文档库 最新最全的文档下载
当前位置:文档库 › 85 半导体器件物理——4.5.2(1) 肖特基势垒与整流接触

85 半导体器件物理——4.5.2(1) 肖特基势垒与整流接触

第4章半导体的表面特性肖特基势垒与整流接触(1)

肖特基势垒与整流接触0

E m

W S W c E v E FS E Fm E N 型半导体金属0E c E v

E FS

E Fm E m D qV 自建电场

N 型半导体

金属肖特基势垒与整流接触设:有一金属和一N 型半导体,它们未接触前,能带图如左图所示,假设有W m >W s 。当它们紧密接触以后,所形成的能带图如右图所示,并产生一势垒,称其为肖特基势垒,势垒高度为qV D =E FS -E Fm 。

谢谢收看

肖特基二极管常用参数大全分析

肖特基(势垒)二极管(简称SBD)整流二极管的基本原理?FCH10A15型号简称:10A15 ?主要参数:IF(AV)=10A, VRRM=150V ?产品封装:TO-220F ?脚位长度:6-12mm ?可测试参数:耐压VRRM 正向压降(正向直流电压)VF 漏电IR ?型号全名:FCH20A15 ?型号简称:20A15 ?主要参数:20A 150V ?产品封装:TO-220F ?可测试参数:耐压VRRM 正向压降(正向直流电压)VF 漏电IR ?在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。肖特基与PN结的整流作用原理有根本性的差异。其耐压程度只有40V左右。 其特长是:开关速度非常快:反向恢复时间特别地短。因此,能制作开关二极和低压大电流整流二极管。 肖特基整流二极管的主要参数 ?以下是部分常用肖特基二极管型号,以及耐压和整流电流值:

肖特基二极管 肖特基二极管常用参数大全 型号制造商封 装 If/A Vrrm/V 最大Vf/V 1SS294 TOS SC-59 0.1 40 0.60 BAT15-099 INF SOT143 0.11 4 0.32 BAT54A PS SOT23 0.20 30 0.50 10MQ060N IR SMA 0.77 90 0 .65 10MQ100N IR SMA 0.77 100 0.9 6

0.34 SS12 GS DO214 1.00 20 0.50 MBRS130LT3 ON - 1.00 30 0 .39 10BQ040 IR SMB 1.00 40 0 .53 RB060L-40 ROHM PMDS 1.00 40 0.55 RB160L-40 ROHM PMDS 1.00 40 0.55 SS14 GS DO214 1.00 40 0.50 MBRS140T3 ON - 1.00 40 0 .60 10BQ060 IR SMB 1.00 60 0 .57 SS16 GS DO214 1.00 60 0.75 10BQ100 IR SMB 1.00 100 0.7 8 MBRS1100T3 ON - 1.00 100 0.7 5 10MQ040N IR SMA 1.10 40 0 .51 15MQ040N IR SMA 1.70 40 0 .55 PBYR245CT PS SOT223 2.00 45 0.45

齐纳二极管和肖特基二极管

齐纳二极管和肖特基二极管 肖特基二极管(Schottky)SBD是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 SBD的结构及特点使其适合于在低压、大电流输出场合用作高频整流,在非常高的频率下(如X波段、C波段、S波段和Ku波段)用于检波和混频,在高速逻辑电路中用作箝位。在IC中也常使用SBD,像SBD TTL集成电路早已成为TTL 电路的主流,在高速计算机中被广泛采用。 反向恢复时间 现代脉冲电路中大量使用晶体管或二极管作为开关, 或者使用主要是由它们构成的逻辑集成电路。而作为开关应用的二极管主要是利用了它的通(电阻很小)、断(电阻很大) 特性, 即二极管对正向及反向电流表现出的开关作用。二极管和一般开关的不同在于,“开”与“关”由所加电压的极性决定, 而且“开”态有微小的压降V f,“关”态有微小的电流I 0。当电压由正向变为反向时, 电流并不立刻成为(- I 0) , 而是在一段时间ts 内, 反向电流始终很大, 二极管并不关断。经过ts后, 反向电流才逐渐变小, 再经过tf 时间, 二极管的电流才成为(- I 0) , 如图1 示。ts 称为储存时间, tf 称为下降时间。tr= ts+ tf 称为反向恢复时间, 以上过程称为反向恢复过程。 这实际上是由电荷存储效应引起的, 反向恢复时间就是存储电荷耗尽所需要的时间。该过程使二极管不能在快速连续脉冲下当做开关使用。如果反向脉冲的持续时间比tr 短, 则二极管在正、反向都可导通, 起不到开关作用。因此了解二极管反向恢复时间对正确选取管子和合理设计电路至关重要。 齐纳二极管 齐纳二极管zener diodes(又叫稳压二极管它的电路符号是:此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 齐纳二极管不同于锗二极管的是:如果反向电压,有时简称为“偏压”增加到某个特殊值,对于一个微小偏压的变化,就会使电流产生一个可观的增加。引起这种效应的电压称为“击穿”电压或“齐纳”电压。2DW7型管的击穿电压在5.8-6.5V之间,极大电流是30mA。

常用二极管型号及参数大全

常用二极管型号及参数大全

1.塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs 1 1A1-1A7 1A 50-1000V 1.1 R-1 2 1N4001-1N4007 1A 50-1000V 1.1 DO-41 3 1N5391-1N5399 1.5A 50-1000V 1.1 DO-15 4 2A01-2A07 2A 50-1000V 1.0 DO-15 5 1N5400-1N5408 3A 50-1000V 0.95 DO-201AD 6 6A05-6A10 6A 50-1000V 0.95 R-6 7 TS750-TS758 6A 50-800V 1.25 R-6 8 RL10-RL60 1A-6A 50-1000V 1.0 9 2CZ81-2CZ87 0.05A-3A 50-1000V 1.0 DO-41 10 2CP21-2CP29 0.3A 100-1000V 1.0 DO-41 11 2DZ14-2DZ15 0.5A-1A 200-1000V 1.0 DO-41 12 2DP3-2DP5 0.3A-1A 200-1000V 1.0

DO-41 13 BYW27 1A 200-1300V 1.0 DO-41 14 DR202-DR210 2A 200-1000V 1.0 DO-15 15 BY251-BY254 3A 200-800V 1.1 DO-201AD 16 BY550-200~1000 5A 200-1000V 1.1 R-5 17 PX10A02-PX10A13 10A 200-1300V 1.1 PX 18 PX12A02-PX12A13 12A 200-1300V 1.1 PX 19 PX15A02-PX15A13 15A 200-1300V 1.1 PX 20 ERA15-02~13 1A 200-1300V 1.0 R-1 21 ERB12-02~13 1A 200-1300V 1.0 DO-15 22 ERC05-02~13 1.2A 200-1300V 1.0 DO-15 23 ERC04-02~13 1.5A 200-1300V 1.0 DO-15

金属和半导体的接触

金属和半导体的接触 1金属和半导体接触及其能带图 金属和半导体的功函数 金属 1.金属中电子虽然能在金属中自由运动,但绝大多数所处的能级都低于体外能级。要使电子 从金属中逸出,必须有外加能量。所以金属内部的电子是在一个势阱中运动。 2.金属功函数的定义是真空中静止电子的能量E?与费米能级Ef能量之差。表示一个起始能量 等于费米能级的电子,由金属内部逸出到真空中所需要的最小能量。 3.功函数的大小标志着电子在金属中束缚的强弱。W越大,电子越难离开金属。 半导体 接触电势差 金属与(n型)半导体的接触 接触前

qФ为金属一边的势垒高度,qVd为半导体一边的势垒高度。 总结 当金属与n型半导体接触的时候,若Wm>Ws,能带向上弯曲,即可形成表面势垒,在势垒区中,空间电荷主要由电离施主形成,电子浓度比体内小得多,因此它是高阻域,常称为阻挡层;若是Ws>Wm,能带向下弯曲,此时电子浓度比体内高得多,因而是高电导区域,称为反阻挡层,它是很薄的,对金属和半导体接触电阻的影响很小。 p型半导体和金属接触时与n型半导体的相反。 空间电荷区电荷的积累 表面势的形成 造成能带的弯曲 表面态对接触势垒的影响 不同金属与同一半导体材料接触所形成的金属一侧的势垒高度相差不大,金属功函数对势垒高度没有多大影响。 表面能级 1.表面处存在一个距离价带顶为qФ?的能级,若电子正好填满qФ?以下的所有表面态时,表 面呈电中性;若qФ?以下的表面态空着时,表面带正电,呈现施主型;若qФ?以上的表面态被电子填空时,表面带负电,呈现受主型。对于大多数半导体,qФ?约为禁带宽度的三分之一。

2.假设一个n型半导体存在表面态。半导体费米能级Ef将高于qФ?,如果qФ?以上存在有受 主表面态,则在qФ?到Ef间的能级将基本被电子填满,表面带负电。如此,半导体表面附 近必定出现正电荷,成为正的空间电荷区,结果形成了电子的势垒,势垒高度qVD恰好使 得表面态上的负电荷与势垒区的正电荷数量相等,这里着重表明了势垒高度产生的第二层 原因。(第一层是金属与半导体接触) 3.当半导体的表面态密度很高的时候,Ws几乎与施主浓度无关。此时此刻,当D远大于原 子间距时,金属与半导体利用一根导线进行接触,同样有电子流向金属,但此时电子不是 来自于半导体体内,而是来自于受主表面态,若表面态密度很高,能放出足够多的电子, 则半导体势垒区的情形几乎不会发生变化。间隙D中的压降(Ws-Wm)/q,这时空间电荷 区的正电荷等于表面受主态上留下的负电荷与金属表面负电荷之和。当间隙D小到可以与 原子间距相比时,电子就可以自由地穿过它。 施主型 若能级被电子占据时呈电中性,释放电子后呈正电性,称为施主型表面态 受主型 能级空着的时候呈电中性,接受电子后呈负电性; 总结 当半导体表面态密度很高的时候,由于它可以屏蔽金属接触的影响,使半导体内的势垒高度 和金属功函数几乎无关,而基本上由半导体的表面性质所决定。 2金属半导体接触整流理论 定性分析 以n型半导体为例,表面势Vs < 0;半导体一侧的势垒高度即为qVD = - qVs。若此时,我们外加电压V于紧密接触的金属和半导体之间,由于阻挡层是高阻区域,因此电压主要降落在阻挡层上,势垒高度变为-q(Vs+V) V>0 若V > 0,则会导致(Vs + V)降低,便会导致半导体一侧势垒高度降低,这时,从半导体流到金属的电子便会增加,多于从金属流到半导体的电子,便会形成从金属流向半导体的正向 电流。外加电压越大,势垒下降越多,正向电流也就越大。 V<0 若V<0,则(Vs + V)增加,便会导致半导体一侧势垒高度升高,从半导体流到金属的电子 会减少,少于从金属流到半导体的电子,会形成从半导体流向金属的反向电流,又因为金属 的势垒高度基本不会受V的影响,由于金属一侧的电子要越过相当高的势垒才能到达半导体 中,所以反向电流是很小的值。随着电压的增大,势垒高度越来越高,从半导体流向金属的 电子可以忽略不计,反向电流渐渐趋于饱和值。

肖特基二极管有哪些作用

肖特基二极管有哪些作用 肖特基二极管介绍: 肖特基二极管是以其发明人肖特基博士(Schottky)命名的,SBD是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。 肖特基二极管是近年来问世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 肖特基二极管原理 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的多属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度表面逐渐降轻工业部,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。 典型的肖特基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极(阻档层)金属材料是钼。二氧化硅(SiO2)用来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,可在基片与阳极金属之间形成合适的肖特基势垒,当加上正偏压E时,金属A和N型基片B分别接电源的正、负极,此时势垒宽度Wo变窄。加负偏压-E时,势垒宽度就增加。 综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别,通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。 肖特基整流管仅用一种载流子(电子)输送电荷,在势垒外侧无过剩少数载流子的积累,因此,不存在电荷储存问题(Qrr→0),使开关特性获得时显改善。其反向恢复时间已能缩短到10ns以内。但它的反向耐压值较低,一般不超过去时100V。因此适宜在低压、大电流情况下工作。利用其低压降这特点,能提高低压、大电流整流(或续流)电路的效率。 肖特基二极管作用

常用二极管型号及参数大全

1.塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs 1 1A1-1A7 1A 50-1000V 1.1 R-1 2 1N4001-1N4007 1A 50-1000V 1.1 DO-41 3 1N5391-1N5399 1.5A 50-1000V 1.1 DO-15 4 2A01-2A07 2A 50-1000V 1.0 DO-15 5 1N5400-1N5408 3A 50-1000V 0.95 DO-201AD 6 6A05-6A10 6A 50-1000V 0.95 R-6 7 TS750-TS758 6A 50-800V 1.25 R-6 8 RL10-RL60 1A-6A 50-1000V 1.0 9 2CZ81-2CZ87 0.05A-3A 50-1000V 1.0 DO-41 10 2CP21-2CP29 0.3A 100-1000V 1.0 DO-41 11 2DZ14-2DZ15 0.5A-1A 200-1000V 1.0 DO-41 12 2DP3-2DP5 0.3A-1A 200-1000V 1.0 DO-41 13 BYW27 1A 200-1300V 1.0 DO-41 14 DR202-DR210 2A 200-1000V 1.0 DO-15 15 BY251-BY254 3A 200-800V 1.1 DO-201AD 16 BY550-200~1000 5A 200-1000V 1.1 R-5 17 PX10A02-PX10A13 10A 200-1300V 1.1 PX 18 PX12A02-PX12A13 12A 200-1300V 1.1 PX 19 PX15A02-PX15A13 15A 200-1300V 1.1 PX 20 ERA15-02~13 1A 200-1300V 1.0 R-1 21 ERB12-02~13 1A 200-1300V 1.0 DO-15 22 ERC05-02~13 1.2A 200-1300V 1.0 DO-15 23 ERC04-02~13 1.5A 200-1300V 1.0 DO-15 24 ERD03-02~13 3A 200-1300V 1.0 DO-201AD 25 EM1-EM2 1A-1.2A 200-1000V 0.97 DO-15 26 RM1Z-RM1C 1A 200-1000V 0.95 DO-15 27 RM2Z-RM2C 1.2A 200-1000V 0.95 DO-15 28 RM11Z-RM11C 1.5A 200-1000V 0.95 DO-15 29 RM3Z-RM3C 2.5A 200-1000V 0.97 DO-201AD 30 RM4Z-RM4C 3A 200-1000V 0.97 DO-201AD 2.快恢复塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs (1)快恢复塑封整流二极管 1 1F1-1F7 1A 50-1000V 1.3 0.15-0.5 R-1 2 FR10-FR60 1A-6A 50-1000V 1. 3 0.15-0.5 3 1N4933-1N4937 1A 50-600V 1.2 0.2 DO-41 4 1N4942-1N4948 1A 200-1000V 1.3 0.15-0. 5 DO-41 5 BA157-BA159 1A 400-1000V 1.3 0.15-0.25 DO-41 6 MR850-MR858 3A 100-800V 1.3 0.2 DO-201AD

半导体的欧姆接触

半导体的欧姆接触(2012-03-30 15:06:47)转载▼ 标签:杂谈分类:补充大脑 1、欧姆接触 欧姆接触是指这样的接触:一是它不产生明显的附加阻抗;二是不会使半导体内部的平衡载流子浓度发生显著的改变。 从理论上说,影响金属与半导体形成欧姆接触的主要因素有两个:金属、半导体的功函数和半导体的表面态密度。对于给定的半导体,从功函数对金属-半导体之间接触的影响来看,要形成欧姆接触,对于n型半导体,应该选择功函数小的金属,即满足Wm《Ws,使金属与半导体之间形成n型反阻挡层。而对于p型半导体,应该选择功函数大的金属与半导体形成接触,即满足Wm》Ws,使金属与半导体之间形成p型反阻挡层。但是由于表面态的影响,功函数对欧姆接触形成的影响减弱,对于n型半导体而言,即使Wm《Ws,金属与半导体之间还是不能形成性能良好的欧姆接触。 目前,在生产实际中,主要是利用隧道效应原理在半导体上制造欧姆接触。从功函数角度来考虑,金属与半导体要形成欧姆接触时,对于n型半导体,金属功函数要小于半导体的功函数,满足此条件的金属材料有Ti、In。对于p型半导体,金属功函数要大于半导体的功函数,满足此条件的金属材料有Cu、Ag、Pt、Ni。 2、一些常用物质的的功函数 物质Al Ti Pt In Ni Cu Ag Au 功函数4.3 3.95 5.35 3.7 4.5 4.4 4.4 5.20 3、举例 n型的GaN——先用磁控溅射在表面溅射上Ti/Al/Ti三层金属,然后在卤灯/硅片组成的快速退火装置上进行快速退火:先600摄氏度—后900摄氏度——形成欧姆接触; p型的CdZnTe——磁控溅射仪上用Cu-3%Ag合金靶材在材料表面溅射一层CuAg合金。 欧姆接触[编辑] 欧姆接触是半导体设备上具有线性并且对称的 果电流- 这些金属片通过光刻制程布局。低电阻,稳定接触的欧姆接触是影响集成电路性能和稳定性的关键因素。它们的制备和描绘是电路制造的主要工作。 目录 [隐藏] ? 1 理论 ? 2 实验特性 ? 3 欧姆接触的制备 ? 4 技术角度上重要的接触类型 ? 5 重要性 ? 6 参考资料

常用二极管型号参数大全

For personal use only in study and research; not for commercial use 1.塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs 1 1A1-1A7 1A 50-1000V 1.1 R-1 2 1N4001-1N4007 1A 50-1000V 1.1 DO-41 3 1N5391-1N5399 1.5A 50-1000V 1.1 DO-15 4 2A01-2A07 2A 50-1000V 1.0 DO-15 5 1N5400-1N5408 3A 50-1000V 0.95 DO-201AD 6 6A05-6A10 6A 50-1000V 0.95 R-6 7 TS750-TS758 6A 50-800V 1.25 R-6 8 RL10-RL60 1A-6A 50-1000V 1.0 9 2CZ81-2CZ87 0.05A-3A 50-1000V 1.0 DO-41 10 2CP21-2CP29 0.3A 100-1000V 1.0 DO-41 11 2DZ14-2DZ15 0.5A-1A 200-1000V 1.0 DO-41 12 2DP3-2DP5 0.3A-1A 200-1000V 1.0 DO-41 13 BYW27 1A 200-1300V 1.0 DO-41 14 DR202-DR210 2A 200-1000V 1.0 DO-15 15 BY251-BY254 3A 200-800V 1.1 DO-201AD 16 BY550-200~1000 5A 200-1000V 1.1 R-5 17 PX10A02-PX10A13 10A 200-1300V 1.1 PX 18 PX12A02-PX12A13 12A 200-1300V 1.1 PX 19 PX15A02-PX15A13 15A 200-1300V 1.1 PX 20 ERA15-02~13 1A 200-1300V 1.0 R-1 21 ERB12-02~13 1A 200-1300V 1.0 DO-15 22 ERC05-02~13 1.2A 200-1300V 1.0 DO-15 23 ERC04-02~13 1.5A 200-1300V 1.0 DO-15 24 ERD03-02~13 3A 200-1300V 1.0 DO-201AD 25 EM1-EM2 1A-1.2A 200-1000V 0.97 DO-15 26 RM1Z-RM1C 1A 200-1000V 0.95 DO-15 27 RM2Z-RM2C 1.2A 200-1000V 0.95 DO-15 28 RM11Z-RM11C 1.5A 200-1000V 0.95 DO-15 29 RM3Z-RM3C 2.5A 200-1000V 0.97 DO-201AD 30 RM4Z-RM4C 3A 200-1000V 0.97 DO-201AD 2.快恢复塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs (1)快恢复塑封整流二极管 1 1F1-1F7 1A 50-1000V 1.3 0.15-0.5 R-1 2 FR10-FR60 1A-6A 50-1000V 1. 3 0.15-0.5 3 1N4933-1N4937 1A 50-600V 1.2 0.2 DO-41 4 1N4942-1N4948 1A 200-1000V 1.3 0.15-0. 5 DO-41

肖特基二极管与普通二极管的比较

4/13/2013深圳市强元芯电子有限公司https://www.wendangku.net/doc/f13465421.html, 肖特基与普通二极管比较 肖特基二极管是利用金属-半导体接面作为肖特基势垒,以产生整流的效果,和一般二极管中由半导体-半导体接面产生的P-N接面不同。肖特基势垒的特性使得肖特基二极管的导通电压降较低,而且可以提高切换的速度。 肖特基二极体的导通电压非常低。一般的二极管在电流流过时,会产生约0.7-1.7 伏特的电压降,不过肖特基二极管的电压降只有0.15-0.45 伏特,因此可以提升系统的效率。 肖特基二极管和一般二极管最大的差异在于反向恢复时间,也就是二极管由流过正向电流的导通状态,切换到不导通状态所需的时间。一般二极管的反向恢复时间大约是数百 nS,若是高速二极管则会低于一百 nS,肖特基二极管没有反向恢复时间,因此小信号的肖特基二极管切换时间约为数十 pS,特殊的大容量肖特基二极管切换时间也才数十 pS。由于一般二极管在反向恢复时间内会因反向电流而造成EMI噪声。肖特基二极管可以立即切换,没有反向恢复时间及反相电流的问题。 上表列出了肖特基二极管和超快恢复二极管、快恢复二极管、硅高频整流二极管、硅高速开关二极管的性能比较。由表可见,除了上面提到的的性能之外肖特基二极管整流电流比效高,硅高速开关二极管的trr虽极低,但平均整流电流很小,不能作大电流整流用。 因此总结为:肖特基二极管,它属一种低功耗、超高速半导体器件。最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千安培。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电路中作整流二极管、小信号检波二极管使用。在通信电源、变频器等中比较常见。 2013-04-13深圳市强元芯电子有限公司https://www.wendangku.net/doc/f13465421.html,

肖特基二极管讲解

肖特基二极管简介 肖特基二极管(SBD)是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称,是以其发明人肖特基博士(Schottky)命名的半导体器件。肖特基二极管是低功耗、大电流、超高速半导体器件,它不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。 Schottky diode (SBD) is the Schottky barrier diode , is the inventor of the Schottky named semiconductor device. Schottky barrier diode is a low power, high current, super high speed semiconductor devices, instead of using P type semiconductor and the n-type semiconductor contact formation PN junction theory to make, but the use of metal semiconductor contact formation of metal semiconductor junction with the principle of making the. Therefore, SBD is also known as a metal semiconductor (contact) diode or a surface barrier diode, which is a hot carrier diode. 肖特基二极管是半导体器件,以其发明人博士(1886年7月23日—1976年3月4日)命名的,SBD是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。 SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。

欧姆接触与肖特基接触

欧姆接触 欧姆接触是指金属与半导体的接触,而其接触面的电阻值远小于半导体本身的电阻,使得组件操作时,大部分的电压降在活动区(Active region)而不在接触面。欧姆接触在金属处理中应用广泛,实现的主要措施是在半导体表面层进行高掺杂或者引入大量复合中心。 欧姆接触指的是它不产生明显的附加阻抗,而且不会使半导体内部的平衡载流子浓度发生显著的改变。 条件 欲形成好的欧姆接触,有二个先决条件: (1)金属与半导体间有低的势垒高度(Barrier Height) (2)半导体有高浓度的杂质掺入(N ≧10EXP12 cm-3) 区别 前者可使界面电流中热激发部分(Thermionic Emission)增加;后者则使半导体耗尽区变窄,电子有更多的机会直接穿透(Tunneling),而同时使Rc阻值降低。 若半导体不是硅晶,而是其它能量间隙(Energy Gap)较大的半导体(如GaAs),则较难形成欧姆接触 (无适当的金属可用),必须于半导体表面掺杂高浓度杂质,形成Metal-n+-n or Metal-p+-p等结构。 理论 任何两种相接触的固体的费米能级(Fermi level)(或者严格意义上,化学势)必须相等。费米能级和真空能级的差值称作工函数。接触金属和半导体具有不同的工函,分别记为φM和φS。当两种材料相接触时,电子将会从低工函一边流向另一边直到费米能级相平衡。从而,低工函的材料将带有少量正电荷而高工函材料则会变得具有少量电负性。最终得到的静电势称为内建场记为Vbi。这种接触电势将会在任何两种固体间出现并且是诸如二极管整流现象和温差电效应等的潜在原因。内建场是导致半导体连接处能带弯曲的原因。明显的能带弯曲在金属中不会出现因为他们很短的屏蔽长度意味着任何电场只在接触面间无限小距离内存在。 欧姆接触或肖特基势垒形成于金属与n型半导体相接触。 欧姆接触或肖特基势垒形成于金属与p型半导体相接触。在经典物理图像中,为了克服势垒,半导体载流子必须获得足够的能量才能从费米能

肖特基二极管简介

肖特基二极管 简介 肖特基二极管是以其发明人肖特基博士(Schottky)命名的,SBD是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。 是近年来问世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 原理 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N 型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度

高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。 典型的肖特基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极使用钼或铝等材料制成阻档层。用二氧化硅(SiO2)来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,N型基片和阳极金属之间便形成肖特基势垒,如图所示。当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。 综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。 优点 SBD具有开关频率高和正向压降低等优点,但其反向击穿电压比较低,大多不高于60V,最高仅约100V,以致于限制了其应用范围。像在开关电源(SMPS)和功率因数校正(PFC)电路中功率开关器件的续流二极管、变压器次级用100V以上的高频整流二极管、RCD缓冲器电路中用600V~1.2kV的高速二极管以及PFC升压用600V二极管等,只有使用快速恢复外延二极管(FRED)和超快速恢复二极管(UFRD)。目前UFRD的反向恢复时间Trr也在20ns以上,根本不能满足像空间站等领域用1MHz~3MHz的SMPS需要。即使是硬开关为100kHz的SMPS,由于UFRD的导通损耗和开关损耗均较大,壳温很高,需用较大的散热器,从而使SMPS 体积和重量增加,不符合小型化和轻薄化的发展趋势。因此,发展100V以上的高压SBD,一直是人们研究的课题和关注的热点。近几年,SBD已取得了突破性的进展,150V和200V的高压SBD已经上市,使用新型材料制作的超过1kV的SBD也研制成功,从而为其应用注入了新的生机与活力。 结构 新型高压SBD的结构和材料与传统SBD是有区别的。传统SBD是通过金属与半导体接触而构成。金属材料可选用铝、金、钼、镍和钛等,半导体通常为硅(Si)或砷化镓(GaAs)。由于电子比空穴迁移率大,为获得良好的频率特性,故选用N 型半导体材料作为基片。为了减小SBD的结电容,提高反向击穿电压,同时又不使串联电阻过大,通常是在N+衬底上外延一高阻N-薄层。其结构示图如图1(a),图形符号和等效电路分别如图1(b)和图1(c)所示。在图1(c)中,CP是管壳

整流器工作原理

整流器工作原理 桥式整流器原理电路 桥式整流电路(如图5-5所示)是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定 程度上克服了它的缺点。 图5-5(a)为桥式整流电路图(b)为其简化画法 式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz、D3通电回路,在Rfz,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz、D4通电回路,同样在Rfz上形成上正下负的另外半波的整流电压。以上两种工作状态分别如图5-6(a)和(b)所示。

图5-6 桥式整流电路的工作原理示意图 如此重复下去,结果在Rfz,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。 桥式整流电路的整流效率和直流输出与全波整流电路相同,变压器的利用率最高。现在常用的全桥整流,不用单独的四只二极管而用一只全桥,其中包括四只二极管,但是要标清符号,有交流符号的两端接变压器输出,+、-两端接入整流电路。 需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。表5-1所列参数可供选择二极管时参考。 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。

常用肖特基二极管型号

常用肖特基二极管型号: 常用的有引线式肖特基二极管有D80-004、B82-004、MBR1545、MBR2535等型号,各管的主要参数见表4-43。

常用的表面封装肖特基二极管有FB系列,其主要参数见表4-44。 特基二极管F5KQ100 F5KQ100 肖特基二极管30CPQ140 30CPQ140 肖特基二极管30CPQ100 30CPQ100 肖特基二极管30CPQ090 30CPQ090 肖特基二极管30CPQ060

30CPQ060 肖特基二极管30CPQ045 30CPQ045 肖特基二极管MBRS260T3G MBRS260T3G 肖特基二极管MBRS130T3G MBRS130T3G 肖特基二极管MBRS320T3G MBRS320T3G 肖特基二极管MBRS340T3G MBRS340T3G 肖特基二极管MBRS140T3G MBRS140T3G 肖特基二极管MBRS240LT3 MBRS240LT3 肖特基二极管MBRS230LT3 MBRS230LT3 肖特基二极管MBRS2040LT MBRS2040LT 肖特基二极管MBR20100 MBR20100 肖特基二极管MBR3045 MBR3045 肖特基二极管MBR2545 MBR2545 肖特基二极管MBR2045 MBR2045 肖特基二极管MBR1545 MBR1545 肖特基二极管MBR1045

MBR1045 肖特基二极管MBR745 MBR745 肖特基二极管MBR3100 MBR3100 肖特基二极管MBR360 MBR360 肖特基二极管DSC01232 DSC01232 肖特基二极管SB3040 SB3040 肖特基二极管IN5817 IN5817 肖特基二极管IN5819 IN5819 肖特基二极管IN5818 IN5818 肖特基二极管IN5822 IN5822 肖特基二极管HER107 HER107 肖特基二极管HER207 HER207 肖特基二极管HER307 HER307 肖特基二极管FR105 FR105 肖特基二极管FR2050

肖特基接触与欧姆接触

欧姆接触 是指金属与半导体的接触,而其接触面的电阻值远小于半导体本身的电阻,使得组件操作时,大部分的电压降在活动区(Active region)而不在接触面。 欲形成好的欧姆接触,有二个先决条件: (1)金属与半导体间有低的势垒高度(Barrier Height) (2)半导体有高浓度的杂质掺入(N ≧10EXP12 cm-3) 前者可使界面电流中热激发部分(Thermionic Emission)增加;后者则使半导体耗尽区变窄,电子有更多的机会直接穿透(Tunneling),而同时使Rc阻值降低。 若半导体不是硅晶,而是其它能量间隙(Energy Cap)较大的半导体(如GaAs),则较难形成欧姆接触(无适当的金属可用),必须于半导体表面掺杂高浓度杂质,形成Metal-n+-n or Met al-p+-p等结构。 理论 任何两种相接触的固体的费米能级(Fermi level)(或者严格意义上,化学势)必须相等。费米能级和真空能级的差值称作工函。接触金属和半导体具有不同的工函,分别记为φM和φS。当两种材料相接触时,电子将会从低工函一边流向另一边直到费米能级相平衡。从而,低工函的材料将带有少量正电荷而高工函材料则会变得具有少量电负性。最终得到的静电势称为内建场记为Vbi。这种接触电势将会在任何两种固体间出现并且是诸如二极管整流现象和温差电效应等的潜在原因。内建场是导致半导体连接处能带弯曲的原因。明显的能带弯曲在金属中不会出现因为他们很短的屏蔽长度意味着任何电场只在接触面间无限小距离内存在。 欧姆接触或肖特基势垒形成于金属与n型半导体相接触。 欧姆接触或肖特基势垒形成于金属与p型半导体相接触。在经典物理图像中,为了克服势垒,半导体载流子必须获得足够的能量才能从费米能级跳到弯曲的导带顶。穿越势垒所需的能量φB是内建势及费米能级与导带间偏移的总和。同样对于n型半导体,φB = φM ? χS当中χS是半导体的电子亲合能(electron affinity),定义为真空能级和导带(CB)能级的差。对于p型半导体,φB = Eg ? (φM ? χS)其中Eg是禁带宽度。当穿越势垒的激发是热力学的,这一过程称为热发射。真实的接触中一个同等重要的过程既即为量子力学隧穿。WKB近似描述了最简单的包括势垒穿透几率与势垒高度和厚度的乘积指数相关的隧穿图像。对于电接触的情形,耗尽区宽度决定了厚度,其和内建场穿透入半导体内部长度同量级。耗尽层宽度W可以通过解泊松方程以及考虑半导体内存在的掺杂来计算: 在MKS单位制ρ 是净电荷密度而ε是介电常数。几何结构是一维的因为界面被假设为平面的。对方程作一次积分,我们得到 积分常数根据耗尽层定义为界面完全被屏蔽的长度。就有 其中V(0) = Vbi被用于调整剩下的积分常数。这一V(x)方程描述了插图右手边蓝色的断点曲线。耗尽宽度可以通过设置V(W) = 0来决定,结果为

肖特基的工作原理及特点

肖特基二极管的工作原理和特点 肖特基二极管(SBD)是一种低功耗、大电流、超高速半导体器件。其显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千安培。肖特基二极管多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电路中作整流二极管、小信号检波二极管使用。常用在彩电的二次电源 整流,高频电源整流中。 肖特基二极管是以其发明人肖特基博士(Schottky)命名的,SBD是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极 管。 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的多属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度表面逐渐降轻工业部,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。 基本原理是:在金属和N型硅片的接触面上,用金属与半导体接触所形成的势垒对电流进行控制。肖特基与PN结的整流作用原理有根本性的差异。其耐压程度只有40V左右,大多不高于60V,以致于限制了其应用范围。其特长是:开关速度非常快:反向恢复时间特别地短。因此,能制作开关二极和低压大电流整流二极管。 肖特基二极管(SBD)的主要特点: 1)正向压降低:由于肖特基势垒高度低于PN结势垒高度,故其正向导通门限电压和 正向压降都比PN结二极管低(约低0.2V)。 2)反向恢复时间快:由于SBD是一种多数载流子导电器件,不存在少数载流子寿命和反向恢复问题。SBD的反向恢复时间只是肖特基势垒电容的充、放电时间,完全不同于PN 结二极管的反向恢复时间。由于SBD的反向恢复电荷非常少,故开关速度非常快,开关损 耗也特别小,尤其适合于高频应用。 3)工作频率高:由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。 4)反向耐压低:由于SBD的反向势垒较薄,并且在其表面极易发生击穿,所以反向击穿电压比较低。由于SBD比PN结二极管更容易受热击穿,反向漏电流比PN结二极管大。 SBD的结构及特点使其适合于在低压、大电流输出场合用作高频整流,在非常高的频率下(如X波段、C波段、S波段和Ku波段)用于检波和混频,在高速逻辑电路中用作箝

相关文档