文档库 最新最全的文档下载
当前位置:文档库 › 蒙日圆定理(解析几何证法)

蒙日圆定理(解析几何证法)

蒙日圆定理(解析几何证法)
蒙日圆定理(解析几何证法)

蒙日圆定理

(纯解析几何证法)

蒙日圆定理的内容:

椭圆的两条切线互相垂直,则两切线的交点位于一个与椭圆同心的圆上,称为蒙日圆,该圆的半径等于椭圆长半轴和短半轴平方和的算术平方根。

如图,设椭圆的方程是22

221x y a b

+=。两切线PM 和PN 互相垂直,交于点P 。

求证:点P 在圆2

2

2

2

x y a b +=+上。

证明:

若两条切线中有一条平行于x 轴时,则另一条必定平行于y 轴,显然前者通过短轴端点,而后者通过长轴端点,其交点P 的坐标只能是:

(),special P a b ±±

(1)

它必定在圆2

2

2

2

x y a b +=+上。

现考察一般情况,两条切线均不和坐标轴平行。可设两条切线方程如下: :PM y kx m =+

(2)

1

:PN y x n k =-+

(3)

联立两切线方程(2)和(3)可求出交点P 的坐标为:

()222,1

1n m k nk m P k k -??+ ?++??

(4)

从而P 点距离椭圆中心O 的距离的平方为:

()22

22

222222111

n m k nk m OP k k n k m k -????+=+????++????+=

+

(5)

现将PM 的方程代入椭圆方程,消去y ,化简整理得:

22222221210k km m x x a b b b ????+++-= ? ?????

(6)

由于PM 是椭圆的切线,故以上关于x 的一元二次方程,其判别式应等于0,化简后可得:

()22

222211b m m b a k ??

=+- ???

(7)

对于切线PN ,代入椭圆方程后,消去y ,令判别式等于0,同理可得:

()22

22

221b n k n b a ??=+- ???

(8)

为方便起见,令:

22222,,,,a A b B m M n N k K =====

(9)

这样(7)和(8)就分别化为了关于M 和N 的一元一次方程,不难解出:

M B AK =+ (10)

A

N B K

=+

(11)

将(10)和(11)代入(5),就得到: 2

221

NK M

OG A B a b K +=

=+=++

(12)

证毕。

蒙日圆及其证明

蒙日圆及其证明 高考题 (2019年高考广东卷文科、理科第20题)已知椭圆22 22:1(0)x y C a b a b +=>>的 一个焦点为 (1)求椭圆C 的标准方程; (2)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程. 答案:(1)22 194 x y +=;(2)2213x y +=. 这道高考题的背景就是蒙日圆. 普通高中课程标准实验教科书《数学2·必修·A 版》(人民教育出版社,2007年第3版,2019年第8次印刷)第22页对画法几何的创始人蒙日(G.Monge ,1745-1818)作了介绍.以上高考题第(2)问的一般情形是 定理 1 曲线1:22 22=+Γb y a x 的两条互相垂直的切线的交点P 的轨迹是圆 2222b a y x +=+. 定理1的结论中的圆就是蒙日圆. 先给出定理1的两种解析几何证法: 定理1的证法1 当题设中的两条互相垂直的切线中有斜率不存在或斜率为0时,可得点P 的坐标是),(b a ±,或),(b a -±. 当题设中的两条互相垂直的切线中的斜率均存在且均不为0时,可设点P 的坐标是,)(,(000a x y x ±≠且)0b y ±≠,所以可设曲线Γ的过点P 的切线方程是 )0)((00≠-=-k x x k y y . 由?? ???-=-=+ )(10022 22x x k y y b y a x ,得 由其判别式的值为0,得 因为PB PA k k ,是这个关于k 的一元二次方程的两个根,所以 由此,得 进而可得欲证成立. 定理1的证法2 当题设中的两条互相垂直的切线中有斜率不存在或斜率为0时,可得点P 的坐标是),(b a ±,或),(b a -±. 当题设中的两条互相垂直的切线中的斜率均存在且均不为0时,可设点P 的坐标是,)(,(000a x y x ±≠且)0b y ±≠,所以可设两个切点分别是)0)(,(),,(21212211≠y y x x y x B y x A .

高中数学解析几何中的基本公式

解析几何中的基本公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 特别地:x //AB 轴, 则=AB 。 y //AB 轴, 则=AB 。 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 221B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 4、 直线与圆锥曲线相交的弦长公式:?? ?=+=0 )y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比 为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=222 121y y y x x x 变形后:y y y y x x x x --= λ--= λ21 21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 21211k k k k +-,]2 ,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

勾股定理16种证明方法

勾股定理的证明 【证法1】(课本的证明) a 、 b ,斜边长为 c ,再做三 个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++,整理得222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21.把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵Rt ΔHAE ≌Rt ΔEBF, ∴∠AHE = ∠BEF . ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵Rt ΔGDH ≌Rt ΔHAE, ∴∠HGD = ∠EHA . ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ABCD 是一个边长为a + b 的正方形,它的面积等于()2 b a +. ∴ ()2 22 14c ab b a +?=+. ∴2 2 2 c b a =+.

以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角 三角形的面积等于ab 21. 把这四个直角三 角形拼成如图所示形状. ∵Rt ΔDAH ≌ Rt ΔABE, ∴∠HDA = ∠EAB . ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵EF = FG =GH =HE = b ―a , ∠HEF = 90o. ∴EFGH 是一个边长为b ―a 的正方形,它的面积等于()2 a b -. ∴()22 214c a b ab =-+?. ∴2 2 2 c b a =+. 【证法4】(1876年美国总统Garfiel d 证明) 以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面 积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵Rt ΔEAD ≌Rt ΔCBE, ∴∠ADE = ∠BEC . ∵∠AED + ∠ADE = 90o, ∴∠AED + ∠BEC = 90o. ∴∠DEC = 180o―90o= 90o. ∴ΔDEC 是一个等腰直角三角形, 它的面积等于221c . 又∵∠DAE = 90o, ∠EBC = 90o, ∴ AD ∥BC . ∴ABCD 是一个直角梯形,它的面积等于()2 21 b a +. ∴()2 2212122 1 c ab b a +?=+. ∴2 22c b a =+.

解析几何中的基本公式

解析几何中的基本公式 解析几何学(analytic geometry )是借助坐标系,用代数方法研究几何对象之间的关系和性质的一门几何学分支,亦叫坐标几何。由法国数学家笛卡儿和费马等人创建,其思想来源可上溯到公元前两千年。 两点间距离:若)y ,x (B ),y ,x (A 2211,则2 12212)()(y y x x AB -+-= 平行线间距离:若0C By Ax :l , 0C By Ax :l 2211=++=++ 则:2221B A C C d +-= 注意点:x ,y 对应项系数应相等。 点到直线的距离:0C By Ax :l ),y ,x (P =++οο 则P 到l 的距离为: 2 2B A C By Ax d +++= οο 直线与圆锥曲线相交的弦长公式:? ? ?=+=0)y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则: 2 122))(1(x x k AB -+= 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=222121y y y x x x 变形后: y y y y x x x x --=λ--= λ21 21或

若直线l1的斜率为k1,直线l2的斜率为k2,则l1到l2的角为),0(,π∈αα 适用范围:k1,k2都存在且k1k2≠-1 , 21121tan k k k k +-= α 若l1与l2的夹角为θ,则=θtan 2 12 11k k k k +-,]2,0(π∈θ 注意:(1)l1到l2的角,指从l1按逆时针方向旋转到l2所成的角,范围),0(π l1到l2的夹角:指 l1、l2相交所成的锐角或直角。 (2)l1⊥l2时,夹角、到角=2π 。 (3)当l1与l2中有一条不存在斜率时,画图,求到角或夹角。 (1)倾斜角α,),0(π∈α; (2)]0[,π∈θθ→ →,,夹角b a ; (3)直线l 与平面 ] 20[π ∈ββα,,的夹角; (4)l1与l2的夹角为θ,∈ θ] 20[π ,,其中l1//l2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l1到l2的角)0(π∈θθ,, 直线的倾斜角α与斜率k 的关系 每一条直线都有倾斜角α,但不一定有斜率。 若直线存在斜率k ,而倾斜角为α,则k=tan α。 直线l1与直线l2的的平行与垂直

高考解析几何中的基本公式(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 解析几何中的基本公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 特别地:x //AB 轴, 则=AB 。 y //AB 轴, 则=AB 。 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 4、 直线与圆锥曲线相交的弦长公式:?? ?=+=0 )y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为 λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=2221 21y y y x x x

变形后:y y y y x x x x --=λ--= λ21 21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 2 1211k k k k +-,]2,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

高中数学立体几何解析几何 判定&性质&公式整理(全)

高中数学必修二复习 基本概念 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。 公理3:过不在同一条直线上的三个点,有且只有一个平面。 推论1: 经过一条直线和这条直线外一点,有且只有一个平面。 推论2:经过两条相交直线,有且只有一个平面。 推论3:经过两条平行直线,有且只有一个平面。 公理4 :平行于同一条直线的两条直线互相平行。 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 空间两直线的位置关系: 空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面:平行、相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。 两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法 两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法 2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 ①直线在平面内——有无数个公共点 ②直线和平面相交——有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。 esp.空间向量法(找平面的法向量) 规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角 由此得直线和平面所成角的取值范围为[0°,90°] 最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角 三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直 esp.直线和平面垂直 直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

高考数学圆锥曲线深度拓展:蒙日圆及其证明

蒙日圆及其证明 高考题 (2014年高考广东卷文科、理科第20题)已知椭圆22 22:1(0)x y C a b a b +=>> 的一个焦点为 (1)求椭圆的标准方程; C (2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P C 的轨迹方程. 答案:(1)22 194 x y +=;(2)2213x y +=. 这道高考题的背景就是蒙日圆. 普通高中课程标准实验教科书《数学2·必修·A 版》(人民教育出版社,2007年第3版,2014年第8次印刷)第22页对画法几何的创始人蒙日(G.Monge ,1745-1818)作了介绍.以上高考题第(2)问的一般情形是 定理1 曲线的两条互相垂直的切线的交点P 的轨迹是圆1:22 22=+Γb y a x . 2222b a y x +=+定理1的结论中的圆就是蒙日圆. 先给出定理1的两种解析几何证法: 定理1的证法1 当题设中的两条互相垂直的切线中有斜率不存在或斜率为0时,可得点P 的坐标是,或. ),(b a ±),(b a -±当题设中的两条互相垂直的切线中的斜率均存在且均不为0时,可设点P 的坐标是且,所以可设曲线的过点P 的切线方程是 ,)(,(000a x y x ±≠)0b y ±≠Γ.由,得 )0)((00≠-=-k x x k y y ?? ???-=-=+)(10022 22x x k y y b y a x 0)()(2)(2220020022222=--+--+b a y kx a x y kx ka x b k a 由其判别式的值为0,得 )0(02)(220220002220≠-=++--a x b y k y x k a x 因为是这个关于的一元二次方程的两个根,所以 PB PA k k ,k 220220a x b y k k PB PA -+=? 由此,得进而可得欲证成立. 2220201b a y x k k PB PA +=+?-=?定理1的证法2 当题设中的两条互相垂直的切线中有斜率不存在或斜率为0时,可

解析几何公式大全

平行线间距离:若l i : Ax By C i 0, 12 : Ax By C20 则:d C i C2I J A2B2 注意点:x, y对应项系数应相等。 点到直线的距离:P(x , y ),I:Ax By C 0 则P到1的距离为: |Ax d By C 解析几何中的基本公式 .A2B2 直线与圆锥曲线相交的弦长公式:y kx b F(x,y) 0 2 消y:ax bx c 0,务必注意0. 若I与曲线交于A(x1, y1), B(x2, y2) 则:AB v'(1 k2)(X2 X i)2 若A(x i, y i), B(X2, y2),P(x,y)。P在直线AB上,且P分有向线段AB所成的比为 i y i y2 i ,特别 地: x =1时,P为AB中点且 y x-i x2 2 y i y2 2 变形后:—i或」 X2 x y2 y 若直线l i的斜率为k i,直线|2的斜率为k2,则l i到|2的角为, (0, ) 适用范围:k i,k2都存在且k i k2 —i , tan k2 k i i k i k2

I i 到I 2的夹角:指 11、 12相交所成的锐角或直角。 (2) l 1 I 2时,夹角、到角=—。 2 (3) 当11与I 2中有一条不存在斜率时,画图,求到角或夹角。 直线的倾斜角 与斜率k 的关系 每一条直线都有倾斜角 ,但不一定有斜率。 若直线存在斜率k ,而倾斜角为 ,则k=tan 。 直线I 1与直线I 2的的平行与垂直 (1)若I 1, I 2均存在斜率且不重合:①I 1//I 2 k 1=k 2 ② I 1 I 2 k 1k 2=— 1 (2)若 I 1 : A 1x B 1 y C 1 0, I 2 : A 2X B 2y C 2 若A 1、A 2、B 1、B 2都不为零 I 1//I 2 △邑 C !; A 2 B 2 C 2 若i i 与12的夹角为,则tan 注意:(1 ) I i 到12的角,指从 k i k 2 1 kk 11按逆时针方向旋转到 I 2所成的 角, (0,) (1) 倾斜角 , (0,); (2) a, b 夹角, [0, ]; (3) 直线I 与平面 的夹角 ,[0,,] (4) I 1与I 2的夹角为 [0,—],其 中 2 (5) 二面角, (0,]; (6) I 1到I 2的角, (0, ) I 1//I 2时夹角 =0; I 1 I 2 A 1A 2+B 1B 2=0;

高中数学公式定理大集中

高中的数学公式定理大集中 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα 2cotα=1 sinα 2cscα=1 cosα 2secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα

sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα 2tanβ tanα-tanβ tan(α-β)=—————— 1+tanα 2tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2)

(甘志国)蒙日圆及其证明

蒙日圆及其证明 甘志国(已发表于 河北理科教学研究,2015(5):11-13) 高考题 (2014年高考广东卷文科、理科第20题)已知椭圆22 22:1(0)x y C a b a b +=>>的 一个焦点为 (1)求椭圆C 的标准方程; (2)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程. 答案:(1)22 194 x y +=;(2)2213x y +=. 这道高考题的背景就是蒙日圆. 普通高中课程标准实验教科书《数学2·必修·A 版》(人民教育出版社,2007年第3版,2014年第8次印刷)第22页对画法几何的创始人蒙日(G.Monge ,1745-1818)作了介绍.以上高考题第(2)问的一般情形是 定理 1 曲线1:22 22=+Γb y a x 的两条互相垂直的切线的交点P 的轨迹是圆 2222b a y x +=+. 定理1的结论中的圆就是蒙日圆. 先给出定理1的两种解析几何证法: 定理1的证法1 当题设中的两条互相垂直的切线中有斜率不存在或斜率为0时,可得点P 的坐标是),(b a ±,或),(b a -±. 当题设中的两条互相垂直的切线中的斜率均存在且均不为0时,可设点P 的坐标是,)(,(000a x y x ±≠且)0b y ±≠,所以可设曲线Γ的过点P 的切线方程是 )0)((00≠-=-k x x k y y . 由?? ???-=-=+ )(10022 22x x k y y b y a x ,得 0)()(2)(2220020022222=--+--+b a y kx a x y kx ka x b k a 由其判别式的值为0,得 )0(02)(22 022*******≠-=++--a x b y k y x k a x 因为PB PA k k ,是这个关于k 的一元二次方程的两个根,所以

解析几何公式大全

解析几何中的基本公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 4、 直线与圆锥曲线相交的弦长公式:? ? ?=+=0)y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=2221 21y y y x x x 变形后:y y y y x x x x --=λ--= λ21 21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 2 1211k k k k +-,]2,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。

勾股定理的不同证法

勾股定理的不同证法 证法1:设三角形较短的两边长度分别为a和b,较长的边为c, 如果a的二次方与b的二次方的和等于c的二次方,最长边对 应的角为直角,则已证明勾股定理:a2+b2=c2 证法2:以三角形三边延伸做三个正方形,边长分别为a,b, c,如果正方形(a边长)加正方形(b边长)面积和等于正方 形(c边长),则a2+b2=c2,已证明勾股定理。 证法3:以a,b为直角边,以c为斜边做两个全等的三角形, 则每个直角三角三角形的面积等于?ab,把这两个直角三 角形如图所示,使A,E,B三点在一条直线上。 ∵Rt△EAD≌RT△CBE, ∴∠ADE=∠BEC, ∵∠AED+∠ADE=90° ∴∠AED+∠BEC=90° ∴∠DEC=180°—90°=90° ∴△DEC是一个等腰直角三角形 它的面积等于?c2 又因为∠DAE=90°,∠EBC=90°, ∴AD∥BC ∴ABCD是一个直角梯形,它的面积等于?(a+b)2 ∴?(a+b)2=2·?ab+?c2 ∴a2+b2=c2 证法4:做8个全等的直角三角形设它们的两条直 角边长为a,b,斜边长为c,在做三个边长为a,b, c的正方形,把它们像左图那样拼成两个正方形,从 左图可以看到,这两个正方形的边长都是a+b,所 以面积相等,即: a2+b2+4·?ab等于c2+4·?ab,整理便得a2+b2=c2 证法5:以a,b为直角边(b>a),以c为斜边做四 个全等的直角三角形,则每个直角三角形的面积等于?ab,把这 四个直角三角形拼成如图所示形状。 ∵RtDAH≌Rt△ABE, ∴∠HDA=∠EAB ∵∠HAD+∠HAD=90° ∴∠EAB+∠HAD=90° ∴ABCD是一个边长为c的正方形,它的面积等于c2 ∵EF=FG=GH=HE=b—a ∠HEF=90° ∴EFGH是一个边长为b—a的正方形,它的面积等于(b—a)2 4·?ab+(b—a)2等于c2 ∴a2+b2=c2 证法6:从这张图可以得到一个矩形和三个三角形,推导公式如下:

初中数学常用拓展公式定理汇总汇编

初中数学实用拓展公式定理汇总 一、解析几何 直线斜率公式 已知11(,)A x y 、22(,)B x y 是直线l 上两点,α是直线l 的倾斜角,k 是它的斜率,则 1212 tan y y k x x α-==-. 两点之间的距离公式 已知11(,)A x y 、22(,)B x y ,则 AB = 点到直线的距离公式 已知直线:l y kx b =+,00(,)A x y ,l 到点A 的距离是d ,则 d = 平行直线的距离公式 已知直线11:l y kx b =+、22:l y kx b =+,l 1到l 2的距离是d ,则 d = 两直线位置关系的判定 已知直线l 1、l 2的斜率是k 1、k 2,则 1212l l k k ?=∥;1212=1l l k k ⊥?-. 二、三角函数 已知α、β是任意角,则下列公式成立: 和差角正弦公式 sin()sin cos cos sin αβαβαβ±=±; 和差角余弦公式 cos()cos cos sin sin αβαβαβ±=m ; 和差角正切公式 tan tan tan()1tan tan αβαβαβ ±±=m ; 倍角正弦公式 sin 22sin cos ααβ=; 倍角余弦公式 2cos 22cos 1αα=-;

倍角正切公式 22tan tan 21tan ααα=-. 当0180α?<

解析几何公式大全

解析几何中的基本公 式 1、两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 2、平行线间距离:若0C By Ax :l , 0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、点到直线的距离:0C By Ax :l ),y ,x (P =++οο 则P 到l 的距离为:2 2 B A C By Ax d +++= οο 4、直线与圆锥曲线相交的弦长公式:???=+=0 )y ,x (F b kx y 消y :02=++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=2221 21y y y x x x

变形后:y y y y x x x x --=λ--= λ21 21或 6、若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 2 1211k k k k +-,]2,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。 7、(1)倾斜角α,),0(π∈α; (2)]0[,π∈θθ→ →,,夹角b a ; (3)直线l 与平面]2 0[π ∈ββα,,的夹角; (4)l 1与l 2的夹角为θ,∈θ]2 0[π ,,其中l 1//l 2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,, 8、直线的倾斜角α与斜率k 的关系

解析几何公式-大全

解析几何中的基本公式 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 注意点:x ,y 对应项系数应相等。 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 直线与圆锥曲线相交的弦长公式:?? ?=+=0 )y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=222 121y y y x x x 变形后:y y y y x x x x --=λ--= λ21 21或 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α

若l 1与l 2的夹角为θ,则= θtan 2 1211k k k k +-,]2,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。 (1)倾斜角α,),0(π∈α; (2)]0[,π∈θθ→ →,,夹角b a ; (3)直线l 与平面]2 0[π∈ββα,,的夹角; (4)l 1与l 2的夹角为θ,∈θ]2 0[π,,其中l 1//l 2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,, 直线的倾斜角α与斜率k 的关系 每一条直线都有倾斜角α,但不一定有斜率。 若直线存在斜率k ,而倾斜角为α,则k=tan α。 直线l 1与直线l 2的的平行与垂直 (1)若l 1,l 2均存在斜率且不重合:①l 1//l 2? k 1=k 2 ②l 1⊥l 2? k 1k 2=-1 (2)若0:,0:22221111=++=++C y B x A l C y B x A l 若A 1、A 2、B 1、B 2都不为零 l 1//l 2? 2 1 2121C C B B A A ≠ =; l 1⊥l 2? A 1A 2+B 1B 2=0;

勾股定理五种证明方法

勾股定理五种证明方法 【证法1】 ? ? ? ? ? ? ? ? ? ? 做8 个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 214214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o . ∴ ∠HEF = 180o ―90o= 90o . ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o . 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o . ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴ ()2 2214c ab b a +?=+. ∴ 222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为

解析几何常用公式定理

解析几何常用公式(景斌汇编) (内部资料仅限东方之子学校学生使用) 1、倾斜角(0180θ?≤

勾股定理证法11种

证法1 一种借助面积完成的演绎证明(愚草提供),双击右侧图片可以清楚阅读: 另附:《对勾股定理及其逆定理教育价值的深层挖掘》[3]一文。 证法1 作四个全等的直角三角形,设它们的两条直角边长分别为a、b ;,斜边长为c. ;把它们拼成如图那样的一个多边形,使D、E、F在一条直线上。过点C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上,;且RtΔGEF ;≌ RtΔEBD, ∴;∠EGF = ;∠BED, ∵;∠EGF + ;∠GEF = 90°, ∴;∠BED + ;∠GEF = 90°, ∴;∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴;∠ABC + ;∠CBE = 90° ∵ RtΔABC ;≌ RtΔEBD, ∴;∠ABC = ;∠EBD. ∴;∠EBD + ;∠CBE = 90° 即;∠CBD= 90° 又∵;∠BDE = 90°,∠BCP = 90°, BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 A+B=C 证法2

作两个全等的直角三角形,设它们的直角边长分别为a、b(b>a);,斜边长为c. ;再做一个边长为c的正方形。把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点 F作FN⊥PQ,垂足为N. ∵;∠BCA = 90°,QP∥BC, ∴;∠MPC = 90°, ∵ BM⊥PQ, ∴;∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC = 90°。 ∵;∠QBM + ;∠MBA = ;∠QBA = 90°, ∠ABC + ;∠MBA = ;∠MBC = 90°, ∴;∠QBM = ;∠ABC, 又∵;∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ;≌ RtΔBCA. 同理可证RtΔQNF ;≌ RtΔAEF.即A2+B2=C2 证法3 作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a);,斜边长为c. ;再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c, ∠CJB = ;∠CFD = 90°, ∴RtΔCJB ;≌ RtΔCFD ;, 同理,RtΔABG ;≌ RtΔADE, ∴RtΔCJB ;≌ RtΔCFD ;≌ RtΔABG ;≌ RtΔADE ∴∠ABG = ;∠BCJ, ∵∠BCJ +∠CBJ= 90°, ∴∠ABG +∠CBJ= 90°, ∵∠ABC= 90°, ∴G,B,I,J在同一直线上, A2+B2=C2。 证法4 作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结 BF、CD. ;过C作CL⊥DE, 交AB于点M,交DE于点L. ∵ AF = AC,AB = AD, ∠FAB = ;∠GAD, ∴;ΔFAB ;≌;ΔGAD, ∵;ΔFAB的面积等于, ΔGAD的面积等于矩形ADLM

解析几何常用公式

1. AB →,A 为AB →的起点,B 为AB →的终点。线段AB 的长度称作AB →的长度,记作|AB → |.数轴上同向且 相等的向量叫做相等的向量.....。零向量的方向任意。..........在数轴上任意三点A 、B 、C ,向量AB →、BC → 、AC →的坐标都具有关系:AC =AB +BC . .. AC →=AB →+ 2.设 AB → 是数轴上的任一个向量,则AB =OB -OA =x 2-x 1,d (A ,B )=|AB |=|x 2-x 1|. 4.. A (x 1,y 1),B (x 2,y 2),则两点A 、B 的距离公式d (A ,B )=?x 2-x 1?2+?y 2-y 1?2 若B 点为原点,则d (A ,B )=d (O ,A )=x 21+y 21; 5. A (x 1,y 1),B (x 2,y 2),中点M( x 1+x 22, y 1+y 2 2 ). A (x ,y )关于M (a ,b )的对称点B(2x 0-x ,2y 0-y ). 6. 直线倾斜角::x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定,与x 轴 平行或重合的直线的倾斜角为0°. 7.直线的位置与斜率、倾斜角的关系 ①k =0时,倾斜角为0°,直线平行于x 轴或与x 轴重合. ②k >0时,直线的倾斜角为锐角,k 值增大,直线的倾斜角也增大,此时直线过第一、三象限. ③k <0时,直线的倾斜角为钝角,k 值增大,直线的倾斜角也增大,此时直线过第二、四象限. ④垂直于x 轴的直线的斜率不存在,它的倾斜角为90°. 8. 若直线l 上任意两点A (x 1,y 1),B (x 2,y 2)且x 1≠x 2,则直线l 的斜率k =y 2-y 1 x 2-x 1 . 9.直线方程的五种形式 (1)点斜式:经过点P 0(x 0,y 0)的直线有无数条,可分为两类:斜率存在时,直线方程为 y -y 0=k (x -x 0);斜率不存在时,直线方程为x =x 0. (2)斜截式:已知点(0,b ),斜率为k 的直线y =kx +b 中,截距b 可为正数、零、负数. (3)两点式: y -y 1y 2-y 1=x -x 1 x 2-x 1(x 1≠x 2,y 1≠y 2 ) (4) 截距式:当直线过(a,0)和(0,b )(a ≠0,b ≠0)时,直线方程可以写为x a +y b =1,当直线斜率 不 存在(a =0)或斜率为0(b =0)时或直线过原点时,不能用截距式方程表示直线. (5)一般式:Ax +By +C =0的形式.(220A B +≠)

相关文档
相关文档 最新文档