文档库 最新最全的文档下载
当前位置:文档库 › 直流电机的调速方法

直流电机的调速方法

直流电机的调速方法
直流电机的调速方法

第八章直流调速系统

概述

调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方法来实现速度的调节。电气调速有许多优点,如可简化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此,在生产机械中广泛采用电气方法调速。由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长期以来,直流调速系统一直占据垄断地位。当然,近年来,随着计算机技术、电力电子技术和控制技术的发展,交流调速系统发展很快,在许多场合正逐渐取代直流调速系统。但是就目前来看,直流调速系统仍然是自动调速系统的主要形式。在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需要高性能可控电力拖动的场合,仍然广泛采用直流调速系统。而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。因此,我们先着重讨论直流调速系统。

8.1.1直流电机的调速方法

根据第三章直流电机的基本原理,由感应电势、电磁转矩以及机械特性方程式可知,直流电动机的调速方法有三种:(1)调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向

下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑调速的系统来说,这种方法最好。变化遇到

的时间常数较小,能快速响应,但是需要大容量可调直流电源。(2)改变电动机主磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。

变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。(3)改变

电枢回路电阻。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。改变电阻调速缺点很多,目前很少采用,仅在有些起重机、卷扬机及电车等调速性能要求不高或低速运转时间不长的传动系统中采用。弱磁调速范围不大,往往是和调压调速配合使用,在额定转速以上作小范围的升速。因此,自动控制的直流调速系统往往以调压调速为主,必要时把调压调速和弱磁调速两种方法配合起来使用。直流电动机电

枢绕组中的电流与定子主磁通相互作用,产生电磁力和电磁转矩,电枢因而转动。直流电动机电磁转矩中的两个可控参量和是互相独立的,可以非常方便地分别调节,这种机理使直流电动机具有良好的转矩

控制特性,从而有优良的转速调节性能。调节主磁通一般还是通过调节励磁电压来实现,所以,不管是调压调速,还是调磁调速,都需要可调的直流电源。

8.1.3调速系统性能指标

任何一台需要转速控制的设备,其生产工艺对控制性能都有一定的要求。例如,精密机床要求加工精度达到几十微米至几微米;重型机床的进给机构需要在很宽的范围内调速,最高和最低相差近300倍;容量几千kW的初轧机轧辊电动机在不到1秒的时间内就得完成从正转到反转的过程;高速造纸机的抄纸速度达到1000m/min,要求稳速误差小于%。所有这些要求,都可以转化成运动控制系统的稳态和动态指标,作为设计系统时的依据。转速控制要求

各种生产机械对调速系统提出了不同的转速控制要求,归纳起来有以下三个方面:(1)调速。在一定的最高转

速和最低转速范围内,分档(有级)地或者平滑(无级)地调节转速。(2)稳速。以一定的精度在所需转速上稳定地运行,不因各种可能的外来干扰(如负载变化、电网电压波动等)而产生过大的转速波动,以确保产品质量。(3)加、减速控制。对频繁起、制动的设备要求尽快地加、减速,缩短起、制动时间,以提高生产率;对不宜经受剧烈速度变化的生产机械,则要求起、制动尽量平稳。以上三个方面有时都须具备,有时只要求其中一项或两项,其中有些方面之间可能还是相互矛盾的。为了定量地分析问题,一般规定几种性能指标,以便衡量一个调速系统的性能。

稳态指标

运动控制系统稳定运行时的性能指标称为稳态指标,又称静态指标。例如,调速系统稳态运行时调速范围和静差率,位置随动系统的定位精度和速度跟踪精度,张力控制系统的稳态张力误差等等。下面我们具体分析调速系统的稳态指标。(1)调速范围D 生产机械要求电动机能达到的最高转速nmax和最低转速nmin之比称为调速

范围,用字母D表示,即()其中nmax和nmin一般指额定负载时的转速,对于少数负载很轻的机械,例如精密磨床,也可以用实际负载的转速。在设计调速系统时,通常视nmax为电动机的额定转速nnom。(2)静差率S 当系统在某一转速下运行时,负载由理想空载变到额定负载时所对应的转速降落与理想

空载转速no之比,称为静差率S,即()显然,静差率表示调速系统在负载变化下转速的稳定程度,它和机械特性的硬度有关,特性越硬,静差率越小,转速的稳定程度就越高。

?图不同转速下的静差率

(3)调压调速系统中D,S和之间的关系在直流电动机调压调速系统中,就是电动机的额定速度nnom,若额定负载时的转速降落为,则系统的静差率应该是最低转速时的静差率,即()而额定负载时的最低转速为()考虑到式(),式()可以写成

()而调速范围为()将式()代入式(),

得()式()表达了调速范围D、静差率S和额定速降之间应满足的关系。对于同一个调速系统,其特性硬度或值是一定的,如果对静差率的要求越严(即S值越小),系统允许的调速范围D就越小。例如,某调速系统电动机的额定转速为nnom=1430r/min,额定速降为,

当要求静差率S≤30%时,允许的调速范围为?如果要求静差率S≤10%,则调速范围只有

动态指标

运动控制系统在过渡过程中的性能指标称为动态指标,动态指标包括跟随性能指标和抗扰性能指标两类。(1)跟随性能指标在给定信号(或称参考输入信号)R(t)的作用下,系统输出量C(t)的变化情况用跟随性能指标来描述。对于不同变化方式的给定信号,其输出响应不一样。通常,跟随性能指标是在初始条件为零的情况下,以系统对单位阶跃输入信号的输出响应(称为单位阶跃响应)为依据提出的,如图所示。具体的跟随性指标有下述几项:

图表示跟随性能指标的单位阶跃响应曲线

①上升时间tr 单位阶跃响应曲线从零起第一次上升到稳态值所需的时间称为上升时间,它表示动态响应的快速性。?②超调量动态过程中,输出量超过输出稳态值的最大偏差与稳态值之比,用百分数表示,叫做

超调量,即?()?超调量用来说明系统的相对稳定性,超调量越小,说明系统的相对稳定性越好,即动态响应比较平稳。?③调节时间ts 调节时间又称过渡过程时间,它衡量系统整个动态响应过程的快慢。原则上它应该是系统从给定信号阶跃变化起,到输出量完全稳定下来为止的时间,对于线性控制系统,理论上要到才真正稳定。实际应用中,一般将单位阶跃响应曲线衰减到与稳态值的误差进入并且不再超出允许误差带(通常取稳态值的±5%或±2%)所需的最小时间定义为调节时间。

8.2.1晶闸管(SCR)

晶闸管的结构

闸管晶是在半导体二极管、三极管之后出现的一种新型的大功率半导体器件,它是一种可控制的硅整流元件,亦称可控硅。其外形、结构及图形符号如图所示,它有三个电极,即阳极A,阴极K,控制极(又称门极)G。

根据功率的大小,具有TO92、TO220、螺栓形和平板形等多种封装形式,如图(a)所示。螺栓形带有螺栓的那一端是阳极A,它可与散热器固定,另一端的粗引线是阴极K,细线是控制极G ,这种结构更换方便,用于100A 以下元件。平板形中间的金属环是控制极G ,离控制极远的一面是阳极A,近的一面是阴极K,这种结构散热效果比较好,用于200A以上的元件。?晶闸管是由四层半导体构成的,如图(b)所示。它由单晶硅薄片P1、N1、P2、N2四层半导体材料叠成,形成三个PN结。晶闸管的图形符号如图(c)所示。

?图晶闸管外形、结构及图形符号?(a)外形封装(b)内部结构(c)图形符号

晶闸管的工作原理

实验证明,当在晶闸管的阳极与阴极之间加反向电压时,这时不管控制极的信号情况如何,晶闸管都不会导通。当在晶闸管的阳极与阴极之间加正向电压时,若在控制极与阴极之间没有电压或加反向电压,晶闸管还是不会导通。只有当在晶闸管的阳极与阴极之间加正向电压时,在控制极与阴极之间加正向电压,晶闸管才会导通。但晶闸管一旦导通,不管控制极有没有电压,只要阳极与阴极之间维持正向电压,则晶闸管就维持导通。下面来分析晶闸管的工作机理。根据晶闸管的内部结构,可以把它等效地看成是两只晶体管的组合,其中,一只为PNP型晶体管VT1,另一只为NPN型晶体管VT2,中间的PN结为两管共用,如图所示。

?图晶闸管的等效电路?(a)结构分解图(b)三极管等效电

当晶闸管的阳极与阴极之间加上正向电压时,这时VT1和VT2都承受正向电压,如果在控制极上加上一个对阴极为正的电压,就有控制电流Ig流过,它就是VT2的基极电流Ib2 ,经过VT2的放大,在VT2的集电极就产生电流Ic2=β2 Ib2=β2 Ig(β2为VT2的电流放大系数),而这个IC2又恰恰是VT1的基极电流Ib1,这个电流再经过VT1的放大作用,便得到VT1的集电极电流IC2=β1 Ib1=β1β2Ig(β1为VT1的电流放大系数),由于VT1的集电极和VT2的基极是接在一起的,所以这个电流又流入VT2的基极,再次放大。如此循环下去,形成强烈的正反馈,直至元件全部导通为止,这个导通过程是在极短的时间内完成的,一般不超过几微秒,称为“触发导通过程”。在晶闸管导通后,VT2的基极始终有比控制电流Ig大得多的电流流过,因此,当晶闸管一经导通,控制极即使去掉控制电压,晶闸管仍然可保持导通。?当在晶闸管阳极与阴极间加反向电压时,VT1和VT2便都处于反向电压的作用下,它们都没有放大作用,这时即使加入控制电压,导通过程也不可能产生。由于晶闸管导通时,相当于两只三极管饱和导通,因此,阳极与阴极间的管压降为1V左右。?综上所述,可以得到

下述结论:?(1)起始时若控制极不加电压,则不论阳极加正向电压还是反向电压晶闸管都不导通,这说明晶闸管具有正、反向阻断的能力。?(2)晶闸管的阳极和控制极相对于阴极同时加正向电压时晶闸管才导通,这是晶闸管导通必须同时具备的两个条件。?(3)在晶闸管导通之后,其控制极就失去控制作用,欲使晶闸管恢复阻断状态,必须把阳极正向电压降低到一定的数值以下。

伏安特性

晶闸管的阳极电压与阳极电流的关系,称为晶闸管的伏安特性,如图所示。晶闸管的阳极与阴极间加上正向电压时,在晶闸管控制极开路(Ig=0)情况下,开始元件中有很小的电流(称为正向漏电流)流过,晶闸管阳极与阴极间表现出很大的电阻,处于截止状态(称为正向阻断状态),简称断态。?当阳极电压上升到某一数值时,晶闸管突然由阻断状态转化为导通状态,简称通态。阳极这时的电压称为断态不重复峰值电压(UDSM),或称正向转折电压(UBO)。

?图晶闸管的伏安特性曲线

导通后,元件中流过较大的电流,其值主要由限流电阻(使用时由负载)决定。在减小阳极电源电压或增加负载电阻时,阳极电流随之减小,当阳极电流小于维持电流IH时,晶闸管便从导通状态转化为阻断状态。由图可看出,当晶闸管控制极流过正向电流Ig时,晶闸管的正向转折电压降低, Ig越大,转折电压越小,当Ig足够大时,晶闸管正向转折电压很小,一加上正向阳极电压,晶闸管就导通。实际规定,当晶闸管元件阳极与阴极之间加上6V直流电压时,能使元件导通的控制极最小电流(电压)称为触发电流(电压)。?在晶闸管阳极与阴极间加上反向电压时,开始晶闸管处于反向阻断状态,只有很小的反向漏电流流过。当反向电压增大到某一数值时,反向漏电流急剧增大,这时,所对应的电压称为反向不重复峰值电压(URSM),或称反向转折(击穿)电压(UBR)。可见,晶闸管的反向伏安特性与二极管反向特性类似。

晶闸管的主要参数

为了正确选用晶闸管元件,必须要了解它的主要参数,一般在产品的目录上都给出了参数的平均值或极限值,产品合格证上标有元件的实测数据。?(1)断态重复峰值电压UDRM 在控制极断路和晶闸管正向阻断的条件下,可以重复加在晶闸管两端的正向峰值电压称为断态重复峰值电压UDRM,其数值比正向转折电压小10%左右。?(2)反向重复峰值电压URRM?在控制极断路时,可以重复加在晶闸管元件上的反向峰值电压称为反向重复峰值电压URRM,此电压数值规定比反向击穿电压小10%左右。?通常把UDRM与URRM中较小的一个数值标作器件型号上的额定电压。由于瞬时过电压也会使晶闸管遭到破坏,因而在选用元件的时候,额定电压一般应该为正常工作峰值电压的2~3倍作为安全系数。?(3)额定通态平均电流(额定正向平均电流)IT 在环境温度不大于40oC和规定的冷却条件下,晶闸管元件在电阻性负载的单相工频半波电路中导通角不小于170°,即全导通的条件下,可以连续通过的电流(在一个周期内)的平均值,称为额定通态平均电流IT,简称额定电流。即?

()?这里需要特别说明的是,晶闸管允许流过的电流的大小主要取决

于元件的结温,而在规定的环境温度和冷却条件下,结温的高低仅与发热有关,晶闸管管芯的发热又由流过其

电流的有效值决定。因此,在使用时应按照工作中晶闸管实际流过的电流的有效值与通态平均电流所对应的电

流有效值相等的原则来选取晶闸管的额定电流。?(4)维持电流IH?在规定的环境温度和控制极断路的条件

下,维持元件继续导通的最小电流称为维持电流IH 。一般为几十毫安~一百多毫安,其数值与元件的温度成反

比,在120℃时维持电流约为25℃时的一半。当晶闸管的正向电流小于这个电流时,晶闸管将自动关断。

8.2.6三相桥式全控整流电路

三相桥式全控整流电路相当于一组共阴极的三相半波和一组共阳极的三相半波可控整流电路串联起来构成的。

习惯上将晶闸管按照其导通顺序编号,共阴极的一组为VT1、VT3和VT5,共阳极的一组为VT2、VT4和VT6。其

电路如图所示

对于图的电路,可以像分析三相半波可控整流电路一样,先分析若是不可控整流电路的情况,即把晶闸管都换成二极管,这种情况相当于可控整流电路的时的情况。即要求共阴极的一组晶闸管要在自然换相点1、3、5点换相,

而共阳极的一组晶闸管则会在自然换相点2、4、6点换相。因此,对于可控整流电路,就要求触发电路在三相电源相电压正半周的1、3、5点的位置给晶闸管VT1、VT3和VT5送出触发脉冲,而在三相电源相电压负半周的2、4、6点的位置给晶闸管VT2、VT4和VT6送出触发脉冲,且在任意时刻共阴极组和共阳极组的晶闸管中都各有一只晶闸管导通,这样在负载中才能有电流通过,负载上得到的电压是某一线电压。其波形如图所示。为便于分析,可以将一个周期分

成6个区间,每个区间

区间,u相电位最高,在时刻,即对于共阴极组的u相晶闸管VT1的的时刻,给其加触发脉冲,VT1满足其导通的两个条件,同时假设此时共阳极组阴极电位最低的晶闸管VT6已导通,这样就形成了由电源u相经VT1、负载及VT6回电源v相的一条电流回路。若假设电流流出绕组的方向为正,则此时u相绕组的电流为正,v相绕组上的电流为负。在负载电阻上就得到了整流后的直流输出电压,且,为三相交流电源的线电压之一。过后到时刻,进入区间,这时u相相电压仍是最高,但对于共阳极组的晶闸管来说,由于w相相电压为最负,即VT2的阴极电位将变得最低。所以在自然换相点2点,即时,给晶闸管VT2加触发脉冲,使其导通,同时由于VT2的导通,使VT6承受了反向的线电压而关断了。即共阳极组由刚才的VT6换流到VT2,则形成的电流通路仍由电源u相流出,经过还在导通的共阴极组的晶闸管VT1,向负载供电,由VT2流回到电源w相,此时。同样,再过后至时刻,进入区间,VT4阴极所接的u相相电压为最负,故又该触发晶闸管VT4,输出电压为。在区间,触发导通VT5,输出电压为。在区间,给共阳极组的晶闸管VT6加触发脉冲,使得输出电压变为。以后又重复上述过程。由图的波形图可以看出,三相桥式全控整流电路中两组晶

闸管的自然换相点对应相差。当时,各个晶闸管均是在各自的自然换相点换相,导通的顺序是

VT1-VT2-VT3-VT4-VT5-VT6-V1,每只晶闸管轮流导通,相位相差了,也即六只晶闸管的触发脉冲依次相差

。负载上得到的输出电压的波形,从相电压的波形上看,共阴极晶闸管导通时,若以变压器二次侧的中点为参考点,则整流后的输出电压为相电压正半周的包络线,而共阳极组晶闸管导通时,输出电压为相电压负半周的包络线,总的整流输出电压是两条包络线之间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。因此三

相桥式全控整流电路的输出波形可用电源线电压波形表示。由图中的波形可以看出晶闸管所承受的电压的波形与三相半波电路时的分析是一样的,即晶闸管本身导通时为零;同组的其他相邻晶闸管导通时,就承受相应的线电压。故晶闸管承受的最大的正反向电压仍为。而由流过一只晶闸管的电流的波形可以看出,每只晶闸管在一周

期内都导通了,波形的形状与相应段的的波形相同。需要特别说明的是,三相桥式全控整流电路要保证任何时候都有两只晶闸管导通,这样才能形成向负载供电的回路,并且是共阴极和共阳极组成各一个,不能为同一组的晶闸管。所以,在此电路合闸启动过程中或电流断续时,为保证电路能正常工作,就需要保证同时触发应导通的两只晶

闸管,即要同时保证两只晶闸管都有触发脉冲。一般可以采用两种方式:一是采用单宽脉冲触发,即脉冲宽度大于,小于,一般取,如图中的,这样可以保证在第二个脉冲来的时候,前一个脉冲还没有消失,这样两只晶闸管VT1和VT2会同时有脉冲,因篇幅有限,在图中画出了,其他五个宽脉冲没有画出。

另一种脉冲形式是采用双窄脉冲,即要求本相的触发电路在送出本相的触发脉冲时,给前一相补发一个辅助脉冲,两个脉冲相位相差,脉宽一般是。如图中,在给晶闸管VT3送出脉冲的同时,又给晶闸管VT2补发

了一个辅助冲。虽然双窄脉冲的电路比较复杂,但其要求的触发电路的输出功率小,可以减小脉冲变压器的体积。而单宽脉冲触发方式虽然可以少一半脉冲输出,但为了不使脉冲变压器饱和,其铁心体积要做得大一些,绕组的匝数也要多,因而漏电感增大,导致输出的脉冲前沿不陡,这样对于多个晶闸管串联时是不利的。虽然可以利用增加去磁绕组的办法来改善这一情况,但这样又会使装置复杂化。所以两种触发方式中常选用的是双窄脉冲触发方式。

8.2.7晶闸管的触发电路

普通晶闸管是半控型电力电子器件。为了使晶闸管由阻断状态转入导通状态,晶闸管在承受正向阳极电压的同时,还需要在门极加上适当的触发电压。控制晶闸管导通的电路称为触发电路。触发电路常以所组成的主要元件名称进行分类,包括简单触发电路、单结晶体管触发电路、晶体管触发电路、集成电路触发器和计算机控制数字触发电路等。?控制GTR、GTO、功率MOSFET、IGBT等全控型器件的通断则需要设置相应的驱动电路。基极(门极、栅极)驱动电路是电力电子主电路和控制电路之间的接口。采用性能良好的驱动电路,可使电力电子器件工作在较理想的开关状态,缩短开关时间,减少开关损耗。另外,许多保护环节也设在驱动电路或通过驱动电路来实现。?触发电路与驱动电路是电力电子装置的重要组成部分。为了充分发挥电力电子器件的潜力、保证装置的正常运行,必须正确设计与选择触发电路与驱动电路。?晶闸管的触发信号可以用交流正半周的一部分,也可用直流,还可用短暂的正脉冲。为了减少

门极损耗,确保触发时刻的准确性,触发信号常采用脉冲形式。晶闸管对触发电路的基本要求有如下几条:?(1)触发信号要有足够的功率?为使晶闸管可靠触发,触发电路提供的触发电压和触发电流必须大于晶闸管产品参数提供的门极触发电压与触发电流值,即必须保证具有足够的触发功率。例如,KP50要求触发电压不小于,触发电流不小于100mA;KP200要求触发电压不小于4V,触发电流不小于200mA。但触发信号不许超过规定的门极最大允许峰值电压与峰值电流,以防损坏晶闸管的门极。在触发信号为脉冲形式时,只要触发功率不超过规定值,允许触发电压或触发电流的幅值在短时间内大大超过铭牌规定值。?(2)触发脉冲必须与主回路电源电压保持同步?为了保证电路的品质及可靠性,要求晶闸管在每个周期都在相同的相位上触发。因此,晶闸管的触发电压必须与其主回路的电源电压保持固定的相位关系,即实现同步。实现同步的办法通常是选择触发电路的同步电压,使其与晶闸管主电压之间满足一定的相位关系。?(3)触发脉冲要有一定的宽度,前沿要陡?为使被触发的晶闸管能保持住导通状态,晶闸管的阳极电流在触发脉冲消失前必须达到擎住电流,因此,要求触发脉冲应具有一定的宽度,不能过窄。特别是当负载为电感性负载时,因其中电流不能突变,更需要较宽的触发脉冲,才可使元件可靠导通。例如,单相整流电路,电阻性负载时脉冲宽度应大于10us,电感性负载时则因大于100us;三相全控桥中,采用单脉冲触发时脉宽应大于60°(通常取90°),而采用双脉冲触发时,脉宽为10°左右即可。此外,很多晶闸管电路还要求触发脉冲具有陡的前沿,以实现精确的触发导通控制。?(4)触发脉冲的移相范围应能满足主电路的要求?触发脉冲的移相范围与主电路的型式、负载性质及变流装置的用途有关。例如,单相全控桥电阻负载要求触发脉冲移相范围为180°,而电感性负载(不接续流管时)要求移相范围为90°。三相半波整流电路电阻负载时要求移相范围为150°,而三相全控桥式整流电路电阻负载时要求移相范围为120°。

8.3.6转速、电流双闭环直流调速系统组成及静特性

问题的提出

在工业部门中,有许多生产机械,例如龙门刨床、可逆轧钢机等,由于生产的需要及加工工艺特点,经常处于起动、制动、反转的过渡过程中,起到和制动过程的时间在很大程度上决定了生产机械的生产率,如何缩短这一部分时间,以充分发挥生产机械效能,提高生产率,是转速控制系统首先要解决的问题。为此,在电动机最大电流(转矩)受限制的约束条件下,希望充分发挥电动机的过载能力,在过渡过程中始终保持电流(转矩)为允许的最大值,使电力拖动系统尽可能用最大的加速度起动,在电动机起动到稳态转速后,又让电流(转矩)立即降下来,使转矩与负载转矩相平衡,从而转入稳态运行。这样的理想起动过程如图所示,起动电流呈方形波,转速是线性增长的。这种在最大电流(转矩)受限制条件下调速系统能得到最快起动过程的控制策略称为“最短时间控制”或“时间最优控制”。为了实现在允许条件下最快起动,关键是要获得一段使电流保持为最大值idm的恒流过程。按照反馈控制规律,采用某个物理量的负反馈可以保持该量基本不变,因此采用电流负反馈应该能得到近似的恒流过程。前面讨论的电流截止负反馈调速系统,在起动过程中具有限流作用,使起动电流不超过电机的最大允许电流值,但并不能保证在整个起动过程中以恒定电流起动。例如对于图所示的采用PI调节器的电流截止负反馈闭环调速系统,在稳态时,它要力图使

,在电动机转速为零时,其最大电流为idm=(+)/β(因)。当转速上升时,增大,起动电流则随之下降,因此实际起动过程如图所示。显然,它与理想起动过程较大区别,要慢得多。原因

是这种系统的转速反馈信号和电流反馈信号在一点进行综合,加到一个调节器的输入端,在起动过程中两种反馈都起作用;正常负载时实现速度调节,电流超过临界值时进行电流调节,达到最大电流后马上又降下来,使电动机转矩也随之减小,因此加速过程必然加长。再者,一个调节器同时要完成两种调节任务,调节器的动态参数也无法保证两种调节过程同时具有良好的动态品质。

转速、电流双闭环调速系统的组成

图所示为转速、电流双闭环调速系统的原理框图。为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接。把转速调节器ASR的输出作为电流调节器ACR的输入,用电

流调节器的输出去控制晶管整流的触发器。从闭环结构上看,电流调节环在里面,是内环;转速调节环在外面,叫做外环。?为了获得良好的静、动态性能,双闭环调速系统的两个调节器通常都采用PI调节器。在图中,标出了两个

调节器输入输出电压的实际极性,它们是按照触发器GT的控制电压为正电压的情况标出的,而且考虑运算放大器的反相作用。通常,转速电流两个调节器的输出值是带限幅的,转速调节器的输出限幅电压为,它决定了电流调节器给定电压的最大值;电流调节器的输出限幅电压是,它限制了晶闸管整流装置输出电压的最大值。

?图转速电流双闭环调速系

转速、电流双闭环调系统的静特性

根据图的原理图,可以很容易地画出双闭环调系统的静态结构图如图所示。其中PI调节器用带限幅的输出特性表示,这种PI调节器在工作中一般存在饱和和不饱和两种状况。饱和时输出达到限幅值;不饱和时输出未达到限幅值,这样的稳态特征是分析双闭环调速系统的关键。当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非输入信号反向使调节器所在的闭环成为开环。当调节器不饱各时,PI调节器的积分(I)作用使输入偏差电压在稳态时总是等于零。

?图双闭

环调速系统静态结构图

实际上,双闭环调速系统在正常运行时,电流调节器是不会达到饱和状态的,对于静特性来说,只有转速调节器存在饱和与不饱和两种情况。?(1)转速调节器不饱和?在正常负载情况下,转速调节器不饱和,电流调节器也不饱和,稳态时,依靠调节器的调节作用,它们的输入偏差电压都是零。因此系统具有绝对硬的静特性(无静差),即?

()?且?()?由式()可得?()?从而得到图静特性的段。由于转速调节器不饱和,<,所以<。这表明,段静特性从理想空载状态(=0)一直延续到

电流最大值,而一般都大于电动机的额定电流。这是系统静特性的正常运行段。

?图双闭环调速系统的静特性

(2)转速调节器饱和?当电动机的负载电流上升时,转速调节器的输出也将上升,当上升到某一数值()

时,转速调节器输出达到限幅值,转速环失出调节作用,呈开环状态,转速的变化对系统不再产生影响。此时只剩下电流环起作用,双闭环调系统由转速无静差系统变成一个电流无静差的单闭环恒流调节系统。稳态时?

()?因而()()?是所对应的电枢电流最大值,由设计者根据电动机的容许过载能力和拖动系统允许的最大加速度选定。这时的静特性为图中的A-B段,呈现很陡的下垂特性。由以上分析可知,双闭环调速系统的静特性在负载电流<时表现为转速无静差,这时ASR起主要调节作用。当负载电流达到之后,ASR饱和,ACR起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。这就是采用了两个PI

调节器分别形成内、外两个闭环的效果,这样的静特性显然比带电流截止负反馈的单闭环调速系统的静特性要强得多。?综合以上分析结果可以看出,双闭环调速系统在稳态工作中,当两个调节器都不饱和时,系统变量之间存在如

下关系:?()?()?()?

上述关系表明,双闭环调速系统在稳态工作点上,转速n是由给定电压和转速反馈系数决定的,转速调节器的

输出电压即电流环给定电压是由负载电流和电流反馈系数决定的,而控制电压即电流调节器的输出电压

则同时取决于转速n和电流,或者说同时取决于和。这些关系反映了PI调节器不同于P调节器的特点:比例调节器的输出量总是正比于输入量,而PI调节器的稳态输出量与输入量无关,而是由其后面环节的需要所决定,后

面需要PI调节提供多大的输出量,它就能提供多少,但这要在调节器不饱和的情况下。?采用转速、电流双闭环调速系统后,由于增加了电流内环,而电网电压扰动被包围在电流环里,当电网电压发生波动时,可以通过电流反馈得到及时调节,不必等到它影响到转速后,再由转速调节器作出反应。因此,在双闭环调速系统中,由电网电压扰动所引起的动态速度变化要比在单态环调速系统中小得多。综上所述,在双闭环调速系统中,转速调节器和电流调节器的

作用可以归纳如下:转速调节器的作用①使电动机转速n跟随给定电压变化,保证稳态转速无静差。②对负载

扰动起抗扰作用。③其输出限幅值决定允许的最大电流,在起动时给出最大电流给定信号。电流调节器的作用①对电网电压扰动起及时抗扰作用。②起动时保证获得恒定的最大允许电流。③当电动机过载甚至堵转时,限制电枢

电流的最大值,起到快速的安全保护作用。④在转速调节过程中,使电流跟随其给定电压变化。

1、过电压保护

对过电压很敏感,当正向电压超过其断态重复峰值电压U DRM一定值时就会误导通,引发电路故障;当外加反向电压超过其反向重复峰值电压U RRM一定值时,就会立即损坏。因此,必须研究过电压的产生原因及抑制过电压的方法。

过电压产生的原因主要是供给的电功率或系统的储能发生了激烈的变化,使得系统来不及转换,或者系统中原来积聚的电磁能量来不及消散而造成的。主要发现为雷击等外来冲击引起的过电压和开关的开闭引起的冲击电压两种类型。由雷击或高压断路器动作等产生的过电压是几微秒至几毫秒的电压尖峰,对晶闸管是很危险的。由开关的开闭引起的冲击电压又分为如下几类:

(1)交流电源接通、断开产生的过电压例如,交流开关的开闭、交流侧熔断器的熔断等引起的过电压,这些过电压由于变压器绕组的分布电容、漏抗造成的谐振回路、电容分压等使过电压数值为正常值的2至10多倍。一般地,开闭速度越快过电压越高,在空载情况下断开回路将会有更高的过电压。

(2)直流侧产生的过电压如切断回路的电感较大或者切断时的电流值较大,都会产生比较大的过电压。这种情况常出现于切除负载、正在导通的晶闸管开路或是快速熔断器熔体烧断等原因引起电流突变等场合。

(3)换相冲击电压包括换相过电压和换相振荡过电压。换相过电压是由于晶闸管的电流降为0时器件内部各结层残存载流子复合所产生的,所以又叫载流子积蓄效应引起的过电压。换相过电压之后,出现换相振荡过电压,它是由于电感、电容形成共振产生的振荡电压,其值与换相结束后的反向电压有关。反向电压越高,换相振荡过电压也越大。

针对形成过电压的不同原因,可以采取不同的抑制方法,如减少过电压源,并使过电压幅值衰减;抑制过电压能量上升的速率,延缓已产生能量的消散速度,增加其消散的途径;采用电子线路进行保护等。目前最常用的是在回路中接入吸收能量的元件,使能量得以消散,常称之为吸收回路或缓冲电路。

(4)阻容吸收回路通常过电压均具有较高的频率,因此常用电容作为吸收元件,为防止振荡,常加阻尼电阻,构成阻容吸收回路。阻容吸收回路可接在电路的交流侧、直流侧,或并接在晶闸管的阳极与阴极之间。吸收电路最好选用无感电容,接线应尽量短。

(5)由硒堆及压敏电阻等非线性元件组成吸收回路上述阻容吸收回路的时间常数RC是固定的,有时对时间短、峰值高、能量大的过电压来不及放电,抑制过电压的效果较差。因此,一般在变流装置的进出线端还并有硒堆或压敏电阻等非线性元件。硒堆的特点是其动作电压与温度有关,温度越低耐压越高;另外是硒堆具有自恢复特性,能多次使用,当过电压动作后硒基片上的灼伤孔被溶化的硒重新覆盖,又重新恢复其工作特性。压敏电阻是以氧化锌为基体的金属氧化物非线性电阻,其结构为两个电极,电极之间填充的粒径为10~50μm的不规则的ZNO微结晶,结晶粒间是厚约1μm的氧化铋粒界层。这个粒界层在正常电压下呈高阻状态,只有很小的漏电流,其值小于100μA。当加上电压时,引起了电子雪崩,粒界层迅速变成低阻抗,电流迅速增加,泄漏了能量,抑制了过电压,从而使晶闸管得到保护。浪涌过后,粒界层又恢复为高阻态。压敏电阻的特性主要由下面几个参数来表示。

标称电压:指压敏电阻流过1mA直流电流时,其两端的电压值。{{分页}}

通流容量:是用前沿8微秒、波宽20微秒的波形冲击电流,每隔5分钟冲击1次,共冲击10次,标称电压变化在-10%以内的最大冲击电流值来表示。

因为正常的压敏电阻粒界层只有一定大小的放电容量和放电次数,标称电压值不仅会随着放电次数增多而下降,而且也随着放电电流幅值的增大而下降,当大到某一电流时,标称电压下降到0,压敏电阻出现穿孔,甚至炸裂;因此必须限定通流容量。

漏电流:指加一半标称直流电压时测得的流过压敏电阻的电流。

由于压敏电阻的通流容量大,残压低,抑制过电压能力强;平时漏电流小,放电后不会有续流,元件的标称电压等级多,便于用户选择;伏安特性是对称的,可用于交、直流或正负浪涌;因此用途较广。

2、过电流保护

由于半导体器件体积小、热容量小,特别像晶闸管这类高电压大电流的功率器件,结温必须受到严格的控制,否则将遭至彻底损坏。当晶闸管中流过大于额定值的电流时,热量来不及散发,使得结温迅速升高,最终将导致结层被烧坏。

产生过电流的原因是多种多样的,例如,变流装置本身晶闸管损坏,触发电路发生故障,控制系统发生故障等,以及交流电源电压过高、过低或缺相,负载过载或短路,相邻设备故障影响等。

晶闸管过电流保护方法最常用的是快速熔断器。由于普通熔断器的熔断特性动作太慢,在熔断器尚未熔断之前晶闸管已被烧坏;所以不能用来保护晶闸管。快速熔断器由银制熔丝埋于石英沙内,熔断时间极短,可以用来保护晶闸管。

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

无刷直流电机(BLDC)双闭环调速解析

无刷直流电机(BLDC)双闭环调速系统 在无刷直流电机双闭环调速系统中,双闭环分别是指速度闭环和电流闭环。对于PWM 的无刷直流电机控制来说,无论是转速的变化还是由于负载的弯化引起的电枢电流的变化,可控量输出最终只有一个,那就是都必须通过改变PWM的占空比才能实现,因此其速度环和电流环必然为一个串级的系统,其中将速度环做为外环,电流环做为内环。调节过程如下所述:由给定速度减去反馈速度得到一个转速误差,此转速误差经过PID调节器,输出一个值给电流环做给定电流,再由给定电流减去反馈电流得到一个电流误差,此电流误差经过PID 调节器,输出一个值就是占空比。 在速度环和电流环的调节过程中,PID的输出是可以作为任意量纲(即无量纲,用标幺值来表示;标幺值:英文为per unit,简写为pu,是各物理量及参数的相对单位值,是不带量纲的数值)来输入给下一环节或者执行器的,因此无需去管PID输出的量纲,只要是这个输出值反映了给定值和反馈值的差值变化,能够使这个差值无限趋近于零即可,相当于将输出值模糊化,不用去搞的太清楚,如果你要是一直在这里纠结输出值具体是个什么东西时,那么你就会瞎在这里出不来了。假如你要控制一个参数,并且这个参数的大小和你给定量和反馈量有着直接的关系(线性关系或者一阶导数关系或者惯性关系等),那么就可以不做量纲变换。比如速度环的PID之后的输出就可以直接定义为转矩,因为速度过慢就要提高转矩,速度过快就要减小转矩,PID输出量的意义是调整了这个输出量,就可以直接改变你要最终控制的参数,并且这个输出量你是可以直接来控制的,这种情况下PID输出的含义是你可以自己定的,比如直流电机,速度环输出你可以直接定义为转矩,也可以定义为电流,然后适当的调节PID的各个参数,最终可以落到一个你能直接控制的量上,在这里最终的控制量就是占空比的值,当占空比从0%—100%时对应要写入到寄存器里面的值为0—3750时,那么0—3750就是最终的控制量的范围。 在调速控制中,既要满足正常负载时的速度调节,还要满足过负载时进行电流调节。如果单独采用一个调节器时,其调节器的动态参数无法保证两种调节过程同时具有良好的动态品质,因此采用两个调节器,分别调节主要被调量转速和辅助被调量电流,以转速调节器的输出作为电流调节器的输入,电流环是通过电流反馈控制使电机电枢电流线性受控,可达到电机输出力矩的线性控制,并使其动态范围响应快,最后再输出去控制占空比,从而改变MOSFET的导通时间,二者之间实行串级连接,它是直流电力传动最有效的控制方案。 在双闭环调速系统中,输入参数有三个,分别为给定速度和反馈速度以及反馈电流,其中给定速度由用户指定,一般指定为旋转速度(RPM 转/分钟)或直线速度(m/s 米/秒)。而反馈速度和反馈电流则需要由传感器来获取,下面来讲一下在无刷直流电机控制系统中,反馈速度和反馈电流的获取。 反馈速度:简单点的就由电机内用来检测转子位置的三个霍尔元件来得到,高端点的就加光电编码器,分别称为霍尔元件测速和编码脉冲测速。 霍尔元件测速:在电机磁极对数为1的情况下,转子旋转一周的时间内,霍尔传感器输出3路各180度信号,其中每两个传感器之间有60度的交叠信号,只要检测其中一路霍尔传感器的信号宽度就能计算出电机的速度。用输入捕捉(CAP)端口在上升沿捕捉一个时间标签,再在下降沿捕捉一个时间标签,根据两个时间标签的差值得出周期,由于霍尔传感器是在电机内固定不变的,因此每次在霍尔传感器的信号宽度下旋转的角度是一定的(即走过的距离是固定的),最后用此固定的距离除以周期即可得到速度,即T法测速,测量两个信号

无刷直流电机调速--C语言源程序

附录 1. C语言源程序: #include"stdio.h" #include"myapp.h" #include"ICETEK-VC5502-EDU.h" #include"scancode.h" #include"lcd.h" #define CTRSTATUS (*(unsigned int * )0x608000) //port8000 #define CTRLED (*(unsigned int * )0x608004) //port8004 #define MCTRKEY (*(unsigned int * )0x608005) //port8005 #define CTRCLKEY (*(unsigned int * )0x608006) //port8006 #define CTRMOTORBSPEED (*(unsigned int * )0x608003) void InitMcBSP(); void INTR_init( void ); void InitForMotorB( void ); void showparameters(); void LCDPutString(unsigned int * pData,int x,int y,unsigned int nCharNumber,unsigned color); void PIDControl(int rk,int yk); void PrintParameters(); //定时器分频参数 #define T100 99 // 100个时钟周期中断一次 #define T2Hz 20000 // 20000个时钟周期读取速度一次 //工作变量 usigned int uWork,uN,nCount,nCount1,nCount2,nCount3,nCount4; int nSSS,nJSSpeed,pwm1; int md,wc; unsigned int nScreenBuffer[30*128]; float a=0.6f,b=0.2f,c=0.1f,duk; int ek,ek1,ek2,tz;

无刷直流电动机调速系统设计说明

目录 1绪论 (1) 1.1 直流无刷电动机发展状况 (1) 1.2直流无刷电机控制技术的发展 (1) 2 直流无刷电动机的工作原理 (2) 2.1 直流无刷电动机的结构与原理 (2) 2.2三相绕组直流无刷电动机控制主回路的基本类型 (4) 2.3直流无刷电动机控制系统中的PWM控制器 (5) 3 直流无刷电动机控制系统的数学模型 (6) 3. 1直流无刷电动机的基本方程 (7) 3. 2直流无刷电动机控制系统的动态数学模型 (10) 4 硬件电路 (12) 4.1 主电路 (12) 4.2换相电路 (14) 5 软件部分设计 (17) 5. 1软件总体构成 (17) 5. 2主程序的设计 (17) 5. 3中断子程序的设计 (19) 结论 (21) 参考文献 (22) 致谢 .............................................................. 错误!未定义书签。

1绪论 1.1 直流无刷电动机发展状况 电动机作为机电能量转换装置,其应用围已经遍及国民经济的各个领域,电动机主要类型有同步电动机、异步电动机与直流电动机三种。直流电动机具有运行效率高和调速性能好等诸多优点,因此被广泛应用于各种调速系统中。但传统的直流电动机均采用机械电刷的方式进行换向,存在相对的机械摩擦,和由此带来的噪声、火花、无线电干扰以及寿命短等致命弱点。因此,早在1917年,Bulgier就提出了用整流管代替有刷直流电机的机械电刷,从而诞生了无刷直流电机(BLDCM: Brushless Direct Current Motor)的基本思想。 1955年,美国D·Harrison等人首次申请了用晶体管换向线路代替有刷直流电机机械电刷的专利,标志着无刷直流电机的诞生。1978年,原联邦德国MANNESMANN公司的Indramat分部在汉诺威贸易展览会上正式推出其MAC永磁无刷直流电机及其驱动系统,标志着永磁无刷直流电机真正进入了实用阶段。二十世纪80年代国际上对无刷电机开展了深入的研究,先后研制成方波和正弦波无刷直流电机,在10多年的时间里,无刷直流电机在国际上己得到较为充分的发展。现代电力电子器件工艺日臻成熟,出现了功率晶体管(GTR)、可关断晶闸管(GTO)、功率场效应晶体管(MOSFET),特别是绝缘栅双极晶体管(IGBT ), MOS可控晶闸管(IGCT)的开发成功,使无刷直流电机功率驱动电路的可靠性和稳定性得到保障。直流无刷电动机的发展也使得传统的电机学科同当代许多新技术的发展密切相关。随着大功率半导体器件、电力电子技术、微电子技术、数字信号处理技术、现代控制理论的发展以及高性能永磁材料的不断出现,如今的无刷直流电机系统己经成为集特种电动机、功率驱动器、检测元件、控制软件与硬件于一体的典型的机电一体化产品,体现了当今工程科学领域的许多最新成果。 1.2直流无刷电机控制技术的发展 常规控制器(PID控制)尽管控制精度较高,但它需要建立描述动态系统的精确的数学模型,对于未知动态变化的系统要建立精确的数学模型是比较困难的。比如干扰、参数漂移和噪声等不可能在很高的精度下进行模型化。

直流电机调速方案及优缺点教学文案

直流电机调速方案及优缺点 1、电枢回路串联电阻调速 可在电源电压不变的情况下,改变电枢回路中的电阻,达到调速的目的。调速的机械特性如下图所示。当电枢回路中串联的电阻越大,直线的倾斜率越小。 电枢回路串联电阻调速优缺点 1、 由于电阻智能分段调节,因此调速的平滑性比较差。 2、 低速时,调速电阻上有较大电流,损耗大,电机效率低。 3、 轻载时调速范围比较小。 4、 串入电阻阻值越大,机械特性越软,稳定越差。 2、降低电源电压调速 根据直流电动机机械特性方程式可以知道,改变电额定电压,因此电枢电压只能在额定电压一下进行调节。 N T Tn n T

降低电源电压调速的优点 1、电压便于平滑性调节,调速平滑性好,可实现无级调速。 2、调速前后机械斜率不变,机械特性硬度高,稳定性好,调速范围广。 3、调速是损耗小,调速经济性好。 4、改变励磁磁通道调速 根据机械特性方程可以知道,当u为恒定时,调节励磁磁通,也可以实现电动机转速的目的。额定运行的电动机,其磁通已基本饱和,因此改变磁通只能从额定值往下掉。 Tn T 改变励磁磁通道调速的优点 1、调节平滑,可实现无级调速。 2、励磁电流小,能量损耗小,调节前后电动机的效率不变,经济性好。 3、机械特性较硬,转速稳定。 4、本次我们用的是pwm即脉冲宽度调节。 它主要是通过改变输出方波的占空比,使得负载上的平均接通时间从0-100%变化,以达到调整负载速度的目的。脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。图2-3a所示为脉冲宽度调制系统的原理框图和波形图。该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。因此,从图2-3中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。

直流电机调速方法

直流电动机分为有换向器和无换向器两大类。直流电动机调速系统最早采用恒定直流电压给直流电动机供电,通过改变电枢回路中的电阻来实现调速。这种方法简单易行、设备制造方便、价格低廉;但缺点是效率低、机械特性软,不能得到较宽和平滑的调速性能。该法只适用在一些小功率且调速范围要求不大的场合。30年代末期,发电机-电动机系统的出现才使调速性能优异的直流电动机得到广泛应用。这种控制方法可获得较宽的调速范围、较小的转速变化率和平滑的调速性能。但此方法的主要缺点是系统重量大、占地多、效率低及维修困难。近年来,随着电力电子技术的迅速发展,由晶闸管变流器供电的直流电动机调速系统已取代了发电机-电动机调速系统,它的调速性能也远远地超过了发电机-电动机调速系统。特别是大规模集成电路技术以及计算机技术的飞速发展,使直流电动机调速系统的精度、动态性能、可靠性有了更大的提高。电力电子技术中IGBT等大功率器件的发展正在取代晶闸管,出现了性能更好的直流调速系统。 直流电动机的转速n和其他参量的关系可表示为 (1) 式中 Ua——电枢供电电压(V); Ia ——电枢电流(A); Ф——励磁磁通(Wb); Ra——电枢回路总电阻(Ω); CE——电势系数,,p为电磁对数,a为电枢并联支路数,N为导体数。

由式1可以看出,式中Ua、Ra、Ф三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra;;(2)改变电枢供电电压Ua;(3)改变励磁磁通Ф。 1. 改变电枢回路电阻调速 各种直流电动机都可以通过改变电枢回路电阻来调速,如图1(a)所示。此时转速特性公式为 (2) 式中Rw为电枢回路中的外接电阻(Ω)。 图1(a) 改变电枢电阻调速电路图1(b) 改变电枢电阻调速时的机械特性 当负载一定时,随着串入的外接电阻Rw的增大,电枢回路总电阻R=(Ra+Rw)增大,电动机转速就降低。其机械特性如图1(b)所示。Rw的改变可用接触器或主令开关切换来实现。 这种调速方法为有级调速,调速比一般约为2:1左右,转速变化率大,轻载下很难得到低速,效率低,故现在已极少采用。 2. 改变电枢电压调速 连续改变电枢供电电压,可以使直流电动机在很宽的范围内实现无级调速。

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

直流电动机设计方案

直流电动机设计方案 第1章前沿 1.1 课题研究的背景及意义 直流电动机以其良好的起动、制动性能,较宽范围内平滑调速的优点,在许多调速要求较高、要求快速正反向、以蓄电池为电源的电力拖动领域中得到了广泛的应用。近年来,虽然高性能交流调速技术得到了很快的发展,在某些领域交流调速系统已逐步取代直流调速系统。然而直流调速系统系统不仅在理论上和实践上都比较成熟,目前还在应用,比如轧钢机、电气机车等都还有用直流电机;而且从控制规律的角度来看,交流拖动控制系统的控制方式是建立在直流拖动控制系统的基础之上的,从某种意义上说有相似的地方。因此,掌握和了解直流拖动控制系统的控制规律和方法是非常必要的。 从生产机械的要求的角度看,电力拖动控制系统分为调速系统、伺服系统、多电动机同步控制系统、张力控制系统等多种类型。而各种系统大多都是通过控制转速来实现的,因此调速系统是电力拖动控制系统最基本的系统[1]。 从直流电机在国民生产生活中所占位置的角度来看,直流电机目前依旧应用于工业生产中,并广泛应用于人们的生活中。因此直流电机的控制技术的发展很大程度上影响着国民经济的增长,影响着人们的生产生活水平,因此,对直流电机调速系统的研究还是很有必要的。 1.2 课题发展历程及趋势 在很长的一段时间里直流电动机作为最主要的电力拖动工具,其应用已经渗透到人们的工作、学习、生活的各个方面。早期电动机调速控制器主要由模拟器件构成,由于模拟器件存在的固有缺点,比如存在温漂,零漂电压等,使系统控制精度和可靠性降低。后来,随着可编程控制器比如AT89C51,PLC等和IGBT、GTR等电力电子开关器件,传感器技术等的发展使得直流电机调速系统进入了数字控制的阶段,这使得直流电机调速系

直流无刷电机转速控制

一、 直流无刷电机转速控制 1. 模拟PID 控制 1.1 模拟PID 控制原理 在模拟控制系统中,最常用的控制器就是模拟PID 控制器。以下图所示直流电机 控制系统为例,说明PID 控制器控制电机转速的原理。图中)(0t n 为转速设定值,)(t n 为转速反馈值,)()()(0t n t n t e -=为偏差信号,偏差信号通过PID 控制器后产生控制作用作用于直流电机从而控制电机转速到设定值。 常见的模拟PID 控制系统如下图所示。PID 控制器由比例、积分、微分的线性组合构成。控制规律如下: ]) ()(1)([)(0?++=t d i p dt t de T d e T t e K t u ττ * 其中: p K ——控制器的比例系数 i T ——控制器的积分系数 d T ——控制器的微分系数 1) 比例部分 比例部分的数学表达式:)(t e K p 。 比例部分的作用是对偏差信号做出快速反应,一旦控制器检测到偏差,比例部分就 能迅速产生控制作用,且偏差越大,控制作用越强。但仅存在比例控制的系统存在稳态偏差。比例系数越大,响应越快,过渡越快,稳态偏差也越小,但系统也越不稳定,因此比例系数必须选择恰当。 2) 积分部分 积分部分的数学表达式: ?t i p d e T K 0 )(ττ。

从积分部分表达式可以看出,只要系统输出与设定值存在偏差,积分作用就会不断增加,知道偏差为零,因此积分部分可以消除稳态偏差。但积分作用会降低系统的响应速度,增加系统的超调量。积分常数越小,积分作用越强,过渡过程容易产生震荡,但回复时间减小;积分常数越大,积分作用越弱,过渡过程不产生震荡,但回复时间增长。因此应根据具体情况选取积分常数。 3) 微分部分 微分部分的数学表达式: dt t de T K d p ) (。 微分作用能阻值偏差的变化。它根据偏差的变化趋势进行控制。偏差变化越快,微分作用越强,能在偏差变化之前就行控制。微分作用的引入有助于减小超调量,克服振荡;但微分作用对噪声很敏感,导致系统的错误响应,使系统不稳定。 为实现PID 控制器的软件实现,将式*进行适当离散化,即离散PID 。 2. 数字PID 控制 2.1 位置式PID 算法 离散化处理的方法是,以T 为采样周期,对模拟信号进行采样,以k 为采样序列号,进行以下近似: T e e dt t de e T d e kT t k k k j j t 1 )()(-=-≈≈≈∑?ττ 将上式带入式*,得到如下式所示的位置式离散PID 控制规律。 ][1 T e e T e T T e K u k k d k j j i k p k -=-++ =∑ ** 由于位置式PID 要对t 时刻之前的所有输出进行记录,工作量大,对计算机硬件要求高。增量式PID 可避免这些。 2.2 增量式PID 算法 由式**得到 ][2 11 11T e e T e T T e K u k k d k j j i k p k ---=---++ =∑ 将式**与上式相减,得到增量式PID 控制规律如下 211)21()1(---++-++ =-=?k d p k d p k d i p k k k e T T K e T T K e T T T T K u u u *** 一旦得出控制作用的增量,就可递推得出当前控制作用的输出。 2.3 控制器参数整定 1) 离线整定法 步骤 1:将控制器从“自动”模式切换至“手动”模式(此时控制器输出完全由人工控制),人为以阶跃方式增大或减少控制器输出,并记录控制器相关的输入输出动态响应数据。 步骤 2:由阶跃响应数据估计特性参数 K , T ,τ。

无刷永磁直流电机调速系统

毕业设计论文 题目永磁无刷直流电机调速系统设计 (院)系电气与信息工程系 专业电气工程及其自动化班级 0001 学号 0001120121 学生姓名万志雄 导师姓名谢卫才 完成日期 2004-6-15

湖南工程学院 毕业设计(论文)任务书 设计(论文)题目:无刷永磁直流电机调速系统 姓名万志雄系别电气与信息工程系专业电气工程及其自动化班级0001 学号 指导老师谢卫才教研室主任 一、基本任务及要求: 阐述无刷直流电机的发展过程,基本原理和结构。从无刷永磁直流电动机的基本原理和调速原理出发,设计出一个无刷永磁直流电机和系统。 二、进度安排及完成时间: 2月16日明确设计任务书和具体安排 2月20日下午设计任务书抽查 2月16日-3月6日查阅资料、撰写文献综述、撰写开题报告 3月6日抽查文献综述、开题报告撰写情况 3月7日-3月21日毕业实习、撰写实习报告 3月22日-5月29日毕业设计 4月底毕业设计中期检查 5月30日-6月15日撰写毕业设计说明书(论文) 6月16日毕业设计说明书抽查(论文) 6月16日-6月20日修改、装订毕业设计说明书、指导教师评阅 6月18日-6月26日毕业设计答辩(公开答辩、分组答辩)

前言 永磁无刷直流电动机由于没有换向火花,没有无线电干扰,既具有交流电动机的结构简单,运行可靠,维护方便等一系列优点,又具有直流电动机的运行效率高,无励磁损耗以及调速性能好等诸多特点,因此被广泛用于国民经济的各个领域,并且日益普及。所以,对于永磁无刷直流电动机的研究将是具有非常重要的意义.本文针对永磁无刷直流电动机所具有的各种优点 本课题对永磁无刷直流电动机的研究基于以下几个方面:无刷直流电机本体的研究, 气隙磁场和电磁转矩的研究, 电磁转矩的研究, 电气损耗的研究, 系统仿真的研究, 换向逻辑的问题的研究, 位置传感器的设计的研究. 但是,由于许多原因,无刷永磁直流电机还存在缺陷,并没有完全适应国民经济的发展,且电机的需求量在随着国民经济的迅猛增长而不断增大。由此可以看出,研究新型无刷直流电机是当务之急。 本课题主要从无刷永磁直流电动机的基本原理出发,阐述无刷永磁直流电动机的基本结构、控制和具体的应用,并且设计一台无刷永磁直流电动机。 本课题主要解决以下几个方面的问题:永磁无刷直流电动机的结构原理,电磁设计和具体应用.

对直流无刷电机的pid控制

PID闭环速度调节器采用比例积分微分控制 闭环速度调节器采用比例积分微分控制(简称PID控制),其输出是输入的比例、积分和微分的函数。PID调节器控制结构简单,参数容易整定,不必求出被控对象的数学模型,因此PID 调节器得到了广泛的应用。 PID调节器虽然易于使用,但在设计、调试无刷直流电机控制器的过程中应注意:PID调节器易受干扰、采样精度的影响,且受数字量上下限的影响易产生上下限积分饱和而失去调节作用。所以,在不影响控制精度的前提下对PID控制算法加以改进,关系到整个无刷直流电机控制器设计的成败。 2速度设定值和电机转速的获取 为在单片机中实现PID调节,需要得到电机速度设定值(通过A/D变换器)和电机的实际转速,这需要通过精心的设计才能完成。 无刷直流电机的实际转速可通过测量转子位置传感器(通常是霍尔传感器)信号得到,在电机转动过程中,通过霍尔传感器可以得到如图2所示的周期信号。 由图2可知,电机每转一圈,每一相霍尔传感器产生2个周期的方波,且其周期与电机转速成反比,因此可以利用霍尔传感器信号得到电机的实际转速。为尽可能缩短一次速度采样的时间,可测得任意一相霍尔传感器的一个正脉冲的宽度,则电机的实际转速为:但由于利用霍尔传感器信号测速,所以测量电机转速时的采样周期是变化的,低速时采样周期要长些,这影响了PID 调节器的输出,导致电机低速时的动态特性变差。解决的办法是将三相霍尔传感器信号相“与”,产生3倍于一相霍尔传感器信号频率的倍频信号,这样可缩短一次速度采样的时间,但得增加额外的硬件开销。直接利用霍尔传感器信号测速虽然方便易行,但这种测速方法对霍尔传感器在电机定子圆周上的定位有较严格的要求,当霍尔传感器在电机定子圆周上定位有误差时,相邻2个正脉冲的宽度不一致,会导致较大的测速误差,影响PID调节器的调节性能。若对测速精度要求较高时,可采用增量式光电码盘,但同样会增加了电路的复杂性和硬件的开销。 电机速度设定值可以通过一定范围内的电压来表示。系统中采用了串行A/D(如ADS7818)来实现速度设定值的采样。但在电机调速的过程中,电机控制器的功率输出部分会对A/D模拟输入电压产生干扰,进行抗干扰处理。 3非线性变速积分的PID算法 (1)PID算法的数字实现 离散形式的PID表达式为: 其中:KP,KI,KD分别为调节器的比例、积分和微分系数;E(k),E(k-1)分别为第k 次和k-1次时的期望偏差值;P(k)为第k次时调节器的输出。 比例环节的作用是对信号的偏差瞬间做出反应,KP越大,控制作用越强,但过大的KP会导致系统振荡,破坏系统的稳定性。积分环节的作用虽然可以消除静态误差,但也会降低系统的响应速度,增加系统的超调量,甚至使系统出现等幅振荡,减小KI可以降低系统的超调量,但会减慢系统的响应过程。微分环节的作用是阻止偏差的变化,有助于减小超调量,克服振荡,使系统趋于稳定,但其对干扰敏感,不利于系统的鲁棒性。 (2)经典PID算法的积分饱和现象 当电机转速的设定值突然改变,或电机的转速发生突变时,会引起偏差的阶跃,使|E(k)|增大,PID的输出P(k)将急剧增加或减小,以至于超过控制量的上下限Pmax,此时的实际控制量只能限制在Pmax,电机的转速M(k)虽然不断上升,但由于控制量受到限制,其增长的速度减慢,偏差E(k)将比正常情况下持续更长的时间保持在较大的偏差值,从而使得PID 算式中的积分项不断地得到累积。当电机转速超过设定值后,开始出现负的偏差,但由于积分项已有相当大的累积值,还要经过相当一段时间后控制量才能脱离饱和区,这就是正向积分饱和,反向积分饱和与此类似。解决的办法:一是缩短PID的采样周期(这一点单片机往往达不到),

PID算法在无刷直流电机调速电路中的应用

PID算法在无刷直流电机调速电路中的应用 摘 要:在分析了无刷直流电机闭环速度控制方案的基础上,针对PID算法在无刷直流电机应用中出现的种种问题,给出了相应的解决方法,提出了非线性变速 积分PID算法,成功地解决了在低采样周期时PID算法的积分饱和问题。 直流电机具有良好的调速性能,如无级调速、调速范围宽、低速性能好、高起动转矩、高效率等。无刷直流电机由于采用电子换向,PWM调速,在进一步提高直流电机性能的同时又克服了直流电机机械换向带来的一系列问题,从而大大延长了电机的使用寿命,近年来已广泛应用于家电、汽车、数控机床、机器人等领域。 1、无刷直流电机的速度控制方案 对无刷直流电机转速的控制即可采用开环控制,也可采用闭环控制。与开环控制相比,速度控制闭环系统的机械特性有以下优越性:闭环系统的机械特性与开环系统机械特性相比,其性能大大提高;理想空载转速相同时,闭环系统的静差 率(额定负载时电机转速降落与理想空载转速之比)要小得多;当要求的静差率相同时, 闭环调速系统的调速范围可以大大提高。无刷直流电机的速度控制方案如图1所示。 无刷直流电机控制器可采用电机控制专用DSP(如TI公司的TMS320C24X 系列、AD公司的ADMCxx系列),也可采用单片机+无刷直流电机控制专用集成电路的方案。前者集成度高,电路设计简单,运算速度快,可实现复杂的速度控制算法,但由于DSP的价格高而不适合于小功率低成本的无刷直流电机控制器。后者虽然运算速度低,但只要采用适当的速度控制算法,依然可以达到较高的控制精度,适合于小功率低成本的无刷直流电机控制器。 摩托罗拉公司的第二代无刷直流电机控制专用集成电路MC33035,集成了转子位置传感器译码器电路、脉宽调制电路(PWM)、功率输出驱动电路、限流电路,可以实现无刷直流电机速度开环系统的全部控制功能。系统中采用了一片MC33035、一片低成本的单片机AT89C2051、串行输入A/D、串行输出D/A 以及由MOSFET型场效应管组成的功率驱动电路,无刷电机控制逻辑和保护由MC33035完成,单片机用来完成转速设定值的获取、转速反馈的实时采样以及速度控制算法的实现。

直流电机调速(速度环)

测量电机转速方法主要采用测速发电机和光电编码器两种形式。 直流测速发电机由永久磁铁与感应线圈组成,用电枢获取速度信号。它具有灵敏度高、结构简单等特点,常用于高精度低速伺服系统,也可与永磁式直流电动机组成低速脉宽调速系统。直流测速发电机的输出信号是与输入轴的转速成正比的直流电压信号(模拟信号),信号幅度大,信号调理电路简单。由于输出电压信号有波纹,一般需要配置滤波电路。光电编码器(增量式)主要由旋转孔盘和光电器件组成。它具有体积小、使用方便、测量精度高等特点,常与直流电机配合使用构成脉宽调速系统。 增量式光电编码器输出的是与转角成比例的增量脉冲信号,可以通过脉冲计数获得角位置信号,也可以定时取样脉冲数的增量实现角速度测量。因此,可以同时测量转角和转速(数字信号)。 使用光电编码器来测量电机的转速,可以利用定时器/计数器配合光电编码器的输出脉冲信号来测量电机的转速。具体的测速方法有M法、T法和M/T法3种。 1.M法在一定的时间Tc测区旋转编码器的脉冲个数M1,用以计算这段时间的平均转速,称作M法测速。M法又称之为测频法 2.T法测速是在编码器两个相邻输出脉冲的间隔时间,用一个计数器对一直的频率为fo的高频始终脉冲进行计数,并由此计算转速。 3.M/T法是把M法和T法结合起来,既检测Tc 时间旋转编码器输出的脉冲个数M1,又检测同一时间间隔的高频时钟脉冲的个数M2,用来计算转速。 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲

或数字量的传感器。这是目前应用最多的传感器,光电编码器的工作原理如图所示,在圆盘上有规则地刻有透光和不透光的线条,在圆盘两侧,安放发光元件和光敏元件。当圆盘旋转时,光敏元件接收的光通量随透光线条同步变化,光敏元件输出波形经过整形后变为脉冲,码盘上有之相标志,每转一圈输出一个脉冲。此外,为判断旋转方向,码盘还可提供相位相差90°的两路脉冲信号,如图所示。 根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。 1.增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B 两组脉冲相位差90°,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。

直流电机PWM调速系统参考论文

毕业论文 基于51单片机的直流电机PWM调速控制系统设计 所在学院 专业名称 年级 学生姓名、学号 指导教师姓名、职称 完成日期

摘要 本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。本文中采用了三极管组成了PWM信号的驱动系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。另外,本系统中使用了霍尔元件对直流电机的转速进行测量,经过处理后,将测量值送到液晶显示出来。 关键词:PWM信号,霍尔元件,液晶显示,直流电动机 I

目录 目录 ................................................................................................................................ III 1 引言 (1) 1.1 课题背景 (1) 1.1.2 开发背景 (1) 1.1.3 选题意义 (2) 1.2 研究方法及调速原理 (2) 1.2.1 直流调速系统实现方式 (4) 1.2.2 控制程序的设计 (5) 2 系统硬件电路的设计 (6) 2.1 系统总体设计框图及单片机系统的设计 (6) 2.2 STC89C51单片机简介 (6) 2.2.1 STC89C51单片机的组成 (6) 2.2.2 CPU及部分部件的作用和功能 (7) 2.2.3 STC89C51单片机引脚图 (8) 2.2.4 STC89C51引脚功能 (8) 3 PWM信号发生电路设计 (11) 3.1 PWM的基本原理 (11) 3.2 系统的硬件电路设计与分析 (11) 3.3 H桥的驱动电路设计方案 (12) 5 主电路设计 (14) 5.1 单片机最小系统 (14) 5.2 液晶电路 (14) 5.2.1 LCD 1602功能介绍 (15) 5.2.2 LCD 1602性能参数 (16) 5.2.3 LCD 1602与单片机连接 (18) 5.2.4 LCD 1602的显示与控制命令 (19) 5.3 按键电路 (20) 5.4 霍尔元件电路 (21) III

直流电机调速方法

1.改变电枢回路电阻调速 当负载一定时,随着串入的外接电阻R的增大,电枢回路总电阻增大,电动机转速就降低。 2.改变电枢电压调速 连续改变电枢供电电压,可以使直流电动机在很宽的范围内实现无级调速。 3.采用晶闸管变流器供电的调速方法 变电枢电压调速是直流电机调速系统中应用最广的一种调速方法。 4.采用大功率半导体器件的直流电动机脉宽调速方法 我比较喜欢这种调速方法。 5.改变励磁电流调速 当电枢电压恒定时,改变电动机的励磁电流也能实现调速。 电动机的转速与磁通Ф(也就是励磁电流)成反比,即当磁通减小时,转速升高;反之,则降低。由于电动机的转矩是磁通和电枢电流的乘积,电枢电流不变时,随着磁通的减小,其转速升高,转矩也会相应地减小。典型恒功率调速。 2. 从调整的部位来讲有: 1.调整电枢电流。

2.调整励磁电流。 从调整电流的方式来讲有: 1.电阻调速。 2.斩波调速。 常用的有:磁场消弱,磁极减对,电枢串联电阻降压。 直流电动机分为有换向器和无换向器两大类。直流电动机调速系统最早采用恒定直流电压给直流电动机供电,通过改变电枢回路中的电阻来实现调速。这种方法简单易行、设备制造方便、价格低廉;但缺点是效率低、机械特性软,不能得到较宽和平滑的调速性能。该法只适用在一些小功率且调速范围要求不大的场合。30年代末期,发电机-电动机系统的出现才使调速性能优异的直流电动机得到广泛应用。这种控制方法可获得较宽的调速范围、较小的转速变化率和平滑的调速性能。但此方法的主要缺点是系统重量大、占地多、效率低及维修困难。近年来,随着电力电子技术的迅速发展,由晶闸管变流器供电的直流电动机调速系统已取代了发电机-电动机调速系统,它的调速性能也远远地超过了发电机-电动机调速系统。特别是大规模集成电路技术以及计算

直流电动机的PWM调压调速原理

直流电动机的PWM调压调速原理 直流电动机转速N的表达式为:N=U-IR/Kφ 由上式可得,直流电动机的转速控制方法可分为两类:调节励磁磁通的励磁控制方法和调节电枢电压的电枢控制方法。其中励磁控制方法在低速时受磁极饱和的限制,在高速时受换向火花和换向器结构强度的限制,并且励磁线圈电感较大,动态响应较差,所以这种控制方法用得很少。现在,大多数应用场合都使用电枢控制方法。 对电动机的驱动离不开半导体功率器件。在对直流电动机电枢电压的控制和驱动中,对半导体器件的使用上又可分为两种方式:线性放大驱动方式和开关驱动方式。 线性放大驱动方式是使半导体功率器件工作在线性区。这种方式的优点是:控制原理简单,输出波动小,线性好,对邻近电路干扰小;但是功率器件在线性区工作时由于产生热量会消耗大部分电功率,效率和散热问题严重,因此这种方式只用于微小功率直流电动机的驱动。绝大多数直流电动机采用开关驱动方式。开关驱动方式是使半导体器件工作在开关状态,通过脉宽调制PWM 来控制电动机电枢电压,实现调速。 在PWM调速时,占空比α是一个重要参数。以下3种方法都可以改变占空比的值。 (1)定宽调频法 这种方法是保持t1不变,只改变t2,这样使周期T(或频率)也随之改变。 (2)调频调宽法 这种方法是保持t2不变,只改变t1,这样使周期T(或频率)也随之改变。 (3)定频调宽法 这种方法是使周期T(或频率)保持不变,而同时改变t1和t2。 前两种方法由于在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此这两种方法用得很少。目前,在直流电动机的控制中,主要使用定频调宽法。 直流电动机双极性驱动可逆PWM控制系统 双极性驱动则是指在一个PWM周期里,作为在电枢两端的脉冲电压是正负交替的。 双极性驱动电路有两种,一种称为T型,它由两个开关管组成,采用正负电源,相当于两个不可逆控制系统的组合。但由于T型双极性驱动中的开关管要承受较高的反向电压,因此只用在低压小功率直流电动机驱动。 另一种称为H型。 H型双极性驱动 一、显示接口模块 方案一:液晶显示器也是一种常用的显示器件。它的优点是功耗低,寿命长,本身无老化问题,显示信息量大(可以显示字母和数字),在显示字符上没有限制。但价格高,接口电路较为复杂。其只在一些(袖珍型)设备上作为显示之用。

基于单片机的无刷直流电机的控制系统

绪论 随着计算机进入控制领域,以及新型的电力电子功率器件的不断出现,采用全控型的开关功率元件进行脉冲调制(paulse width modulation,简称PWM)控制的无刷直流电机已成为主流。随着半导体工业,特别是大功率电子器件及微控制器的发展,变速驱动变的更加现实且成本更低。 本文充分利用单片机的数字信号处理器运算快、外围电路少、系统组成简单、可靠的特点,将其应用于无刷电机的驱动设计。实验表明,该设计使得无刷直流电机的组成简化和性能的改进成为可能,有利于电机的小型化和智能化。 (一)电机的分类 电机按工作电源种类可分为: 1.直流电机 (1)有刷直流电机 ①永磁直流电机 ·稀土永磁直流电动机 ·铁氧体永磁直流电动机 ·铝镍钴永磁直流电动机 ②电磁直流电机 ·串励直流电动机 ·并励直流电动机 ·他励直流电动机 ·复励直流电动机 (2)无刷直流电机 稀土永磁无刷直流电机 2.交流电机 (1)单相电动机

(2)三相电动机 (二)无刷直流电机及其控制技术的发展 1831年,法拉第发现了电磁感应现象,奠定了现代电机的基本理论基础。从19世纪40年代研制成功第一台直流电机,经过大约17年的时间,直流电机技术才趋于成熟。随着应用领域的扩大,对直流电机的要求也就越来越高,有接触的机械换向装置限制了有刷直流电机在许多场合中的应用。为了取代有刷直流电机的电刷-换向器结构的机械接触装置,人们曾对此作过长期的探索。1915年,美国人Langnall发明了带控制栅极的汞弧整流器,制成了由直流变交流的逆变装置。20世纪30年代,有人提出用离子装置实现电机的定子绕组按转子位置换接的所谓换向器电机,但此种电机由于可靠性差、效率低、整个装置笨重又复杂而无实用价值。 科学技术的迅猛发展,带来了电力半导体技术的飞跃。开关型晶体管的研制成功,为创造新型直流电机——无刷直流电机带来了生机。1955年,美国人Harrison首次提出了用晶体管换相线路代替电机电刷接触的思想,这就是无刷直流电机的雏形。它由功率放大部分、信号检测部分、磁极体和晶体管开关电路等组成,其工作原理是当转子旋转时,在信号绕组中感应出周期性的信号电动势,此信号电动势份别使晶体管轮流导通实现换相。问题在于,首先,当转子不转时,信号绕组内不能产生感应电动势,晶体管无偏置,功率绕组也就无法馈电,所以这种无刷直流电机没有起动转矩;其次,由于信号电动势的前沿陡度不大,晶体管的功耗大。为了克服这些弊病,人们采用了离心装置的换向器,或采用在定子上放置辅助磁钢的方法来保证电机可靠地起动。但前者结构复杂,而后者需要附加的起动脉冲。其后,经过反复的试验和不断的实践,人们终于找到了用位置传感器和电子换相线路来代替有刷直流电机的机械换向装置,从而为直流电机的发展开辟了新的途径。20世纪60年代初期,接近开关式位置传感器、电磁谐振式位置传感器和高频耦合式位置传感器相继问世,之后又出现了磁电耦合式和光电式位置传感器。半导体技术的飞速发展,使人们对1879年美国人霍尔发现的霍尔效应再次发生兴趣,经过多年的努力,终于在1962年试制成功了借助霍尔元件(霍尔效应转子位置传感器)来实现换相的无刷直流电机。在⒛世纪70年代初期,又试制成功了借助比霍尔元件的灵敏度高千倍左右的磁敏二极管实现换相

相关文档
相关文档 最新文档