文档库 最新最全的文档下载
当前位置:文档库 › 高考文科数学考前培优练习立体几何解答题

高考文科数学考前培优练习立体几何解答题

高考文科数学考前培优练习立体几何解答题
高考文科数学考前培优练习立体几何解答题

5.3立体几何解答题

高考命题规律

1.高考必考考题.主要以多面体为载体,考查空间位置关系的判定与性质、求几何体的体积、面积、距离等.

2.解答题,12分,中等难度.

3.全国高考有4种命题角度,分布如下表.

命题角度1空间中平行、垂直关系的证明

高考真题体验·对方向

1.(2019天津·17)

如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCD,PA ⊥CD,CD=2,AD=3.

(1)设G,H分别为PB,AC的中点,求证:GH∥平面PAD;

(2)求证:PA⊥平面PCD;

(3)求直线AD与平面PAC所成角的正弦值.

BD,易知AC∩BD=H,BH=DH.又由BG=PG,故GH∥PD.又因为GH?平面PAD,PD?平面PAD,所以GH∥平面PAD.

PC的中点N,连接DN,依题意,得DN⊥PC,又因为平面PAC⊥平面PCD,平面PAC∩平面PCD=PC,所以DN⊥平面PAC,又PA?平面PAC,故DN⊥PA.又已知PA⊥CD,CD∩DN=D,所以PA ⊥平面PCD.

AN,由(2)中DN⊥平面PAC,可知∠DAN为直线AD与平面PAC所成的角.

因为△PCD为等边三角形,CD=2且N为PC的中点,所以DN=√3,又DN⊥AN,在Rt△AND中,sin

∠DAN=DN

AD =√3

3

.

所以,直线AD与平面PAC所成角的正弦值为√3

3

.

2.(2017山东·18)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.

(1)证明:A1O∥平面B1CD1;

(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.

取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.

又O1C?平面B1CD1,A1O?平面B1CD1,

所以A1O∥平面B1CD1.

(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,

又A1E⊥平面ABCD,BD?平面ABCD.

所以A1E⊥BD,因为B1D1∥BD,

所以EM⊥B1D1,A1E⊥B1D1.

又A1E,EM?平面A1EM,A1E∩EM=E,

所以B1D1⊥平面A1EM,

又B1D1?平面B1CD1,

所以平面A1EM⊥平面B1CD1.

典题演练提能·刷高分

1.

如图,在三棱柱ABC-A1B1C1中,AB=AC,点E,F分别在棱BB1,CC1上(均异于端点),且∠ABE=∠ACF,AE ⊥BB1,AF⊥CC1.

求证:(1)平面AEF⊥平面BB1C1C;

(2)BC∥平面AEF.

在三棱柱ABC-A1B1C1中,BB1∥CC1.

∵AF⊥CC1,∴AF⊥BB1.

又∵AE⊥BB1,AE∩AF=A,AE,AF?平面AEF,

∴BB1⊥平面AEF,又∵BB1?平面BB1C1C,

∴平面AEF⊥平面BB1C1C.

(2)∵AE⊥BB1,AF⊥CC1,∠ABE=∠ACF,AB=AC,∴Rt△AEB≌Rt△AFC,

∴BE=CF,又由(1)知,BE∥CF.

∴四边形BEFC是平行四边形,从而BC∥EF.

又∵BC?平面AEF,EF?平面AEF,

∴BC∥平面AEF.

2.

(2019四川成都一模)如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠ABC=60°,PA⊥平面ABCD,点M是棱PC的中点.

(1)证明:PA ∥平面BMD ;

(2)当PA=√3时,求三棱锥M-PAD 的体积.

如图,连接AC 交BD 于点O ,连接MO.

∵M ,O 分别为PC ,AC 的中点,∴PA ∥MO. ∵PA ?平面BMD ,MO ?平面BMD , ∴PA ∥平面BMD.

,取线段BC 的中点H ,连接AH.

∵四边形ABCD 是菱形,∠ABC=60°,

∴AH ⊥AD.∵PA ⊥平面ABCD ,∴AH ⊥PA.

又PA ∩AD=A ,所以AH ⊥平面PAD ,∴点H 到平面PAD 的距离即为AH 的长度.又BC ∥AD ,∴点C 到平面PAD 的距离即为AH 的长度.

∵M 为PC 的中点,∴点M 到平面PAD 的距离即为1

2AH 的长度.

∴V M-PAD =1

3S △PAD ·1

2AH=1

2×1

3×1

2×√3×2×√3=1

2

.

3.

如图,在直角△ABC 中,∠ACB=90°,BC=2AC=4,D ,E 分别是AB ,BC 边的中点,沿DE 将△BDE 折起至△FDE ,且∠CEF=60°. (1)求四棱锥F-ACED 的体积; (2)求证:平面ADF ⊥平面ACF.

D ,

E 分别是AB ,BC 边的中点,∴DE 平行且等于AC 的一半,DE ⊥BC ,DE=1.

依题意,DE ⊥EF ,BE=EF=2.

于是有DE ⊥BC DE ⊥EF EF?EC =E EF ,EC ?平面CEF

}?DE ⊥平面CEF.

∵DE ⊥平面CEF ,∴平面ACED ⊥平面CEF.

过F 点作FM ⊥EC 于点M ,

则平面ACED ⊥平面CEF ,且交线为CE FM ⊥EC FM ?平面CEF

}?FM ⊥平面ACED ,∵∠CEF=60°,∴FM=√3, ∴梯形ACED 的面积S=1

2(

AC+ED

)×EC=1

2×(1+2)×2=3,

∴四棱锥F-ACED 的体积V=1

3Sh=1

3×3×√3=√3.

,设线段AF ,CF 的中点分别为N ,Q ,连接DN ,NQ ,EQ ,则NQ 12

AC ,

于是DE 1

2

AC

NQ 1

2

AC

}?DE NQ ?DEQN 是平行四边形?DN ∥EQ. 又EC =EF ∠CEF =60°

}?△CEF 是等边三角形. ∴EQ ⊥FC.

由(1)知DE ⊥平面CEF ,EQ ?平面CEF.

∴DE ⊥EQ ,∴AC ⊥EQ.

于是AC ⊥EQ

FC ⊥EQ

AC?FC =C AC ,FC ?平面ACF }

?EQ ⊥平面ACF.

∴DN ⊥平面ACF ,又∵DN ?平面ADF , ∴平面ADF ⊥平面ACF.

4.如图,在四棱锥P-ABCD 中,平面PAB ⊥平面ABCD ,AD ∥BC ,PA ⊥AB ,CD ⊥AD ,BC=CD=1

2AD ,E 为AD 的中点.

(1)求证:PA ⊥CD.

(2)求证:平面PBD ⊥平面PAB.

(3)在平面PAB 内是否存在M ,使得直线CM ∥平面PBE ,请说明理由.

平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PA⊥AB,

∴PA⊥平面ABCD,

又CD?平面ABCD,

∴PA⊥CD.

,BC∥ED,且BC=ED,

∴四边形BCDE是平行四边形,

又CD⊥AD,BC=CD,

∴四边形BCDE是正方形,

连接CE,则BD⊥CE.

又BC∥AE,BC=AE,

∴四边形ABCE是平行四边形,

∴CE∥AB,∴BD⊥AB,

由(1)知PA⊥平面ABCD,BD?平面ABCD,

∴PA⊥BD,又PA∩AB=A,∴BD⊥平面PAB,

∵BD?平面PBD,∴平面PBD⊥平面PAB.

M为直线AB,CD的交点时,有CM∥平面PBE.

理由如下:在四边形ABCD中,AD∥BC,BC=1

AD,∴四边形ABCD为梯形,

2

∴AB,CD必定相交,设交点为M.由(2)知四边形BCDE是正方形,

∴CM∥BE,又CM?平面PBE,BE?平面PBE,

∴CM∥平面PBE.

故平面PAB内存在M,使得直线CM∥平面PBE,且M为直线AB,CD的交点.

命题角度2几何体的体积与距离问题

高考真题体验·对方向

1.

(2019全国Ⅱ·17)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.

(1)证明:BE⊥平面EB1C1;

(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.

B1C1⊥平面ABB1A1,BE?平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,所以BE⊥平面EB1C1.

(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=45°,故

AE=AB=3,AA1=2AE=6.

作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.

所以,四棱锥E-BB1C1C的体积V=1

×3×6×3=18.

3

2.

(2019全国Ⅰ·19)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.

(1)证明:MN∥平面C1DE;

(2)求点C到平面C1DE的距离.

B1C,ME.

B1C.

因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=1

2

又因为N为A1D的中点,所以ND=1A1D.

由题设知A1B1 DC,可得B1C A1D,故ME ND,因此四边形MNDE为平行四边形,MN∥ED.

又MN?平面C1DE,所以MN∥平面C1DE.

C作C1E的垂线,垂足为H.

由已知可得DE⊥BC,DE⊥C1C,所以DE⊥平面C1CE,故DE⊥CH.

从而CH⊥平面C1DE,故CH的长即为C到平面C1DE的距离.

由已知可得CE=1,C1C=4,所以C1E=√17,故CH=4√17.

.

从而点C到平面C1DE的距离为4√17

17

3.

(2018全国Ⅱ·19)如图,在三棱锥P-ABC中,AB=BC=2√2,PA=PB=PC=AC=4,O为AC的中点.

(1)证明:PO⊥平面ABC;

(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.

(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=2√3.连接OB,因为AB=BC=√2

AC,所以

2

△ABC为等腰直角三角形,且OB⊥AC,OB=1

AC=2.

2

由OP2+OB2=PB2知,OP⊥OB.

由OP⊥OB,OP⊥AC知PO⊥平面ABC.

(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.

由题设可知OC=12AC=2,CM=23BC=4√2

3,∠ACB=45°.

所以OM=2√5

3,CH=OC ·MC ·sin∠ACB

OM

=4√5

5.

所以点C 到平面POM 的距离为4√5

. 4.

(2017全国Ⅱ·18)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC=1

2

AD ,∠BAD=∠ABC=90°.

(1)证明:直线BC ∥平面PAD ;

(2)若△PCD 的面积为2√7,求四棱锥P-ABCD 的体积.

ABCD 内,因为∠BAD=∠ABC=90°,所以BC ∥AD.又BC ?平面PAD ,AD ?平面PAD ,故BC ∥平面PAD.

AD 的中点M ,连接PM ,CM.

由AB=BC=1

2AD 及BC ∥AD ,∠ABC=90°得四边形ABCM 为正方形,则CM ⊥AD. 因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD=AD , 所以PM ⊥AD ,PM ⊥底面ABCD.

因为CM?底面ABCD,所以PM⊥CM.

设BC=x,则CM=x,CD=√2x,PM=√3x,PC=PD=2x.取CD的中点N,连接PN,则PN⊥CD,

所以PN=√14x.

因为△PCD的面积为2√7,

所以1

2×√2x×√14

2

x=2√7,

解得x=-2(舍去),x=2.

于是AB=BC=2,AD=4,PM=2√3.

所以四棱锥P-ABCD的体积V=1

3×2×(2+4)

2

×2√3=4√3.

5.(2017全国Ⅲ·19)如图,四面体ABCD中,△ABC是正三角形,AD=CD.

(1)证明:AC⊥BD;

(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE 与四面体ACDE的体积比.

AC的中点O,连接DO,BO.

因为AD=CD,

所以AC⊥DO.

又由于△ABC是正三角形,所以AC⊥BO.

从而AC⊥平面DOB,故AC⊥BD.

EO.

由(1)及题设知∠ADC=90°,所以DO=AO.

在Rt△AOB中,BO2+AO2=AB2.

又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,故∠DOB=90°.

由题设知△AEC为直角三角形,所以EO=1AC.

又△ABC是正三角形,且AB=BD,所以EO=1

BD.

2

,四面体ABCE的体积故E为BD的中点,从而E到平面ABC的距离为D到平面ABC的距离的1

2

,即四面体ABCE与四面体ACDE的体积之比为1∶1.

为四面体ABCD的体积的1

2

典题演练提能·刷高分

1.

(2019河北唐山三模)如图,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,∠ACB=90°,AC=BC=4,M,N分别为AB,CC1的中点.

(1)求证:CM∥平面AB1N;

(2)若AB1与平面B1C1CB所成的角为30°,求点M到平面AB1N的距离.

AB1的中点O,连接OM,ON(图略),在△ABB1中,O,M分别是AB1,AB的中点,则OM∥BB1,且OM=1

BB1.

2

又N为CC1的中点,CC1 BB1,

所以NC∥BB1,NC=1

2

BB1,

从而有OM∥NC且OM=NC,

所以四边形OMCN为平行四边形,

所以CM∥NO.

又因为CM?平面AB1N,NO?平面AB1N,

所以CM∥平面AB1N.

CC1⊥平面ABC,得CC1⊥AC.

又因为AC⊥BC,CC1∩BC=C,

所以AC⊥平面B1C1CB.

连接CB1(图略),所以∠AB1C即为AB1与平面B1C1CB所成的角,从而有∠AB1C=30°, 所以B1C=4√3,B1B=4√2.

由(1)可知CM∥平面AB1N,

所以点C到平面AB1N的距离等于点M到平面AB1N的距离.

在△AB1N中,AN=NB1=2√6,AB1=8,S△AB

1N

=8√2,

在△ACN中,AC=4,CN=2√2,S△ACN=4√2,

设点C到平面AB1N的距离为d,

由V B

1-ACN =V C-AB

1N

得,1

3

S△AB

1N

·d=1

3

S△ACN·BC,

所以d=2,即点M到平面AB1N的距离为2. 2.

如图,直三棱柱ABC-A1B1C1中,CC1=4,AB=BC=2,AC=2√2,点M是棱AA1上不同于A,A1的动点.

(1)证明:BC⊥B1M;

(2)若∠CMB1=90°,判断点M的位置并求出此时平面MB1C把此棱柱分成的两部分几何体的体积之比.

△ABC中,∵AB2+BC2=8=AC2,

∴∠ABC=90°,∴BC⊥AB.

又∵BC⊥BB1,BB1∩AB=B,

∴BC⊥平面ABB1A1,又B1M?平面ABB1A1,

∴BC⊥B1M.

∠CMB1=90°时,设AM=t(0

∴A1M=4-t,

则在Rt△MAC中,CM2=t2+8,

同理:B1M2=(4-t)2+4,B1C2=16+4=20,

据B1C2=M B12+MC2,∴t2+8+(4-t)2+4=20,整理得,t2-4t+4=0,∴t=2,

故M为AA1的中点.

此时平面MB1C把此棱柱分成两个几何体为:四棱锥C-ABB1M和四棱锥B1-A1MCC1.

由(1)知四棱锥C-ABB1M的高为BC=2,

S

梯形ABB1M =2+4

2

×2=6,

∴V

锥C-ABB1M =1

3

×6×2=4,

又V柱=2×4=8,

∴V

锥B1-A1MCC1

=8-4=4,

故两部分几何体的体积之比为1∶1.

3.(2019山西运城二模)如图①,△ABC是以AC为斜边的等腰直角三角形,△BCD是等边三角形,AB=1,如图②,将△BCD沿BC折起,使平面BCD⊥平面ABC,E,M分别为BC,BD的中点,点F在棱AC上,且AF=3FC,点N在棱AC上,且CN=3CA.

(1)在棱BC上是否存在一点G,使平面MNG∥平面DEF?若存在,求CG

GB

的值;若不存在,请说明理由. (2)求点F到平面ABD的距离.

(1)存在点G满足题意,CG

GB

=3.

理由如下:如图,取BE的中点G,连接MG,NG,

因为BG=GE,BM=MD,所以MG∥DE.

又MG?平面DEF,DE?平面DEF,

所以MG∥平面DEF.

因为AF=3FC ,所以FC=14

CA ,

所以

FC CN

=14CA 38CA

=23

.

CE CG

=23,所以

CE CG

=

FC

CN

,所以EF ∥GN.

又EF ?平面DEF ,GN ?平面DEF , 所以GN ∥平面DEF.

因为MG ∩GN=G ,所以平面MNG ∥平面DEF.

所以CG

GB =3.

(2)如图,连接BF ,因为平面BCD ⊥平面ABC ,AB ⊥BC , 平面ABC ∩平面BCD=BC ,所以AB ⊥平面BCD. 又BD ?平面BCD ,所以AB ⊥BD. 同理,DE ⊥平面ABC ,

所以S △ABD =12

AB ·BD=12

,

S △ABF =3S △ABC =3×1AB ·BC=3

.

由题意得,DE=√3

2,设点F 到平面ABD 的距离为d ,

由V 三棱锥F-ABD =V 三棱锥D-ABF ,得1

3S △ABD ·d=1

3S △ABF ·DE ,

所以d=S

△ABF

·DE

S △ABD

=

38×√3

212

=3√3

8,

即点F 到平面ABD 的距离为3√3

8. 4.

(2019山东潍坊二模)如图,四棱锥M-ABCD 中,MB ⊥平面ABCD ,四边形ABCD 是矩形,AB=MB ,E ,F 分别为MA ,MC 的中点.

(1)求证:平面BEF ⊥平面MAD ;

(2)若BC=2AB=2√3,求三棱锥E-ABF 的体积.

MB ⊥平面ABCD ,AD ?平面ABCD ,

∴MB ⊥AD.

∵四边形ABCD 是矩形,∴AD ⊥AB.

又AB ?平面MAB ,MB ?平面MAB ,AB ∩MB=B ,

∴AD ⊥平面MAB.又BE ?平面MAB , ∴AD ⊥BE.

∵AB=MB ,E 是MA 的中点,∴BE ⊥MA.

又AD ?平面MAD ,MA ?平面MAD ,AD ∩MA=A ,

∴BE ⊥平面MAD.

又BE ?平面BEF ,∴平面BEF ⊥平面MAD. (2)由(1)知AD ⊥平面MAB ,又AD ∥BC ,

∴BC ⊥平面MAB ,

∵F 是MC 的中点,∴F 到平面MAB 的距离d=1

2BC=√3. ∵E 是MA 的中点,

∴S △ABE =1

2S △MAB =1

2×1

2×√3×√3=3

4,

∴V E-ABF =V F-ABE =13S △ABE ·d=13×34×√3=

√3

4

.

5.在四棱锥P-ABCD 中,PA ⊥平面ABCD ,△ABC 是正三角形,AC 与BD 的交点为M ,又PA=AB=4,AD=CD ,∠CDA=120°,点N 是CD 的中点. (1)求证:平面PMN ⊥平面PAB ; (2)求点M 到平面PBC 的距离.

ABC 中,AB=BC ,

在△ACD 中,因为AD=CD ,易证△ADB ≌△CDB , 所以M 为AC 的中点,因为点N 是CD 的中点, 所以MN ∥AD ,

因为PA ⊥平面ABCD ,所以PA ⊥AD , 因为∠CDA=120°,所以∠DAC=30°,

因为∠BAC=60°,所以∠BAD=90°,即BA ⊥AD ,因为PA ∩AB=A ,所以AD ⊥平面PAB , 所以MN ⊥平面PAB ,

又MN ?平面PMN ,所以平面PMN ⊥平面PAB.

M 到平面PBC 的距离为h ,

在Rt △PAB 中,PA=AB=4,所以PB=4√2, 在Rt △PAC ,PA=AC=4,所以PC=4√2, 在Rt △PBC 中,PB=4√2,PC=4√2,BC=4, 所以S △PBC =4√7,

全国高考文科数学立体几何综合题型汇总

新课标立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 A H G F E D C B A E D B C

3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥Q 面1111A B C D 11!CC B D ∴⊥ 又 1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证 11 A C AD ⊥, 又 1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 A E D 1 C B 1 D C B A S D C B A D 1O D B A C 1 B 1 A 1 C

2013年高考文科数学真题及答案全国卷1

2013年高考文科数学真题及答案全国卷1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2 ,n ∈A },则A ∩B =( ). A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A 【考点】本题主要考查集合的基本知识。 【解析】∵B ={x |x =n 2 ,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}. 2.(2013课标全国Ⅰ,文2) 2 12i 1i +(-)=( ). A. B .11+ i 2 - C . D . 【答案】B 【考点】本题主要考查复数的基本运算。 【解析】 2 12i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=1 1+i 2 -. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A .12 B .13 C .14 D .16 【答案】B 【考点】本题主要考查列举法解古典概型问题的基本能力。 【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为 13 . 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0) C 的渐近线方程 为( ). A . B . C .1 2 y x =± D . 【答案】C 【考点】本题主要考查双曲线的离心率、渐近线方程。 【解析】∵2e = 2c a =,即2254 c a =.

高中文科数学立体几何知识点(大题)

高考立体几何中直线、平面之间的位置关系知识点总结(文科) 一.平行问题 (一) 线线平行: 方法一:常用初中方法(1中位线定理;2平行四边形定理;3三角形中对应边成比例;4同位角、内错角、同旁内角) 方法二:1线面平行?线线平行 m l m l l ////??? ???=??βαβα 方法三:2面面平行?线线平行 m l m l ////??????=?=?βγαγβα 方法四:3线面垂直 ?线线平行 若αα⊥⊥m l ,,则m l //。 (二) 线面平行: 方法一:4线线平行?线面平行 ααα////l l m m l ??? ????? 方法二:5面面平行?线面平行 αββα////l l ????? (三) 面面平行:6方法一:线线平 行?面面平行 βααβ//',','//' //??? ???????且相交且相交m l m l m m l l 方法二:7线面平行?面面平行 βαβαα//,////??? ???=?A m l m l m l I , 方法三:8线面垂直?面面平行 βαβα面面面面//?? ??⊥⊥l l l

二.垂直问题:(一)线线垂直 方法一:常用初中的方法(1勾股定理的逆定理;2三线合一 ;3直径所对的圆周角为直角;4菱形的对角线互相垂直。) 方法二:9线面垂直?线线垂直 m l m l ⊥?????⊥αα (二)线面垂直:10方法一:线线垂直?线面垂直 α α⊥??? ? ???? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:11面面垂直?线面垂直 αββαβα⊥???????⊥=?⊥l l m l m , (面) 面面垂直: 方法一:12线面垂直?面面垂直 βαβα⊥???? ?⊥l l 三、夹角问题:异面直线所成的角: (一) 范围:]90,0(?? (二)求法:方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(计算结果可能是其补角) 线面角:直线PA 与平面α所成角为θ,如下图 求法:就是放到三角形中解三角形 四、距离问题:点到面的距离求法 1、直接求, 2、等体积法(换顶点)

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

高考文科数学练习题高考常考的6大题型

第3课时 题型上——全析高考常考的6大题型 题型一 圆锥曲线中的定点问题 圆锥曲线中的定点问题一般是指与解析几何有关的直线或圆过定点的问题(其他曲线过定点太复杂,高中阶段一般不涉及),其实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动.这类问题的求解一般可分为以下三步: 一选:选择变量,定点问题中的定点,随某一个量的变化而固定,可选择这个量为变量(有时可选择两个变量,如点的坐标、斜率、截距等,然后利用其他辅助条件消去其中之一). 二求:求出定点所满足的方程,即把需要证明为定点的问题表示成关于上述变量的方程. 三定点:对上述方程进行必要的化简,即可得到定点坐标. [典例] (2019·成都一诊)已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的右焦点F (3,0),长半轴 的长与短半轴的长的比值为2. (1)求椭圆C 的标准方程; (2)设不经过点B (0,1)的直线l 与椭圆C 相交于不同的两点M ,N ,若点B 在以线段MN 为直径的圆上,证明直线l 过定点,并求出该定点的坐标. [解] (1)由题意得,c =3,a b =2,a 2=b 2+ c 2, ∴a =2,b =1, ∴椭圆C 的标准方程为x 24 +y 2 =1. (2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠1),M (x 1,y 1),N (x 2,y 2). 联立,得? ???? y =kx +m ,x 2+4y 2=4,消去y 可得(4k 2+1)x 2+8kmx +4m 2-4=0. ∴Δ=16(4k 2+1-m 2)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-4 4k 2+1 . ∵点B 在以线段MN 为直径的圆上, ∴BM ―→·BN ―→ =0. ∵BM ―→·BN ―→=(x 1,kx 1+m -1)·(x 2,kx 2+m -1)=(k 2+1)x 1x 2+k (m -1)(x 1+x 2)+(m -1)2 =0, ∴(k 2+1) 4m 2-44k 2 +1+k (m -1)-8km 4k 2+1 +(m -1)2=0, 整理,得5m 2-2m -3=0, 解得m =-3 5 或m =1(舍去).

高考文科数学 立体几何大题-知识点、考点及解题方法

立体几何大题题型及解题方法 立体几何大题一般考以下五个方面: 一、平行位置关系的证明 1、证明线面平行(重点) 解题方法:(1)线面平行判定定理;(2)面面平行的性质定理。 2、证明面面平行 解题方法:(1)面面平行的判定定理;(2)面面平行判定定理的推论;(3)垂直于同一直线的两平面平行;(4)平行平面的传递性。 3、平行位置关系的探索 (1)对命题条件的探索;(2)对命题结论的探索;(3)通过翻折来探索。 二、垂直位置关系的证明 1、证明线线垂直 解题方法: 2、证明线面垂直(重点) 解题方法: 3、证明面面垂直 4、垂直位置关系的探索 (1)对命题条件的探索;(2)对命题结论的探索;(3)通过翻折来探索。 三、求空间距离

1、点到平面的距离 解题方法: 2、空间线段长 解题方法:(1)解三角形法;(2)列方程法。 四、求几何体体积 五、求空间角 1、异面直线所成的角 2、直线与平面所成的角 考点一:如何判断空间中点、线、面的位置关系(排除法)

考点二:平行位置关系的证明 证明题一般的解题步骤: 一、根据题目的问题,确定要证明什么;根据题目的条件,确定用什么证明方法, 如果无法确定,则要通过逆向思维来分析题目; 二、看题目是否需要作辅助线(创造条件),证明平行位置问题一般作的辅助线是连等 分点,特别是中点; 三、根据确定的证明方法,看该方法需要多少个条件,然后看题目给的条件通过什 么方式给,如果是间接条件则需要推理证明得出,如果是直接条件或隐含条件则直接罗列; 四、准备好条件后,再次检查条件是否都满足,是否都罗列了,最后得出结论; 五、规范书写答案过程:一般过程为1、作辅助线;2、准备间接条件;3、罗列直接

最新-江苏高考数学立体几何真题汇编

A B C D E F 2008-2018江苏高考数学立体几何真题汇编 (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ??? E , F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)? ?????CB =CD F 是BD 的中点 ? CF ⊥BD ? ?? AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD

B C? (2009年第16题) 如图,在直三棱柱ABC—A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C . 求证:(1)EF∥平面ABC (2)平面A1FD⊥平面BB1C1C 证明:(1)由E,F分别是A1B,A1C的中点知EF∥BC, 因为EF?平面ABC,BC?平面ABC,所以EF∥平面ABC (2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1, 又A1D?平面A1B1C1,故CC1⊥A1D, 又因为A1D⊥B1C,CC1∩B1C=C,CC1、B1C?平面BB1C1C 故A1D⊥平面BB1C1C,又A1D?平面A1FD, 故平面A1FD⊥平面BB1C1C

P A B C D D P A B C F E (2010年第16题) 如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC , ∠BCD =90°. (1)求证:PC ⊥BC ; (2)求点A 到平面PBC 的距离. 证明:(1)因为PD ⊥平面ABCD , BC ?平面ABCD ,所以PD ⊥BC . 由∠BCD =90°,得CD ⊥BC , 又PD ∩DC =D ,PD 、DC ?平面PCD , 所以BC ⊥平面PCD . 因为PC ?平面PCD ,故PC ⊥BC . 解:(2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF ,则: 易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍. 由(1)知:BC ⊥平面PCD ,所以平面PBC ⊥平面PCD 于PC , 因为PD =DC ,PF =FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F . 易知DF = 2 2 ,故点A 到平面PBC 的距离等于2. (方法二)等体积法:连接AC .设点A 到平面PBC 的距离为h . 因为AB ∥DC ,∠BCD =90°,所以∠ABC =90°. 从而AB =2,BC =1,得△ABC 的面积S △ABC =1. 由PD ⊥平面ABCD 及PD =1,得三棱锥P —ABC 的体积V =13S △ABC ×PD = 1 3 . 因为PD ⊥平面ABCD ,DC ?平面ABCD ,所以PD ⊥DC . 又PD =DC =1,所以PC =PD 2+DC 2=2. 由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC = 2 2 . 由V A ——PBC =V P ——ABC ,13S △PBC ×h =V = 1 3 ,得h =2, 故点A 到平面PBC 的距离等于2.

山东高考文科数学立体几何大题及答案汇编

2008年-2014年山东高考文科数学立体几何大题及答案 (08年)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,245AB DC == (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. (09年)如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 11111 (10年)(本小题满分12分) 在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==. (I )求证:平面EFG ⊥平面PDC ; (II )求三棱锥P MAB -与四棱锥P ABCD -的体积之比. (11年)(本小题满分12分) 如图,在四棱台 1111 ABCD A B C D -中, 1D D ABCD ⊥平面,底面 ABCD 是平行四边形, 112,,60AB AD AD A B BAD ==∠= (Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11//CC A BD 平面. A B C M P D E A B C F E1 A1 B1 C1 D1 D D B1 D1 C1 C B A A1

(12年) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点, 求证:DM ∥平面BEC . (13年)(本小题满分12分) 如图,四棱锥P —ABCD 中,AB ⊥AC , AB ⊥PA ,AB ∥CD ,AB=2CD ,E ,F ,G , M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点。 (Ⅰ)求证,CE ∥平面PAD; (Ⅱ)求证,平面EFG ⊥平面EMN 。 (14年)(本小题满分12分) 如图,四棱锥P ABCD -中,,//,BC AD PCD AP 平面⊥AD BC AB 2 1 = =,F E ,分别为线段PC AD ,的中点。 (Ⅰ)求证:BEF AP 平面// (Ⅱ)求证:PAC BE 平面⊥ P A C D E

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S

4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式.

1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -= . 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b =1)34(33 41)34(1211 -=--+--n n , (2≥n ), 当n=1时也满足,所以1)3 4 (31-=-n n b . 2.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32 34 9a a =所以21 9 q =。有条件可知a>0,故13 q =。 由12231a a +=得12231a a q +=,所以113 a =。故数列{a n }的通项式为a n =1 3n 。 (Ⅱ )111111log log ...log n b a a a =+++ (12...) (1) 2 n n n =-++++=- 故 12112()(1)1 n b n n n n =-=--++ 12111111112...2((1)()...())22311 n n b b b n n n +++=--+-++-=-++

最新高考文科立体几何大题

1.(2013年高考辽宁卷(文))如 图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点 (I)求证:BC PAC ⊥平面; (II)设//.Q PA G AOC QG PBC ?为的中点,为的重心,求证:平面 2.2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中 心, A 1O ⊥平面ABCD , 12AB AA == (Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积. O D 1 B 1 C 1 D A C A 1

3.(2013年高考福建卷(文))如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =, 60PAD ∠=o .(1)当正视图方向与向量AD u u u r 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程); (2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积. 4. 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD ,且AB=1,AD=2,E 、F 分别为PC 和BD 的中点. (1)证明:EF ∥面PAD ; (2)证明:面PDC ⊥面PAD ; (3)求四棱锥P —ABCD 的体积.

5.(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ?沿AF 折起,得到如图5所示的三棱锥A BCF -,其中2BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23 AD =时,求三棱锥F DEG -的体积F DEG V -. 图 4G E F A B C D 图 5D G B F C A E 6.(2013年高考北京卷(文))如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ;(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD

历年全国理科数学高考试题立体几何部分精选(含答案)

(一) 1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

(一) 1.D 2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ?=?= 即 30 30x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0,m 0,{PB BC ?=?= 可取m=(0,-1,3-) 27cos ,727 m n ==- 故二面角A-PB-C 的余弦值为 27-

(二) 1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 23 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1, DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

(完整版)2017年全国1卷高考文科数学试题及答案-

绝密★启用前 2017年普通高等学校招生全国统一考试 文科数学 本试卷共5页,满分150分。 考生注意: 1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,监考员将试题卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ? ?< ??? ? B .A I B =? C .A U B 3|2x x ? ?=

高中数学立体几何大题练习(文科)

立体几何大题练习(文科): 1.如图,在四棱锥S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,侧面SAD⊥底面ABCD. (1)求证:平面SBD⊥平面SAD; (2)若∠SDA=120°,且三棱锥S﹣BCD的体积为,求侧面△SAB的面积. 【分析】(1)由梯形ABCD,设BC=a,则CD=a,AB=2a,运用勾股定理和余弦定理,可得AD,由线面垂直的判定定理可得BD⊥平面SAD,运用面面垂直的判定定理即可得证; (2)运用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,运用勾股定理和余弦定理,可得SA,SB,运用三角形的面积公式,即可得到所求值.【解答】(1)证明:在梯形ABCD中,AB∥DC,∠ABC=90°,BC=CD=, 设BC=a,则CD=a,AB=2a,在直角三角形BCD中,∠BCD=90°, 可得BD=a,∠CBD=45°,∠ABD=45°, 由余弦定理可得AD==a, 则BD⊥AD, 由面SAD⊥底面ABCD.可得BD⊥平面SAD, 又BD?平面SBD,可得平面SBD⊥平面SAD; (2)解:∠SDA=120°,且三棱锥S﹣BCD的体积为, 由AD=SD=a, 在△SAD中,可得SA=2SDsin60°=a, △SAD的边AD上的高SH=SDsin60°=a, 由SH⊥平面BCD,可得 ×a××a2=,

解得a=1, 由BD⊥平面SAD,可得BD⊥SD, SB===2a, 又AB=2a, 在等腰三角形SBA中, 边SA上的高为=a, 则△SAB的面积为×SA×a=a=. 【点评】本题考查面面垂直的判定定理的运用,注意运用转化思想,考查三棱锥的体积公式的运用,以及推理能力和空间想象能力,属于中档题. 2.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(1)EF∥平面ABC; (2)AD⊥AC. 【分析】(1)利用AB∥EF及线面平行判定定理可得结论; (2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论. 【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,

历年江苏高考数学立体几何真题汇编含详解

历年江苏高考数学立体几何真题汇编(含详解) (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ? ??? ?E ,F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)??????? ?? ?CB =CD F 是BD 的中点 ? CF ⊥BD ? ??? ?AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD (2009年第16题) 如图,在直三棱柱ABC —A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上, A 1D ⊥ B 1 C . 求证:(1)EF ∥平面ABC (2)平面A 1FD ⊥平面BB 1C 1C 证明:(1)由E ,F 分别是A 1B ,A 1C 的中点知EF ∥BC , 因为EF ?平面ABC ,BC ?平面ABC ,所以EF ∥平面ABC (2)由三棱柱ABC —A 1B 1C 1为直三棱柱知CC 1⊥平面A 1B 1C 1, 又A 1D ?平面A 1B 1C 1,故CC 1⊥A 1D , 又因为A 1D ⊥B 1C ,CC 1∩B 1C =C , CC 1、B 1C ?平面BB 1C 1C 故A 1D ⊥平面BB 1C 1C ,又A 1D ?平面A 1FD , 故平面A 1FD ⊥平面BB 1C 1C (2010年第16题)

高考文科立体几何大题

1. (2013年高考辽宁卷(文))如 图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点. (I) 求证:BC _平面PAC ; (II) 设Q为PA的中点,G为AOC的重心,求证:QG//平面PBC. 2.2013年高考陕西卷(文))如图,四棱柱ABCDAιBιCD的底面ABCt是正方形,O为底面中 心,AC⊥平面ABCD AB=AA=√2. (I )证明:A i BD // 平面CDB1; ( ∏ )求三棱柱ABDABD的体积.

3. (2013年高考福建卷(文))如图,在四棱锥P- ABCD 中,PD _ 面ABCD , AB∕∕DC , AB _ AD , BC =5, DC =3, AD = 4, .PAD =60 .(1)当正视图方向与向量AD的方向相同时,画出四棱锥P- ABCD的正视图.(要求标出尺寸,并画出演算过程); ⑵若M为PA的中点,求证:DM / /面PBC ; (3) 4. 如图,四棱锥 P—ABCD中,ABCD为矩形,△ PAD为等腰直角三角形,∠ APD=90°,面 PAD⊥面 ABCD,且 AB=1,AD=2, E、F分别为 PC和BD的中点. (1)证明:EF// 面 PAD (2)证明:面PDC⊥面PAD; (3)求四棱锥 P— ABCD的体积. A B 求三棱锥D- PBC的体积.

5. (2013年高考广东卷(文))如图4,在边长为1的等边三角形 ABC 中,D ) E 分别是AB )AC 边上的点,AD =AE , F 是BC 的中点,AF 与DE 交于点G , 将 :ABF 沿AF 折起, (1)证明:DE //平面BCF ; (2) 证明:CF _平面ABF ; 2 ⑶ 当AD 时,求三棱锥F - DEG 的体积V F DEG 3 _ 6. (2013年高考北京卷(文))如图,在四棱锥P-ABCD 中,AB∕∕CD , AB _ AD , CD =2AB ,平面 PAD _ 底面 ABCD , PA _ AD , E 和 F 分别是CD 和PC 的中点,求证: (1) PA _ 底面 ABCD ;(2) BE//平面 PAD ;(3)平面 BEF _ 平面 PCD 得到如图5所示的三棱锥 A - BCF ,其中BC 洱

2020高考文科数学各类大题专题汇总

2020高考文科数学各类大题专题汇总 一、三角函数 二、数列 三、立体几何 四、概率与统计 五、函数与导数 六、解析几何 七、选做题 大题专项练(一)三角函数 A组基础通关 1.已知在△ABC中,角A,B,C的对边分别是a,b,c,且c cos B+(b-2a)cos C=0. (1)求角C的大小; (2)若c=2,求△ABC的面积S的最大值. 因为c cos B+(b-2a)cos C=0, 所以sin C cos B+(sin B-2sin A)cos C=0, 所以sin C cos B+sin B cos C=2sin A cos C, 所以sin(B+C)=2sin A cos C. 又因为A+B+C=π, 所以sin A=2sin A cos C. 又因为A∈(0,π),所以sin A≠0, 所以cos C=. 又C∈(0,π),所以C=. (2)由(1)知,C=,

所以c2=a2+b2-2ab cos C=a2+b2-ab. 又c=2,所以4=a2+b2-ab. 又a2+b2≥2ab,当且仅当a=b时等号成立, 所以ab≤4.所以△ABC面积的最大值(S△ABC)max=×4×sin. 2.如图,在梯形ABCD中,∠A=∠D=90°,M为AD上一点,AM=2MD=2,∠BMC=60°. (1)若∠AMB=60°,求BC; (2)设∠DCM=θ,若MB=4MC,求tan θ. 由∠BMC=60°,∠AMB=60°,得∠CMD=60°. 在Rt△ABM中,MB=2AM=4;在Rt△CDM中,MC=2MD=2. 在△MBC中,由余弦定理,得BC2=BM2+MC2-2BM·MC·cos∠BMC=12,BC=2. (2)因为∠DCM=θ, 所以∠ABM=60°-θ,0°<θ<60°. 在Rt△MCD中,MC=; , 在Rt△MAB中,MB= °- 由MB=4MC,得2sin(60°-θ)=sin θ, 所以cos θ-sin θ=sin θ, 即2sin θ=cos θ, 整理可得tan θ=.

(完整)2019-2020年高考数学大题专题练习——立体几何(一)

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

立体几何 高考真题全国卷

(2018 文 I )在平行四边形中,,,以为折痕将折起,使点到达点的位置,且. ⑴证明:平面平面; ⑵为线段上一点,为线段上一点,且,求三棱锥的体积. (2018 文 I I )如图,在三棱锥中,, ,为的中点. (1)证明:平面; (2)若点在棱上,且,求点到平面的距离. ABCM 3AB AC ==90ACM =?∠AC ACM △M D AB DA ⊥ACD ⊥ABC Q AD P BC 2 3 BP DQ DA ==Q ABP -P ABC -AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC 2MC MB =C POM A B C P O M

(2018 文 III )如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. ⑴证明:平面AMD ⊥平面BMC ; ⑵在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由. (2017 文 I )如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= (1)证明:平面PAB ⊥平面PAD ; (2)若PA=PD=AB=DC,90APD ∠=,且四棱锥P-ABCD 的体积为8 3 ,求该四棱锥的侧面积.

(2017 文 II )如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD , 1 ,2 AB BC AD BAD == ∠90.ABC =∠=? (1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为P ABCD -的体积. (2017 文 III )如图,四面体ABCD 中,△ABC 是正三角形,AD=CD . (1)证明:AC ⊥BD ; (2)已知△ACD 是直角三角形,AB=BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.

相关文档
相关文档 最新文档