate against the resistant subpopulation was anticipated from high peak concentrations (approximately 12times the MIC)associated with once-daily administration,which was offset by a prolonged period in which drug concen-tration was negligible (minimal killing).Therefore the overall extents of killing were comparable regardless of the dosing schedules (once versus thrice daily)as long as the total daily doses (drug exposure)remained identical.These observations from the hollow-?ber infection models were again consistent with our expectations and previous studies (2,11).We veri?ed the simulated gentamicin exposures were reasonable in the hollow-?ber infection models,but the mechanism of regrowth was not explicitly investigated.From the modeling perspective,regrowth after initial decline of the bacterial population was empirically attributed to adaptation in this study.Under anti-microbial selective pressure,a preexisting resistant subpopula-tion gradually replaced the entire population as the dominant clone over time;regrowth and the emergence of resistance were observed as a result.Furthermore,as long as the rela-tionship between drug concentration and bactericidal activity is not saturable (concentration-dependent killing),the AUC/MIC ratio (primarily determined by the daily dose,regardless of dosing schedule)would be closely related to the cumulative killing over time.The postantibiotic effect of gentamicin was not speci?cally investigated in this study,in view of the doubt-ful clinical relevance reported in previous studies (9,10).In contrast to our data,in a recent in vitro study,the

activ-

FIG.4.Microbiologic response to different gentamicin exposures in hollow-?ber infection models for S.aureus ATCC 29213(A)and P.aeruginosa ATCC 27853(B).Data are presented as means ?standard deviations.

2630TAM ET AL.A NTIMICROB .A GENTS C HEMOTHER .

ities of gentamicin given once and3times daily against S. aureus in simulated endocardial vegetations were investigated in combination with daptomycin and vancomycin(23).The authors concluded that gentamicin given as a single large dose was superior to three smaller doses in combination with dap-tomycin or vancomycin.The experimental design of this study and our study differed in several ways,which prohibited direct comparison of the?ndings.Firstly,the bactericidal activity of gentamicin was examined in combination with other agents (daptomycin and vancomycin);therefore the pharmacodynam-ics of gentamicin might have been confounded by interaction (e.g.,synergy or antagonism)with these agents used concur-rently.Secondly,a simulated-infected-endocardial-vegetation model was used in the previous study(23);the observed killing in these simulated?brin clots was(at least partially)dependent on the penetration(concentration achieved)of the antimicro-bial agents inside the vegetations.Finally,the previous study was not strictly a dose fractionation study,as we have con-ducted.The total daily doses of gentamicin were not identical in the once-daily(simulating a human equivalent dose of5 mg/kg of body weight every24h)and3-times-daily(simulating a human equivalent dose of1mg/kg every8h)regimens. Therefore,the overall levels of killing by gentamicin might be expected to be different.In view of these differences,the phar-macodynamics of gentamicin against S.aureus might not have been interpreted concordantly by the two groups.

In conclusion,we found that gentamicin exhibited distinct killing pro?les against S.aureus and P.aeruginosa.The well-accepted concentration-dependent bactericidal activity of the aminoglycosides may not be applicable against all bacteria. These results may guide optimal dosing strategies of gentami-cin in staphylococcal infections and warrant further investiga-tions.

ACKNOWLEDGMENTS

This study was supported partially by a GEAR(grant to enhance and advance research)award from the University of Houston and a research grant from the Johns Hopkins Center for Alternatives to Animal Testing.

REFERENCES

1.Bilello,J.A.,G.Bauer,M.N.Dudley,G.A.Cole,and G.L.Drusano.1994.

Effect of2?,3?-didehydro-3?-deoxythymidine in an in vitro hollow-?ber phar-macodynamic model system correlates with results of dose-ranging clinical studies.Antimicrob.Agents Chemother.38:1386–1391.

2.Blaser,J.1991.Ef?cacy of once-and thrice-daily dosing of aminoglycosides

in in-vitro models of infection.J.Antimicrob.Chemother.27(Suppl.C):21–

28.

3.Blaser,J.,B.B.Stone,M.C.Groner,and https://www.wendangku.net/doc/ee18353409.html,parative

study with enoxacin and netilmicin in a pharmacodynamic model to deter-mine importance of ratio of antibiotic peak concentration to MIC for bac-tericidal activity and emergence of resistance.Antimicrob.Agents Che-mother.31:1054–1060.

4.Chuck,S.K.,S.R.Raber,K.A.Rodvold,and D.Areff.2000.National survey

of extended-interval aminoglycoside dosing.Clin.Infect.Dis.30:433–439.

5.Craig,W.A.,and S.C.Ebert.1990.Killing and regrowth of bacteria in vitro:

a review.Scand.J.Infect.Dis.Suppl.74:63–70.

6.Craig,W.A.,J.Redington,and S.C.Ebert.1991.Pharmacodynamics of

amikacin in vitro and in mouse thigh and lung infections.J.Antimicrob.

Chemother.27(Suppl.C):29–40.

7.D’Argenio,D.Z.,and A.Schumitzky.1997.ADAPT II user’s guide:phar-

macokinetic/pharmacodynamic systems analysis software.Biomedical simu-lations resource.University of Southern California,Los Angeles.

8.De Broe,M.E.,R.A.Giuliano,and G.A.Verpooten.1986.Choice of drug

and dosage regimen.Two important risk factors for aminoglycoside nephro-toxicity.Am.J.Med.80:115–118.

9.den Hollander,J.G.,K.Fuursted,H.A.Verbrugh,and J.W.Mouton.1998.

Duration and clinical relevance of postantibiotic effect in relation to the dosing interval.Antimicrob.Agents Chemother.42:749–754.

10.den Hollander,J.G.,J.W.Mouton,M.P.van Goor,F.P.Vleggaar,and

H.A.Verbrugh.1996.Alteration of postantibiotic effect during one dosing

interval of tobramycin,simulated in an in vitro pharmacokinetic model.

Antimicrob.Agents Chemother.40:784–786.

11.Dudley,M.N.,and S.H.Zinner.1991.Single daily dosing of amikacin in an

in-vitro model.J.Antimicrob.Chemother.27(Suppl.C):15–19.

12.Kashuba,A.D.,J.S.Bertino,Jr.,and A.N.Nafziger.1998.Dosing of

aminoglycosides to rapidly attain pharmacodynamic goals and hasten ther-apeutic response by using individualized pharmacokinetic monitoring of patients with pneumonia caused by gram-negative organisms.Antimicrob.

Agents Chemother.42:1842–1844.

13.Kashuba,A.D.,A.N.Nafziger,G.L.Drusano,and J.S.Bertino,Jr.1999.

Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria.Antimicrob.Agents Chemother.43:623–629.

https://www.wendangku.net/doc/ee18353409.html,cy,M.K.,D.P.Nicolau,C.H.Nightingale,and R.Quintiliani.1998.The

pharmacodynamics of aminoglycosides.Clin.Infect.Dis.27:23–27.

15.Moore,R.D.,P.S.Lietman,and C.R.Smith.1987.Clinical response to

aminoglycoside therapy:importance of the ratio of peak concentration to minimal inhibitory concentration.J.Infect.Dis.155:93–99.

16.Mouton,J.W.,N.Jacobs,H.Tiddens,and A.M.Horrevorts.2005.Phar-

macodynamics of tobramycin in patients with cystic?brosis.Diagn.Micro-biol.Infect.Dis.52:123–127.

17.Murry,K.R.,P.S.McKinnon,B.Mitrzyk,and M.J.Rybak.1999.Phar-

macodynamic characterization of nephrotoxicity associated with once-daily aminoglycoside.Pharmacotherapy19:1252–1260.

18.NCCLS.2003.Methods for dilution antimicrobial susceptibility tests for

bacteria that grow aerobically,6th ed.Approved standard.NCCLS,Wayne,Pa.

19.Pereira,M.S.,N.C.Leal,T.C.Leal,M.Sobreira,A.M.de Almeida,J.P.

Siqueira-Junior,and G.M.Campos-Takaki.2002.Typing of human and bovine Staphylococcus aureus by RAPD-PCR and ribotyping-PCR.Lett.

Appl.Microbiol.35:32–36.

20.Rybak,M.J.,B.J.Abate,S.L.Kang,M.J.Ruf?ng,S.A.Lerner,and G.L.

Drusano.1999.Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity.Antimi-crob.Agents Chemother.43:1549–1555.

21.Tam,V.H.,S.L.Preston,and L.L.Briceland.1999.Once-daily aminogly-

cosides in the treatment of gram-positive endocarditis.Ann.Pharmacother.

33:600–606.

22.Tam,V.H.,A.N.Schilling,and M.Nikolaou.2005.Modelling time-kill

studies to discern the pharmacodynamics of meropenem.J.Antimicrob.

Chemother.55:699–706.

23.Tsuji,B.T.,and M.J.Rybak.2005.Short-course gentamicin in combination

with daptomycin or vancomycin against Staphylococcus aureus in an in vitro pharmacodynamic model with simulated endocardial vegetations.Antimi-crob.Agents Chemother.49:2735–2745.

24.Tulkens,P.M.1986.Experimental studies on nephrotoxicity of aminogly-

cosides at low doses.Mechanisms and perspectives.Am.J.Med.80:105–114.

25.Turnidge,J.2003.Pharmacodynamics and dosing of aminoglycosides.Infect.

Dis.Clin.N.Am.17:503–528.

26.Xiong,Y.Q.,J.Caillon,M.F.Kergueris,H.Drugeon,D.Baron,G.Potel,

and A.S.Bayer.1997.Adaptive resistance of Pseudomonas aeruginosa in-duced by aminoglycosides and killing kinetics in a rabbit endocarditis model.

Antimicrob.Agents Chemother.41:823–826.

V OL.50,2006PHARMACODYNAMICS OF GENTAMICIN2631

安装、使用产品前,请阅读安装使用说明书。 请妥善保管好本手册,以便日后能随时查阅。 GST-DJ6000系列可视对讲系统 液晶室外主机 安装使用说明书 目录 一、概述 (1) 二、特点 (2) 三、技术特性 (3) 四、结构特征与工作原理 (3) 五、安装与调试 (5) 六、使用及操作 (10) 七、故障分析与排除 (16) 海湾安全技术有限公司

一概述 GST-DJ6000可视对讲系统是海湾公司开发的集对讲、监视、锁控、呼救、报警等功能于一体的新一代可视对讲产品。产品造型美观,系统配置灵活,是一套技术先进、功能齐全的可视对讲系统。 GST-DJ6100系列液晶室外主机是一置于单元门口的可视对讲设备。本系列产品具有呼叫住户、呼叫管理中心、密码开单元门、刷卡开门和刷卡巡更等功能,并支持胁迫报警。当同一单元具有多个入口时,使用室外主机可以实现多出入口可视对讲模式。 GST-DJ6100系列液晶室外主机分两类(以下简称室外主机),十二种型号产品: 1.1黑白可视室外主机 a)GST-DJ6116可视室外主机(黑白); b)GST-DJ6118可视室外主机(黑白); c)GST-DJ6116I IC卡可视室外主机(黑白); d)GST-DJ6118I IC卡可视室外主机(黑白); e)GST-DJ6116I(MIFARE)IC卡可视室外主机(黑白); f)GST-DJ6118I(MIFARE)IC卡可视室外主机(黑白)。 1.2彩色可视液晶室外主机 g)GST-DJ6116C可视室外主机(彩色); h)GST-DJ6118C可视室外主机(彩色); i)GST-DJ6116CI IC卡可视室外主机(彩色); j)GST-DJ6118CI IC卡可视室外主机(彩色); k)GST-DJ6116CI(MIFARE)IC卡可视室外主机(彩色); GST-DJ6118CI(MIFARE)IC卡可视室外主机(彩色)。 二特点 2.1 4*4数码式按键,可以实现在1~8999间根据需求选择任意合适的数字来 对室内分机进行地址编码。 2.2每个室外主机通过层间分配器可以挂接最多2500台室内分机。 2.3支持两种密码(住户密码、公用密码)开锁,便于用户使用和管理。 2.4每户可以设置一个住户开门密码。 2.5采用128×64大屏幕液晶屏显示,可显示汉字操作提示。 2.6支持胁迫报警,住户在开门时输入胁迫密码可以产生胁迫报警。 2.7具有防拆报警功能。 2.8支持单元多门系统,每个单元可支持1~9个室外主机。 2.9密码保护功能。当使用者使用密码开门,三次尝试不对时,呼叫管理中 心。 2.10在线设置室外主机和室内分机地址,方便工程调试。 2.11室外主机内置红外线摄像头及红外补光装置,对外界光照要求低。彩色 室外主机需增加可见光照明才能得到好的夜间补偿。 2.12带IC卡室外主机支持住户卡、巡更卡、管理员卡的分类管理,可执行 刷卡开门或刷卡巡更的操作,最多可以管理900张卡片。卡片可以在本机进行注册或删除,也可以通过上位计算机进行主责或删除。

一、数据类型概述 数据:计算机能够处理数值、文字、声音、图形、图像等信息,均称为数据。 数据类型:根据数据描述信息的含义,将数据分为不同的种类,对数据种类的区分规定,称为数据类型。数据类型的不同,则在内存中的存储结构也不同,占用空间也不同 VB的基本数据类型: 数值型数据(主要数据类型)日期型字节型 货币型逻辑型字符串型对象型变体型 二、数值数据类型 数值类型分为整数型和实数型两大类。 1、整数型 整数型是指不带小数点和指数符号的数。 按表示范围整数型分为:整型、长整型 (1)整型(Integer,类型符%) 整型数在内存中占两个字节(16位) 十进制整型数的取值范围:-32768~+32767 例如:15,-345,654%都是整数型。而45678%则会发生溢出错误。 (2)长整型(Long,类型符&) 长整数型在内存中占4个字节(32位)。 十进制长整型数的取值范围: -2147483648~+2147483647 例如:123456,45678&都是长整数型。 2、实数型(浮点数或实型数) 实数型数据是指带有小数部分的数。 注意:数12和数12.0对计算机来说是不同的,前者是整数(占2个字节),后者是浮点数(占4个字节) 实数型数据分为浮点数和定点数。 浮点数由三部分组成:符号,指数和尾数。 在VB中浮点数分为两种: 单精度浮点数(Single) 双精度浮点数(Double) (1)单精度数(Single,类型符!) 在内存中占4个字节(32位),,有效数字:7位十进制数 取值范围:负数-3.402823E+38~-1.401298E-45 正数 1.401298E-45~3.402823E+38 在计算机程序里面不能有上标下标的写法,所以乘幂采用的是一种称为科学计数法的表达方法 这里用E或者e表示10的次方(E/e大小写都可以) 比如:1.401298E-45表示1.401298的10的负45次方

近年来,随着多功能酶标仪在国内各高校实验室逐渐推广开来,多功能酶标仪品牌和型号也逐渐多了起来,乱花渐欲迷人眼。除了三大传统优势品牌PE、MD和TECAN,还出现了众多后来者插足此市场,如收购了芬兰雷勃的Thermo、从发光起家的Berthold、针对药筛领域的BMG以及新兴的BioTek等品牌。各品牌都有各自的一个甚至多个系列产品线,特性各不相同,选购时各种技术参数、技术指标令人眼花缭乱。 本文尝试从用户实际使用的角度,探讨应该如何看待花样繁多的参数特性,希望能帮助大家找到真正合适自己的多功能酶标仪。 一、滤片Vs光栅 多功能酶标仪的分类方法众多,但最简单的莫过于用他们的滤光方式来作分界线。一般来说,可以分为滤光片型和光栅型两大类。当然也有一些型号,例如Synergy4和EnVision等,一台机器里面同时装上了滤光片和光栅。但是滤片和光栅并不能同时完成同一个检测,还是想用光栅的时候用光栅,该用滤片的时候用滤片;还有一些实验非用其中一个不可,另一模块实现不了的。所以这类仪器本质上还只是把滤片和光栅放在了一起,并没有使两者糅合而产生新的技术突破。 总体来说,滤片技术由于发展已久,配合二向色镜(其实也就是另一模式的滤光反光滤镜)等光路系统,可以实现大部分实验的需要。目前常规多功能酶标仪中最高的检测灵敏度就是用滤光片型做出来的,例如TECAN Infinite F500的荧光检测的灵敏度可以达到0.04 fmol/孔(荧光素,384孔/80ul)。 但是滤光片型仪器由于受限于滤片的波长和数量限制,不可能满足日益增加的实验类型的检测需要,而且有时需要对物质的吸收、激发和发射光谱进行研究,所以后来就诞生了光栅型的仪器。 最先推出光栅的是MD公司,其光栅习惯上称为单光栅。由于光纯度的不足,在光栅的后面又加入了一组带阻滤片,再把杂光过滤一遍,达到了5×10-4的杂光率,基本与纯粹的滤光片系统一致。后来TECAN 又发展出了双光栅技术,通过两次光栅滤光,杂光率降到了10-6。后来,Thermo、BioTek和PE的部分新款仪器等都使用了类似双光栅技术。由于激发和发射各用了一组双光栅,此类机器又被称为四光栅型多功能酶标仪。 光栅型酶标仪的推陈出新,使得用户在波长选择上不再受限,而且在杂光率、带宽控制等性能上还超越了滤光片系统。例如,TECAN公司在2008年底推出使用了第三代四光栅系统的M1000酶标仪,杂光率降到了2×10-7的新低,还实现了带宽2.5~20nm连续可调。这些都是目前滤光片型酶标仪所不能或者较难实现的。 二、杂光率&波长准确性 光栅型滤光系统俨然已经成为了目前通用性多功能酶标仪的主流,多家厂家共同努力,已经把光栅技术推到了历史新高。在光栅的众多技术参数之中,最关键的无疑就是光栅的杂光率和波长选择的准确性了。 杂光率指得就是光源通过光栅后,得到的光线中,“不需要”的波长的光占所标称波长的光的比例,表征了滤光的纯度。由于光线干涉、衍射等的复杂性,无论使用滤光片还是光栅,杂光都是不可避免的。各种滤光技术的本质就是要想办法把杂光尽可能地去掉。一般来说,滤光片型的杂光率在10-4~10-5之间,光栅型的可以做到10-6~10-7。由于此类杂光是非特异的,而且会直接进入最后的检测器,所以有多少的杂光就会引入多少的随机误差。在荧光等检测过程中,由于检测器存在放大效应,杂光率的干扰也会被指数级放大。因此,杂光率就是一个滤光系统的首要性能指标。 光栅的另一个重要指标就是波长选择的准确性。因为很多检测是依赖于物质在某个波长的特征图谱。就像

F6门禁管理系统用户手册 目录 1.系统软件 (2) 2.服务器连接 (2) 3.系统管理 (3) 3.1系统登录 (3) 3.2修改密码 (3) 4.联机通讯 (4) 4.1读取记录 (4) 4.2自动下载数据 (5) 4.3手动下载数据 (5) 4.4实时通讯 (6) 4.5主控设置 (6) 5.辅助管理 (8) 5.1服务器设置 (8) 5.2系统功能设置 (9) 5.3读写器设置 (10) 5.4电子地图 (13) 6.查询报表 (14) 6.1开锁查询 (14) 7.帮助 (18) 7.1帮助 (18)

1.系统软件 图1 门禁管理软件主界面 F6版门禁管理系统的软件界面如上图,顶端菜单栏包括“系统管理”、“联机通讯”、“辅助管理”、“查询报表”和“帮助”菜单;左侧快捷按钮包括“系统管理”、“联机通讯”、“辅助管理”、“查询报表”、“状态”等主功能项,每个主功能项包含几个子功能,在主界面上可以不依靠主菜单,就可在主界面中找到每个功能的快捷按钮。以下按照菜单栏的顺序进行介绍。 2.服务器连接 如图2点击设置则进入远程服务器设置,此处的远程服务器IP地址不是指数据库服务器,而是指中间层Fujica Server服务管理器的IP地址。 图2 服务连接

图2 远程服务器设置 3.系统管理 3.1系统登录 系统默认的操作员卡号为“0001”,密码为“admin”,上班人员输入管理卡号和密码后可以进入系统,进行授权给他的一切操作。 图3 系统登录 3.2修改密码 修改密码是指操作员登录成功后,可以修改自己登录的密码。先输入操作员的旧密码,再输入新密码并确认,则密码修改成功。

数据库系统原理实验报告 实验名称:__用户定义数据类型与自定义函数_ 指导教师:_叶晓鸣刘国芳_____ 专业:_计算机科学与技术_ 班级:__2010级计科班_ 姓名:_文科_____学号: 100510107 完成日期:_2012年11月10日_成绩: ___ ___一、实验目的: (1)学习和掌握用户定义数据类型的概念、创建及使用方法。 (2)学习和掌握用户定义函数的概念、创建及使用方法。 二、实验内容及要求: 实验 11.1 创建和使用用户自定义数据类型 内容: (1)用SQL语句创建一个用户定义的数据类型Idnum。 (2)交互式创建一个用户定义的数据类型Nameperson。 要求: (1)掌握创建用户定义数据类型的方法。 (2)掌握用户定义数据类型的使用。 实验 11.2 删除用户定义数据类型 内容: (1)使用系统存储过程删除用户定义的数据类型Namperson。 (2)交互式删除用户定义的数据类型Idnum。 要求: (1)掌握使用系统存储过程删除用户定义的数据类型。 (2)掌握交互式删除用户定义的数据类型。 实验 11.3 创建和使用用户自定义的函数 内容: (1)创建一个标量函数Score_FUN,根据学生姓名和课程名查询成绩。 (2)创建一个内嵌表值函数S_Score_FUN,根据学生姓名查询该生所有选课的成绩。 (3)创建一个多语句表值函数ALL_Score_FUN,根据课程名查询所有选择该课程学生的成绩信息。

要求: (1)掌握创建标量值函数的方法。 (2)掌握创建内嵌表值函数的方法。 (3)掌握创建多语句表值函数的方法。 实验 11.4 修改用户定义的函数 内容: (1)交互式修改函数Score_FUN,将成绩转换为等级输出。 (2)用SQL修改函数S_Score_FUN,要求增加一输出列定义的成绩的等级。要求: (1)掌握交互式修改用户定义函数的方法。 (2)掌握使用SQL修改用户定义函数的方法。 实验 11.5 输出用户定义的函数 内容: (1)交互式删除函数Score_FUN。 (2)用SQL删除函数S_Score_FUN。 要求: (1)掌握交互式删除用户定义函数的方法。 (2)掌握使用SQL删除用户定义函数的方法。

多功能酶标仪技术规格要求 一、采购内容 二、技术要求 1、系统性能 多模式检测模块:可见光/紫外光吸收、荧光强度(顶读&底读)、超高灵敏化学发光、时间分辨荧光和超灵敏Alpha检测。 2、激发光源: 2.1光吸收、荧光强度、TRF模块光源采用高能闪烁氙灯,波长范围230-1000 nm。*2.2 Alpha光源采用680 nm 高能固态激光光源,激光输出功率>200 mw。 *3、检测器:多模式检测模块:同时配置两个PMT:一个红敏PMT和一个独立超高灵敏度PMT。 4、可见/紫外吸收光:双光栅系统可进行光吸收检测,波长范围230-1000 nm,双光栅分光步进(increments)0.5nm。 *5、荧光强度(顶读和底读):高精度四光栅系统,要求前置cut-off滤光片,波长范围250-850nm;分光步进(increments)0.5nm。 *6、超敏感化学发光:独立于荧光检测之外的单独光路,独立超敏感PMT检测器。 7、时间分辨荧光:激发配置320 nm/340 nm滤光片/二向色镜优化组合,保证激发光强度。发射光路为双光栅,满足包括615nm和665 nm在内的单/多波长检测。*8、超灵敏Alpha检测:优化独立Alpha专用光路,采用高能固态激光+独立超灵敏PMT优化高速组合,以达到最佳的检测效率和灵敏度。要能提供Alpha检测试剂盒及特殊应用的定制化服务。 9、温控模块:保证样品检测温度稳定到室温+3至65摄氏度。

10、具有三种振荡模式:线形、圆形、8字形,可设定震荡速度、振幅及振荡时间。具有仪器外(outside)振荡功能,在程序运行的过程中,微孔板可以伸出仪器外部振荡,便于实现程序运行中观察振荡效果,而不必中止程序。 11、具有板孔扫描功能:可选孔内圆形或方形区域中的多点扫描检测,适用于贴壁细胞或不均匀样本检测,以减少因样品分布不均匀造成的检测偏差。软件可自动优化调节检测器Z轴高度,以保证检测的灵敏度,减少孔间信号串扰。 12、配备专业仪器自动化控制及数据分析处理软件,软件友好,易学易用。具备线性拟合、动力学、剂量效应等多种常用的数据计算及分析功能,结果可以Excel、文本、网页、图片等多种格式输出。 三、技术服务要求 3.1设备安装调试 在用户指定的地点完成安装调试,并配合用户进行测试验收。 3.2 技术培训及服务 3.2.1完成设备现场安装调试和验收后,在用户所在地免费提供专业培训,就 设备的操作使用和保养维护等内容进行重点培训。 *3.2.2 要能提供原厂AlphaScreen/AlphaLISA检测试剂以及时间分辨荧光检 测试剂,并具有专业技术开发实验室及服务能力,并由应用技术工程师提供蛋 白-蛋白等分子间相互作用实验的现场操作培训以及后期新实验开发培训。 3.3质保期 整机保修1年,保修期自验收签字之日起计算。 3.4维修响应时间 接到维修通知后,2小时内作出响应,24小时内到场排除故障。

ID一体式/嵌入式门禁管理系统 使用说明书

1 软件使用说明 (1)配置要求 在安装软件之前,请先了解您所使用的管理电脑的配置情况。本软件要求安装在(基本配置): Windows 2000,windows xp操作系统; 奔腾II600或更高的处理器(CPU); 10GB以上硬盘; 128MB或更大的内存; 支持分辨率800*600或更高的显示器。 (2)安装说明 在光盘中运行“智能一卡通管理系统”安装程序(ID版),按照安装提示依次操作即可。 安装数据库以后,有两种创建数据库的方式,手动创建和自动创建。手动创建:在数据库SQL Server2000的数据库企业管理器中,建立一个database(数据库)。进入查询分析器/Query Analyzer 运行智能一卡通管理系统的脚本文件,形成门禁数据库表;自动创建:在安装智能一卡通管理软件中自动创建默认门禁数据库,默然数据名:znykt。 上述安装完后,在安装目录下,在first.dsn 文件中设置其参数,计算机server的名字(无服务器时即本机名)和数据库database的名字。 在桌面运行智能一卡通管理系统运行文件,选择卡号888888,密码为123456即可进入系统。 2 人事管理子系统 部门资料设置 首先运行‘智能一卡通管理系统’软件后,进入软件主界面,如下图所示:

然后点击进入“人事管理子系统”,如图所示: 选择<人事管理>菜单下的<部门管理>或点击工具栏内的‘部门管理’按钮,则会出现如下所示界面: 在<部门管理>中可以完成单位内部各个部门及其下属部门的设置。如果公司要成立新的部门,先用鼠标左键单击最上面的部门名,然后按鼠标右键弹出一菜单,在菜单中选择“增加部门”,则光标停留在窗口右边的“部门编号”输入框中,在此输入由用户自己定义的部门编号后,再在“部门名称”输入框中输入部门名称,最后按 <保存>按钮,此时发现窗口左边的结构图中多了一个新增的部门。如果要给部门设置其下属部门,则首选用鼠标左键选中该部门,再按鼠标右键弹出一菜单,在菜单中选择“增加”,最后输入、保存。同时也可以对选中的部门或下属部门进行“修改”或“删除”。特别要注意的是,如果是“删除”,则被选中的部门及其下属部门将被全部删除,所以要特别谨慎。

用户自定义的数据类型------记录 保存多个相同或不同类型数值的结构称为记录(record)。 在VISUAL BASIC 中定义记录,用Type语句,其语法如下: Type varType Variable1 As varType Variable2 As varType … Variablen As varType End Type 例如定义一个名为CheckRecord的记录: Type CheckRecord CheckNumber as Integer CheckDate as Date CheckAmount as Single End Type CheckRecord结构可以像普通变量类型一样使用。要定义这个类型的变量,使用如下语句: Dim check1 As CheckRecord 要对结构的各个字段访问,可使用如下语句: check1. CheckNumber=123 check1. CheckDate=#08/14/1996# check1. CheckAmount=240.00 例: 简单例(自定义类型1.frm) 数组自定义类型1.FRM 用一维数组存放学生年龄。并可通过学生姓名输入或显示该学生的年龄。 Private Type StudentInformation StudentAge As Integer StudentName As String End Type Dim N As Boolean Dim Information(1 To 4) As StudentInformation Dim infIndex As Integer Dim stuName As String Private Sub cmdInputname_Click() For i = 1 To 4 Information(i).StudentName = InputBox("PL input name") Next i End Sub Private Sub cmdInput_Click() infIndex = 1 N = False

多功能酶标仪SpectraMax i3的标准操作规程Standard Operation of SpectraMax i3 部门Department 签名/日期Signature/Date 起草人:Prepared by 樊小川,Xiaochuan Fan QC 审核人:Reviewed by 黄思佳,Sijia Huang QC 审核人:Reviewed by 褚夫兰,Fulan Chu QA 批准人:Approved by 张伯彦,Boyan Zhang 质量负责人 1 目的 建立多功能酶标仪SpectraMax i3的标准操作程序,规范SpectraMax i3 多功能酶标仪检测时的操作。 2 适用范围

本规程适用于所有对多功能酶标仪SpectraMax i3的操作 3 术语或定义 多功能酶标仪:指功能较强、精度较高的单体台式酶标仪,可检测吸光度(Abs)、荧光强度(FL)、时间分辨荧光(TRF)、化学发光(Lum)等。 4 责任 4.1 仪器负责人负责多功能酶标仪的日常及定期维护,出现故障时负责联系厂家维修,保 证运行正常。 4.2 实验操作人员需严格按照本规程执行,保证仪器正常使用,每次用完后填写仪器使用 记录,且使用后及时清理台面,保持仪器洁净。 5 EHS要求 N/A 6 程序 6.1 仪器安装 仪器与电脑连接完毕并连接电源以后,按仪器背面的按钮可以直接启动仪器,经过几分钟后的仪器自检后就可以开始用于检测。在连有电源的情况下,保持24小时开机,不要罩防尘罩以保持透气,隔1-2月关机重启一次。 6.2 SoftMax Pro软件操作基本步骤 6.2.1 打开软件 点击“SoftMax Pro 6.3”图标,打开SoftMax Pro 软件,出现"Plate Setup Helper"对话框。若无则点击图标。 6.2.2 连接仪器 点击‘Choose a diffecient instrument’,打开‘Instrument Connection’对话框,在“Availible Instruments”菜单中选择仪器连接线与电脑所接的串口号(COM)。 选择所购买的酶标仪型号SpectraMax i3或添加模块卡盒型号。最后点击“OK”键连接。 6.2.3 仪器检测参数设定 点击图标后出现“Settings”对话框,对话框最上方出现Read Mode(读板模式)和Read Type(读板类型)两个选项,读板模式有ABS(光吸收)、FL(荧光强度)、LUM(化学发光)和TRF(时间分辨荧光),读板类型有终点检测(Endpoint)、动力学(Kinetic)、单孔扫描(Well Scan)和光谱扫描(Spectrum)四种。使用者根据实验

多功能酶标仪基本操作规程 一、可见与紫外光原始吸光值的直接测定方法 1、首先打开连接酶标仪的电插板上的全部开关。打开酶标仪主机背面电源线上端的开关。 2、再打开电脑开关。(注意,一定要先开仪器,后开电脑,以免仪器连接出现问题。) 3、在电脑主屏幕上选择[Magellan6]。 4、仪器自检后,酶标板托架自动伸出(注意仪器前部不要放置物品,以免档住托架的伸出)。将酶 标板按数字正确的方向(A1位于左上角)放在托架上。 5、点击仪器下部最右侧的[move plate in] 图标,酶标板将自动进入仪器中。(注意:千万不要用手 将酶标板推入仪器,造成仪器损坏)。 6、在屏幕上选Start measurement。点击绿色箭头。 7、在Select a File窗口左上角选Obtain Raw Date 然后点击绿色箭头。 8、在plate 栏中的plate definition 下拉条中,对板的类型进行选择。酶标的吸光度测定,一般情况 下选xxxxx xx Flat Transparent (x孔,平底,透明板)。(注意测定紫外吸收时要使用可以透过紫外光的透明板)如果板要加盖子,就要再选中Plate with cover。 9、在Measurements 栏内双击Absorbance ,出现Absorbance的对话框。 10、在Absorbance的对话框中: ⑴在Wavelength栏中Measurement项输入测定波长值;Reference项,在需要扣除背景波长时选中并 输入背景波长值。一般情况不选. ⑵在Multiple read per well栏中对于吸光值的测定可不选 ⑶在Read 栏中: Number of flashes 项一般选10;Settle time(使平静时间)项对于96或384孔 板一般选0;对于其他孔数的板可考虑输入适当的值;孔数越少的板,Settle time 设置时间要较长,以防止在测定过程中板移动距离大,对液面平稳的影响。 ⑷在Label栏中Name后输入你为此块板自定义的英文名;也可不设置。 11、在Part of plate 栏中,用鼠标左键拉框,选择要测定的样品孔(使待测定的样品孔变为黄色), (注意:待测孔只可横向或纵向连续选择,不可以被间断)。如果选择错误需要更改,不要做任何删除,只要再直接重新选择即可。点击本栏中的Detail 对所选的样品孔进行确认后,点击OK,(如果选孔有错误,选择Cancel 返回上页再重复以上操作。) 12、点击OK后,箭头变绿,点击绿色箭头,在Measurement 的workspace处输入(日、月、年- 自定义文件名wsp)再点击Start,仪器开始自动测定。 13、测定结束后,点击File 选择print,直接打印测定参数与结果,或在最上方Edit选择Copy to Excel, 然后打开下方出现的Excel表(显示为板式数据)并打印结果。 14、关机,退出当前界面,点击左下角Exit Megellan 回到主屏幕。关电脑,关仪器电源和插板电 源。 二、荧光值的直接测定方法 1、首先打开连接酶标仪的电插板上的全部开关。打开酶标仪主机背面电源线上端的开关。 2、再打开电脑开关。(注意,一定要先开仪器,后开电脑,以免仪器连接出现问题。) 3、在电脑主屏幕上选择[Magellan6]。 4、仪器自检后,酶标板托架自动伸出(注意仪器前部不要放置物品,以免档住托架的伸出)。将酶 标板按数字正确的方向(A1位于左上角)放在托架上。 5、点击仪器下部最右侧的[move plate in] 图标,酶标板将自动进入仪器中。(注意:千万不要用手 将酶标板推入仪器,造成仪器损坏)。 6、在屏幕上选Start measurement。点击绿色箭头。 7、在Select a File窗口左上角选Obtain Raw Date 然后点击绿色箭头。 8、在plate 栏中的plate definition 下拉条中,对板的类型进行选择。荧光酶标的测定,一般情况下 选xxxxx xx Flat black (x孔,平底,黑板。6孔板测定时没有黑板可选,可选择6孔,平底,透明板)。

《门禁系统使用说明书》

陕西********科技有限公司 单位地址:**************************** 联系电话:**************************** 目录 ( 1.1)软件系统---------------------------------------------------------------------------------------1-135 第一章软件基本操作...................................................................................................................... - 5 - 2.1进入操作软件 (5) 2.4人事管理 (7) 2.4.1 企业信息.................................................................................................................................................................. - 7 - 2.4.2添加/编辑部门信息 ................................................................................................................................................ - 9 - 2.4.2.1添加部门 ............................................................................................................................................................... - 9 - 2.4.2.2修改部门 ............................................................................................................................................................ - 10 - 2.4.2.3 删除部门 ........................................................................................................................................................... - 11 -

酶标仪的原理及结构 酶标仪即酶联免疫检测仪,是酶联免疫吸附试验的专用仪器。可简单地分为半自动和全自动2大类,但其工作原理基本上都是一致的,其核心都是一个比色计,即用比色法来分析抗原或抗体的含量。 酶标法是什么 酶联免疫吸附试验方法简称酶标法,是标记技术中的一种,是从荧光抗体技术,同位素免疫技术发展而来的一种敏感,特异,快速并且能自动化的现代技术。 酶标法的基本原理是将抗原或抗体与酶用胶联剂结合为酶标抗原或抗体,此酶标抗原或抗体可与固相载体上或组织内相应抗原或抗体发生特异反应,并牢固地结合形成仍保持活性的免疫复合物。当加入相应底物时,底物被酶催化而呈现出相应反应颜色。颜色深浅与相应抗原或抗体含量成正比。 由于此技术是建立在抗原-抗体反应和酶的高效催化作用的基础上,因此,具有高度的灵敏性和特异性,是一种极富生命力的免疫学试验技术。 酶标仪的原理 酶标仪就是应用酶标法原理的仪器,酶标仪类似于一台变相光电比色计或分光光度计,其基本工作原理与主要结构和光电比色计基本相同。

光源灯发出的光波经过滤光片或单色器变成一束单色光,进入塑料微孔极中的待测标本.该单色光一部分被标本吸收,另一部分则透过标本照射到光电检测器上,光电检测器将这一待测标本不同而强弱不同的光信号转换成相应的电信号,电信号经前置放大,对数放大,模数转换等信号处理后送入微处理器进行数据处理和计算,Z后由显示器和打印机显示结果。 微处理机还通过控制电路控制机械驱动机构X方向和Y方向的运动来移动微孔板,从而实现自动进样检测过程。而另一些酶标仪则是采用手工移动微孔板进行检测,因此省去了X,Y方向的机械驱动机构和控制电路,从而使仪器更小巧,结构也更简单。 微孔板是一种经事先包理专用于放置待测样本的透明塑料板,板上有多排大小均匀一致的小孔,孔内都包埋着相应的抗原或抗体,微孔板上每个小孔可盛放零点几毫升的溶液。其常见规格有40孔板,55孔板,96孔板等多种,不同的仪器选用不同规格的孔板,对其可进行一孔一孔地检测或一排一排地检测。 酶标仪测定是在特定波长下,检测被测物的吸光值。随着检测方式的发展,拥有多种检测模式的单体台式酶标仪叫做多功能酶标仪,可检测吸光度(Abs)、荧光强度(FI)、时间分辨荧光(TRF)、荧光偏振(FP)、和化学发光(Lum)。 酶标仪从原理上可以分为光栅型酶标仪和滤光片型酶标仪。光栅型酶标仪可以截取光源波长范围内的任意波长,而滤光片型酶标仪则根据选配的滤光片,只能截取特定波长进行检测。 酶标仪的结构 酶标仪所用的单色光既可通过相干滤光片来获得,也可用分光光度计相同的单色器来得到。在使用滤光片作滤波装置时与普通比色计一样,滤光片即可放在微孔板的前面,也可放在微孔板的后面,其效果是相同的。光源灯发出的光经聚光镜,光栏后到达反射镜,经反射镜作90°反射后垂直通过比色溶液,然后再经滤光片送到光电管。 酶标仪可分为单通道和多通道2种类型,单通道又有自动和手动2种之分。自动型的仪器有X,Y方向的机械驱动机构,可将微孔板L的小孔一个个依次送入光束下面测试,手动型则靠手工移动微孔板来进行测量。

-- - XX职业技术学院信息工程学院 门禁管理系统 操作说明书

制作人:X珍海 日期:2014年3月25日 目录 (请打开【帮助H】下的【使用说明书】,这样方便您了解本系统) 第1章软件的基本操作3 1.1 登录和进入操作软件3 1.2 设备参数设置4 1.3 部门和注册卡用户操作4 1.3.1 设置部门4 1.3.2 自动添加注册卡功能(自动发卡)5 1.4 基本操作7 1.4.1 权限管理8 1.4.2 校准系统时间11 1.5 常用工具12 1.5.1 修改登陆用户名和密码12 第2章考勤管理功能模块13 2.1 正常班考勤设置13 2.1.1 设置考勤基本规则13 2.1.2 设置节假日和周休日14 2.1.3 请假出差的设置15 2.2 考勤统计和生成报表17 2.2.1 生成考勤详细报表17 2.2.2 启用远程开门错误!未定义书签。

第1章软件的基本操作 1.1登录和进入操作软件 1.点击【开始】>【程序】>【专业智能门禁管理系统】>【专业智能门禁管理系统】或双击桌面钥匙图标的快捷方式,进入登录界面。 2.输入缺省的用户名:abc 与密码:123(注意:用户名用小写)。该用户名和密码可在软件里更改。 3.登录后显示主操作界面

入门指南。如果您没有经验,您可以在该向导的指引下完成基本的操作和设置。我们建议您熟悉后, 关闭操作入门指南,仔细阅读说明书,熟悉和掌握软件的操作。 “关闭入门指南”后,操作界面如下。 1.2设备参数设置 1.3部门和注册卡用户操作 1.3.1设置部门 点击【设置】>【部门】,进入部门界面。 点击【添加最高级部门】。

多功能酶标仪SpectraMax-i3的操作规程编号 M-SOP-2-0083 No. 标准操作规程版本号 Standard Operating Procedure 01 Version 多功能酶标仪SpectraMax i3的标准操作规程 多功能酶标仪SpectraMax i3的标准操作规程 Standard Operation of SpectraMax i3 部门签名/日期 Department Signature/Date 起草人: XX, Xiaochuan X Prepared by QC 审核人: XX, Sijia XX Reviewed by QC 审核人: XX, Fulan X Reviewed by QA 批准人: XX, Boyan XX Approved by 质量负责人 颁发部门执行日期质量保证部-QA Issued by Effective Date 替换文件复审日期 Version 00 Replaced For Review Date 分发部门 QA,QC Distributed to 1 of 7 编号 M-SOP-2-0083 No. 标准操作规程版本号 Standard Operating Procedure 01 Version 多功能酶标仪SpectraMax i3的标准操作规程 1 目的 建立多功能酶标仪SpectraMax i3的标准操作程序,规范SpectraMax i3 多功能酶标仪 检测时的操作。 2 适用范围

本规程适用于所有对多功能酶标仪SpectraMax i3的操作 3 术语或定义 多功能酶标仪:指功能较强、精度较高的单体台式酶标仪,可检测吸光度(Abs)、荧 光强度(FL)、时间分辨荧光(TRF)、化学发光(Lum)等。 4 责任 4.1 仪器负责人负责多功能酶标仪的日常及定期维护,出现故障时负责联系厂家维修,保 证运行正常。 4.2 实验操作人员需严格按照本规程执行,保证仪器正常使用,每次用完后填写仪器使用 记录,且使用后及时清理台面,保持仪器洁净。 5 EHS要求 N/A 6 程序 6.1 仪器安装 仪器与电脑连接完毕并连接电源以后,按仪器背面的按钮可以直接启动仪器,经过几分钟后的仪器自检后就可以开始用于检测。在连有电源的情况下,保持24小时开机,不要罩防尘罩以保持透气,隔1-2月关机重启一次。 6.2 SoftMax Pro软件操作基本步骤 6.2.1 打开软件 点击“SoftMax Pro 6.3”图标,打开SoftMax Pro 软件,出现 "Plate Setup Helper"对话框。若无则点击图标。

门禁系统管理平台详细设计报告 2015年09月20日

目录 一、基本信息 .................................................................................................................. 错误!未定义书签。 二、市场分析 (4) 1.客户需求分析 (4) (1)国际国内市场需求量预测及客户咨询类似产品情况..... 错误!未定义书签。 (2)客户对该产品的功能、安全、使用环境要求等............. 错误!未定义书签。 2.市场现状分析 (4) 三、详细设计 (4) 1. 模块描述 (4) 2. 功能描述 (4) 3. 信息传输过程 (6) 4. 标准符合性分析 (6) 5. 验证(试制/试验/检测)确认方法、手段的分析 (8) 四、资源论证 (8) 1.人力资源需求分析 (8) 2.开发设备资源需求分析 (9) 3.项目开发成本预算 (9) 五、研发时间安排 (9) 六、项目风险评估 (10) 1.技术方面 (10) 2.人员方面 (10) 3.其它资源 (10) 七、评审结论 (11) 八、公司意见 (11)

一、市场分析 1.客户需求分析 1.2014年7月份由三大运营商出资成立了中国通信设施服务股份有限公司,同年9月份 变更名称为中国铁塔股份有限公司。铁塔公司成立后,2015年12月下旬,2000多亿存量铁塔资产基本完成交接。而从2015年1月1日起,三大运营商停止新建铁塔基站,交由中国铁塔进行建设。据统计,2015年1-11月,中国铁塔累计承接三家电信运营企业塔类建设需求53.2万座,已交付41.8万座。针对如此庞大的存量基站及新建基站。 铁塔公司总部急需对基站人员进出做到统一管理,有效管控。提高效率。因此所产生的市场需求量是很大的。 2.随着互联网及物联网技术的快速发展,原有传统门禁管理系统、单一功能的管理软件已 经无法管理众多不同品牌、不同通讯方式、不同厂家的IC/ID读卡设备,因此客户需要一种开放式、分布式的云管理平台,来管理整个基站门禁系统中的所有设备 2.市场现状分析 ●同行业中,各厂家的产品采用传统的门禁方案,既读卡器和控制器及电磁锁或电插锁对 现场的基站门进行管理。造价昂贵,安装复杂。。 ●目前大部分厂家的管理平台架构单一,系统兼容性差,各家的门禁管理平台只能兼容自 家的控制器。开放性不够。 ●目前很多厂商的平台都是针对某一个硬件厂商的设备来运行的,当项目中有多家设备时 平台的控制力明显不足 二、详细设计 1. 模块描述 铁塔基站门禁系统管理平台系统主要包括三部分:BS/CS客户端、云服务器和手机APP。 其中客户端的主要功能包括: 支持对多家基站锁具设备的识别、获取、登录 支持对不同用户进行权限划分。 支持对锁具根据区域进行分组。 支持多家基站锁具设备的设备配置 支持多家设备通过手机APP开锁、获取状态、日志查询。 支持多家设备的设备时间校准 支持设备更新,当设备更新时,可以方便的只更新涉及到的文件,而不需要重装整个系统 支持电子地图

Infinite M200 PRO 1.一般参数: 支持的检测模式:光吸收、荧光顶部底部、时间分辨荧光(TRF)、连续发光、瞬时发光、双色发光、BRET、光吸收和荧光波长扫描 1.1 光源:UV高能闪烁氙灯,10^8次闪烁寿命,自带光强监测、校准,免维护无需预热 1.2 光栅杂光率:<10^-6 1.3 支持板型:6-384孔板,预设常用品牌型号;自动扫描并定义特殊规格板型,NanoQuant微量检测板,4位卧式比色杯,立式比色杯(选配) 1.4 孔内多点读数(光吸收/荧光顶底):6-384孔板,最多15×15个点(依板型模式可有不同),覆盖全孔,7种点布局 1.5 温度控制:环境温度+5℃至42℃(选配) 1.6 振荡:线性或圆形可选;振幅1-6mm,0.5mm步进;1-1000秒可调 1.7 多标记多模式检测:单个实验中可进行无限制的多波长、多模式检测(光吸收、荧光、发光、波长扫描) 1.8 最快读板速度:96孔板:20秒;384孔板:30秒 1.9 波长扫描速度(FI EX/EM):150秒;450-550nm,5nm步进,96孔板 1.10 认证:DLReady,Transcreener Red FI 2.光吸收模块 2.1 波长范围:230-1000nm,1nm连续可调 2.2 波长选择:双光栅 2.3 带宽:<5nm(λ≦315nm),<9nm(λ>315nm) 2.4 波长准确性:<±0.3nm(λ≦315nm),<±0.5nm(λ>315nm) 2.5 波长重复性:<±0.3nm(λ≦315nm),<±0.5nm(λ>315nm) 2.6 检测器:紫外硅光电二级管 2.7 检测范围:0-4 OD 2.8 检测分辨率:0.0001 OD 2.9 检测准确性:<0.5% @260nm 2.10 检测精确性:<0.2% @260nm 2.11 260/280nm精度:±0.07

IC一体式/嵌入式门禁管理系统 使用说明书

目录 1.系统简介 (3) 2.功能特点 (3) 3、主要技术参数 (4) 4、系统组成 (4) 5、设备连接 (5) 6、门禁管理系统软件 (6) 6.1 软件的安装 (6) 6.2 人事管理子系统 (7) 6.3 一卡通管理系统 (9) 6.4 门禁管理子系统 (12) 7. 调试操作流程 (28) 8、注意事项 (28)

1.系统简介 在高科技发展的今天,以铁锁和钥匙为代表的传统房门管理方式已经不能满足要求,而集信息管理、计算机控制、Mifare 1 IC智能(射频)卡技术于一体的智能门禁管理系统引领我们走进新的科技生活。 Mifare 1 IC智能(射频)卡上具有先进的数据通信加密并双向验证密码系统,卡片制造时具有唯一的卡片系列号,保证每张卡片都不相同。每个扇区可有多种密码管理方式。卡片上的数据读写可超过10万次以上;数据保存期可达10年以上,且卡片抗静电保护能力达2KV以上。具有良好的安全性,保密性,耐用性。 IC卡嵌入式门禁管理系统以IC卡作为信息载体,利用控制系统对IC卡中的信息作出判断,并给电磁门锁发送控制信号以控制房门的开启。同时将读卡时间和所使用的IC卡的卡号等信息记录、存储在相应的数据库中,方便管理人员随时查询进出记录,为房门的安全管理工作提供了强有力的保证。 IC卡嵌入式门禁管理系统在发行IC卡的过程中对不同人员的进出权限进行限制,在使用卡开门时门禁控制机记录读卡信息,在管理计算机中具有查询、统计和输出报表功能,既方便授权人员的自由出入和管理,又杜绝了外来人员的随意进出,提高了安全防范能力。 IC卡嵌入式门禁管理系统,在线监控IC卡开门信息、门状态,给客户以直观的门锁管理信息。 IC卡嵌入式门禁(简称门禁读卡器,门禁控制机,控制器)是目前同行业产品中体积较小的门禁,可以嵌入到市场上几乎所有的楼宇门禁控制器中,解决了因为楼宇门禁控制器内部空间小所带来的麻烦,是楼宇门禁控制器的最佳配套产品;它绝不仅仅是简单的门锁工具,而是一种快捷方便、安全可靠、一劳永逸的多功能、高效率、高档次的管理系统。它能够让你实实在在享受高科技带来的诸多实惠和方便。 2.功能特点 2.1.IC卡嵌入式门禁具有的功能: 2.1.1使用MIFARE 1 IC卡代替钥匙,开门快捷,安全方便。 2.1.2经过授权,一张IC卡可以开启多个门(255个以内)。 2.1.3可以随时更改、取消有关人员的开门权限。 2.1.4读卡过程多重确认,密钥算法,IC卡不可复制,安全可靠。 2.1.5具有512条黑名单。

相关文档
相关文档 最新文档