文档库 最新最全的文档下载
当前位置:文档库 › 光伏并网逆变器测试规范 (1)

光伏并网逆变器测试规范 (1)

光伏并网逆变器测试规范 (1)
光伏并网逆变器测试规范 (1)

深圳市晶福源电子技术有限公司

并网逆变器电性能测试规范

拟制:彭庆飞/丁川日期: 2012.11.19

审核:石绍辉日期: 2012.12.01

复审:石绍辉日期: 2012.12.07

批准:石绍辉日期: 2012.12.07

文件编号: 20111219

生效日期: 2013.1.1 版本号: VA.1

文件修订记录

目录

1 目的 6

2 适用范围 6

3 定义 6

4 引用/参考标准 6

5 测试基本原则及判定准则 6

5.1 测试基本原则 6

5.2 测试问题分类的基本原则和标准 6

5.4 质量判定准则 7

6 测试仪器、测试工具、测试环境 7

6.1 测试仪器 7

6.2 测试工具 7

6.3 测试环境 7

7 测试项目、测试说明、测试方法、判定标准 8

7.1基本性能测试 8

7.1.1 直流输入电压范围和过欠压测试 8

7.1.2 电网电压响应测试 8

7.1.3 电网频率响应测试 9

7.1.4 并网电流直流分量 10

7.1.5 并网电压的不平衡度测试 10

7.1.6 功率因数测试 11

7.1.7 效率测试 11

7.1.8 最大功率点跟踪(MPPT)测试 12

7.1.9 并网电流谐波测试 13

7.1.10 噪声测试 14

7.1.11 检测和显示精度测试 15

7.1.12 母线软启动及浪涌电流测试 15

7.1.13 自动开关机测试 15

7.1.14 逆变软启动测试 16

7.1.15 负载降额测试 16

7.1.16 PV输入限流测试 17

7.1.17 休眠模式和standby模式测试 17

7.1.18 输出隔离变压测试 18

7.1.19 恢复并网保护测试 18

7.1.20 输出过流保护测试 19

7.1.21 防反放电保护测试 19

7.1.22 极性反接保护测试 20

7.1.23 输入过载保护测试 20

7.1.24 孤岛保护测试 21

7.1.25 逆向功率保护测试 23

7.1.26 EPO紧急关机测试 23

7.1.27 SERVICE模式测试 24

7.1.29 EPO关机驱动电压测试 25

7.1.30 电容放电时间测试 25

7.1.31 死区时间测试 25

7.1.33 母线电容纹波电流测试 26

7.1.34 逆变滤波电容纹波电流测试 26

7.1.35 逆变电感纹波电流测试 26

7.2 故障模拟测试 26

7.2.1 母线软启动失败测试 26

7.2.2 输出保险熔断模拟测试 27

7.2.3 输出变压器和电抗器过温模拟测试 27

7.2.4 环境过温保护测试 28

7.2.5 逆变晶闸管/接触器开路故障模拟测试 28

7.2.6 逆变晶闸管/接触器短路故障模拟测试 29

7.2.7 风扇故障模拟测试 29

7.2.8 输出相序接反保护测试 30

7.2.9 输出缺相保护测试 30

7.2.10 低电压穿越测试 31

7.2.11 接地保护测试 32

7.2.12 IGBT过温保护测试 33

7.3 可靠性测试 33

7.3.1 PV电压跳变测试 33

7.3.2 电网电压跳变测试 33

7.3.3 电网频率跳变测试 34

7.3.4 老化及温升测试 34

7.3.5 IGBT电压应力测试 34

7.6 安全测试 35

7.7.1 绝缘电阻、绝缘电压测试 35

7.7.2 方阵绝缘阻抗测试 36

7.7.3 连续残余电流测试 36

7.7.4 着火漏电流测试 36

7.7.3 残余电流突变测试 37

7.7.4 接触电流测试(待完善) 37

7.8 环境试验(待完善) 37

7.9 EMC测试(待完善) 37

7.9.1 传导干扰测试 37

7.9.2 辐射干扰测试 38

7.9.3 静电放电抗扰性试验(ESD) 39

1 目的

用以规范大功率光伏并网逆变器测试之测试项目、测试目的、测试方法、判定标准及判定准则等;

规范光伏并网逆变器测试任务的接收、测试准备、测试进行、测试结束等测试阶段的条件和过程;

规范光伏并网逆变器测试的基本原则、不合格问题分类与质量判定标准;

2 适用范围

适用于晶福源有限公司所生产的大功率光伏并网逆变器,及其小功率的并网逆变器的功能与性能。

3 定义

EUT :被测设备

AE :辅助设备

4 引用/参考标准

1、金太阳认证的相关标准

2、国家电网公司相关企业标准

3、低电压穿越等技术标准。

4、技术指标要求:《产品规格书》

5、CNCACTS 0004 2009A 并网光伏发电专用逆变器技术条件

6、CNCA/CTS0006-2010 光伏发电系统用电力转换设备的安全

7、IEC62109-1,IEC62109-2 Safety of power converters for use in photovoltaic power systems

5 测试基本原则及判定准则

5.1 测试基本原则

以标准(国际标准、国家标准、行业标准)、测试规范、规格书为依据,以测试数据为准,站在用户的角度上对光伏并网逆变器进行评测,将功能缺陷与故障隐患暴露在测试阶段。

测试工作不受项目开发组态度与思路及其他干扰测试过程因素的影响,独立按照测试流程进行。

5.2 测试问题分类的基本原则和标准

参见测试部制定的《ST 046测试结果分析作业标准》。

按产品的质量特性不符合的严重程度划分:

A类(严重缺陷):基本功能、安全功能等失效性故障。

B类(重要缺陷):主要指标或客户比较重视的不达标准。

C类(一般缺陷);一般性指标的不达标准。

D类(可接受缺陷)。根据客户或公司现状而能够接受的缺陷。

5.4 质量判定准则

测试中不允许出现A类不合格情况;

测试中B类不合格数不超过1个;

测试中C类不合格数不超过3个;

否则,测试部终止测试,直接判定该项目测试不合格;

6 测试仪器、测试工具、测试环境

6.1 测试仪器

后台测试软件;

监控系统内、外通信协议测试平台。

6.3 测试环境

测试场所海拔不超过1000m;

大气压力86--106KPa;

环境温度为0oC--40oC;

相对湿度20%~90%(相对于环境温度为25oC时);

7 测试项目、测试说明、测试方法、判定标准

7.1基本性能测试

7.1.1 直流输入电压范围和过欠压测试

测试说明:

逆变器的输入电压范围:必须保证逆变器在该范围内能够正常起机和工作;(范围依照规格书规定)

过欠压点:输入电压上升到规格规定的上限或下降到规格规定下限时,逆变器应能发出声光告警。

测试方法:

简述:规格书规定了逆变器工作的DC输入电压范围(X,Y), Y为最高的开口电压,X为最低输入工作电压;如果规格书规定了输入电压Z,当电压低于Z,逆变器将无法满功率馈网,即输出功率降额使用(即使PV能够提供大于逆变器的电能),则应测试出相应转换电压点是否符合规格要求;对规格书另有规定的如待机,关机电压点也需要测试符合规格书要求。

1.输入电压的上限

调节AC SOURCE使逆变器并网的电压和频率正常,缓慢调节DC SOURCE使输出的直流电压慢高于Y,逆变器应从正常工作切换到保护停止输出,记录该转换电压点,然后缓慢调低DC SOURCE的输出电压,直至逆变器恢复并网输出,记录该电压点。

2. 满功率馈网的电压

调节AC SOURCE使逆变器并网的电压和频率正常,且设定DC SOURCE的输出容量略大于逆变器的额定容量;当DC电压大于Z,逆变器正常并网以后,缓慢调低DC SOURCE的电压,直至逆变器无法满功率馈网供电,记录改电压;再缓慢调高DC SOURCE的电压,直至逆变器恢复满功率馈网供电,记录该电压,计算回差。

3. 逆变器工作电压下限和回差

调节AC SOURCE使逆变器并网的电压和频率正常,且设定DC SOURCE的输出容量略大于逆变器的额定容量,逆变器正常并网以后,缓慢调低DC SOURCE的电压,直至母线电压异常,无法正常逆变工作,记录该电压A;再调高DC SOURCE的电压,直至母线电压正常建立,逆变器馈网可以正常工作,记录该电压B;记录该回差,并且在电压A和B之间,不能出现逆变器的频繁启动和关闭的情况

判断标准:

Pass: 逆变器直流输入电压上限、下限和回差,逆变器满功率馈网的电压符合规格书及行标.

Fail: 逆变器直流输入电压上限、下限和回差,逆变器满功率馈网的电压不符合规格书及行标.测试中任何失效的发生都应该以文档的形式记录在问题追踪程序中.

7.1.2 电网电压响应测试

测试说明:

逆变器正常运行时,光伏系统和电网接口处的电压允许偏差应符合GB/T 12325的规定,即正常使用的电网电压允许偏差为:20KV及以下三相电压的允许偏差为额定电压的±10%,220V单相电压的允许偏差为额定电压的+10%,-15%;CQC对并网逆变器的电网电压响应要求如下表:

电网电压响应

逆变器交流输出端电压最大跳闸保护时间

Spec

0.1s

2.0s

恢复时间

V<50% V标称0.1s ——50% V标称V<85%V标称 2.0s ——

85% V标称V<110%V标称持续工作——

110% V标称<V<135%V标称 2.0s ——

135%V 标称V 0.05s ——

最大跳闸时间是指异常状态发生到逆变器停止向电网供电的时间。主控与监测电路应切实保持与电网的连接,从而继续监视电网的状态,使得“恢复并网”功能有效。

测试方法:

1、设定AC Source或电网模拟器的电压为电网额定标称电压,逆变器正常并网运行;

2、设定AC Source或电网模拟器的电压为标称电压的85%,逆变器应能能正常运行;

3、继续缓慢调低AC Source或电网模拟器的电压到小于85%的标称电压,直到逆变器调闸保护,用示波器记录保护的电压点好保护时间;

4、将AC Source或电网模拟器的电压由标称电压直接跳变至步骤3的电压点,逆变器应跳闸保护,用示波器记录保护点的波形,读出保护时间,和保护点电压;

5、将AC Source或电网模拟器的电压由标称电压直接跳变至标称电压的50%,逆变器应跳闸保护,用示波器记录保护点的波形,读出保护时间,和保护点电压;

6、电网电压过高的保护时间测试步骤同步骤1~步骤5。

注:1、测过欠压时,R、S、T三相电压既可同时变化也可单独变化,这二种情况下都要满足电网电压响应的时间标准。

2、在135%V 标称V条件下,由于电网模拟器最高电压能设置为300V,没办

法满足≥135%V标称电压,未测

判定标准:

Pass: 逆变器电网电压响应符合规格书及行标.

Fail: 逆变器电网电压响应不符合规格书及行标.测试中任何失效的发生

都应该以文档的形式记录在问题追踪程序中

7.1.3 电网频率响应测试

测试说明:

测试逆变器是否在规定的频率范围内(电压正常的情况下)逆变器可以正常工作;在规定的频率范围段,逆变器正常运行规定的时间后,停止并网供电;在规定的频率范围外则认为电网频率异常,并网逆变器停止工作。其频率响应时间必须满足下表要求。

测试方法:

1、设定AC Source或电网模拟器的频率为电网额定标称频率,逆变器正常并网运行;

2、设定AC Source或电网模拟器的频率为49.5Hz和50.2Hz,逆变器应能能正常运行;

3、继续缓慢调低AC Source或电网模拟器的频率到小于49.5Hz,直到逆变器调闸保护,用示波器记录保护的频率点的保护时间;

4、将AC Source或电网模拟器的频率由额定频率直接跳变至步骤3的频率点,逆变器应故障10分钟后跳闸保护,用示波器记录保护点的频率,读出保护时间,和保护点频率;

5、将AC Source或电网模拟器的频率由额定频率直接跳变至< 48Hz,逆变器应在跳闸保护,用示波器记录保护点的频率,读出保护时间,和保护点频率;

6、电网频率过高的保护时间测试步骤同步骤1~步骤5。

判定标准:

Pass: 逆变器电网频率响应符合规格书及行标要求.

Fail: 逆变器电网频率响应不符合规格书及行标.测试中任何失效的发生都应该以文档的形式记录在问题追踪程序中

7.1.4 并网电流直流分量

测试说明:

测试逆变器在并网运行时向电网馈送的直流电流分量应不超过其输出电流额定值的0.5%或5mA,应取二者中较大值。

测试方法:

1. 逆变器输出电流完全馈网,测量输出电流的直流分量;三相输出时,每一

项的直流分量均应符合要求。

判定标准:

Pass: 逆变器在并网运行时向电网馈送的直流电流分量不超过其输出电流额定值的0.5%或5mA(取二者中较大值)。.

Fail: 逆变器在并网运行时向电网馈送的直流电流分量超过其输出电流额定值的0.5%或5mA(取二者中较大值)。测试中任何失效的发生都应该以文档的形式记录在问题追踪程序中。

7.1.5 并网电压的不平衡度测试

测试说明:

测试逆变器接入电网的公共连接点的三相电压不平衡度是否超过规定的限值

测试方法:

简述:逆变器接入电网的公共连接点的三相电压不平衡度不超过GB/T 15543规定的限值,公共连接点的负序电压不平衡度应不超过2%,短时不得超过4%;逆变器引起的负序电压不平衡度不超过 1.3%,短时不超过 2.6%;单相逆变器无需测试此项目;

1.根据标准(负序电压不平衡度应不超过2%,短时不得超过4%),选用AC SOURCE;

2.逆变器输出电流完全馈网,测量输出电压有效值;

3.根据标准计算不平衡度;

判定标准:

Pass: 逆变器接入电网的公共连接点的三相电压不平衡度不超过GB/T 15543规定的限值,公共连接点的负序电压不平衡度应不超过2%,短时不得超过4%;逆变器引起的负序电压不平衡度不超过1.3%,短时不超过2.6%;

Fail: 逆变器接入电网的公共连接点的三相电压不平衡度超过GB/T 15543规定的限值。测试中任何失效的发生都应该以文档的形式记录在问题追踪程序中。

7.1.6 功率因数测试

测试说明:

测试逆变器的功率因数是否满足规格书及行标要求。

测试方法:

简述:当逆变器输出有功功率大于其额定功率的50%,功率因数应不小于0.98(超前或滞后),输出有功功率在20%~50%时,功率因数应不小于0.95(超前或滞后)。

功率因数(PF)的计算公式为:

式中:EREAL—有功功率;EREACTIVE—无功功率。

注1:在供电机构许可下,特殊设计以提供无功功率补偿的逆变器可超出此限值工作;

注2:用于并网运行而设计的大多数逆变器功率因数接近1。

1.根据标准(公用电网谐波电压应不超过GB/T 14549 中第4 章规定的限

值),选用AC SOURCE,或直接并网;

2.调节DC SOURCE的输出功率,或直接控制并网逆变器的输出功率,使并网逆变器输出功率在20%、30%、 40%、50%、60%、70%、80%、90%、100%。

3. 逆变器输出电流完全馈网,测量输出功率因数;

判定标准:

Pass: 逆变器的功率因数满足规格书及行规要求。

Fail: 逆变器的功率因数不满足规格书及行规要求。测试中任何失效的发生都应该以文档的形式记录在问题追踪程序中。

7.1.7 效率测试

测试说明:

测试逆变器的效率是否满足规格书及行规要求,是变换器的主要且重要指标之一,CQC规定无变压器型逆变器最大转换效率不低于96%,含变压器型逆变器最大转换效率不低于94%

测试方法:

1.设置DC SOURCE电压和电流范围,使DC SOURCE输出功率足够大

2.设置DC SOURCE的输出电压为测试所需的逆变器的输入电压

3.设置模拟电网电压,开启逆变器, 并网成功后,配置输出负载运行直至热平衡

4.计算逆变器的效率,欧洲效率 EU = (0.03 × 5%) + (0.06 × 10%) + (0.13 × 20%) + (0.1 × 30%) + (0.48 × 50%) + (0.2 × 100%)

5.描绘效率曲线图

判定标准:

Pass: 逆逆变器的效率是否满足规格书及行规要求;

Fail: 逆变器的效率不满足规格书及行规要求。测试中任何失效的发生都应该以文档的形式记录在问题追踪程序中。

7.1.8 最大功率点跟踪(MPPT)测试

测试说明:

测试逆变器的MPPT的效率和MPPT的跟踪时间是否满足规格书及行标要求

测试方法:

简述:最大功率点跟踪 maximum power point tracking (MPPT)

对跟随太阳能电池表面温度变化和太阳辐照度变化而产生出的输出电压与电流的变化进行跟踪控制,使方阵经常保持在最大输出的工作状态,以获得最大的功率输出;以下为光伏特性的介绍:

1. 选用能够精确模拟光伏特性的DC SOURCE;

2. 设定DC SOURCE的最大输出功率(未知工作电压点是否可以设置),正常并网(分别用AC SOURCE和电网)工作以后,记录DC SOURCE的设定的最大功率、输出功率、输出电压、输出电流,光伏逆变器的输出功率;比较DC SOURCE的设定的最大功率和输出功率的差;计算出MPPT的效率,且记录MPPT的跟踪时间;

3. 接第二步,模拟电池温度变化,记录DC SOURCE的设定的最大功率、输出功率、输出电压、输出电流,光伏逆变器的输出功率;比较DC SOURCE的设定的最大功率和输出功率的差;

4. 接第二步,模拟光照强度变化,记录DC SOURCE的设定的最大功率、输出功率、输出电压、输出电流,光伏逆变器的输出功率;比较DC SOURCE的设定的最大功率和输出功率的差;

5. 接第二步,同时模拟光照强度变化和电池温度变化,记录DC SOURCE的设定的最大功率、输出功率、输出电压、输出电流,光伏逆变器的输出功率;比较DC SOURCE的设定的最大功率和输出功率的差;

6. 多次重复上述工作

判定标准:

Pass: 逆变器的MPPT的效率和MPPT的跟踪时间满足规格书及行标要求

Fail: 逆变器的MPPT的效率和MPPT的跟踪时间不满足规格书及行标要求。测试中任何失效的发生都应该以文档的形式记录在问题追踪程序中。

7.1.9 并网电流谐波测试

测试说明:

测试逆变器的电流谐波是否满足规格书及行规要求

测试方法:

简述:逆变器在运行时不应造成电网电压波形过度畸变和注入电网过度的谐波电流,以确保对连接到电网的其他设备不造成不利影响。

逆变器带载(线性负载)运行时,电流谐波总畸变率限值为5%,奇次谐波电流含有率限值见表1,偶次谐波电流含有率限值见表2。

表1 奇次谐波电流含有率限值

表2 偶次谐波电流含有率限值

1.根据标准(公用电网谐波电压应不超过GB/T 14549 中第 4 章规定的限值),选用ACSOURCE;

2. 调节DC SOURCE的输出功率,或直接控制逆变器的输出功率,使并网逆变器输出功率在30%、 50%、70%、100%。

3. 逆变器输出电流完全馈网,测量输出电流谐波;

判定标准:

Pass: 逆变器的输出电流谐波满足规格书及行规要求

Fail: 逆变器的输出电流谐波不满足规格书及行规要求。测试中任何失效的发生都应该以文档的形式记录在问题追踪程序中。

7.1.10 噪声测试

测试说明:

测试逆变器的噪声是否满足规格书及行规要求

测试方法:

简述:使用声级计测量逆变器正常工作时的噪声。测试依据参照EN50091-3中5.3的要求,测试方法参见ISO7779的说明。

1.音频噪声的测量:

被测逆变器产品直接放置在吸声系数符合要求的地反射面上,并尽量排除因安装不当而产生附加噪声,使被测逆变器主要表面尽量不与其它反射面平行,逆变器负载不应构成反射或产生附加噪

在逆变器的正前方,声级计固定在样机前面板前方1米或2米处进行测量(以自前盖板距离为准,如果产品规格书中规定了的噪声测试距离,则按规格书规定测距离测试),逆变器高度的1/2处安放声级计。声级计用支架固定,不要手持。应注意支架或测试人员对噪声反射的影响。

声级计设置为: A计权,慢速扫描。

2.噪声频谱的测量:

该项测试的具体描述参见逆变器噪声测试规范V3.0。

分别在逆变器处于市电逆变模式和电池逆变模式下测试环境噪声、设备噪声和频谱。

在声源工作的典型周期上观察时间平均声压级,在测试的频率范围内,在每个传声器位置上读取时间平均声压级:被测量声源工作期间,各频带声压级。对中心频率160Hz及以下的频带,观察周期应至少30S,对中心频率200Hz及以上的频带,观察周期应至少10S。测试下面表格频带声压级。

根据等响曲线,人耳对800HZ-6.3KHZ频带的噪声尤为敏感,因此要特别关注分析该频段的噪声频谱。

判定标准:

Pass: 逆变器的噪声满足规格书及行规要求

Fail: 逆变器的噪声不满足规格书及行规要求。测试中任何失效的发生都应该以文档的形式记录在问题追踪程序中。

7.1.11 检测和显示精度测试

测试说明:

测试逆变器的监控面板的显示数据和告警信息是否符合设计要求和技术规格书要求;测试前需要对所有检测值进行校正。

测试方法:

在整个测试过程中关注“记录内容”中要求的项目(但不仅限于),并作相应的数据记录。

记录内容:

1、面板提示信息和告警是否合理;

2、所有检测数据是否符合检测精度要求;

电压电流有效值、系统功率、负载等的计算是否正确;

判定标准:

Pass: 逆变器的监控面板的显示数据和告警信息符合设计要求和技术规格书要求

Fail: 逆变器的监控面板的显示数据和告警信息不符合设计要求和技术规格书要求。测试中任何失效的发生都应该以文档的形式记录在问题追踪程序中。

7.1.12 母线软启动及浪涌电流测试

测试说明:

测试逆变器的母线软启动逻辑是否符合设计要求,浪涌电流是否满足规格要求,系统逻辑和告警是否正确

测试方法:

简述:太阳能逆变器,第一次上电,通过网侧电压二极管整流,建立母线电压,然后直流输入,母线电压完全建立;当母线上升到一定程度,可以闭合直流输入时,应有告警或灯显示,否则不允许闭合直流输入;

第一次上电以后,母线软启动无需再重复上述步骤,逆变器随每天的日出日落,可以自动建立母线,无需要人工干预。

1. 电网分别设定在额定电压/频率、低压/低频、低压/高频、高压/高频、高压/低频等,

用示波器观察输出电压、输出电流、母线电压的波形,关注母线电压和网侧电流的变化情况,同时测试浪涌电流值及其持续时间。

2. 母线初步稳定,按照提示闭合直流输入,母线可以自动软启动,然后并网工作;选择母线电压最低(网侧电压最小),直流输入电压最高(规格书规定的开口电压),测量输入浪涌电流值及其持续时间,该电流不允许损坏器件。

3. 正常并网工作以后,模拟日出日落,用示波器观察输出电压、输出电流、母线电压的波形,关注母线电压和网侧电流的变化情况,同时测试浪涌电流值及其持续时间

判定标准:

Pass: 逆变器的母线软启动逻辑符合设计要求,浪涌电流满足规格要求,系统逻辑和告警正确

Fail: 逆变器的母线软启动逻辑不符合设计要求,浪涌电流不满足规格要求,系统逻辑和告警不正确。测试中任何失效的发生都应该以文档的形式记录在问题追踪程序中。

7.1.13 自动开关机测试

测试说明:

测试逆变器是否能根据日出和日落的日照条件,实现自动开机和关机,且直流电压值、逻辑保护动作和告警信息符合规格要求

测试方法:

简述:逆变器应能根据日出和日落的日照条件,实现自动开机和关机。

1、电网(ACSOURCE)电压和频率正常,并网逆变器正常工作;

2、调节DCSOURCE使直流侧电压下降到低于允许范围的下限时,逆变器应能自动关机,记录直流电压值、逻辑保护动作和告警信息;

3、调节直流输入源,使直流侧电压从低于逆变器的允许直流电压工作范围下限的电压处开始增加,当直流侧电压高于允许范围的下限时,逆变器应能自动开机,记录直流电压值、逻辑保护动作和告警信息;

4、由于PV特性,PV带上负载以后电压会跌落许多,该现象是否导致逆变器重复开、关机,记录逻辑保护动作和告警信息。

判定标准:

Pass: 逆变器能根据日出和日落的日照条件,实现自动开机和关机,且直流电压值、逻辑保护动作和告警信息符合规格要求

Fail: 逆变器不能根据日出和日落的日照条件,实现自动开机和关机,且(或)直流电压值、逻辑保护动作和告警信息不符合规格要求。测试中任何失效的发生都应该以文档的形式记录在问题追踪程序中。

7.1.14 逆变软启动测试

测试说明:

测试逆变器启动运行时,输出功率变化率、启动时间是否满足规格及行标要求

测试方法:

简述:逆变器启动运行时,输出功率应缓慢增加即输出功率变化率应不超过1000W/s,且输出电流无冲击现象。功率不小于100kW的并网逆变器的启动应符合GB/Z 19964相关章节的规定;

1、电网(ACSOURCE)电压和频率正常,并网逆变器正常启动,记录输出功率变

化率、启动时间;

2、调节DCSOURCE使直流侧电压下降到低于允许范围的下限时,逆变器自动关

机,然后恢复直流电压,并网逆变器重新启动,记录输出功率变化率、启动时间;

3、调节ACSOURCE,使之电压或频率异常,逆变器自动关机,然后恢复,并网

逆变器重新启动,记录输出功率变化率、启动时间;

4、在逆变软启动时,模拟光照强度和电池结温变化,调节DCSOURCE,改变PV

开口电压和短路电流;记录输出功率变化率、启动时间;

5、在逆变软启动时,模拟电网和频率的跳变,调节ACSOURCE;记录输出功率

变化率、启动时间;

判定标准:

Pass: 逆变器启动运行时,输出功率变化率、启动时间满足规格及行标要求

Fail: 逆变器启动运行时,输出功率变化率、启动时间不满足规格及行标要求。测试中任何失效的发生都应该以文档的形式记录在问题追踪程序中

7.1.15 负载降额测试

测试说明:

测试逆变器在输入电压不能满足满功率馈网时,逆变器的降额的馈网功率点是否满足规格要求。

测试方法:

简述:规格书或行标规定了DC输入电压Z,当电压低于Z,逆变器将无法满功率馈网,即使PV能够提供大于逆变器的电能;其次规定最低电压X,在(X,Z)之间的任何一个电压点将对应一个逆变器降额的馈网功率点。

1.调节ACSOURCE使逆变器并网的电压和频率正常,且设定DCSOURCE的输出容量略大于逆变器的额定容量;当DC电压大于Z,逆变器正常并网以后,缓慢调低DCSOURCE至一个任意电压点(逆变器仍然馈网工作),记录此时输入电压、输出负载、输入电流;然后再挑选一个电压点,记录此时输入电压、输出负载、输入电流;最后调低到规格书界定的下限电压点,记录此时输入电压、输出负载、输入电流。

判定标准:

Pass: 逆变器在输入电压不能满足满功率馈网时,逆变器的降额的馈网功率点满足规格要求

Fail: 逆变器在输入电压不能满足满功率馈网时,逆变器的降额的馈网功率点不满足规格要求。测试中任何失效的发生都应该以文档的形式记录在问题追踪程序中!

7.1.16 PV输入限流测试

测试说明:

测试逆变器在去掉逆变侧的过流和过载能力时,DC/DC变换器,除了硬件的逐波限流,还应具备软件的限流能力,用于对DC/DC变换器的保护。

测试方法:

1、去掉逆变侧的过流和过载能力;

2、系统正常工作以后,改变PV的最大输出功率,使DC/DC变换器处于限流状

态,记录母线电压、输入电流、输出电流和限流延时;

判定标准:

Pass: 逆变器的母线电压、输入电流、输出电流和限流延时符合规格书及行标要求

Fail: 逆变器的母线电压、输入电流、输出电流和限流延时不符合规格书及行标要求。测试中任何失效的发生都应该以文档的形式记录在问题追踪程序中

7.1.17 休眠模式和standby模式测试

测试说明:

单机版-研旭光伏并网逆变器说明书_图文(精)

研旭光伏并网逆变器 YXSG-2.5KSL , YXSG-3KSL , YXSG-5KSL 安装使用手册 目录 1、安全说 明 (3) 2、产品描 述 (5) 2.1光伏并网系 统 .................................................................................................................... 6 2.2电路结构 ............................................................................................................................ 7 2.3特点 . .. (7)

2.4逆变器外观描 述 (8) 3、安 装 .......................................................................................................................................... 10 3.1 安装须 知 ......................................................................................................................... 10 3.2 安装流程说明 .. (11) 3.3安装准备 .......................................................................................................................... 12 3.4 选择合适的安装场 地 ..................................................................................................... 12 3.5 安装逆变 器 (14) 3.6 电气连 接 (14) 4、 LCD 操作说 明 . ......................................................................................................................... 21 4.1 按键功能说明 .. (21) 4.2 界面介 绍 (22) 5、故障排 除 (27) 5.1 初始化失败 ..................................................................................................................... 27 5.2 LCD 显示故 障 (27)

光伏并网逆变器测试规范

深圳市晶福源电子技术有限公司 并网逆变器电性能测试规范 (此文档只适用于金太阳标准) 拟制:彭庆飞/丁川日期:2012.11.19 审核:石绍辉日期:2012.12.01 复审:石绍辉日期:2012.12.07 批准:石绍辉日期:2012.12.07 文件编号:20111219 生效日期:2013.1.1版本号:VA.1

文件修订记录

目录 1目的 (6) 2适用范围 (6) 3定义 (6) 4引用/参考标准 (6) 5测试基本原则及判定准则 (6) 5.1测试基本原则 (6) 5.2 测试问题分类的基本原则和标准 (6) 5.4 质量判定准则 (6) 6测试仪器、测试工具、测试环境 (7) 6.1 测试仪器 (7) 6.2 测试工具 (7) 6.3 测试环境 (7) 7测试项目、测试说明、测试方法、判定标准 (7) 7.1基本性能测试 (7) 7.1.1 直流输入电压范围和过欠压测试 (7) 7.1.2 电网电压响应测试 (8) 7.1.3 电网频率响应测试 (9) 7.1.4 并网电流直流分量 (10) 7.1.5 并网电压的不平衡度测试 (10) 7.1.6 功率因数测试 (10) 7.1.7 效率测试 (11) 7.1.8 最大功率点跟踪(MPPT)测试 (11) 7.1.9 并网电流谐波测试 (13) 7.1.10 噪声测试 (13) 7.1.11 检测和显示精度测试 (14) 7.1.12 母线软启动及浪涌电流测试 (15) 7.1.13 自动开关机测试 (15) 7.1.14 逆变软启动测试 (16) 7.1.16 PV输入限流测试 (16) 7.1.18 输出隔离变压测试 (16) 7.1.19 恢复并网保护测试 (17) 7.1.20 输出过流保护测试 (17) 7.1.21 防反放电保护测试 (18) 7.1.22 极性反接保护测试 (18) 7.1.23 输入过载保护测试 (19) 7.1.24 孤岛保护测试 (19) 7.1.25 逆向功率保护测试 (21) 7.1.26 EPO紧急关机测试 (22) 7.1.29 EPO关机驱动电压测试 (22) 7.1.30 电容放电时间测试 (23) 7.1.31 死区时间测试 (23) 7.1.33 母线电容纹波电流测试 (23) 7.1.34 逆变滤波电容纹波电流测试 (24) 7.1.35 逆变电感纹波电流测试 (24) 7.2 故障模拟测试 (24) 7.2.1 母线软启动失败测试 (24) 7.2.3 输出变压器和电抗器过温模拟测试 (25) 7.2.5 逆变晶闸管/接触器开路故障模拟测试 (25) 7.2.7 风扇故障模拟测试 (26) 7.2.8 输出相序接反保护测试 (26)

太阳能光伏并网控制逆变器工作原理及控制方法

2015年6月15日 22:28 太阳能光伏并网控制逆变器工作原理及控制方 摘要:太阳能光伏发电是21世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。 1引言: 随着工业文明的不断发展,我们对于能源的需求越来越多。传统的化石能源已经不可能满足要求,为了避免面对能源枯竭的困境,寻找优质的替代能源成为人们关注的热点问题。可再生能源如水能、风能、太阳能、潮汐能以及生物质能等能源形式不断映入人们的眼帘。水利发电作为最早应用的可再生能源发电形式得到了广泛使用,但也有人就其的环境问题、安全问题提出过质疑,况且目前的水能开发程度较高,继续开发存在一定的困难。风能的利用近些年来也是热点问题,但风力发电存在稳定性不高、噪音大等缺点,大规模并网对电网会形成一定冲击,如何有效控制风能的开发和利用仍是学术界关注的热点。在剩下的可再生能源形式当中,太阳能发电技术是最有利用价值的能源形式之一。太阳能储量丰富,每秒钟太阳要向地球输送相当于210亿桶石油的能量,相当于全球一天消耗的能量。我国的太阳能资源也十分丰富,除了贵州高原部分地区外,中国大部分地域都是太阳能资源丰富地区,目前的太阳能利用率还不到1/1000。因此在我国大力开发太阳能潜力巨大。 太阳能的利用分为"光热"和"光伏"两种,其中光热式热水器在我国应用广泛。光伏是将光能转化为电能的发电形式,起源于100多年前的"光生伏打现象"。太阳能的利用目前更多的是指光伏发电技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。 本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。 2并网型光伏系统结构 图1所示为并网型光伏系统的结构。并网型光伏系统包括两大主要部分: 其一,太阳能电池组件。将太阳传送到地球上的光能转化成直流电能;其二,太阳能控制逆变器及并网成套设备,负责将电池板输出直流电能转为电网可接受的交流能量。根据功率的不同太阳能逆变器的输出形式可为单相或者三相;可带隔离变压器,也可不配隔离变压器。

太阳能光伏并网逆变器的设计原理框图

随着生态环境的日益恶化,人们逐渐认识到必须走可持续发展的道路,必须完成从补充能源向替代能源的过渡。光伏并网是太阳能利用的发展趋势,光伏发电系统将主要用于调峰电站和屋顶光伏系统。 在光伏并网系统中,并网是核心部分。目前并网型系统的研究主要集中于DC-DC和DC-AC 两级能量变换的结构。DC-DC变换环节调整光伏阵列的工作点使其跟踪最大功率点;DC-AC逆变环节主要使输出电流与电网电压同相位,同时获得单位功率因数。其中DC-AC是系统的关键设计。 太阳能光伏并网系统结构图如图1所示。本系统采用两级式设计,前级为升压斩波器,后级为全桥式逆变器。前级用于最大功率追踪,后级实现对并网电流的控制。控制都是由DSP芯片TMS320F2812协调完成。 图1 光伏并网系统结构图 逆变器的设计 太阳能并网逆变器是并网发电系统的核心部分,其主要功能是将发出的直流电逆变成单相交流电,并送入电网。同时实现对中间电压的稳定,便于前级升压斩波器对最大功率点的跟踪。并且具有完善的并网保护功能,保证系统能够安全可靠地运行。图2是并网逆变器的原理图。

图2 逆变器原理框图 控制系统以TI公司的TMS320F2812为核心,可以实现反馈信号的处理和A/D转换、DC/DC变换器和PWM逆变器控制脉冲的产生、系统运行状态的监视和控制、故障保护和存储、485通讯等功能。实际电路中的中间电压VDC、网压、并网电流和太阳能电池的电压电流信号采样后送至F2812控制板。控制板主要包括:CPU及其外围电路,信号检测及调理电路,驱动电路及保护电路。其中信号检测及调理单元主要完成强弱电隔离、电平转换和信号放大及滤波等功能,以满足DSP控制系统对各路信号电平范围和信号质量的要求。驱动电路起到提高脉冲的驱动能力和隔离的作用。保护逻辑电路则保证发生故障时,系统能从硬件上直接封锁输出脉冲信号。 在实现同频的条件下可用矢量进行计算,从图3可以看出逆变器输出端存在如图3a所示的矢量关系,对于光伏并网逆变器的输入端有下列基本矢量关系式: Vac=Vs+jωL·IN+RS·IN (1) 式中Vac—电网基波电压幅值,Vs—逆变器输出端基波幅值。 图1 光伏并网系统结构图 图3 控制矢量图 在网压Vac(t)为一定的情况下,IN(t)幅值和相位仅由光伏并网逆变器输出端的脉冲电压中的基波分量Vs(t)的幅值,及其与网压Vac(t)的相位差来决定。改变Vs(t)的幅值和相位就可以控制输入电流IN(t)和Vac(t)同相位。PWM整流器输入侧存在一个矢量三角形关系,在实际系统中RS 值的影响一般比较小,通常可以忽略不计得到如图3b所示的简化矢量三角形关系,即下式: (2) 在一个开关周期内对上式进行周期平均并假设输入电流能在一个开关周期内跟踪电流指令即可推导出下式: (3)式中K= L/TC,TC为载波周期。 从该模型即可以得到本系统所采用的图4所示的控制框图。此方法称为基于改进周期平均模型的固定频率电流追踪法。

(完整版)光伏逆变器MPPT效率测试步骤方法

光伏逆变器MPPT效率测试步骤方法 在现实生活中,由于阳光照射角度、云层、阴影等多种因素影响,光伏阵列接受到的阳光辐照度和相应温度在不同的条件下会有很大的差别,比如在早晨和中午,在晴朗和多云的天气下,特别是云层遮掩的影响,可能会造成短时间内辐照度的剧烈变化。因此对于光伏逆变器而言,其必须具备应对阳光辐照度持续变化的策略,始终维持、或者是在尽可能短的时间内恢复到一个较高的MPPT精度水平,以及较高的转化效率,才能在现实生活中实现良好的发电效果。 目前光伏逆变器行业中各大厂商对于静态MPPT追踪算法的处理基本都展现出了很高的水准,可以精确地维持在非常接近100%的水平,为后端直流转交流的过程提供了良好的基础。这一点也体现在各个型号的逆变器的总体效率参数上,标称值一般都很高。而在逆变器实际的工作环境中,日照、温度等外部条件是处于实时动态变化的过程中,逆变器在这样的条件下工作,其动态效能也就成为了衡量其实际性能的不可忽视的重要指标。 在实验室的测试环境下,光伏模拟器作为可以直接模拟各种类型、各种配置的光伏阵列的高效模拟器,已经被广泛地应用于逆变器的测试。但此前的测试更多地集中于模拟各种静态条件下(即在测试过程中维持给定的IV曲线不变化),或者是有限的低强度变化(如测试过程中会在给定的两条或数条IV曲线之间切换),较少涉及长时间、高强度的真实工作状况的模拟。笔者关注使用光伏模拟器来模拟光伏阵列随时间而发生动态变化的输出,探究此动态MPPT测试功能的实用性和其中需要注意的要点。 由于动态天气的组合方式几乎无穷无尽,因此首要的问题是光伏模拟器提供了哪些典型类型的天气文档,以及是否有足够的灵活度来供客户自行生成新的天气文档,是否提供足够高的时间分辨率来支持快速的辐照度变化。我们以光伏模拟与测试业内的知名品牌阿美特克ELGAR的光伏模拟器产品为例,其提供了晴天、多云、阴天等状况的典型天气情况实例(如下图1),另外支持直接在软件内制定或者通过外部数据处理软件(如EXCEL)生成自定义天气文档,时间分辨率为1秒。对于天气文档的时间长度则没有限制,可以支持长时间的测试,如一周甚至更长时间。

毕业设计-单相光伏并网逆变器的控制原理及电路实现

第一章绪论 1.1 光伏发电背景与意义 作为一种重要的可再生能源发电技术,近年来,太阳能光伏(Photovoltaie,PV)发电取得了巨大的发展,光伏并网发电已经成为人类利用太阳能的主要方式之一。目前,我国已成为世界最大的太阳能电池和光伏组件生产国,年产量已达到100万千瓦。但我国光伏市场发展依然缓慢,截至2007年底,光伏系统累计安装100MWp,约占世界累计安装量的1%,产业和市场之间发展极不平衡。为了推动我国光伏市场的发展,国家出台了一系列的政策法规,如《中华人民共和国可再生能源法》、《可再生能源中长期发展规划》、《可再生能源十一五发展规划》等。这些政策和法规明确了太阳能发电发展的重点目标领域。《可再生能源中长期发展规划》还明确规定了大型电力公司和电网公司必须投资可再生能源,到2020年,大电网覆盖地区非水电可再生能源发电在电网总发电量中的比例要达到3%以上。对于这一目标的实现,光伏发电无疑会起到非常关键的作用。 当下,我国地方和企业正积极共建兆瓦级以上光伏并网电站,全国已建和在建的兆瓦级并网光伏电站共11个(2008年5月前估计),典型的如甘肃敦煌10MW 并网光伏特许权示范项目,青海柴达木盆地的1000MW大型荒漠太阳能并网电站示范工程,云南石林166MW并网光伏实验示范电站。可以预见,在接下来的几年里,光伏并网发电市场将会为我国摆脱目前的金融危机提供强大的动力,光伏产业依然会持续以往的高增长率,光伏市场的前景仍然令人期待。光伏并网发电系统是利用电力电子设备和装置,将太阳电池发出的直流电转变为与电网电压同频、同相的交流电,从而既向负载供电,又向电网馈电的有源逆变系统。按照系统功能的不同,光伏并网发电系统可分为两类:一种是带有蓄电池的可调度式光伏并网发电系统;一种是不带蓄电池的不可调度式光伏并网发电系统。典型的不可调度式光伏并网发电系统如图1-1所示。

华为光伏逆变器常见故障及处理

华为光伏逆变器常见故障及处理 1、绝缘阻抗低:使用排除法。把逆变器输入侧的组串全部拔下,然后逐一接上,利用逆变器开机检测绝缘阻抗的功能,检测问题组串,找到问题组串后重点检查直流接头是否有水浸短接支架或者烧熔短接支架,另外还可以检查组件本身是否在边缘地方有黑斑烧毁导致组件通过边框漏电到地网。 2、母线电压低:如果出现在早/晚时段,则为正常问题,因为逆变器在尝试极限发电条件。如果出现在正常白天,检测方法依然为排除法,检测方法与1项相同。 3、漏电流故障:这类问题根本原因就是安装质量问题,选择错误的安装地点与低质量的设备引起。故障点有很多:低质量的直流接头,低质量的组件,组件安装高度不合格,并网设备质量低或进水漏电,一但出现类似问题,可以通过在洒粉找出**点并做好绝缘工作解决问题,如果是材料本省问题则只能更换材料。 4、直流过压保护:随着组件追求高效率工艺改进,功率等级不断更新上升,同时组件开路电压与工作电压也在上涨,设计阶段必须考虑温度系数问题,避免低温情况出现过压导致设备硬损坏。 5、逆变器开机无响应:请确保直流输入线路没有接反,一般直流接头有防呆效果,但是压线端子没有防呆效果,仔细阅读逆变器说明书确保正负极后再压接是很重要的。逆变器内置反接短路保护,在恢复正常接线后正常启动。 6、电网故障: 电网过压:前期勘察电网重载(用电量大工作时间)/轻载(用电量少休息时间)的工作就在这里体现出来,提前勘察并网点电压的健康情况,与逆变器厂商沟通电网情况做技术结合能保证项目设计在合理范围内,切勿“想当然”,特别是农村电网,逆变器对并网电压,并网波形,并网距离都是有严格要求的。出现电网过压问题多数原因在于原电网轻载电压超过或接近安规保护值,如果并网线路过长或压接不好导致线路阻抗/感抗过大,电站是无法正常稳定运行的。解决办法是找供电局协调电压或者正确选择并网并严抓电站建设质量。 电网欠压:该问题与电网过压的处理方法一致,但是如果出现独立的一相电压过低,除了原电网负载分配不完全之外,该相电网掉电或断路也会导致该问题,出现虚电压。 电网过/欠频:如果正常电网出现这类问题,证明电网健康非常堪忧。 电网没电压:检查并网线路即可。 电网缺相:检查缺相电路,即无电压线路。 三相不平衡,并网线路外加特殊设备导致并网异常震荡,超长距离并网,电网削顶过压相移。 7、最后一点——监控搭接:正确阅读各设备说明书机型线路压接,设备连接,并设置好设备的通讯地址,时间,是保证通讯稳定有效的保证! 8、发电量保证:有空擦擦板子,发电量“凸”一下就起来了。

光伏并网逆变器设计方案讲解

100kW光伏并网逆变器 设计方案 目录 1. 百千瓦级光伏并网特点 (2) 2 光伏并网逆变器原理 (3) 3 光伏并网逆变器硬件设计 (3) 3.1主电路 (6) 3.2 主电路参数 (7) 3.2.1 变压器设计............................................................................. 错误!未定义书签。 3.2.3 电抗器设计 (7) 3.3 硬件框图 (10) 3.3.1 DSP控制单元 (11) 3.3.2 光纤驱动单元 (11) 3.3.2键盘及液晶显示单元 (13) 3 光伏并网逆变器软件 (13)

1. 百千瓦级光伏并网特点 2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。 百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。 在技术指标上,主要会影响: 1.并网电流畸变率 在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。 2.电磁噪声 由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。由于系统的dv/dt、di/dt和电流幅值较大,其EMI和EMC的指标实现可能存在技术难度,由于系统的噪声可能影响其电流、功率的检测和计算精度,在最大功率跟踪和孤岛效应识别等方面的影响还难以预计。 在技术指标上,主要考虑: 1)主电路工艺结构设计 2)散热工艺结构设计 3)驱动方式设计

一文看懂光伏逆变器工作原理!

一文看懂光伏逆变器工作原理! 工作原理及特点 工作原理: 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 特点: (1)要求具有较高的效率。 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有较高的可靠性。 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围。 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在 10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。 光伏逆变器分类 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原

理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。 1、集中型逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。 2、组串型逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。

光伏并网逆变器的电流锁相改进方案及实现

光伏并网逆变器的电流锁相改进方案及实现 摘要:基于光伏发电并网逆变器控制中电流锁相的重要性和复杂性,提出了带预锁相和遗忘算法的电流锁相方案,该方案可采用硬件锁相和软件锁相两种方式实现。建立了以MC56F8345 型DSF 为控制核心的PWM 逆变器数字化并网实验平台,对改进后的电流锁相方案进行验证。实验结果表明,该方案很好地实现了逆变器输出电流与电网电压的同步锁相控制,且输出电流的幅值、相位、频率均符合控制要求,可稳定、可靠地并网发电,并能实现网侧单位功率因数。关键词:光伏发电;并网逆变器;电流锁相1 引言在光伏发电系统中,并网逆变器输出电流的控制十分重要。有效控制逆变器输出电流可实现网侧功率因数可调。控制电流时,电流锁相十分关键,必须对电网电压的频率和相位进行实时检测,并以此控制逆变器输出电流与电网电压保持同频同相,即同步锁相。若不能稳定、可靠地锁相,则在逆变器与电网连接(并网)过程中会 产生很大的环流,对设备造成冲击,缩短设备使用寿命,严重时还会损坏设备。因此,研究光伏发电并网逆变器电流锁相改进方案及数字化实现具有现实意义。 2 光伏并网逆变器电流矢量控制策略光伏发电并网系统结构框图如图1 所示。图中上半部分为系统主电路,下半部分为系统控制电路。控制过程如下:根据PV 的输出电压、电流,由MPPT 算法获得Ud 参考值,与Ud 实际值比较后经电压调节器得到有功电流(d 轴电流)参考值。φ*为给定功率因数角,为无功电流(q 轴电流)参考值。若要求单位功率因数,则φ*=0,=0。 电流闭环控制通常采用电流矢量控制。图2 示出电流矢量控制的矢量关系图。 u,i.e 分别为逆变器输出电压、输出电流和电网电压的空间矢量。旋转坐

光伏逆变器测试实验室 PV inverter testing lab

? T üV , T U E V a n d T U V a r e r e g i s t e r e d b r a n d m a r k s . A n y u s e a n d a p p l i c a t i o n r e q u i r e s p r i o r a p p r o v a l . P 1S B 046z h e n G C 12081.0 光伏逆变器测试实验室PV inverter testing lab 光伏逆变器一站式认证服务 One-stop PV Inverter Certification Service PRODUCTS ? ELECTRICAL TUVdotCOM,展示企业与产品的竞争优势TUVdotCOM.The visible difference. TUVdotCOM 使您的产品在激烈竞争中与众不同。您可以随时随地通过该平台进行查询,所有经德国莱茵TüV 测试的产品、服务、公司、体系或人员信息将一览无余,充分展示客户产品及公司体系的质量和安全性。 The TUVdotCOM Internet platform makes the difference visible: All products, services, companies, systems, personnel certifications tested by TüV Rheinland– extremely well documented and globally-accessible. 我们是全球光伏产品检测和认证的领导者,拥有近30年的丰富经验 我们全球光伏产品测试网络拥有250多名专家,为全球各个地区提供专业服务我们全球6所顶尖光伏产品检测中心拥有最强的测试能力和最大的测试容量我们的光伏逆变器实验室采用国际先进的自动化仪器设备实现快捷、高效、专业检测服务 我们光伏逆变器实验室通过了全球CB 认证体系IECEE 的认可,是中国第一家CBTL 认可的光伏逆变器测试实验室,同时获得CNAS 、CGC 、TAF 、OSHA 、SCC 、DAkkS 等多项资质认可 TüV Rheinland is a global leader in the provision of testing and certification services for PV products, with nearly 30 years of experience Our unique global network backed by more than 250 experts provides professional service to various regions of the world We have six world-class solar energy assessment centres with the strongest testing capabilities and capacity worldwide Our PV inverter testing lab uses advanced automatic equipment to achieve fast, efficient and professional testing results Our lab has been accredited by the IECEE under the CB scheme. It is the first CBTL certified testing laboratory for PV inverters in China, and is recognised by CNAS, CGC, TAF, OSHA, SCC, DAkkS, etc.

太阳能逆变器开发思路和方案

太阳能逆变器开发思路和方案 内容摘要:摘要:针对光伏并网发电系统中关键部件逆变器的结构设计与控制方法研究进行了详细分析和阐述。从电网.光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。 摘要:针对光伏并网发电系统中关键部件逆变器的结构设计与控制方法研究进行了详细分析和阐述。从电网.光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。 关键词:光伏并网发电系统;逆变器;拓扑结构;最大功率点跟踪;孤岛效应 O 引言由于传统能源的枯竭和人们对环境的重视,电力系统正面临着巨大变革,分布式发电将成为未来电力系统的发展方向。其中,光伏发电以其独特的优点,被公认为技术含量高.最有发展前途的技术之一。但是光伏发电系统存在着初期投资大.成本较高等缺点,因而探索高性能.低造价的新型光电转换材料与器件是其主要研究方向之一。另一方面,进一步减

少光伏发电系统自身损耗.提高运行效率,也是降低其发电成本的一个重要途径。逆变器效率的高低不仅影响其自身损耗,还影响到光电转换器件以及系统其他设备的容量选择与合理配置。 因此,逆变器已成为影响光伏并网发电系统经济可靠运行的关键因素,研究其结构与控制方法对于提高系统发电效率.降低成本具有极其重要的意义 [5] 。 本文从电网.光伏阵列以及用户对于并网逆变器的要求出发,分析了不同的逆变器拓扑结构与控制方法,比较了其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的技术问题进行了综合,进一步指出了光伏发电系统中并网逆变器高效可靠运行的发展方向。 1 光伏发电系统对逆变器的要求光伏并网发电系统一般由光伏阵列.逆变器和控制器3 部分组成。逆变器是连接光伏阵列和电网的关键部件,它完成控制光伏阵列最大功率点运行和向电网注入正弦电流两大主要任务。 1 .1 电网对逆变器的要求逆变器要与电网相连,必须满足电网电能质量. 防止孤岛效应和安全隔离接地3 个要求。 为了避免光伏并网发电系统对公共电网的污染,逆变器应输出失真度小的正弦波。影响波形失真度的主要因素之一是逆变器的开关频率。在数控逆变系统中采用高速 DSP 等新型处理器,可明显提高并网逆变器的开关频率性能,它已成为实际系统广泛采用的技术之一;同时,逆变器主功率元件的选择也至关重要。小

光伏逆变器常见故障及处理方法

光伏逆变器常见故障及处理方法 1、绝缘阻抗低:使用排除法。把逆变器输入侧的组串全部拔下,然后逐一接上,利用逆变器开机检测绝缘阻抗的功能,检测问题组串,找到问题组串后重点检查直流接头是否有水浸短接支架或者烧熔短接支架,另外还可以检查组件本身是否在边缘地方有黑斑烧毁导致组件通过边框漏电到地网。 2、母线电压低:如果出现在早/晚时段,则为正常问题,因为逆变器在尝试极限发电条件。如果出现在正常白天,检测方法依然为排除法,检测方法与1项相同。 3、漏电流故障:这类问题根本原因就是安装质量问题,选择错误的安装地点与低质量的设备引起。故障点有很多:低质量的直流接头,低质量的组件,组件安装高度不合格,并网设备质量低或进水漏电,一但出现类似问题,可以通过在洒粉找出**点并做好绝缘工作解决问题,如果是材料本省问题则只能更换材料。 4、直流过压保护:随着组件追求高效率工艺改进,功率等级不断更新上升,同时组件开路电压与工作电压也在上涨,设计阶段必须考虑温度系数问题,避免低温情况出现过压导致设备硬损坏。 5、逆变器开机无响应:请确保直流输入线路没有接反,一般直流接头有防呆效果,但是压线端子没有防呆效果,仔细阅读逆变器说明书确保正负极后再压接是很重要的。逆变器内置反接短路保护,在恢复正常接线后正常启动。 6、电网故障: 电网过压:前期勘察电网重载(用电量大工作时间)/轻载(用电量少休息时间)的工作就在这里体现出来,提前勘察并网点电压的健康情况,与逆变器厂商沟通电网情况做技术结合能保证项目设计在合理范围内,切勿“想当然”,特别是农村电网,逆变器对并网电压,并网波形,并网距离都是有严格要求的。出现电网过压问题多数原因在于原电网轻载电压超过或

太阳能光伏并网逆变器的设计原理框图概要

太阳能光伏并网逆变器的设计原理框图 随着生态环境的日益恶化,人们逐渐认识到必须走可持续发展的道路,太阳能必须完成从补充能源向替代能源的过渡。光伏并网是太阳能利用的发展趋势,光伏发电系统将主要用于调峰电站和屋顶光伏系统。 在光伏并网系统中,并网逆变器是核心部分。目前并网型系统的研究主要集中于DC-DC和DC-AC两级能量变换的结构。DC-DC变换环节调整光伏阵列的工作点使其跟踪最大功率点;DC-AC逆变环节主要使输出电流与电网电压同相位,同时获得单位功率因数。其中DC-AC是系统的关键设计。 太阳能光伏并网系统结构图如图1所示。本系统采用两级式设计,前级为升压斩波器,后级为全桥式逆变器。前级用于最大功率追踪,后级实现对并网电流的控制。控制都是由DSP芯片TMS320F2812协调完成。 图1 光伏并网系统结构图

逆变器的设计 太阳能并网逆变器是并网发电系统的核心部分,其主要功能是将太阳能电池板发出的直流电逆变成单相交流电,并送入电网。同时实现对中间电压的稳定,便于前级升压斩波器对最大功率点的跟踪。并且具有完善的并网保护功能,保证系统能够安全可靠地运行。图2是并网逆变器的原理图。 图2 逆变器原理框图

控制系统以TI公司的TMS320F2812为核心,可以实现反馈信号的处理和A/D转换、DC/DC变换器和PWM逆变器控制脉冲的产生、系统运行状态的监视和控制、故障保护和存储、485通讯等功能。实际电路中的中间电压VDC、网压、并网电流和太阳能电池的电压电流信号采样后送至F2812控制板。控制板主要包括:CPU及其外围电路,信号检测及调理电路,驱动电路及保护电路。其中信号检测及调理单元主要完成强弱电隔离、电平转换和信号放大及滤波等功能,以满足DSP控制系统对各路信号电平范围和信号质量的要求。驱动电路起到提高脉冲的驱动能力和隔离的作用。保护逻辑电路则保证发生故障时,系统能从硬件上直接封锁输出脉冲信号。 在实现同频的条件下可用矢量进行计算,从图3可以看出逆变器输出端存在如图3a所示的矢量关系,对于光伏并网逆变器的输入端有下列基本矢量关系式: Vac=Vs+jωL·IN+RS·IN (1) 式中Vac—电网基波电压幅值,Vs—逆变器输出端基波幅值。

三相光伏并网逆变器及控制系统的设计

三相光伏并网逆变器及控制系统的设计 发表时间:2019-01-16T11:17:41.947Z 来源:《防护工程》2018年第31期作者:任婧玮汪子涵[导读] 现在新能源的开发与使用逐渐受到了世界各国的关注,解决新能源需求、环境保护及经济发展之间的互锁关系日益成为世界各国的头等难题。国网安徽省电力有限公司濉溪县供电公司安徽淮北 235100 摘要:本文介绍了基于L型滤波器三相光伏并网逆变器的主电路拓扑结构。在该拓扑结构数学模型的基础上,设计了三相光伏并网逆变器双闭环控制系统的结构。选择电压电流双闭环PI控制及SVPWM调制策略,通过实验分析验证系统的可靠性和实用性。 关键词:逆变器;PI控制;SVPWM 0 引言 现在新能源的开发与使用逐渐受到了世界各国的关注,解决新能源需求、环境保护及经济发展之间的互锁关系日益成为世界各国的头等难题。太阳能作为技术含量最高、最有发展前景的新能源,具有普遍、无害性、巨大以及长久等优点[1-3]。太阳能发电系统包括光伏电池发电装置与变换器装置,系统输出的电能供给用户负载使用。而并网逆变器作为光伏并网发电的核心,对其进行控制策略的研究具有很高的现实意义[4-6]。本文以两级式非隔离三相并网逆变器的拓扑结构为研究对象,分析了太阳能光伏电池的数学模型和输出特性,然后对双闭环并网控制系统及逆变调制策略进行研究,最后进行实验,验证了理论的正确性。 1 光伏并网逆变器的系统结构 本文采用L型滤波器实现并网逆变器与电网的连接。如图1所示为三相并网逆变器的拓扑结构图,其中ea、eb、ec为三相配电网电压,中性点为O点,逆变器交流侧输出电流为ia、ib、ic,逆变器输出交流和配电网侧等效电感为L,等效线路电阻为R,三相全桥拓扑结构3个桥臂的中点输出电压为Ua、Ub、Uc,T1~T6为IGBT开关管器件,C为输入直流侧滤波与稳压电容,Udc为输入直流侧电压,idc为直流母线侧电流。

并网光伏逆变器效率现场试验技术分析

龙源期刊网 https://www.wendangku.net/doc/f211139257.html, 并网光伏逆变器效率现场试验技术分析 作者:刘书强董双丽林荣超 来源:《科技与创新》2016年第14期 摘要:光伏并网逆变器是光伏并网电站的核心设备,其效率是决定光伏并网发电系统整 体效率的重要参数。但是,目前,逆变器的性能试验绝大多数是基于实验室环境下的,缺乏并网光伏电站现场的性能试验。针对逆变器的实际运行环境搭建现场试验平台,进行24 h不间 断测试,以获取逆变器的全天运行数据,并计算欧洲效率、加州效率和中国效率,从而全面分析逆变器效率。 关键词:逆变器效率;欧洲效率;加州效率;中国效率 中图分类号:TM464 文献标识码:A DOI:10.15913/https://www.wendangku.net/doc/f211139257.html,ki.kjycx.2016.14.013 随着环境污染和资源枯竭问题的日益突出,近年来,太阳能作为可持续发展的清洁能源得到了世界各国的广泛支持。我国政府也不断加大对光伏产业的支持力度,使得国内光伏并网发电产业迅猛发展。其中,光伏并网逆变器是并网发电系统的核心部件之一,其性能关系着整个光伏并网发电系统的整体效率和质量。如何对其进行全面、有效的试验评估对于光伏并网发电系统中逆变器的选取有重要的技术支撑意义。 目前,国内并网光伏逆变器综合性能测试平台的主要技术方案是:利用光伏电池阵列模拟器模拟光伏电池阵列输出,以便在实验室中完成对光伏逆变器的测试。 然而,实验室环境下的试验是在特定的环境和电网条件下进行的。由于光伏电池阵列模拟器仅能进行离散负载点的模拟,而光伏并网逆变器的实际运行环境会受到辐照强度、温度等连续变量的影响,也会受到电能质量、电网调度、其他电气设施等综合因素的影响,这些都是在实验室中无法模拟出来的。 本文针对并网光伏逆变器实验室环境试验条件下的不足搭建了现场试验平台,24 h连续测试逆变器的运行参数,并计算和分析欧洲效率、加州效率和中国效率。 1 现场试验平台搭建 该试验平台是以佛山某并网光伏电站为基础搭建的,它主要是由三部分构成的,即并网光伏电站、测试设备和数据分析系统。其中,并网光伏电站包括光伏阵列、防雷汇流箱、并网逆变器、变压器和开关站等设备;测试设备包括功率分析仪、气象监控设备;数据分析系统是将功率分析仪采集的数据导出,并通过相应的计算、分析得出结果。整个平台的设计方案如图1所示。 2 效率对比分析

逆变器使用说明书

光伏并网逆变器说明书型号:BNSG-2KTL 山东博奥斯能源科技有限公司

目录 重要说明.................................................................................................................................................. 4安全注意事项.......................................................................................................................................... 4使用说明.................................................................................................................................................. 41、绪论.................................................................................................................................................... 5 1.1、前言.................................................................................................................................... 5 1.2、光伏并网系统应用介绍........................................................................................................ 5 2、总体介绍............................................................................................................................................ 6 2.1、产品外观说明........................................................................................................................ 6 2.2、电气原理框图........................................................................................................................ 7 2.3、性能特点................................................................................................................................ 7 2.4 、保护设备.............................................................................................................................. 8 3、拆卸和安装........................................................................................................................................ 8 3.1、拆包检验................................................................................................................................ 8 3.2、安装说明................................................................................................................................ 8 3.3、安装条件................................................................................................................................ 9 3.4、逆变器的安装.....................................................................................................................10 3.5、逆变器安装位置的选择.....................................................................................................10 3.6、逆变器的尺寸.....................................................................................................................11 4、电气连接.........................................................................................................................................12 4.1、连接需求...........................................................................................................................12 4.1.2、直流输入...................................................................................................................12 4.1.2、单相电网...................................................................................................................12 4.1.3、连接线.......................................................................................................................12 4.1.4、电气连接工具...........................................................................................................12 4.2、开始连接.............................................................................................................................13 4.2.1、安全说明...................................................................................................................13 4.2.2、接线端子图...............................................................................................................13 4.2.3、电网连接...................................................................................................................14 4.2.4、连接直流输入...........................................................................................................14 4.2.5、连接RS485通讯线(选配件)..............................................................................15 5、启动与关闭.....................................................................................................................................16 5.1、启动过程.............................................................................................................................16 5.2、关机过程.............................................................................................................................16 5.3、紧急关机过程.....................................................................................................................16 6 、功能说明.......................................................................................................................................17 6.1、工作模式.............................................................................................................................17 6.2 、并网发电...........................................................................................................................17 6.3 与电网断开.........................................................................................................................18 7、操作.................................................................................................................................................19 7.1、液晶显示...........................................................................................................................19 7.2按键功能说明........................................................................................................................19 7.3、液晶控制板上电后显示界面.............................................................................................20 7.4、数据查询及状态显示信息.................................................................................................20 7.5、故障信息界面.....................................................................................................................21

相关文档