文档库 最新最全的文档下载
当前位置:文档库 › 基于六自由度运动方程的潜艇转向位置推算表

基于六自由度运动方程的潜艇转向位置推算表

基于六自由度运动方程的潜艇转向位置推算表
基于六自由度运动方程的潜艇转向位置推算表

六自由度运动模拟器

基于模型的阻抗控制六自由度电液斯图尔平台 摘要—本文详细描述了一个以模型为基础的阻抗控制六自由度电液斯图尔平台,刚体和电液伺服阀模型,包括所用伺服阀模型和一套完整的系统方程,也包括摩擦和泄漏液压原件。所设计的控制器是采用系统动力学和液压模型产生伺服阀电流。控制规则包括反馈和前馈两个单独的部分。根据指定的特性阻抗过滤器会修改所需的轨迹,修改后的轨迹被送入系统模型,以减少非线性液压动力的影响。提出了模拟的典型期望轨迹,并得到了拥有良好性能的控制器。 1.导言 最早的6自由度(DOF)斯图尔特高夫平台是在1954年发明的。在1965年,样机的平行机构被用做一个具有六自由度运动平台的飞行模拟器。此后,许多关于这种机构以及相关研究被发表,该机构可以是电动也可以是液动。许多研究人员已经研究了斯图尔特平台的动力学和运动学。然而驱动力却没有被考虑完全。虽然电动斯图尔平台已被广泛运用,但是很少有研究是关于包括驱动和控制的完整动力学。 阻抗控制被认为是一种积极的兼容的运动控制,主要需要行业应用并于周围环境相互作用,例如数控机床,铣床等。这种控制器同时具有安全性和灵活性,相对而言是首选。 液压科学与控制相结合,得到了新的液压系统的应用。这也是为什么液压系统会被作为一些工业和移动式应用机电驱动的首选。包括它们大批量快速生产的能力,它们的耐久性和刚度,还有他们的响应速度,液压体系不同于机电体系,在液压体系中力或例句输出与执行器的电流是不成真比的,因此,液压执行器不能作为力矩的来源模仿,但是可以作为受控阻抗,所以,要设计出了控制机器人的控制器。驱动力/力矩的虚拟设置在这里始终不可行。 控制技术被用来补偿电动液压伺服系统的非线性。研究人员已经提出了关于液压伺服系统的非线性自适应控制技术的假设、反推以及方式。一个强力的控制器是在非线性定量反馈理论的基础上设计的,已被工业液力执行机构所实现,同时考虑了系统和环境的不确定性。一个电动机械手控制的统一方式适用于任何提案。运动学约束议案,以及机机械臂及其环境之间的动态交互研究已经通过审查。制定所需的机械臂阻抗技术和对一个给定应用程序选择适当的阻抗的技术的最优化理论已经被提出。这里有两种控制机电驱动高夫斯图尔特并行平台机械阻抗的空间几何方法,第一种基于球形位置函数,第二种则是利用指数映射关联有限位移与扭转位移平衡的平台。 一个基于模型的高性能的压接头液压伺服系统前馈反馈阻抗控制器已经被提出,在这里,一个阻抗根据在自由空间或空间接触的行为来调整过滤器所需的轨迹,类似已提交的工作,其中基于位置阻抗控制器工业液压机械手已开发。此外,阻抗控制器研究已在遥控轮式液压伺服系统和重型工程中实施。 在这篇论文中,提及了一种基于模型的六自由度电液伺服斯图尔特关节对称平台阻抗控制器,用于描述刚体斯图尔特平台和液压驱动系统,对比其它方法,这里有伺服模型和摩擦模型。先进的控制方案在分析方案时,应用了刚体、驱动力学和伺服阀的输入电流矢量。控制规律包括两个信号,反馈信号和前馈信号。根据指定的行为阻抗过滤器会修改所需的轨迹。修改后的轨迹被送入系统模型,以减少非线性液压动力的影响。现金控制器的性能说明使用了典型的轨迹。拟议的方法可以扩展到串行或闭链机器人和模拟器。 2系统建模 在本节中,研究了六自由度电液伺服斯图尔特平台的动态模型,这是一个由支架和六个线性驱动器组成的闭环运动体系,该体系的原理如图1所示:

六自由度摇摆平台

大黄蜂机器人六自由度摇摆台 大黄蜂机器人有限公司的六自由度平台系统由采用Stewart机构的六自由度运动平台、计算机控制系统、驱动系统等组成。六自由度运动平台(如下图)的下平台安装在地面上,上 平台为运动平台,它由六只电动缸支承,运动平台与电动缸采用六个虎克铰连接,电动缸与固定基座采用六个虎克铰连接,六只电动缸采用伺服电机驱动的电动缸。计算机控制系统通过协调控制电动缸的行程,实现运动平台的六个自由度的运动,即笛卡尔坐标系内的三个平移运动和绕三个坐标轴的转动。

各主要部分简述如下: 本设备主要由以下部分组成:运动上平台、下平台(基座)、电动缸及伺服 电机、驱动器系统、综合控制及监测系统。 各自功能如下: 上平台:是有效载荷的安装基面,提供六自由度的摇摆运动。 下平台:是六自由度摇摆台的安装基面,需要承受足够大的冲击力。 电动缸及伺服电机:通过控制电动缸活塞杆的行程,实现运动平台台体的六自由度运动,共6套。 驱动器系统:接收用户控制指令,通过控制伺服电机的输入,对伺服电机的输出转速和转角进行控制,达到控制电动缸活塞杆出速度和行程的目的,共6套。 综合控制监测系统:硬件为用户计算机,软件为研制方配合开发;同时,它 还对平台的运动过程进行监测,预防和处理系统的异常情况。

平台总体运动能力指标如上表,具体表述如下: a.平台定位精度及重复定位精度为0.5mm及0.1mm; b.平台转动精度及重复转动精度为0.1°及0.05°; c.行程回差小于0.2mm; d.平台X方向运动速度可从0mm/s到250mm/s连续变化;YZ方向运动 速度可从0mm/s到250mm/s连续变化; e.单支杆可承受轴向力不小于700N; f.单支杆的运动速度可从0m/s到250mm/s连续变化; g.平台中位位置固有频率:不小于40Hz; h.机械组件需具有开放性,可拆卸组装; i.机械设计安全系数不小于 2.0,驱动裕度不小于 3.0; j.额定载荷下,全行程往复工作寿命不小于1×104次,存储寿命不小于48月;

六轴运动机器人运动学求解分析_第九讲

六轴联动机械臂运动学及动力学求解分析 V0.9版 随着版本的不断更新,旧版本文档中的一些笔误得到了修正,同时文档内容更丰富,仿真程序更完善。 作者朱森光 Email zsgsoft@https://www.wendangku.net/doc/f08863350.html, 完成时间 2016-02-28

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者从事的工作是软件开发,工作内容跟机器人无关,但不妨碍研究机器人运动学及动力学,因为机器人运动学及动力学用到的纯粹是数学和计算机编程知识,学过线性代数和计算机编程技术的人都能研究它。利用业余时间翻阅了机器人运动学相关资料后撰写此文,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术文章。本文内容的正确性经过笔者编程仿真验证可以信赖。 2机器建模 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右方向为X轴,屏幕竖直向上方向为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,底部灰色立方体示意机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色长方体示意关节2,它能绕图中的Z1轴旋转;蓝色长方体示意关节3,它能绕图中的Z2轴旋转;绿色长方体示意关节4,它能绕图中的X3轴旋转;深灰色长方体示意关节5,它能绕图中的Z4轴旋转;末端浅灰色机构示意关节6即最终要控制的机械手,机器人代替人的工作就是通过这只手完成的,它能绕图中的X5轴旋转。这儿采用关节这个词可能有点不够精确,先这么意会着理解吧。 3运动学分析 3.1齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为0度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为0度。以上定义中角度正负值定义符合右手法则,所有角度定义值均为本关节坐标系相对前一关节坐标系的相对旋转角度值(一些资料上将O4O5两点重合在一起即O4O5两点的距离x4退化为零,本文定义x4大于零使得讨论时更加不失一般性)。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 =cosθ0 s0 = sinθ0 //c0 R0 =[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0 s1 c1 0 0

并联六自由度运动平台

并联六自由度运动平台 1.概述 并联六自由度运动平台通过六个驱动缸(伺服缸或电动缸)的协调伸缩来实现平台在空间六个自由度的运动,即平台沿x、y、z向的平移和绕x、y、z轴的旋转运动(包括垂直、水平、横向、俯仰、侧倾和旋转六个自由度的运动),以及这些自由度的复合运动。并联六自由度运动平台可用于机器人、飞行模拟器、车辆驾驶模拟器、新型加工机床、及卫星、导弹等飞行器、娱乐业的运动模拟(动感电影摇摆台)、多自由度振动摇摆台的精确运动仿真等。 图0-1:六自由度及其坐标系定义图 我公司通过自行设计、安装调试,并开发控制软件,同时采用进口关键件对并联六自由度运动平台进行研究开发,目前已完成多套六自由度运动平台应用,典型应用有列车风档液压仿真试验台、F1国际赛车运动仿真台、汽车驾驶模拟器、飞机和飞碟运动模拟器、振动谱试验、海浪模拟试验等。 六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等一系列高科技领域,是液压及控制技术领域的顶级产品。 2.系统组成 2.1液压伺服类 典型的液压式并联六自由度运动平台主要由机械系统、液压系统、控制系统硬件和控制系统软件四部分组成。

机械系统主要包括:承载平台、上下连接铰链、固定座。 液压系统主要包括:泵站系统、伺服阀、驱动器、伺服油缸和阀块管路。 控制系统硬件主要包括:实时处理器、伺服控制单元、信号调理单元、监控单元和泵站控制单元。 控制系统软件包括:实时信号处理单元、实时运算单元、伺服控制和特殊要求处理单元。 2.2 电动伺服类 电动式并联六自由度运动平台则将伺服油缸用电动缸代替,而伺服阀、泵站系统及阀块管路等则相应取消,增 加运动控制单元。具有系统简洁、响应速度快等优点,是多自由度平台今后重点发展的方向。 3.主要技术参数 以下参数为液压类平台典型值,具体可按用户要求设计制造。 3.1平台主要参数 平台最大负载:静态≥2000KG,动态≥3000KG。 上平台球铰分布园直径1400mm,相邻球心距离157mm; 下平台球铰分布园直径1600mm,相邻球心距离167mm; 伺服缸最小球铰球心距离800mm,最大长度1200mm;(采用Φ63/45~400缸体)。 平台初始高度约700mm。 3.2 泵站技术指标 额定流量:90L/min 最大系统压力:12Mpa; 泵站电机功率:22KW; 空间尺寸:1400×1200×1320 3.3 运动参数 伺服缸运动速度≥200mm/S;有效行程≥400mm。 主要运动参数如下表:

六自由度平台力学仿真研究

六自由度运动平台动力学仿真研究 陈勇军 (华中光电技术研究所—武汉光电国家实验室,武汉430223) 摘要:针对六自由度运动平台设计过程中遇到的问题,文中运用ADAMS软件对六自由度运动平台运动过程进行仿真研究,并进行可平台的逆运动学和正运动学仿真。仿真结果表明:通过仿真可以检测该机构运动过程中的干涉情况,也可直观再现平台的运动过程。还可求出平台的位置反解和位置正解,大大减少了工作量,缩短了产品的研制周期。 关键字:六自由度运动平台;动力学分析;仿真;正解;反解 Research on Simulation of Dynamic Analysis on Six-DOF Motion Platform CHEN Yongjun (Huazhong Institute of Electro-optics—Wuhan National Laboratory for Optoelectronics,Wuhan 430223,China) Abstract:Due to Keywords: Six-DOF motion platform ; dynamic analysis ; simulation; positive solutions; anti-positive solutions 1 引言 六自由度运动平台通过模拟物体在三个方向的平动和转动,即前后平移、左右平移、上下垂直运动、俯仰、滚转和偏航及复合运动,进而可模拟出各种空间运动姿态。六自由度平台作为一种重要的仿真实验设备,已广泛应用于导弹、飞机、舰船和车辆等领域的模拟训练,还可用来模拟地震的情景,在动感电影、娱乐设备等领域也有应用。六自由度运动平台主要由上下两个平台和六个并联的、可独立自由伸缩的缸组成,其中伸缩缸与平台通过球铰联接,通过改变伸缩缸的长度就可实现上平台的各种空间运动[1]。要准确的控制上平台的运动姿态就需要精确的控制六个缸的运动,这样就要求我们了解六自由平台的位置反解和位置正解的算法。杨永立运用欧拉角、旋转变换的方法推导出位置反解方程,并介绍了数值迭代法进行位置正解的过程[2]。李维嘉提出了采用虚拟连杆对结构进行简化,进而求解六自由度并联运动机构正向解的方法[3]。但到目前位置还没有一种非常高效的求六自由度平台位置正解的算法。近年来,随着计算机的快速发展,仿真软件已经成为设计产品过程中的一种重要工具,在运动学仿真方面也出现了许多仿真软件,这其中的杰出代表是ADAMS软件。本文提出了采用ADAMS软件对六自由度运动平台的运动过程进行仿真研究,使平台运动的位置反

六自由度

物体在空间具有六个自由度,即沿X、Y、Z三个直角坐标轴方向的移动自由度和绕这三个坐标轴的转动自由度。因此,要完全确定物体的位置,就必须清楚这六个自由度。 六自由度运动平台是由六支作动筒,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,借助六支作动筒的伸缩运动,完成上平台在空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。可广泛应用到各种训练模拟器如飞行模拟器、舰艇模拟器、海军直升机起降模拟平台、坦克模拟器、汽车驾驶模拟器、火车驾驶模拟器、地震模拟器以及动感电影、娱乐设备等领域,甚至可用到空间宇宙飞船的对接,空中加油机的加油对接中。在加工业可制成六轴联动机床、灵巧机器人等。由于六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等等一系列高科技领域,因而六自由度运动平台的研制变成了高等院校、研究院所在液压和控制领域水平的标志性象征。 空间运动的目标是实现平台在空间运动的三个姿态角度和三个平动位移,即俯仰、滚转、偏航、上下垂直运动、前后平移和左右平移,及六个姿态的复合运动姿态。而空间目标是通过六个液压缸的行程实现的,这就需要一个空间的运动模型完成空间运动的转换,假设空间运动的目标俯仰、滚转、偏航、上下垂直位移、前后平移和左右平移用α,β,γ,X,Y,Z表示,六个油缸的行程用 L(i), (i=1、2、3、4、5、6)表示。整个运动模型如下: L(i)=TT(α,β,γ,X,Y,Z) 其中,TT是一个空间转换矩阵模型。由此实时算出每一运动时刻液压油缸的行程。液压油缸的理论行程再通过D/A接口的转换,给出实际行程值。 多自由度运动控制 多自由度控制系统中,自由度最多为六自由度,并且六自由度运动控制难度最大,设备及系统最复杂,下面主要介绍我公司设计、生产的六自由度运动台。 六自由度运动平台是由六支直线伺服电动缸,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,借助六只伺服电动缸)执行器)的伸缩运动,完成上平台在空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出

六自由度电动

1:系统组成 六自由度平台系统是由六自由度运动平台、计算机控制系统、驱动系统等组成。下平台安装在地面的固定基座基上,上平台为支撑平台。计算机控制系统通过PLC控制驱动器从而控制电机以协调控制电动缸的行程,实现运动平台的六个自由度的运动,。 各主要部分简述如下: 1)运动平台 上平台:连接需要被模拟动作的机构 上铰链:双回转轴的虎克铰结构,用于连接上平台与电动缸的活塞杆。 下铰链:单虎克铰结构,用于连接固定基座与电动缸的筒体。 下平台:安装固定基座。 2)计算机控制系统硬件 运动控制计算机(伺服控制单元):实现平台系统启动/停止、接收上位机发来的位姿控制信息、对电动缸进行运动控制、监控伺服电机驱动器的工作状态、监控系统的运动状态、完成故障处理以及安全保护工作。 信号调理单元:完成与平台系统运动状态相关的各种传感器信号、测试信号和数字I/O信号的调理,以及伺服驱动器的驱动等。 3)系统控制软件 运动控制计算机的软件包括运动控制软件和逻辑控制软件。 2:系统工作原理 平台的控制系统为分层控制结构,监控单元负责人机界面交互,接受用户操作指令。并将控制信号下达给实时控制计算机。 首先,用户输入期望的运动参数(运动平台位姿、速度或加速度),如X向正弦运动。该运动参数传输给运动控制计算机,运动计算机通过运动学反解计算出六个电动缸的运动参数(电动缸位移量);然后,运动计算机根据六支电动缸运动参数和六个电动缸的位移反馈量,驱动六个伺服驱动器,实现六个电动缸闭环位置控制,使六个电动缸达到所要求的位移量,那么运动平台也就达到了所期望的运动姿态。 六自由度运动平台,由于有极为广阔的应用前景,六自由度运动平台是由六支油缸,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,借助六只油缸的伸缩运动,完成上平台在空间六个自由度(X,Y,Z)的运动,从而可以模拟出各种空间运动姿态,可广泛应用到各种训练模拟器如飞行模拟器、舰艇模拟器、海军直升机起降模拟平台、坦克模拟器、汽车驾驶模拟器、火车驾驶模拟器、地震模拟器以及动感电影、娱乐设备等领域,甚至可用到空间宇宙飞船的对接,空中加油机的加油对接中。在加工业可制成六轴联动机床、灵巧机器人等。由于六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等等一系列高科技领域,因而六自由度运动平台的研制变成了高等院校、研究院所在液压和控制领域水平的标志性象征。 售后说明及建议

六轴运动机器人运动学求解分析_第一讲

六轴联动机械臂运动学求解分析 第一讲 作者朱森光 Email zsgsoft@https://www.wendangku.net/doc/f08863350.html,

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者工作主要从事软件开发跟机器人毫无关系,利用业余时间研究整理机器人技术相关的文章,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术资料。本系列文章的所有文字、图片及相关资料均为原创,内容正确性经过笔者亲自编程仿真验证可以信赖。 2机器建模 2.1坐标系 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右为X轴,屏幕水平向上为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,灰色立方体为机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色为关节2,它能绕图中的Z1轴旋转;蓝色为关节3,它能绕图中的Z2轴旋转;绿色为关节4,它能绕图中的X3轴旋转;红色为关节5,它能绕图中的Z4轴旋转;黄色为关节6,它能绕图中的X5轴旋转。 2.2齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为-60度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为+60度。以上定义中角度正负值定义符合右手法则。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 cosθ0 s0 = sinθ0 = //c0 R0=[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0

六自由度运动平台方案设计报告

编号 密级内部阶段标记 C 会签 校对 审核 批准六自由度运动平台 方案设计 名称

内容摘要: 针对YYPT项目在原理样机出现的问题,对YYPT原理样机从结构设计、伺服系统等方面进行优化设计,以满足设计及使用要求。 主 YYPT 优化 题 词 更改单号更改日期更改人更改办法 更 改 栏

1概述 YYPT原理样机用原库房留存的345厂的直流电机作为动力源,直流驱动器及工控机作为控制系统元件,采用VB软件进行控制软件的编制,因设计及器件选型的原因,导致YYPT原理样机,在速度、精度、运动规律上等几个技术指标无法满足原规定的指标要求,现在此基础上进行优化方案的设计。 2 原理样机技术状态 2.1 原理样机方案 2.1.1 组成 原理样机采用工控机作为系统的控制单元,工控机内配有研华PCI1716和PCI1723作为A/D和D/A模拟量卡,驱动器采用AMC公司的型号为12A8的伺服驱动器,并配有直流可调电源其输出电流可达到150A,采用KH08XX(3)电动缸作为运动平台的六条支腿,电动缸上安装有电阻尺作为位置反馈器件,上平台与电动缸连接采用球笼联轴器,下平台与电动缸连接采用虎克铰链方式。具体产品组成表见表2.1。 序号产品名称型号厂家数量备注 1 电动缸KH08XX(3)西安方元明 6 安装345厂电机 2 电阻尺LTS-V1-375 上海徳测 6 3 驱动器50A8 AMC 6 3 A/D卡PCI1716 研华 1 4 D/A卡PCI1723 研华 1 5 工控机610H 研华 1 6 直流电源 1 2.1.2 结构方案 六自由度运动平台是由六条电动缸通过虎克铰链和球笼万向节联轴器将上、下两个平台连接而成,下平台固定在基础上,借助六条电动缸的伸缩运动,完成上平台在三维空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。

6自由度控制算法

由于六自由度位置姿态调整平台动力学特性和串联机器人是相通的,所以可以借鉴。增强型PD控制器,这种控制器是在一个线性PD控制的基础上加上沿期望轨迹计算的名义动力学前馈部分以及一个非线性补偿部分,它的最大优点是可以根据规划好的期望轨迹离线计算前馈补偿部分,从而降低实时计算的计算量。计算力矩控制方法,它通过计算力矩的方式控制非线性系统沿期望轨迹运动,如果机器人动力学模型是准确的,计算力矩控制器可以实现动态解耦,并得到一个指数稳定的闭环动力方程,从而实现跟踪误差的指数收敛。 在并联机器人的控制策略中,除了常用的PID控制之外,还有自适应控制,滑模变结构控制,鲁棒控制以及智能控制等控制方法。 基于滑模控制的方法 在具有不确定性的系统的研究和应用中,滑模控制一直是一个非常有效的控制方法。滑模控制也叫变结构控制,其本质是一类特殊的非线性控制,且非线性表现为控制的不连续性。这种控制策略与其他控制的不同之处在于系统的“结构”不是一成不变的,而是可根据系统当前的状态有目的地不断变化。对于具有信号传输时延的交互控制遥操作系统,也可以应用滑模控制来实现。只要知道时延大小,滑模控制就可以实现变时延情况下的遥操作系统的稳定控制。由于滑动模态与系统对象参数及扰动无关,因此滑模控制具有响应快、对应参数变化及扰动不灵敏、无需系统在线辨识、物理实现简单等优点。 鲁棒控制 由于遥操作系统中操作对象的不确定性,以及操作任务的实时变化,导致遥操作系统的特性和参数随工作状态和工作环境的变化而变化,这样就无法得到精确的描述遥操作系统特性的数学模型,给控制系统的设计带来困难。鲁棒控制设计的目标就是在模型不精确和存在其他变化因素的条件下,使系统仍能保持预期的性能。因此鲁棒控制在遥操作系统中发挥了巨大作用,它较大程度地消除了主观上认识的模型和真实的被控对象之间的误差和不确定性。 基于干扰观测器(DOB)的鲁棒运动控制方法由Ohnishi提出,目前广泛应用于各类电动高精度机械伺服系统"干扰观测器设计基于被控对象的开环数学模型,其基本思想是将外部力矩干扰及模型参数变化造成的实际对象与名义模型输出的差异,统统等效到控制输入端,即观测出等效干扰,在控制中引入等量的补偿,实现对各种干扰的完全抑制,同时还可以减弱非线性环节对伺服系统性能的影响,具有很强的鲁棒性。 六自由度并联平台运动控制器的设计可以分为基于铰接空间控制和基于工作空间控制两大类。 基于铰接空间的控制器设计主要依靠平台机构的运动学关系和驱动装置的动态模型,而不考虑六自由度平台的动力学模型,它假设六个液压缸是独立、无耦合的关系,对每个液压伺服系统分别设计控制器而不用考虑其它关节的影响,这就使得并联平台的控制器设计任务转化为一系列单轴伺服系统的控制器设计。 基于工作空间的控制器设计则需要进行平台动力学分析,建立整个并联平台系统的动力学模型,在给定了平台期望的运动轨迹后,求出按照期望轨迹运动所需的力或力矩,然后控制各个液压伺服系统的驱动装置输出所求出的力或力矩,从而使平台按照期望轨迹运动。 常规PID控制 常规PID目前是最常用的工业控制方法,PID控制器各校正环节的作用

六自由度机器人运动分析及优化

本科毕业论文(设计) 题目(中文)六自由度机器人运动分析及优化 (英文) Motionanalysis and optimization of 6-DOF robot 学院信息与机电工程学院院 年级专业 2013级汽车服务工程(中德)) 学生姓名吴子璇正 学号 130154494 7 指导教师安康安 完成日期 2017 年 3 月

摘要 当今世界,工业化日趋成熟,机器人被广泛的应用于各行各业,最常用到的有四自由度,六自由度机器人。其中,自动化水平较高的汽车制造业和电子装配业经常常常要使用到六自由度机器人。因此对其实施运动学分析,是进行科学设计的基础,也是降低机器人生产成本,优化机器人运动轨迹的前提。此外,运动分析过程有效的模拟了机器人运动的真实情况,有助于提供有效可行的优化方案。本文主要探讨六自由度机器人的运动分析,基于经典运动学以及动力学的研究方法概念,首先通过solidworks做出机械臂各部分零件的三维图,然后通过SolidWorks装配出六自由度机器人机械臂的三维模型。通过该模型,选取其中一个关节和底座,并用SolidWorks进行运动学分析,对六自由度机器人的运动学和动力学计算方法进行了仿真验证。最后得到六自由度机器人的其中一个自由度的运动仿真实例。通过对该运动仿真实例的分析,得出最佳优化方案,优化机器人的运动轨迹提高机器人的工作效率,降低机器人生产成本。 关键词:六自由度机器人;运动分析;运动学;动力学;

目录 摘要................................................. I Abstract ............................... 错误!未定义书签。 1 绪论 (1) 1.1 课题背景及研究的目的和意义 (1) 1.2机器人国内外发展现状及前景展望--------------------------1 2 六自由度机器人运动学分析 (4) 2.1六自由度机器人的结构-------------------------------------1 2.2运动学分析----------------------------------------------1 3 六自由度机器人动力学分析 (6) 3.1综述----------------------------------------------------3 3.2机器人动力学研究方法------------------------------------3 3.2.1几项假设-------------------------------------------3 3.2.2目标-----------------------------------------------4 3.2.3数学工具-------------------------------------------5 3.3动力学原理----------------------------------------------3

基于六自由度并联平台的模拟目标追踪

基于六自由度并联平台的模拟目标追踪系统设计 摘要 六自由度并联(Stewart)平台具有承载能力强、结构刚度大、精度高、系统动态响应快、累计误差小、反解容易等优点,经年来已被广泛应用于运动模拟器、并联机床、精密定位平台及各种娱乐场合。在此发展趋势下,将六自由度并联平台应用于模拟目标追踪,设计出了一套新型、高效的系统。上位机应运Visual Basic编程语言,通过Modbus协议实现PC机与PAC控制器的通讯,运用基于神经网络整定的PID控制算法,从而控制液压系统实现对平台的控制,完成目标追踪任务。 关键词:六自由度并联平台 Visual Basic编程 PAC控制器神经网络PID Abstract Six degrees of freedom parallel (Stewart) platform with strong bearing capacity, stiffness, high precision, fast dynamic responses of the system, the cumulative error is small, and easy in the solution, the years have been widely applied in motion simulator, a parallel machine tool, precision positioning platform and various kinds of entertainment places. Under this development tendency, six degree-of-freedom parallel platform is first used to simulate target tracking, designed a set of new and efficient system. PC use Visual Basic programming language, through the Modbus protocol implementation PC communications with PAC controller, using PID control algorithm based on neural network setting, so as to control hydraulic system to realize the control of the platform, target tracking task. Keywords: six degree-of-freedom parallel Visual Basic programming PAC controller Neural network PID 0引言 目标追踪在现代化战争、民用、工业、科研等领域都具有重要的影响。由于其广泛的应用前景,目标追踪问题一直备受关注。 目标追踪对机械执行系统的精度及响应速度要求甚高。而六自由度并联平台相对于六自由度并联平台相对串联平台具有以下特点: (1)刚度大、结构稳定。这是由于上运动平台经由6个液压缸的支撑。 (2)承载能力强。由于刚度大,较串联式机构在相同的自重或体积的情况下,具有高得多的承载能力。 (3)误差小、位姿精度高。这是因为没有串联机构的误差累积和放大。 (4)动力性能好。串联式机构的驱动电动机及传动系统大都放在运动着的大小臂上,增加了系统的惯性,恶化了动力性能,并联式机构将动力源放在机座上,减小了运动负载。 (5)反解容易。多自由度机构运动过程中,需要进行实时反解计算。串联机构的反解十分困难,而对并联机构反解非常容易。 由上述特点可以看出六自由度并联平台更能满足其要求。 1.六自由度并联平台的总装设计 1.1六自由度并联平台的机械部分 Stewart平台由上、下两个平台、六个驱动关节和连接球铰组成,上平台为运动平台,下平台为基座,上、下平台的六个铰点分别组成一个六边形,连接6个液压缸作为驱动关节,每个液压缸两端各连接一个球铰。六个驱动关节的伸缩运动是独立的,由液压比例压力阀控制各液压缸作伸缩运动,从而改变各个驱动缸的长度,使动平台在空间的位置和姿态发生变化。因此该平台是通过六个驱动杆的协调动作来实现三个线性移动及三个转动共六个自由度的运动。

六自由度汽车驾驶运动模拟器设计

摘要 汽车驾驶模拟器是一种用于汽车产品开发、“人—车—环境”交通特性研究或驾驶培训的重要工具。近年来,由于具有安全性高、再现性好、可开发性强、成本低等显著特点,研究开发驾驶模拟器已经成为国内外一个重要发展方向。 本文在查阅国内外大量资料的基础上,结合老师的研究课题主要对六自由度汽车驾驶模拟器液压系统部分进行设计。六自由度汽车运动模拟器采用液压伺服阀控制液压缸来驱动模拟平台的运动,以实现汽车驾驶模拟器运动姿态模拟。本文主要进行机械机构的设计、液压伺服系统设计、液压泵站设计和液压缸的设计等。 通过模拟器的机构设计和驱动液压伺服系统设计,结合电气系统能够实现汽车在不同运行状态的模拟,当驾驶员坐在驾驶舱系统的座椅上进行模拟驾驶时,完全能够感受到实际汽车驾驶的各种体感,为实车训练驾驶提供了可替代的模拟平台;本设计也为今后的进一步研究及其在娱乐模拟器、动感电影等产业的实际推广和应用方面奠定了基础。 关键词:汽车驾驶模拟器六自由度运动平台液压伺服系统运动姿态控制

Abstract The Automobile-driving i an important tool which used for the development of auto mobile product and the study of the transportation characteristics of “man-car-environment”or the driver training .In recent years, the study of the automobile-driving simulator used for development has become an important development direction in the world because of the notable characteristics of high safety, well reappearance of scene, easy to develop and low cost. This article is based on searching the large quantity of information about at home and abroad, and combines with the tea cher’s research task which mainly designs the part of 6-dof driving Simulator of hydraulic system .The 6-dof motion simulator adopts valves of hydraulic servo to control actuator to drive the movement of driving simulation platform, and to achieve the movement posture simulation of the automobile driving simulator. This article is mainly about the designing of machine, the system of hydraulic servo, hydraulic pump station, and actuator and so on. According to the designing of agencies of simulator and hydraulic servo system, it can combines the electrical system which can bring out the imitation of cars in different movement conditions, when the driver simulating drive on the seat of cockpit system, you can feel the feeling of driving a true car, and it also offer the simulator platform which can be replaced for true driving training. At the same time, this designing is also establishes for the further researches and the practice extension and use. Keywords:Driving-automobile simulator, 6-dof of motion platform, the system of hydraulic servo, the control of campaign attitude

六自由度机械手的坐标建立及运动学分析

第**卷第**期20**年*月 机械工程学报 JOURNAL OF MECHANICAL ENGINEERING Vo l.** No.* *** 20** DOI:10.3901/JME.20**.**.*** 六自由度机械手的坐标建立及运动学分析 摘要:从运动学分析的基础上着手研究轨迹控制的问题,利用运动学逆解的方式分析复杂轨迹运动的可行性和实用性。通过建立机械手的笛卡尔坐标系,推导出机械手的正、逆运动学矩阵方程,并研究了正、逆 运动学方程的解;在此基础上建立机械手的工作空间,并讨论其工作空间的灵活性和存在可能性。 因此本文的另一种方式对六自由度串联机械手的复杂运动控制问题进行研究,提出以机械手示教手柄引导末端执行器对复杂运动轨迹进行预设计。然后通过记录程序进行复杂轨迹的再实现,再对记录程序进行预修改,最终通过现有的程序进行设计编程完成复杂轨迹设计任务。并利用MATLAB对轨迹进行仿真,对比其实际与计算的正确性。 最后本设计通过六自由度串联机械手实现平面文字轨迹,得出其设计的方式。即首先利用示教手柄实现轨迹预设,记录预设轨迹程序,然后再对比程序初始化坐标进行手动编程。 关键词:六自由度机械手,笛卡尔坐标系,运动学方程,仿真,示教手柄 The coordinates of six degrees of freedom manipulator and kinematics analysis is established WU Yanchao JIN Yuanxun ZHAO Xin LI Daohai SONG Ping MENG Ya ABSTRACT:T his article based on the analysis of kinematics to study the trajectory control problems, use of inverse kinematics of the complex mode of tracking movement of the feasibility and practicality. Through the establishment of the manipulator Cartesian coordinates, derived manipulator is the inverse kinematics matrix equation and the study is the inverse kinematics of the equation solution on the basis of this establishment manipulator working space. And discuss their work space The flexibility and the possibility exists. So in another way to the six degrees of freedom series manipulator motion control the complex issues of research, to handle the machinery Shoushi guide for the implementation of the end of the complex pre-designed trajectory. Then track record of the complicated procedure to achieve, and then record the pre-amended procedures.The eventual adoption of the existing procedures designed trajectory design of complex programming tasks. And using MATLAB simulation of the track, compared with its actual calculation is correct. The final design through six degrees of freedom series manipulator track to achieve flat text, draw their design approach. That is, first of all use of teaching handle achieve trajectory default the track record of default procedures, and then compared to manual procedures initialized coordinate programming. key words:Six degree-of-freedom manipulators,Cartesian coordinates, Equations of motion,Simulation, Demonstration handle

相关文档