文档库 最新最全的文档下载
当前位置:文档库 › (完整版)传感器选用原则

(完整版)传感器选用原则

(完整版)传感器选用原则
(完整版)传感器选用原则

传感器选用原则

现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量

环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。

1)根据测量对象与测量环境确定传感器的类型

要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。

在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。

2)灵敏度的选择

通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。

传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。

3)频率响应特性

传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械

系统的惯性较大,因有频率低的传感器可测信号的频率较低。

在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差

4)线性范围

传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。

5)稳定性

传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。

在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。

传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。

在某些要求传感器能长期使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。

6)精度

精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。

如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。

对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。自制传感器的性能应满足使用要求

2011

Specifications:

历年设计清单

2001年全国大学生电子设计竞赛

一.基本仪器清单

20MHz普通示波器(双踪,外触发输入,有X轴输入);

60MHz双踪数字示波器;

1Hz~200kHz低频信号发生器;

普通函数信号发生器;

50MHz~150MHz调频/调幅高频信号发生器;

低频毫伏表;

高频毫伏表;

普通频率计;

通用计数器(可选);

失真度仪(可选);

位数字万用表;

秒表;

单片机开发系统及EDA开发系统。

二.主要元器件清单

单片机最小系统板(不含A/D、D/A等芯片);

可编程逻辑器件系统板(不含A/D、D/A等芯片);

手写输入板;

普通A/D、D/A,采样速率大于1MHz的8位A/D变换器;

运算放大器,电压比较器;

常用逻辑电路、可编程器件,常用阻、容元器件,电位器及晶体管;反射式光电检测器; 电动玩具车(外形尺寸:长≤35cm;宽≤15cm)。

2003全国大学生电子设计竞赛

一、基本仪器清单

20MHz普通示波器(双通道,外触发输入,有X轴输入,可选带Z轴输入)

60MHz双通道数字示波器

低频信号发生器(1Hz~200kHz)

信号发生器(1kHz~15MHz)

高频信号发生器(1MHz~35MHz)

频率特性测量仪(可选)

数字相位计(可选)

低频毫伏表

高频毫伏表

普通频率计

3位半数字万用表

电感、电容测试仪(或Q表)

秒表

单片机开发系统及EDA开发系统

二、主要元器件清单

单片机最小系统板(仅含单片机芯片、键盘与显示装置、存储器)

可编程逻辑器件下载板(仅含可编程芯片、下载电路、配置存储器)

A/D、D/A变换器

运算放大器、电压比较器

可编程逻辑器件

显示器件

电动玩具车(外形尺寸:长≤35cm;宽≤15cm)

小型电动机

开关二极管

高频变容二极管

小型继电器

模拟开关

高频磁芯

传感器(光电传感器、超声传感器、金属探测传感器、红外传感器等) 2005全国大学生电子设计竞赛

一、基本仪器清单

20MHz普通示波器(双通道,外触发输入,有X轴输入,可选带Z轴输入)

60MHz双通道数字示波器

低频信号发生器(1Hz~1MHz)

高频信号发生器(1MHz~40MHz)

具有调频调幅及外调制功能低频毫伏表高频毫伏表

普通频率计

失真度测试仪

直流稳压电源

秒表

10米卷尺

单片机开发系统及EDA开发系统

交流电压表和电流表(5A)

单相自耦调压器(>500W)

位数字万用表

二、主要元器件清单

单片机最小系统板(仅含单片机芯片、键盘与显示装置、存储器、A/D、D/A) A/D、D/A转换器运算放大器、

电压比较器可编程逻辑器件及其下载板话筒、

耳机

显示器件

小型电动机

小型继电器康铜、

锰铜电阻丝

光电传感器隔离变压器(>250W,220V/60V)

DDS集成芯片

2007年全国大学生电子设计竞赛

1、基本仪器清单

20MHz普通示波器(双通道,外触发输入,有X轴输入,可选带Z轴输入) 60MHz双通道数字示波器

低频信号发生器(1Hz~1MHz)

高频信号发生器(1MHz~40MHz)

函数发生器

低频毫伏表

高频毫伏表

普通频率计

失真度测试仪

直流稳压电源

秒表

2米卷尺

游标高度尺

单片机开发系统及EDA开发系统

单相自耦调压器(>200W)

五位半数字万用表(电压表)

四位半数字万用表

2、主要元器件清单

单片机最小系统板(仅含单片机芯片、键盘与显示装置、存储器、A/D、D/A) A/D、D/A转换器

1MHz采样频率的8位A/D转换器

运算放大器、电压比较器

可编程逻辑器件及其下载板

显示器件

小型电动车(最大尺寸300mm×200mm,高度不限) 小型继电器

康铜、锰铜电阻丝

漆包线(直径不大于1mm)

光电传感器

角度传感器

隔离变压器(>150W,220V/18V)

DDS集成芯片

传感器选用的一般原则

现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1、根据测量对象与测量环境确定传感器的类型 要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。 在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。 2、灵敏度的选择 通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。 传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3、频率响应特性 传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。 传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。 在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差。 4、线性范围 传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。 但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。 5、稳定性

接近开关的选型

接近开关的选型 对于不同的材质的检测体和不同的检测距离,应选用不同类型的接近开关,以使其在系统中具有高的性能价格比,为此在选型中应遵循以下原则: 4.1.1.当检测体为金属材料时,应选用高频振荡型接近开关,该类型接近开关对铁镍、a3钢类检测体检测最灵敏。对铝、黄铜和不锈钢类检测体,其检测灵敏度就低。 4.1.2.当检测体为非金属材料时,如;木材、纸张、塑料、玻璃和水等,应选用电容型接近开关。 4.1.3.金属体和非金属要进行远距离检测和控制时,应选用光电型接近开关或超声波型接近开关。 4.1.4.对于检测体为金属时,若检测灵敏度要求不高时,可选用价格低廉的磁性接近开关或霍尔式接近开关。 在各类开关中,有一种对接近它物件有“感知”能力的元件——位移传感器。利用位移传感器对接近物体的敏感特性达到控制开关通或断的目的,这就是接近开关。 当有物体移向接近开关,并接近到一定距离时,位移传感器才有“感知”,开关才会动作。通常把这个距离叫“检出距离”。不同的接近开关检出距离也不同。 有时被检测验物体是按一定的时间间隔,一个接一个地移向接近开关,又一个一个地离开,这样不断地重复。不同的接近开关,对检测对象的响应能力是不同的。这种响应特性被称为“响应频率”。 种类 因为位移传感器可以根据不同的原理和不同的方法做成,而不同的位移传感器对物体的“感知”方法也不同,所以常见的接近开关有以下几种: 1.涡流式接近开关 这种开关有时也叫电感式接近开关。它是利用导电物体在接近这个能产生电磁场 接近开关时,使物体内部产生涡流。这个涡流反作用到接近开关,使开关内部电路参数发生变化,由此识别出有无导电物体移近,进而控制开关的通或断。这种接近开关所能检测的物体必须是导电体。 2.电容式接近开关 这种开关的测量通常是构成电容器的一个极板,而另一个极板是开关的外壳。这个外壳在测量过程中通常是接地或与设备的机壳相连接。当有物体移向接近开关时,不论它是否为导体,由于它的接近,总要使电容的介电常数发生变化,从而使电容量发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通或断开。这种接近开关检测的对象,不限于导体,可以绝缘的液体或粉状物等。 3.霍尔接近开关 霍尔元件是一种磁敏元件。利用霍尔元件做成的开关,叫做霍尔开关。当磁性物件移近霍尔开关时,开关检测面上的霍尔元件因产生霍尔效应而使开关内部电路状态发生变化,由此识别附近有磁性物体存在,进而控制开关的通或断。这种接近开关的检测对象必须是磁性物体。 4.光电式接近开关

传感器选用原则

传感器选用原则 现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量 环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1)根据测量对象与测量环境确定传感器的类型 要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。 在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。 2)灵敏度的选择 通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。 传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3)频率响应特性

传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械 系统的惯性较大,因有频率低的传感器可测信号的频率较低。 在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差 4)线性范围 传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。 5)稳定性 传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。 在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。 传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。 在某些要求传感器能长期使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。

推荐:压力传感器的选用

压力传感器的选用 【学员问题】压力传感器的选用? 【解答】压力传感器、压力变送器的种类及选用 压力传感器及压力变送器分为表压、尽压、差压等种类。常见0.1、0.2、0.5、1.0等精度等级。可丈量的压力范围很宽,小到几十毫米水柱,大的可达上百兆帕。不同种类压力传感器及压力变送器的工作温度范围也不同,常分成0~70℃、-25~85℃、-40~125℃、-55~150℃几个等级,某些特种压力传感器的工作温度可达400~500℃。 压力传感器及压力变送器基于不同的材料及结构设计有着不同的防水性能及防爆等级,接液腔体由于材料、外形的差异可丈量的流体介质种类也不同,常分为干燥气体、一般液体、酸碱腐蚀溶液、可燃性气液体、粘稠及特殊介质。压力传感器及压力变送器作为一次仪表需与二次仪表或计算机配合使用,压力传感器及压力变送器常见的供电方式为:DC5V、12V、24V、12V等,输出方式有:0~5V、1~5V、0.5~4.5V、0~10mA.0~20mA.4~20mA 等及Rs232、Rs485等与计算机的接口。 用户在选择压力传感器及压力变送器时,应充分了解压力丈量系统的工况,根据需要公道选择,使系统工作在最佳状态,并可降低工程造价。 压力传感器常见精度参数及试验设备 传感器静态标定设备:活塞压力计:精度优于0.05%数字压力表:精度优于0.05%直流稳

压电源:精度优于0.05%. 传感器温度检验设备:高温试验箱:温度从0℃~+250℃温度控制精度为1℃ 低温试验箱:温度能从0℃~-60℃温度控制精度为1℃ 传感器静态性能试验项目:零点输出、满量程输出、非线性、迟滞、重复性、零点漂移、超复荷。 传感器环境试验项目:零点温度漂移、灵敏度漂移、零点迟滞、灵敏度迟滞。(检查产品在规定的温度范内对温度的适应能力。此项参数对精度影响极为重要) 压力传感器使用留意事项 压力传感器及压力变送器在安装使用前应具体阅读产品样本及使用说明书,安装时压力接口不能泄露,确保量程及接线正确。压力传感器及压力变送器的外壳一般需接地,信号电缆线不得与动力电缆混合展设,压力传感器及压力变送器四周应避免有强电磁干扰。压力传感器及压力变送器在使用中应按行业规定进行周期检定。 以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。 结语:借用拿破仑的一句名言:播下一个行动,你将收获一种习惯;播下一种习惯,你将收获一种性格;播下一种性格,你将收获一种命运。事实表明,习惯左右了成败,习惯改变人的一生。在现实生活中,大多数的人,对学习很难做到学而不厌,学习不是一

倍加福接近开关如何正确选型

倍加福所提供接近开产品关,主要有:电感式接近开关、电容式接近开关、磁式接近开关等等,应用于检测金属、高温金属检测、控制阀门位置、检测固体和液体的作用,提供创新的接近传感器以满足世界范围内的自动化和过程控制市场的需求。 它即有行程开关、微动开关的特性,同时具有传感性能,且动作可靠,性能稳定,频率响应快,应用寿命长,抗干扰能力强等、并具有防水、防震、耐腐蚀等特点。产品有电感式、电容式、霍尔式、交、直流型。它广泛地应用于机床、冶金、化工、轻纺和印刷等行业。在自动控制系统中可作为限位、计数、定位控制和自动保护环节。 具有使用寿命长、工作可靠、重复定位精度高、无机械磨损、无火花、无噪音、抗振能力强等特点。因此到目前为止,倍加福接近开关的应用范围日益广泛,其自身的发展和创新的速度也是特别迅速。

主要功能: 1、检验距离 检测电梯、升降设备的停止、起动、通过位置;检测车辆的位置,防止两物体相撞检测;检测工作机械的设定位置,移动机器或部件的极限位置;检测回转体的停止位置,阀门的开或关位置;检测气缸或液压缸内的活塞移动位置。 2、尺寸控制: 金属板冲剪的尺寸控制装置;自动选择、鉴别金属件长度;检测自动装卸时堆物高度;检测物品的长、宽、高和体积。 3、检测物体存在有否检测生产包装线上有无产品包装箱;检测有无产品零件。 4、转速与速度控制:控制旋转机械的转速;与各种脉冲发生器一起控制转速和转数。 5、计数及控制:检测生产线上的产品数;高速旋转轴或盘的转数计量;零部件计数。 6.检测异常 6、检测瓶盖有无;产品合格与不合格判断,检测包装盒内的金属制品缺乏与否,区分金属与非金属零件,产品有无标牌检测,起重机危险区报警,安全扶梯自动启停。 7、计量控制: 产品或零件的自动计量,检测计量器、仪表的指针范围而控制数或流量,检测浮标控制测面高度和流量,检测不锈钢桶中的铁浮标,仪表量程下限的控制,水平面控制。 8、识别对象:根据载体上的码识别是与非。 9、信息传送:ASI(总线)连接设备上各个位置上的传感器在生产线(50-100米)中的数据往返传送等。 倍加福接近开关的选型: 对于不同的材质的检测体和不同的检测距离,应选用不同类型的倍加福接近开关,以使其在系统中具有高的性能价格比,为此在选型中应遵循以下原则: 1、当检测体为金属材料时,应选用高频振荡型倍加福接近开关,该类型倍加福接近开关对铁镍、A3钢类检测体检测灵敏。

传感器选用的基本原则

传感器选用的基本原则 现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1、根据测量对象与测量环境确定传感器的类型 要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。 在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。 2、灵敏度的选择 通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。 传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3、频率响应特性 传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。 传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。 在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差。 4、线性范围 传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。 但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给

温度传感器的选用

温度传感器的选用 摘要:在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为许多的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视。可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。 关键字:温度传感器热电偶热电阻集成电路 引言: 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温 度传感器;每一类温度传感器有自己独特的温度测量围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。 1、热电偶 热电偶由二根不同的金属线材,将它们一端焊接在一起构成;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需 要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差 引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情 真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度,以硬件或硬件-软件相结 合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电 阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

接近传感器工作原理及分类和选型

接近传感器工作原理及分类和选型 接近传感器被广泛用于各种自动化生产线,机电一体化设备及石油、化工、军工、科研等多种行业,那什么是接近传感器呢? 接近传感器 接近传感器,是指代替限位开关等接触式检测方式,以无需接触检测对象进行检测为目的的传感器的总称。其能将检测对象的移动信息和存在信息转换为电气信号。 在转换为电气信号的检测方式中,包括利用电磁感应引起的检测对象的金属体中产生的涡电流的方式、捕测体的接近引起的电气信号的容量变化的方式、利石和引导开关的方式。由感应型、静电容量型、超声波型、光电型、磁力型等构成。 接近传感器是利用振动器发生的一个交变磁场,当金属目标接近这磁场并达到感应距离时,在金属目标内发生涡流,因此导致振动衰减,以至接近传感器的振动器停振。接近传感器的振动器振动及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,因此达到接近传感器的非接触式之检测的目的。这就是接近传感器的运作原理。 技术优势①由于其能以非接触方式进行检测,所以不会磨损和损伤检测对象物。②由于采用无接点输出方式,因此寿命延长(磁力式除外)采用半导体输出,对接点的寿命无影响。③与光检测方式不同,适合在水和油等环境下使用检测时几乎不受检测对象的污渍、油和水等的影响。此外,还包括特氟龙外壳型及耐药品良好的产品。④与接触式开关相比,可实现高速响应。⑤能对应广泛的温度范围。⑥不受检测物体颜色的影响:对检测对象的物理性质变化进行检测,所以几乎不受表面颜色等的影响。⑦与接触式不同,会受周围温度、周围物体、同类传感器的影响,包括感应型、静电容量型在内,传感器之间相互影响。因此,对于传感器的设置,需要考虑相互干扰。此外,在感应型中,需要考虑周围金属的影响,而在静电容量型中则需考虑周围物体的影响。 当金属检测体接近传感器的感应区域,开关能无接触,无压力、无火花、迅速发出电气指令,准确反应出运动机构的位置和行程,即使用于一般的行程控制,其定位精度、操作频

测试技术复习题和答案

信号部分 1 试判断下述结论的正误。 (1 )凡频谱是离散的信号必然是周期信号。 (2 )任何周期信号都由频率不同,但成整倍数比的离散的谐波叠加而成。(3 )周期信号的频谱是离散的,非周期信号的频谱也是离散的。 (4 )周期单位脉冲序列的频谱仍为周期单位脉冲序列。 (5 )非周期性变化的信号就是随机信号。 (6 )非周期信号的幅值谱表示的是其幅值谱密度与时间的函数关系。 (7 )信号在时域上波形有所变化,必然引起频谱的相应变化。 (8 )各态历经随机过程是平稳随机过程。 (9 )平稳随机过程的时间平均统计特征等于该过程的集合平均统计持征。(10 )两个周期比不等于有理数的周期信号之和是周期信号。 (11 )所有随机信号都是非周期信号。 (12 )所有周期信号都是功率信号。 (13 )所有非周期信号都是能量信号。 (14 )模拟信号的幅值一定是连续的。 (15 )离散信号即就是数字信号。 2 对下述问题,选择正确答案填空。 (1 )描述周期信号的数学工具是( ) 。 A. 相关函数 B. 傅氏级数 C. 拉氏变换 D. 傅氏变换 (2 )描述非周期信号的数学工具是( ) 。 A. 三角函数 B. 拉氏变换 C. 傅氏变换 D. 傅氏级数 (3 )时域信号持续时间压缩,则频域中低频成分( ) 。 A. 不变 B. 增加 C. 减少 D. 变化不定

(4 )将时域信号进行时移,则频域信号将会( ) 。 A. 扩展 B. 压缩 C. 不变 D. 仅有相移 (5 )概率密度函数在( )域、相关函数是在( )域、功率谱密度函数是在( )域上来描述的随机信号 A. 时间 B. 空间 C. 幅值 D. 频率 3 指出题图3 所示的信号时域波形时刻与时刻频谱(幅值谱)有无变化,并说明原因。 题3 图题 6 图 4 判断下列序列是否是周期函数。如果是,确定其周期。 (1 );( 2 )。 5 有一组合信号,系由频率分别为724Hz 、44Hz 、5005410Hz 及600Hz 的相同正弦波叠加而成。求该信号的周期T 。 6 求题6 图所示,非对称周期方波信号的傅里叶级数,并绘出频谱图。 7 求题7 图所示三角波信号的傅里叶级数,并绘出频谱图。 答案: 1. 判断题

传感器地选择

方案一压电传感器 压电传感器是一种典型的有源传感器,又称自发电式传感器。其工作原理是基于某些材料受 力后在其相应的特定表面产生电荷的压电效应。 压电传感器体积小、重量轻、结构简单、工作可靠,适用于动态力学量的测量,不适合测频 率太低的被测量,更不能测静态量。目前多用于加速度和动态力或压力的测量。压电器件的弱 点:高内阻、小功率。功率小,输出的能量微弱,电缆的分布电容及噪声干扰影响输岀特性,这 对外接电路要求很高。 方案二电容式传感器 电容式传感器是将被测非电量的变化转换为电容变化的一种传感器。它有结构简单、灵敏度 高、动态响应好、可实现非接触测量、具有平均效应等优点。电容传感器可用来检测压力、力、 位移以及振动学非电参量。 电容传感器的基本工作原理可用最普通的平行极板电容器来说明。两块相互平行的金属极 板,当不考虑其边缘效应(两个极板边缘处的电力线分布不均匀引起电容量的变化)时,其电容 量为 (2. 1) 式(2. 1)中 d——两极板间的距离; A——两平行极板相互覆盖的有效面积; 5——介质的相对介电常数; So——真空中介电常数。 若被测量的变化使式中d、A、J 「三个参量中任一个发生变化,都会引起电 容量的变化,通过测量电路就可转换为电量输出。 虽然电容式传感器有结构简单和良好动态特性等诸多优点,但也有不利因素: (1)小功率、高阻抗。受几何尺寸限制,电容传感器的电容量都很小,一般仅几皮法至几十皮法。因C太小,故容抗X二1/C彳報,为高阻抗元件,负 载能力差;又因其视在功率PrC, C很小,则P也很小。故易受外界干扰, 信号需经放大,并采取抗干扰措施。 (2)初始电容小,电缆电容、线路的杂散电路所构成的寄生电容影响很大。 方案三电阻应变式传感器

传感器选用的基本原则

传感器选用的基本原则 This model paper was revised by the Standardization Office on December 10, 2020

传感器选用的基本原则 现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量 环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1、根据测量对象与测量环境确定传感器的类型 要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。 在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。 2、灵敏度的选择 通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。

传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3、频率响应特性 传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。 传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。 在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差。 4、线性范围 传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。 但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。 5、稳定性 传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的

传感器问答题

问答题: 1、传感器一般由哪几部分组成试说明各部分的作用 答:通常由敏感元件、转换元件及基本转换电路组成。 敏感元件直接感受被测物理量,并以确定关系输出另一物理量的元件。 转换元件:将敏感元件输出的非电量转换成电路参数及电流或电压信号。 基本转换电路:将电信号转换成便于传输、处理的电量。 2、内部传感器与外部传感器的作用有何区别 答:内部主要是检测系统内部的位置、速度、力、力矩、温度及异常变化。 外部主要是检测外部环境状态如:触觉,压觉等。 3、按传感器输出信号的性质可将传感器分几类 答:开关型、模拟型、数字型三种。 4、在静态测量中,根据测量系统输入量与对应输出值所绘制的定度曲线何以确定哪些静态特性 答:当传感器的输入量为常量或随时间做缓慢变化时,传感器的输出与输入之间的关系称为静态特性。 5、对传感器的主要性能要求是什么 答:高精度、低成本、高灵敏度、工作可靠、稳定性好,抗干扰性好、动态特性良好. 6、传感器的稳定性表示了传感器的何种能力 答:在相同条件、相当长的时间内,其输入、输出特性不能发生变化的能力 7、传感器的静态特性有哪几种简述之 答:主要有线性度、灵敏度、重复性、稳定性。 8、选用位移传感器应考滤哪些问题 答:环境因素、基本指标、可靠性、使用条件、经济性。 9、简述投射式涡流位移传感器的工作原理。 答:在被测金属板的上方设有发射传感器线圈L1,在被测金属板的下方设有接收传感器线圈L2。当给L1上加音频电压U1时,线圈上产生交变磁通,若两线圈间无金属板,则交变磁通直接耦合至线圈中,线圈产生感应电压。如果将被测金属板放入两线圈之间,则线圈产生的磁场将导至在金属板中产生涡流,并将惯穿金属板,此时磁场能量受到损耗,使到达线圈的磁通将减弱,从而使线圈产生的感应电压下降。金属板越厚,涡流损失越大,电压就越小。 10、简述电容式位移传感器测量的物理参量 答:改娈介质、改变面积、改变间距。 11、请回答下列直线式感应同步器有关的问题:它由哪两个绕组组成鉴相式测量电路的作用是什么 答:固定绕组和可动绕组组成。 检测感应电动势的相位,从而根据相位确定位移量的大小和方向。 12、电容式位移传感器选用的绝缘材料应具有哪些特点 答:高的绝缘电阻、低的彭胀系数、几何尺寸的长期稳定性和低的吸潮性。 13、激光式位移传感器的优点有那些 答优点有精度高、测量范围大、测试时间短、非接触、易数字化、效率高。 14、感应同步器位移传感器的特点有那些 有精度高、对环境要求低、可测大位移工作可靠,抗干扰能力强,维护方便,寿命长。 15、简述压电力传感器的选用原则。 答:1、量程和频带的选择:对被测力的大小加以估算,选择量程适宜的传感器,使所测力的大小不超过额定量程。所选择传感器的工作频带能覆盖待测力的频带。2、电荷放大器的选择:测量准静态力信号,要求电荷放大器输入阻抗高于,低频响应为。 16、与丝式电阻应变片相比,箔式电阻应变片有那些优点 答:⑴、金属箔很薄,因而感受的应力状态与试件表面的应力状态更接近。 ⑵、箔式敏感栅面积大,散热条件好,允许流过较大的电流,因此灵敏度比较高,输出信号的功率比较大,可为 丝式电阻应变片的100-400倍。 ⑶、箔式敏感栅的尺寸可以做得比较准确,基长可能很短,并能做成任意形状,从而可能扩大使用范围。 ⑷、便于批量生产。 17、简述什么是压磁效应 答:在机械外力作用下,铁磁材料内部产生应力或应力变化,使磁导率发生变化,磁阻相应也发生变化的现象是压磁

如何选择适用于接近或距离测量的超声波传感器

如何选择适用于接近或距离测量的超声波传感器 超声波传感器是使用换能器发送和接收超声波脉冲,该超声波脉冲中继有关物体接近度的信息,经反射返回传感器,系统通过测量回波返回传感器的时间,并利用声波在介质中的传播速度计算超声波测量到物体距离的仪器。 因其特性超声波传感器被广泛用于各种非接触场景如接近或距离测量中,然而目前市场上的各种超声波传感器在安装配置、环境密封、电子特征等方面各不相同。特别是在声学上,根据操作频率和辐射模式不同,不难选择最符合特定应用环境和机械要求的传感器,也不难评估不同型号产品电子性能。声学对超声波传感器操作和测量产生了深远影响。本文工采网小编通过介绍超声波传感器的特性和影响因素来解答如何选择适用于接近或距离测量的超声波传感器。

影响超声波传感器操作的一些基本声学参数 1、声速随温度和传输介质(通常是空气) 的组成变化而变化,测量的精度和分辨率有何影响? 重点:抓住空气中,声速与温度的关系 在回波测距系统中, 测量了超声脉冲发射与返回接收机之间的运行时间。然后使用传输介质(通常是空气) 中的声速计算到目标的距离。测得的目标距离的精度与计算中使用的声速精度成正比。声波的实际速度是声音传播的介质组成和温度的函数,如图1。 空气中的声速随温度的变化由关系[5]:

c(T):空气中声速与温度函数,单位:英寸/秒;T:大气温度,单位:℃。不同气体介质中的声速与空气组成的关系,同时受化学成分和温度的影响。下表是10°C 的各种气体的声速。 2、声波波长随声速和频率而变化,分辨率、精度、最小目标尺寸以及最小和最大目标距离的影响规律。 重点:声波波长与声速和频率的关系 声波波长随声速和频率的变化而变化,λ= c/f。λ:波长;c:声速;f:频率

传感器的选用原则

传感器的选用原则 当我们在做系统设计的时候,选用产品是一个重要组成部分。拿传感器来说,一个好的产品,可以给后期工作带来很多方便。传感器种类很多,我们该怎么选择呢?那些参数都是什么意思? 一、根据测量对象和环境确定类型 首先,认真分析测量工作,考虑采用哪种原理的传感器进行测量,因为即使测量同一物理量,也可以通过不同的原理实现。其次就得考虑量程、体积(空间是否足够)、安装方式、信号类型(模拟还是数字信号)、测量方式(直接测量还是间接测量)等等。 二、精度 传感器的精度等级关乎到整个系统精度,是一个非常重要的参数。一般,精度越高,价格越贵。所以我们选择的时候,得从整体考虑,适合自己的才是最好的,不要一味追求所谓的高精度,除非在需要定量测量精确值的场合,我们才选用精度等级高些的传感器。 三、灵敏度的选择 灵敏度指输出量的增量与相应的输入量增量之比。我们得正确认识该参数,它分为两方面:1、在线性范围内,灵敏度高,输出信号值比较大,这是优点。2、灵敏度高,与测量无关的外界噪声也容易混入,在处理过程中,影响精度。

四、线性范围 线形范围是指输出与输入成正比的范围,所以我们都希望线性范围越宽越好,线性范围越宽,量程就大,精度就高。但是任何传感器的线性范围都是相对的。我们只需要把测量量估算好,以便在线性范围内。 五、频率响应特性 在测量过程中,传感器的输出总有一定的延迟,跟实际值也有一定的差别。所以我们希望频率响应快一点,这样延迟时间就短一点。但由于受到结构等特性的影响,频率也难以提高。 六、稳定性 稳定性指使用时间长了以后,其性能还能维持不变的能力。影响稳定性的因素除自身原因外,主要是环境因素。因此,选用的传感器要具有较强的环境适应能力,适当的时候还得采取保护措施。

倍加福接近开关选型

倍加福接近开关选型 P+F接近开关选型德国倍加福接近开关选型接近开关选型电感式接近开关 "电感式传感器—可广泛用于对金属物体进行非接触式的高精度的位置测量的场合 基本品种:NBB、NBN、NEB、NCB、NJ、SJ、FJ、RJ、NMB系列。 外形:圆柱形、矩形、扁平形、槽形及环形、VaiKont(头部可转换)形。 感应范围:0.2-100mm 输入:AC、DC或AC/DC 输出:2、3或4线制、常开(NO)、常闭(NC)、常开常闭转换以及模拟量输出。输出电流:开关量输出(10-500mA)、模拟量输出(0-20mA)。 保护功能:具备极性保护、短路或过载保护、断路监视、过压保护 电容式接近开关 "电容式传感器—可用来检测包括金属和非金属物体在内的所有物体 基本品种:CJ系列 外形:圆柱形、矩形及扁平形。 感应范围:1-40mm 输入:AC、DC或AC/DC。 输出:开关量输出常开(NO)或常闭(NC),2,3或4线制。 保护功能:具有极性保护、短路保护。" 磁式传感器 "磁式传感器—能检测磁体(永磁体或电磁体)、铁磁体 基本品种:MJ系列、MB系列 外形:圆柱形及矩形 感应范围:25-60mm 输入:DC 输出:常开(NO)、常闭(NC)2线或3线制" 特殊传感器 说明:有耐高温型、防磁防焊型、金属检测无衰减型、材料选择型及增强型防护等级 IP68/IP69K、耐高压型350bar 等特殊传感器。欢迎来电来函索取更详细的资料。

选型对照如下: N B B 5 - 18 G M 50 - E2 (1)(2)(3)(4)(5)(6)(7)(8)(9) (1)用字母表示 N-电感式 C-电容式 M-磁式 R-环型(电感式) IA-模拟量(电感式) (2)用字母表示 B-基本系列 C-标准系列 J-原始系列 E-感应距离增大型(电感式) (3)用字母表示 B-齐平安装(电感式、电容式) N-非平安装(电感式、电容式) (4)用数字表示(mm) 0.2-100-开关距离(电感式) 10-43-环型传感器直径 2-30槽型传感器槽宽 (5)用数字(mm)或字母表示 圆柱型传感器直径采用数字表示 用字母F、F1、F2、F9、F10、F11、 F17、F29、F33、F41及V3,L1/L2 表等示各种形状的矩型传感器。 FP-方型(扁平型) U-感应头部可转换型(VariKont) (限位开关型) MIK-感应头部可转换型(小型限位开 关型)(VariKontM) (6)用字母表示 G-有螺纹 无字母-光杆 (7)用字母表示 M-金属外壳

称重传感器选用的一般规则

称重传感器选用的一般规则 在电子衡器中,选用何种称重传感器,要全面衡量。下面就称重传感器的结构形式、量程,准确度等级的选择上讲述一般要考虑的几个方面。 一、结构、形式的选择 选用何种结构形式的称重传感器,主要看衡器的结构和使用的环境条件。如要制作低外形衡器,一般应选用悬臂梁式和轮幅式传感器,若对外形高度要求不严,则可采用柱式传感器。此外,衡器使用的环境若很潮湿,有很多粉尘,则应选择密封形式较好的;若在有爆炸危险的场合,则应选用本质安全型传感器;若在高架称重系统中,则应考虑安全及过载保护;若在高温环境下使用,则应选用有水冷却护套的称重传感器;若在高寒地区使用,则应考虑采用有加温装置的传感器。在形式选择中,有一个要考虑的因素是,维修的方便与否及其所需费用,即一旦称重系统出了毛病,能否很顺利、很迅速的获得维修器件。若不能做到就说明形式选择不够合适。 二、量程的选择 称重系统的称量值越接近传感器的额定容量,则其称量准确度就越高,但在实际使用时,由于存在秤体自重、皮重及振动、冲击、偏载等,因而不同称量系统选用传感器的量限的原则有很大差别。作为一般规则,可有:*单传感器静态称重系统:固定负荷(秤台、容器等)+变动负荷(需称量的载荷)≤所选用传感器的额定载荷X70%*多传感器静态称重系统:固定负荷(秤台、容器等)+变动负荷(需称量的载荷)≤选用传感器额定载荷X所配传感器个数X70% 其中70%的系数即是考虑振动、冲击、偏载等因素而加的。 需要说明的是:首先,选择传感器得额定容量要尽量符合生产厂家的标准产品系列中的值,否则,选用了非标准产品,不但价格贵,而且损坏后难以代换。其次,在同一称重系统中,不允许选用额定容量不同的传感器,否则,该系统没法正常工作。再者,所谓变动负荷(需称量的载荷)是指加于传感器的真实载荷,若从秤台到传感器之间的力值传递过程中,有倍乘和衰减的机构(如杠杆系统),则应考虑其影响。 三、准确度的选择 称重传感器的准确度等级的选择,要能够满足称重系统准确度级别的要求,只要能满足这项要求即可。即若2500分度的传感器能满足要求,切勿选用3000分度的。若在一称重系统中使用了几只相同形式,相同额定容量的传感器并联工作时,其综合误差为Δ,则有: Δ=Δ/n1/2(2—12) 其中:Δ:单个传感器的综合误差;n:传感器的个数。另外,电子称重系统一般由三大部分组成,他们是称重传感器,称重显示器和机械结构件。当系统的允差为1时,作为非自动衡器主要构成部分之一的称重传感器的综合误差(Δ)一般只能达到0.7的比例成分。根据这一点和式(2--12),自不难对所需的传感器准确度做出选择。 四、某些特殊要求应如何达到 在某些称重系统中,可能有一些特殊的要求,例如轨道衡中希望称重传感器的弹性变形量要小一些,从而可以使秤台在称量时的下沉量小些,使得货车在驶入和驶出秤台时,减小冲击和振动。另外,在构成动态称重系统时,不免要考虑所用称重传感器的自振频率,是否能满足动态测量的要求。这些参数,在一般的产品介绍中是不予列出的。因此当要了解这些技术参数时,应向制造商咨询,以免失误。

常用温度传感器的对比分析及选择

常用温度传感器的对比分析及选择 大致的要点: 1.温度传感器概述:应用领域,重要性; 2.四种主要的温度传感器类型的横向比较 3.热电偶传感器 4.热电阻传感器 5.热敏电阻传感器 6.集成电路温度传感器以及典型产品举例 7.温度传感器的正确选择及应用 在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为任何的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视,如压力或力的测量,往往是使用惠斯登电阻电桥,但组成电桥的电阻随温度变化引起的误差,往往会大大超过待测力引起的电阻值变化,如不对温度进行监控并据此校正测量结果,则测量完全不可能进行或者毫无效果。其他参数测量也有类似问题,可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。本文就是帮助读者针对特定的用途,选择最为合适的温度传感器,并进行精确的温度测量。 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温度传感器;每一类温度传感器有自己独特的温度测量范围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度范围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。表1是四类传感器的各自独特的性能特性及相互比较。表2是四类传感器的典型应用领域。

热电偶--通用而经济 热电偶由二根不同的金属线材,将它们一端焊接在一起构成,如图1所示;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度(参见图1),以硬件或硬件-软件相结合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

接近传感器怎么选择

对于不同的材质的检测体和不同的检测距离,应选用不同类型的接近传感器,以使其在系统中具有高的性能价格比。 本文将会介绍接近传感器选型需要遵循的原则、选型的要素以及常见的故障排除。 接近传感器的选型在选型中应遵循以下原则: 1. 当检测体为金属材料时:应选用高频振荡型接近传感器,该类型接近传感器对铁镍、A3钢类检测体检测最灵敏。对铝、黄铜和不锈钢类检测体,其检测灵敏度就低。 2. 当检测体为非金属材料时:应选用电容型接近传感器,如木材、纸张、塑料、玻璃和水等。 3. 金属体和非金属要进行远距离检测和控制时:应选用光电型接近传感器或超声波型接近传感器。 4. 当检测体金属但灵敏度要求不高时:可选用价格低廉的磁性接近传感器或霍尔式接近传感器。 接近传感器选型的要素: ① 检测类型:放大器内藏型、放大器分离型; ② 外形:圆形、方形、凹槽型; ③ 检测距离:以mm为单位; ④ 检测物体:铁、钢、铜、铝、塑料、水、纸等; ⑤ 工作电源:直流、交流、交直流通用; ⑥ 输出形态:常开(NO)、常闭(NC); ⑦ 输出方式:两线式、三线式(NPN、PNP); ⑧ 屏蔽、非屏蔽; ⑨ 导线引出型、接插件式、接插件中继式; ⑩ 应答频率:一秒钟能检测几个物体 接近传感器的常见故障排除 ① 稳定电源给接近传感器单独供电; ② 响应频率在额定范围内; ③ 物体检测过程中有抖动,导致超出检测区域; ④ 多个探头紧密安装互相干扰; ⑤ 传感器探头周围的检测区域内有其他被测物体; ⑥ 接近传感器的周围有大功率设备,有电气干扰。 接近传感器广泛地应用于机床、冶金、化工、轻纺和印刷等行业。在自动控制系统中可作为限位、计数、定位控制和自动保护环节。接近传感器具有使用寿命长、工作可靠、重复定位精度高、无机械磨损、无火花、无噪音、抗振能力强等特点。目前,接近传感器的应用范围日益广泛,其自身的发展和创新的速度也是极其迅速。

相关文档