文档库 最新最全的文档下载
当前位置:文档库 › 大学物理A练习题

大学物理A练习题

大学物理A练习题
大学物理A练习题

大学物理A (2)练习题

一、选择题

1、由真空中静电场的高斯定理01

d s E S q ε=

? 可知( )

A .闭合面内的电荷代数和为零时,闭合面上各点场强一定为零

B .闭合面内的电荷代数和不为零时,闭合面上各点场强一定都不为零

C .闭合面内的电荷代数和为零时,闭合面上各点场强不一定都为零

D .闭合面内无电荷时,闭合面上各点场强一定为零

2、真空中两根半无限长直导线与半径为R 的均匀金属圆环组成如图所示的电路,电流I 由

点a 流入、b 点流出。圆环中心O 点的磁感应强度大小为( )

A .0I R μ

B .02I R μ

C .04I R μ

D .0

3、在空气中做双缝干涉实验,屏幕E 上的P 处是明条纹。若将缝S 2盖住,并在S 1、S 2连

线的垂直平分面上放一平面反射镜M ,其他条件不变(如图),则此时 ( ) A .P 外仍为明条纹 B .P 处为暗条纹

C .P 处位于明、暗条纹之间

D .屏幕

E 上无干涉条纹

4、大量处在第3受激态的氢原子向低能态跃迁时,可能产生的谱线条数是( )

A .6条

B .5条

C .4条

D .3条

5、康普顿效应的实验结果表明( )

A .散射光的波长比入射光的波长短

B .散射光的波长均与入射光的波长相同

C .散射光中既有与入射光波长相同的光,也有比入射光波长短的光

D .散射光中既有与入射光波长相同的光,也有比入射光波长长的光

6、如图所示,真空中两块面积均为S 的平板A 和B 彼此平行放置,板间距离为d ,d 远小

于板的线度。设A 、B 板都均匀带正电,电量分别为1q 和2q ,则A 、B 两板间的电势差为( ) A .

()1204q q d

S

ε- B

()1202q q d

S

ε-

C .()1204q q d

S

ε+ D .

()1202q q d

S

ε+

7、均匀磁场B 垂直于以R 为半径的圆面,以该圆圆周为边线作两个曲面S 1和S 2,S 1和S 2

构成闭合曲面,如图所示,则通过S 1、S 2的磁通量1Φ和2Φ分别为( ) A .2212,R B R B Φ=-πΦ=π B .2212,R B R B Φ=πΦ=-π C .212R B Φ=Φ=-π D .212R B Φ=Φ=π

8、两光源发出的光波产生相干的必要条件是:两光源( )

A .频率相同、振动方向相同、相位差恒定

B .频率相同、振幅相同、相位差恒定

C .发出的光波传播方向相同、振动方向相同、振幅相同

D .发出的光波传播方向相同、频率相同、相位差恒定

9、与玻尔氢原子理论基本假设相矛盾..

的是( ) A .原子系统存在某些某些稳定态,电子虽然作加速运动,但不辐射能量

B .绕核作加速运动的电子要向周围空间辐射电磁波,其频率等于电子绕核运动的频率

C .原子定态的能量只能取某些分立的值123,,E E E ,……

D .电子绕核运动的角动量等于

2h

π

的正整数倍的定态轨道是可能存在的轨道

10.在光电效应实验中,从金属表面逸出的光电子的最大初动能取决于( )

A .入射光的强度和红限

B .入射光的强度和金属的逸出功

C .入射光的频率和光照时间

D .入射光的频率和金属的逸出功

11、如图,点电荷Q 被封闭曲面S 所包围。现将另一点电荷q 放至曲面外一点处,比较放置q 前后通过S 面的电通量及面上各点的场强,则有(

A .通过曲面S 的电通量不变,曲面上各点场强不变

B .通过曲面S 的电通量变化,曲面上各点场强不变

C .通过曲面S 的电通量变化,曲面上各点场强变化

D .通过曲面S 的电通量不变,曲面上各点场强变化

12、在真空中,闭合回路L 的绕行方各和电流1I 、2I 、3I 、4I 、5I 的方向如图所示,则安

培环路定理I l L

∑=??

0d μB 中的I ∑等于( )

A .-1I -2I +3I

B .1I +2I -3I

C .-1I -2I +3I +4I -5I

D . 1I +2I -3I -4I +5I

13、真空中一无限长细直导线通有稳恒电流I ,离该导线距离为a 处的磁感应强度大小为(

) A .a

I

B π40μ= B .20π4a I

B μ=

C .a

I

B π20μ=

D .20π2a

I

B μ=

14、如图,在磁感应强度为B 的均匀磁场中作一半径为

R 的半球面S ,S 周边线所在平面的法线方向单位矢量n 与B 的夹角为θ,则通过半球面的磁通量绝对值

为(

A .

B R 2π

B .B R 22π

C .θsin π2B R

D .θcos π2B R

15、两个大小和形状相同、电阻不同的单匝导线回路,通过其所包围的面积的磁通量随时间的变化率相同,则两回路中( )

A .感应电动势大小不同,感应电流大小不同

B .感应电动势大小不同,感应电流大小相同

C .感应电动势大小相同,感应电流大小相同

D .感应电动势大小相同,感应电流大小不同

16、在计论单缝衍射时,有式() ,2,1sin =±=k k a λ? (1)

在计论光栅衍射时,有式() ,2,1,0sin =±=k k d λ?

(2)

此两式中( )

A .式(1)是单缝衍射的明纹条件;式(2)是光栅衍射的明纹条件

B .式(1)是单缝衍射的暗纹条件;式(2)是光栅衍射的明纹条件

C .式(1)是单缝衍射的明纹条件;式(2)是光栅衍射的暗纹条件

D .式(1)是单缝衍射的暗纹条件;式(2)是光栅衍射的暗纹条件

17、如图,空气中两个点光源1S 、2S 发出的光束在P 点相遇,设11P r S =、22P r S =,光束P

2S 通过的介质薄片的折射率为n ,厚

度为d ,则光束P 2S 与光束P 1S 的光程差为(

A .12r md d r -+-

B .12r md d r --+

C .21r md d r -+-

D .21r md d r ---

18、玻尔理论的三条基本假设是为了解释( )

A .康普顿效应

B .光电效应

C .氢原子光谱的实验规律

D .电子衍射现象

19、取一闭合环路L ,使其环绕四根载有稳恒电流的导线。现改变四根导线之间的相对位置,

但不越出该闭合环路,则(

A .环路L 内的∑I 不变,L 上各点的

B 一定不变 B .环路L 内的∑I 不变,L 上各点的B 可能改变

C .环路L 内的∑I 不变,L 上各点的B 一定不变

D .环路L 内的∑I 不变,L 上各点的B 可能改变

20、一边长为a 的单匝正方形线圈置于磁感应强度为B 的均匀磁场中,B 的方向水平向右。

线圈绕竖直轴O O '以匀角速度ω转动。设0=t 时,线圈的正法线方向(单位矢量为n )

垂直纸面向外(如图)则感应电动势量值为( )

A .t

B a ωsin 2

B .t B a ωcos 2

C .t B a ωωsin 2

D .t B a ωωcos 2

21、光线从介质2(折射率2n )入射到介质2与介质1(折射率1n )的界面上,则计算布儒

斯特角的公式是(

A .120/sin n n i =

B .210/sin n n i =

C .120/tg n n i =

D .210/tg n n i =

22.光的单缝衍射可用半波带法分析,其相邻两个半波带上的对应点发出的光到观察屏上某

点的光程差为( ) A .四分之一波长 B .三分之一波长 C .一个波长

D .二分之一波长

23、能观察到康普顿效应的过程是(

A .电子入射到单晶上发生的过程

B .X 射线入射到石墨上发生的过程

C .可见光照射到金属表面上发生的过程

D .α粒子射入金属中发生的过程

二、填空题

1、磁矩为m P 的平面载流线圈放在磁感应强度为B 的均匀磁场中,m P 的方向与B 的方向成

θ角,则磁场对该平面载流线圈作用的力距M 的大小为 。

2、长为l 的直导体棒在磁感应强度为B 的均匀磁场中以速度v 作切割磁感应线的运动,作用在导体棒中单位电荷上的非静电力K E = ,在导体棒中产生的感应电动势ε= 。

3、在双缝干涉实验中,形成第三组明纹的两束光(波长为λ)的相位差为 ,

光程差为 。

4、长直螺线管的长度为l 、截面积为S 、线圈匝数为N ,管内充满磁导率为μ的均匀磁介

质。当线圈通以电流I 时,管内磁感应强度的大小为 ,管内储存的磁场能量为 。

5、一束自然光以起偏角0i 入射到玻璃片堆上,若玻璃片堆中的玻璃片足够多,则透射光近

似为 偏振光,其振动方向 入射面。

6、当磁场中某处的电流元l I d 的方向与该处的磁感应强度B 的方向成θ角时,该电流元所

受到的磁场力的大小为 、方向垂直于 平面。

7、相对磁导率1>r μ,且与1相差不大的磁介制称为 ;1

大的磁介质称为 。

8、如图,入射光垂直照射到偏振片P 上,入射光可能是自然光、线偏振光或部分偏振光。

以入射光传播方向为轴转动偏振片一周,观察出射光的光强I 。若I 有变化但最小不为零,则入射光为 光;若I 不变,则入射光为 光。

9、波长在λ至()0>??+λλλ范围内的复色平行光垂直照射到一光栅上,如要求光栅的二级

光谱不重叠,则λ

?最大为。

10、在光电效应实验中,电子吸收一个光子所获得的能量与该光子的成正比。

11、如图,一无限长直导线通有电流I,另有一与该导线共面并

垂直的金属棒AB,以速度v平行于长直导线作匀速运动,则

棒上电势高的一端是端。

12、一矩形载流线框与一无限长直载流导线共面,它的一对边与长直导线平行,电流流向如

图所示,则线框所受的合力指向。

13、静电场是由电荷激发的,而感生电场是由激发的。

14、一面积为S的单匝平面线圈,在磁感应强度为B的均匀磁场中所通过的磁通量的最大

值为。若线圈载有电流I,它在上述场中所受到的磁力矩的最大值为。

15、如图装置,A为一柱面状平凹透镜,B为一平玻璃,用波长为λ的单色光自上方垂直入

射,观察空气膜的反射光的等厚干涉条纹。空气膜的最大厚度为λ3,可观察到的全部

明条纹数是条。

三、计算

1、三块偏振片叠在一起,第二块与第一块的偏振化方向间的夹角为45°,第三块和第二块

的偏振化方向间的夹角也为45°。光强为0I 的自然光垂直照射到第一块偏振片上。 求:(1)通过每一偏振片后的光强;

(2)通过第三块偏振片后,光矢量的振动方向。

2、真空中有一个半径为R 、带电量为Q 的均均带电球体。 求:(1)球体内、外电场强度和电势分布; (2)球体内的静电场能。

3、真空中一宽为a 的无限长薄金属板,通有图示方向的电流I ,且电流沿宽度方向均匀分

布。求薄板所在平面内、距板一边为a 的P 点处磁感应强度的大小和方向(选取坐标如图)。

4.一面积为S 1的单匝圆形小线圈,放在另一面积为S 2的单匝圆形大线圈的圆心处 (S 2 S 1),两线圈在同一平面内。在小线圈中通以随时间变化的电流I =I 0e -kt (I 0、k 均为正的常量)。

求:(1)这两个线圈的互感系数; (2)大线圈中互感电动势的大小。

5、在每厘米有5000条刻痕的透射光栅第四级光谱中,可观察到的最长的波长应 小于多少纳米?设光线是正入射。

6、真空中两个半径都为R 的共轴圆环,相距为l 。两圆环均匀带电,电荷线密度分别是+λ

和-λ。取两环的由线为x 轴,坐标原点O 离两环中心的距离均匀为2

l

,如图。求x 轴

上任一点的电势。(设无穷远处为电势零点)

7、真空中两根无限长平行直导线载有大小相等、方向相反的电流I。电流随时间变化,

d I

=,k为常量。一单匝矩形线圈位于导线平面内,且线圈的一边与导线平行(如图),k

dt

图中a,l均为已知量,计算线圈内感应

电动势的大小。

8、如图所示,电荷q均匀分布在长为b的细杆上,杆以恒定的角速度ω绕O点转动,O点在杆的延长线上,与杆的一端距离为

a。求O点处磁感应强度B的大小。

9、用两种不同波长1λ和2λ的光垂下照射到观察牛顿环的装置上,透镜的曲率半径为R (如图),观察空气膜反射光的干涉条纹。若对应1λ的第k 级暗环和对应2λ的第k +1级暗环刚好重合,求此暗环的半径r (用1λ、2λ和R 表示)。

10、真空中有一带电量为Q 、半径为R 的半圆细环,如图所示。设无穷远处电势为零。(1)

求O 点处的电势;(2) 若将一带电量为q 的点电荷从无穷远处移到圆心O 点,求电场力所作的功。

11、球形电容器由两个同心的薄导体球壳组成(球壳厚度忽略不计), 已知内、外两球壳的半径分别为1R 和2R ,两球壳间为真空。求此电容器的电容。

题10图 题11图

12、如图所示,在真空中一通有稳恒电流I的无限长细直导线附近有一直导体杆AC,二者

在同一平面内且互相垂直,AC长为A

b,端距直导线的距离为a。当AC沿平行于长直导线的方向以速率v平移时,求:

(1)位于杆的中点处的单位正电荷所受非静电力的大小和方向;

(2)杆中动生电动势的大小和方向

13、如图,导体棒ab以匀速v在平行的导体轨道上向右滑动,导体轨道间的距离为l,均匀

磁场的方向垂直于回路abcda所在的平面,磁感应强度B的大小随时间成正比增加,即kt

=

t时,导体棒B=(k是正的常量)。求任意时刻回路中感应电动势的大小(设0

ab与边重合)。

dc

14、一平面透射光栅,每厘米上有6000条刻痕。光线垂直入射在光栅上。

(1)若某波长的一级亮条纹的衍射角为?0.

20,求此波长;

(2)求此波长的二级亮条纹的衍射角(可用反三角函数表示)。

()

20

sin=

0.

=

?

.0

?

,

.0

940

0.

20

cos

342

大学物理学 习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2)平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3)瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不 变? (5) r ?v 和r ?v 有区别吗?v ?v 和v ?v 有区别吗?0dv dt =v 和0d v dt =v 各代表什么运动? (6) 设质点的运动方程为:()x x t = ,()y y t =,在计算质点的速度和加速度时,有人先求出 r = dr v dt =及22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v =及a =你认为两种方法哪一种正确?两者区别何在? (7)如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性 的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速 度也一定为零.”这种说法正确吗? (9)任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10)质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11)一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。 解:

第九章 静电场 (Electrostatic Field) 二、计算题 9.7 电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零? 解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得 ()()()() 02222 0000(2)(2)??0041414141q q q q q q i i x x x x εεεε?-?-+=?+=π-π+π-π+ 即:2 610(3x x x m -+=?=±。因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得 () 223+=x m 9.8 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如题图9.4所示.试求圆心O 处的电场强度. 解:把所有电荷都当作正电荷处理. 在θ 处取微小电荷 d q = λd l = 2Q d θ / π 它在O 处产生场强 θεεd 24d d 2 0220R Q R q E π=π= 按θ 角变化,将d E 分解成二个分量: θθεθd sin 2sin d d 2 02R Q E E x π= = θθεθd cos 2cos d d 2 02R Q E E y π-=-= 对各分量分别积分,积分时考虑到一半是负电荷 ?? ? ???-π=??π ππθθθθε2/2/0202d sin d sin 2R Q E x =0 2022/2/0202d cos d cos 2R Q R Q E y εθθθθεπ πππ-=?? ????-π-=?? 所以

第一章质点运动学 1、( 习题: 一质点在 xOy 平面内运动,运动函数为 x = 2t, y = 4 t 2 8 。( 1)求质点的轨道方程; ( 2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。 解:( 1)由 x=2t 得, y=4t 2 -8 ( 2)质点的位置 : r r 由 v d r / dt 则速度: r r 由 a d v / d t 则加速度: 则当 t=1s 时,有 r r 可得: y=x 2-8 r 即轨道曲线 r r (4t 2 r 2ti 8) j r r r v 2i 8tj r r a 8 j r r r r r r r 2i 4 j , v 2i 8 j , a 8 j 当 t=2s 时,有 r r r r r r r r r 4i 8 j , v 2i 16j , a 8 j 2、(习题): 质点沿 x 在轴正向运动,加速度 a kv , k 为常数.设从原点出发时速度为 v 0 ,求运动方程 x x(t) . 解: dv kv v 1 t kdt v v 0 e kt dt dv v 0 v dx v 0e k t x dx t kt dt x v 0 (1 e kt ) dt v 0 e k 3、一质点沿 x 轴运动,其加速度为 a 4 t (SI) ,已知 t 0 时,质点位于 x 10 m 处,初速度 v 0 .试求其位置和时间的关系式. 解: a d v /d t 4 t d v 4 t d t v t 4t d t v 2 t 2 dv d x 2 x t 2 3 2 x t d t x 2 t v /d t t /3+10 (SI) x 0 4、一质量为 m 的小球在高度 h 处以初速度 v 0 水平抛出,求: ( 1)小球的运动方程; ( 2)小球在落地之前的轨迹方程; v v ( 3)落地前瞬时小球的 dr , dv , dv . dt dt dt 解:( 1) x v 0 t 式( 1) y 1 gt 2 式( 2) v v 1 2 v h r (t ) v 0t i (h - gt ) j 2 2 ( 2)联立式( 1)、式( 2)得 y h 2 gx 2 2v 0 v v v v v v ( 3) dr 2h dr v 0i - gt j 而落地所用时间t 所以 v 0i - 2gh j dt g dt v v dv g 2 t g 2gh dv v 2 2 2 ( gt ) 2 dt g j v x v y v 0 dt 2 2 1 2 ( gt ) ] 2 2gh) [v 0 ( v 0 1 2

习题及解答(全) 习题一 1-1 |r ?|与r ?有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试 举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即 r ?12r r -=,12r r r ??-=?; (2)t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1-1图所示. 题1-1图 (3)t d d v 表示加速度的模,即 t v a d d ??= ,t v d d 是加速度a 在切向上的分量. ∵有ττ??(v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ???+= 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ??Θ与 的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求 出r =22y x +,然后根据v =t r d d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度 的分量,再合成求得结果,即 v =2 2 d d d d ??? ??+??? ??t y t x 及a = 2 22222d d d d ? ??? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ? ??+=,

实验一霍尔效应及其应用 【预习思考题】 1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。 霍尔系数,载流子浓度,电导率,迁移率。 2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型? 以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。 3.本实验为什么要用3个换向开关? 为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电 流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。总之,一共需要3个换向开关。 【分析讨论题】 1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行? 若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。 2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源? 误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。 实验二声速的测量 【预习思考题】 1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定? 答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。由数显表头读出每一个电压最大值时的位置,即对应的波节位置。因此在系统处于共振的条件下进行声速测定,可以容易和准确地测定波节的位置,提高测量的准确度。 2. 压电陶瓷超声换能器是怎样实现机械信号和电信号之间的相互转换的? 答:压电陶瓷超声换能器的重要组成部分是压电陶瓷环。压电陶瓷环由多晶结构的压电材料制成。这种材料在受到机械应力,发生机械形变时,会发生极化,同时在极化方向产生电场,这种特性称为压电效应。反之,如果在压电材料上加交

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

? -q O A B C D 关于点电荷以下说法正确的是 D (A) 点电荷是电量极小的电荷; (B) 点电荷是体积极小的电荷; (C) 点电荷是体积和电量都极小的电荷; (D) 带电体的线度与其它有关长度相比可忽略不计。 关于点电荷电场强度的计算公式E = q r / (4 0 r 3),以下说法正确的是 B (A) r →0时, E →∞; (B) r →0时, q 不能作为点电荷,公式不适用; (C) r →0时, q 仍是点电荷,但公式无意义; (D) r →0时, q 已成为球形电荷, 应用球对称电荷分布来计算电场. 如果对某一闭合曲面的电通量为 S E d ??S =0,以下说法正确的是 A (A) S 面内电荷的代数和为零; (B) S 面内的电荷必定为零; (C) 空间电荷的代数和为零; (D) S 面上的E 必定为零。 已知一高斯面所包围的空间内电荷代数和 ∑q =0 ,则可肯定: C (A). 高斯面上各点场强均为零. (B). 穿过高斯面上每一面元的电场强度通量均为零. (C). 穿过整个高斯面的电场强度通量为零. (D). 以上说法都不对. 如图,在点电荷+q 的电场中,若取图中P 点处为 电势零点,则M 点的电势为 D (A) q /(4πε0a ) (B) ?q /(4πε0a ) (C) q /(8πε0a ) (D) ?q /(8πε0a ) 对于某一回路l ,积分l B d ?? l 等于零,则可以断定 D (A) 回路l 内一定有电流; (B) 回路l 内一定无电流; (C) 回路l 内可能有电流; (D) 回路l 内可能有电流,但代数和为零。 如图,一电量为 q 的点电荷位于圆心O 处,A 、B 、C 、D 为同一圆周上的 四点,现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 A (A) 从A 到各点,电场力做功相等; (B) 从A 到B ,电场力做功最大; +q ? a a P · · M

大学物理学 习 题 解 答 陕西师范大学物理学与信息技术学院 基础物理教学组 2006-5-8

说明: 该习题解答与范中和主编的《大学物理学》各章习题完全对应。每题基本上只给出了一种解答,可作为教师备课时的参考。 题解完成后尚未核对,难免有错误和疏漏之处。望使用者谅解。 编者 2006-5-8

第2章 运动学 2-1 一质点作直线运动,其运动方程为2 22t t x -+= , x 以m 计,t 以s 计。试求:(1)质点从t = 0到t = 3 s 时间内的位移;(2)质点在t = 0到t = 3 s 时间内所通过的路程 解 (1)t = 0时,x 0 = 2 ;t =3时,x 3 = -1;所以, m 3)0()3(-==-==t x t x x ? (2)本题需注意在题设时间内运动方向发生了变化。对x 求极值,并令 022d d =-=t t x 可得t = 1s ,即质点在t = 0到t = 1s 内沿x 正向运动,然后反向运动。 分段计算 m 1011=-===t t x x x ?, m 4)1()3(2-==-==t x t x x ? 路程为 m 521=+= x x s ?? 2-2 已知质点沿x 轴作直线运动,其运动方程为3 2 262t t x -+=。试求:(1)质点在最初4s 内位移;(2)质点在最初4s 时间内所通过的路程 解 (1)t = 0时,x 0 = 2 ;t = 4时,x 4 = -30 所以,质点在最初4s 内位移的大小 m 3204-=-=?x x x (2)由 0612d d 2=-=t t t x 可求得在运动中质点改变运动方向的时刻为 t 1 = 2 s , t 2 = 0 (舍去) 则 m 0.8021=-=?x x x ,m 40242-=-=?x x x 所以,质点在最初4 s 时间间隔内的路程为 m 4821=?+?=x x s 2-3 在星际空间飞行的一枚火箭,当它以恒定速率燃烧它的燃料时,其运动方程可表示为 )1ln(1bt t b u ut x -?? ? ??-+=,其中m/s 100.33?=u 是喷出气流相对于火箭体的喷射速度, s /105.73 -?=b 是与燃烧速率成正比的一个常量。试求:(1)t = 0时刻,此火箭的速度和加速度;(2)t = 120 s 时,此火箭的速度和加速度 解 )1l n (d d bt u t x v --== ;bt ub t v a -==1d d (1)t = 0时, v = 0 ,23 3s .m 5.221 105.7103--=???= a (2)t = 120s 时, )120105.71ln(10333 ??-?-=-v 1 3 s .m 91.6-?= 23 3 3s .m 225120 105.71105.7103---=??-???=a

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

库仑定律 7-1 把总电荷电量为Q 的同一种电荷分成两部分,一部分均匀分布在地球上,另一部分均匀分布在月球上, 使它们之间的库仑力正好抵消万有引力,已知地球的质量M = 5.98l024 kg ,月球的质量m =7.34l022kg 。(1)求 Q 的最小值;(2)如果电荷分配与质量成正比,求Q 的值。 解:(1)设Q 分成q 1、q 2两部分,根据题意有 2 221r Mm G r q q k =,其中041πε=k 即 2221q k q GMm q q Q += +=。求极值,令0'=Q ,得 0122=-k q GMm C 1069.5132?== ∴k GMm q ,C 1069.51321?==k q GMm q ,C 1014.11421?=+=q q Q (2)21q m q M =Θ ,k GMm q q =21 k GMm m q mq Mq ==∴2122 解得C 1032.6122 2?==k Gm q , C 1015.51421?==m Mq q ,C 1021.51421?=+=∴q q Q 7-2 三个电量为 –q 的点电荷各放在边长为 l 的等边三角形的三个顶点上,电荷Q (Q >0)放在三角形 的重心上。为使每个负电荷受力为零,Q 值应为多大? 解:Q 到顶点的距离为 l r 33= ,Q 与-q 的相互吸引力为 20141r qQ F πε=, 两个-q 间的相互排斥力为 2 2 0241l q F πε= 据题意有 10 230cos 2F F =,即 2 022041300cos 41 2r qQ l q πεπε=?,解得:q Q 33= 电场强度 7-3 如图7-3所示,有一长l 的带电细杆。(1)电荷均匀分布,线密度为+,则杆上距原点x 处的线元 d x 对P 点的点电荷q 0 的电场力为何?q 0受的总电场力为何?(2)若电荷线密度=kx ,k 为正常数,求P 点的电场强度。 解:(1)线元d x 所带电量为x q d d λ=,它对q 0的电场力为 200200)(d 41 )(d 41 d x a l x q x a l q q F -+=-+= λπεπε q 0受的总电场力 )(4)(d 400020 0a l a l q x a l x q F l +=-+= ?πελπελ 00>q 时,其方向水平向右;00

单元一 简谐振动 一、 选择、填空题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? 【 C 】 (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π3 4 ,则t=0时,质点的位置在: 【 D 】 (A) 过A 21x = 处,向负方向运动; (B) 过A 21 x =处,向正方向运动; (C) 过A 21x -=处,向负方向运动;(D) 过A 2 1 x -=处,向正方向运动。 3. 将单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止释放任其振动,从放手开始计时,若用余弦函数表示运动方程,则该单摆的初相为: 【 B 】 (A) θ; (B) 0; (C)π/2; (D) -θ 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: 【 B 】 (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: 【 C 】 (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; ) 4(填空选择) 5(填空选择

大学物理简明教程(上册)习题选解 第1章 质点运动学 1-1 一质点在平面上运动,其坐标由下式给出)m 0.40.3(2 t t x -=,m )0.6(3 2 t t y +-=。求:(1)在s 0.3=t 时质点的位置矢量; (2)从0=t 到s 0.3=t 时质点的位移;(3)前3s 内质点的平均速度;(4)在s 0.3=t 时质点的瞬时速度; (5)前3s 内质点的平均加速度;(6)在s 0.3=t 时质点的瞬时加速度。 解:(1)m )0.6()0.40.3(322j i r t t t t +-+-= 将s 0.3=t 代入,即可得到 )m (273j i r +-= (2)03r r r -=?,代入数据即可。 (3)注意:0 30 3--=r r v =)m/s 99(j i +- (4)dt d r =v =)m/s 921(j i +-。 (5)注意:0 30 3--=v v a =2)m/s 38(j i +- (6)dt d v a ==2)m/s 68(j -i -,代入数据而得。 1-2 某物体的速度为)25125(0j i +=v m/s ,3.0s 以后它的速度为)5100(j 7-i =v m/s 。 在这段时间内它的平均加速度是多少? 解:0 30 3--= v v a =2)m/s 3.3333.8(j i +- 1-3 质点的运动方程为) 4(2k j i r t t ++=m 。(1)写出其速度作为时间的函数;(2)加速度作为时间的函数; (3)质点的轨道参数方程。 解:(1)dt d r =v =)m/s 8(k j +t (2)dt d v a = =2m/s 8j ; (3)1=x ;2 4z y =。 1-4 质点的运动方程为t x 2=,22t y -=(所有物理量均采用国际单位制)。求:(1)质点的运动轨迹;(2)从0=t 到2=t s 时间间隔内质点的位移r ?及位矢的径向增量。 解:(1)由t x 2=,得2 x t = ,代入22t y -=,得质点的运动轨道方程为 225.00.2x y -=; (2)位移 02r r r -=?=)m (4j i - 位矢的径向增量 02r r r -=?=2.47m 。 (3)删除。 1-6 一质点做平面运动,已知其运动学方程为t πcos 3=x ,t πsin =y 。试求: (1)运动方程的矢量表示式;(2)运动轨道方程;(3)质点的速度与加速度。 解:(1)j i r t t πsin πcos 3+=; (2)19 2 =+y x (3)j i t t πcos πsin 3π+-=v ; )πsin πcos 3(π2j i t t a +-= *1-6 质点A 以恒 定的速率m/s 0.3=v 沿 直线m 0.30=y 朝x +方 向运动。在质点A 通过y 轴的瞬间,质点B 以恒 定的加速度从坐标原点 出发,已知加速度2m/s 400.a =,其初速度为零。试求:欲使这两个质点相遇,a 与y 轴的夹角θ应为多大? 解:提示:两质点相遇时有,B A x x =,B A y y =。因此只要求出质点A 、B 的运动学方程即可。或根据 222)2 1 (at y =+2(vt)可解得: 60=θ。 1-77 质点做半径为R 的圆周运动,运动方程为 2021 bt t s -=v ,其中,s 为弧长,0v 为初速度,b 为正 的常数。求:(1)任意时刻质点的法向加速度、切向加速度和总加速度;(2)当t 为何值时,质点的总加速度在数值上等于b ?这时质点已沿圆周运行了多少圈? 题1-6图

习题5 题5-2图 题5-2图 5-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题5--2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题5-2图示 ?? ? ?? === 220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθtan 4sin 20mg l q = 5-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度9 5.010C m λ-=?的正电荷.试求:(1)在导线的延长线上与导线B 端相距1 5.0a cm =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强. 解: 如题5-4图所示 题5-4图 (1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为 2 0) (d π41d x a x E P -= λε 2 22 ) (d π4d x a x E E l l P P -= =? ?-ελ

]2 12 1[π40 l a l a + --= ελ ) 4(π220l a l -= ελ 用15=l cm ,9 10 0.5-?=λ1m C -?, 5.12=a cm 代入得 21074.6?=P E 1C N -? 方向水平向右 (2)同理 22 20d d π41d += x x E Q λε 方向如题5-4图所示 由于对称性? =l Qx E 0d ,即Q E ? 只有y 分量, ∵ 22 2 222 20d d d d π41d ++= x x x E Qy λε 2 2π4d d ελ ?==l Qy Qy E E ? -+22 2 3 222) d (d l l x x 22 2 0d 4π2+= l l ελ 以9 10 0.5-?=λ1cm C -?, 15=l cm ,5d 2=cm 代入得 21096.14?==Qy Q E E 1C N -?,方向沿y 轴正向 5-7 半径为1R 和2R (21R R >)的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1) 1r R <;(2) 12R r R <<;(3) 2r R >处各点的场强. 解: 高斯定理0 d ε∑?=?q S E s ?? 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =??? ? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

班级 学号 姓名 第1章 质点运动学 1-1 已知质点的运动方程为 36t t e e -=++r i j k 。(1)求:自t =0至t =1质点的位移。(2)求质点的轨迹方程。 解:(1) ()k j i 0r 63++= ()k j e i e 1r -1 63++= 质点的位移为()j e i e r ?? ? ??-+-=331? (2) 由运动方程有t x e =,t y -=e 3, 6=z 消t 得 轨迹方程为 3=xy 且6=z 1-2运动质点在某瞬时位于矢径()y x,r 的端点处,其速度的大小为 [ D ] (A)dt dr (B)dt d r (C)dt d r (D)2 2 ?? ? ??+??? ??dt dy dt dx 1-3如图所示,堤岸距离湖面的竖直高度为h ,有人用绳绕过岸边的定滑轮拉湖中的小船向岸边运动。设人以匀速率v 0收绳,绳不可伸长且湖水静止。求:小船在离岸边的距离为s 时,小船的速率为多大?(忽略滑轮及船的大小) 解:如图所示,在直角坐标系xOy 中,t 时刻船离岸边的距离为s x =,船的位置矢量可表示为 ()j i r h x -+= 船的速度为 i i r v v dt dx dt d === 其中 2 2 h r x -= 所以 () dt dr h r r h r dt d dt dx v 2222-= -==

因绳子的长度随时间变短,所以 0v dt dr -= 则 船的速度为i i v 022220 v s h s h r r v +-=--= 所以 船的速率为 02 2v s h s v += 1-4已知质点的运动方程为()()k j i r 5sin cos ++=ωt R ωt R (SI)。求:(1)质点在任意时刻的速度和加速度。(2)质点的轨迹方程。 解:(1)由速度的定义得 ()()j cos i sin ωt ωR ωt ωR dt r d v +-== 由加速度的定义得 ()()j sin cos 2 2 ωt R ωi t R ωdt v d a --==ω (2) 由运动方程有 ωt R x cos =,ωt R y sin =,5=z 消t 得 质点的轨迹方程为 222R y x =+且5=z 1-5 一质点在平面上运动,已知质点的运动方程为j i r 2235t t +=,则该质点所作运动为 [ B ] (A) 匀速直线运动 (B) 匀变速直线运动 (C) 抛体运动 (D) 一般的曲线运动 1-6 一质点沿Ox 轴运动,坐标与时间之间的关系为t t x 233-=(SI)。则质点在4s 末的瞬时速度为 142m·s -1 ,瞬时加速度为 72m·s -2 ;1s 末到4s 末的位移为 183m ,平均速度为 61m·s -1 ,平均加速度为 45m·s -2。 解题提示:瞬时速度计算dt dx v =,瞬时加速度计算22dt x d a =;位移为 ()()14x x x -=?,平均速度为()()1414--= x x v ,平均加速度为 ()()1 414--=v v a 1-7 已知质点沿Ox 轴作直线运动,其瞬时加速度的变化规律为

实验一:用三线摆测物体的转动惯量 1. 是否可以测摆动一次的时间作周期值?为什么? 答:不可以。因为一次测量随机误差较大,多次测量可减少随机误差。 2. 将一半径小于下圆盘半径的圆盘,放在下圆盘上,并使中心一致,讨论此时三线摆的周期和空载时的周期相比是增大、减小还是不一定?说明理由。 答:当两个圆盘的质量为均匀分布时,与空载时比较,摆动周期将会减小。因为此时若把两盘看成为一个半径等于原下盘的圆盘时,其转动惯量I0小于质量与此相等的同直径的圆盘,根据公式(3-1-5),摆动周期T0将会减小。 3. 三线摆在摆动中受空气阻尼,振幅越来越小,它的周期是否会变化?对测量结果影响大吗?为什么? 答:周期减小,对测量结果影响不大,因为本实验测量的时间比较短。 [实验二] 金属丝弹性模量的测量 1. 光杠杆有什么优点,怎样提高光杠杆测量的灵敏度? 答:优点是:可以测量微小长度变化量。提高放大倍数即适当地增大标尺距离D或适当地减小光杠杆前后脚的垂直距离b,可以提高灵敏度,因为光杠杆的放大倍数为2D/b。 2. 何谓视差,怎样判断与消除视差? 答:眼睛对着目镜上、下移动,若望远镜十字叉丝的水平线与标尺的刻度有相对位移,这种现象叫视差,细调调焦手轮可消除视差。 3. 为什么要用逐差法处理实验数据? 答:逐差法是实验数据处理的一种基本方法,实质就是充分利用实验所得的数据,减少随机误差,具有对数据取平均的效果。因为对有些实验数据,若简单的取各次测量的平均值,中间各测量值将全部消掉,只剩始末两个读数,实际等于单次测量。为了保持多次测量的优越性,一般对这种自变量等间隔变化的情况,常把数据分成两组,两组逐次求差再算这个差的平均值。 [实验三]

大学物理(上册)练习解答 练习1 在笛卡尔坐标系中描述质点的运动 1-1 (1)D ;(2)D ;(3)B ;(4)C 1-2 (1)8 m ;10 m ;(2)x = (y -3)2;(3)10 m/s 2,-15 m/s 2 1-3 解:(1)2192 x y =- (2)24t =-v i j 4=-a j (3)垂直时,则 0=g r v 2 2(192)(24)0t t t ??+--=??g i j i j 0t =s ,3s t =-(舍去) 1-4 解:设质点在x 处的速度为v , 62d d d d d d 2x t x x t a +=?== v v ()x x x d 62d 02 ??+=v v v ( ) 2 2 1 3 x x +=v 1-5 解: y t y y t a d d d d d d d d v v v v === 又-=a ky ,所以 -k =y v d v / d y d d ky y -=??v v 2211 22 ky C -=+v 已知=y y 0 ,=v v 0 则 20202121ky C --=v )(22 0202y y k -+=v v 1-6 证: 2d d d d d d d d v x v v t x x v t v K -==?= d v /v =-K d x ??-=x x K 0 d d 1 0v v v v , Kx -=0ln v v v =v 0e -Kx

练习2 在自然坐标系中描述质点的运动、相对运动 2-1 (1)C ;(2)A ;(3)B ;(4)D ;(5)E 2-2(1)g sin θ ,g cos θ ;(2)g /cos 0220θv ;(3)-c ,(b -ct )2/R ;(4)69.8 m/s ;(5) 3 3 1ct ,2ct ,c 2t 4/R 2-3 解:(1)物体的总加速度a 为 t n =+a a a ()2 2t t a R R t a a a a an t t t n t = ==α αot a R t t c = (2)αot R t a S t c 2 1212== 2-4解:质点的运动方程可写成 S = bt , 式中b 为待定常量。由此可求得 0d d d d d d 2 2=====t S t a b t S t v , v , ρ2b a n ==ρv 2 由此可知,质点作匀速率曲线运动,加速度就等于法向加速度。又由于质点自外向内运动, ρ 越来越小,而b 为常数,所以该质点加速度的大小是越来越大。 2-5 解: 设下标A 指飞机,F 指空气,E 指地面,由题可知: v FE =60 km/h 正西方向 v AF =180 km/h 方向未知 v AE 大小未知, 正北方向 所以 AE AF FE =+v v v AE v 、 AF v 、AE v 构成直角三角形,可得 170 km/h AE ==v ο4.19/tg 1 ==-AE FE v v θ 飞机应取向北偏东19.4?的航向。 练习3 牛顿运动定律 3-1 (1)C ;(2)D ;(3)D ;(4)B ;(5)B 3-2 (1)l/cos 2 θ;(2)2% 3-3 解:(1)先计算公路路面倾角θ 。 设计时轮胎不受路面左右方向的力,而法向力应在水平方向上.因而有 R m N /sin 21v =θ mg N =θcos 所以 西 a

大学物理学习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ?v 和r ?v 有区别吗?v ?v 和v ?v 有区别吗?0dv dt =v 和0d v dt =v 各代表什么运动? (6) 设质点的运动方程为:()x x t = ,()y y t =,在计算质点的速度和加速度时,有人先求出 r = dr v dt = 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 及 a = 你认为两种方法哪一种正确?两者区别何在? (7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性 的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度 也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。 解: (1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ?=-=-= 最初s 2内的平均速度为: 0(/)2 ave x v m s t ?= ==?

大学物理实验思考题参考答案 目录 一、转动惯量: 二、伏安法与补偿法 三、混沌思考题 四、半导体PN结 五、地磁场 六、牛顿环 七、麦克尔逊干涉仪 八、全息照相 九、光电效应 十、声速测量 十一、用电位差计校准毫安表 十二、落球法测量液体的黏度 十三、电子束偏转与电子比荷测量 十四、铁磁材料磁化特性研究 十五、光栅衍射 十六、电桥 十七、电位差计 十八、密立根油滴 十九、模拟示波器 二十、金属杨氏摸量 二十一、导热系数 二十二、分光计 二十三、集成霍尔传感器特性与简谐振动 一、转动惯量: 1、由于采用了气垫装置,这使得气垫摆摆轮在摆动过程中受到的空气粘滞阻尼力矩降低至最小程度,可以忽略不计。但如果考虑这种阻尼的存在,试问它对气垫摆的摆动(如频率等)有无影响?在摆轮摆动中,阻尼力矩是否保持不变? 答:如果考虑空气粘滞阻尼力矩的存在,气垫摆摆动时频率减小,振幅会变小。(或者说 对频率有影响,对振幅有影响) 在摆轮摆动中,阻尼力矩会越变越小。 2、为什么圆环的内、外径只需单次测量?实验中对转动惯量的测量精度影响最大的是哪些因素? 答:圆环的内、外径相对圆柱的直径大很多,使用相同的测量工具测量时,相对误差较小,

故只需单次测量即可。(对测量结果影响大小) 实验中对转动惯量测量影响最大的因素是周期的测量。(或者阻尼力矩的影响、摆轮是否正常、平稳的摆动、物体摆放位置是否合适、摆轮摆动的角度是否合适等) 3、试总结用气垫摆测量物体转动惯量的方法有什么基本特点? 答:原理清晰、结论简单、设计巧妙、测量方便、最大限度的减小了阻尼力矩。 二、伏安法与补偿法 1、利用补偿法测量电阻消除了伏安法的系统误差,还可能存在的误差包括:读数误差、 计算产生的误差、仪器误差、导线阻值的影响等或其他。 2、能利用电流补偿电路对电流表内接法进行改进: 三、混沌思考题 1、 有程序(各种语言皆可)、K值的取值范围、图 +5分 有程序没有K值范围和图 +2分 只有K值范围 +1分 有图和K值范围 +2分

相关文档
相关文档 最新文档