文档库 最新最全的文档下载
当前位置:文档库 › 变电所接地装置常见问题及处理

变电所接地装置常见问题及处理

变电所接地装置常见问题及处理
变电所接地装置常见问题及处理

变电站接地网优化设计

编号:SM-ZD-35401 变电站接地网优化设计Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

变电站接地网优化设计 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 摘要:接地网等间距布置存在地电位分布不均匀的问题。在建220 kV 新塘变电站采用了不等间距布置,即从地网边缘到中心,均压导体间距按负指数规律增加。运用GPC 接地参数计算程序对两种方法进行分析和计算,结果表明接地网优化设计能显著地改善导体的泄漏电流密度分布,使土壤表面的电位分布均匀,提高安全水平,节省钢材和施工费用。 关键词:变电站接地网设计 随着电力系统容量的不断增加,流经地网的入地短路电流也愈来愈大,因此要确保人身和设备的安全,维护系统的可靠运行,不仅要强调降低接地电阻,还要考虑地网上表面的电位分布。在以往接地设计中,接地网的均压导体都按3 m ,5 m ,7 m

,10 m 等间距布置,由于端部和邻近效应,地网的边角处泄漏电流远大于中心处,使地电位分布很不均匀,边角网孔电势大大高于中心网孔电势,而且这种差值随地网面积和网孔数的增加而加大。本文结合在建工程220 kV 新塘变电站的接地网设计,阐释了接地网不等间距布置的方法及其合理性。 1 接地网优化设计的合理性 1.1 改善导体的泄漏电流密度分布 面积为190 m ×170 m 的新塘变电站接地网,在导体根数相同的情况下,分别按10 m 等间距布置和平均10 m 不等间距布置。沿平行导体①、②、③、④、⑤的泄漏电流密度分布曲线。从此可见,不等间距布置的接地网,边上导体①的泄漏电流密度较等间距布置的接地网平均低15%左右;对于导体②的泄漏电流密度,这两种布置的接地网几乎相等(仅相差0.3%);对于中部导体③、④、⑤,不等间距

变电站接地网材料的选择

变电站接地网材料的选择 编辑:万佳防雷-小黄 电力系统的接地是对系统和网上电气设备安全可靠运行及操作维护人员安全都起着重大的作用。研究接地体的布置、连接,接地体的材质等是保证系统安全稳定运行的必要措施之一,所以说设计、施工高标准的接地系统的变电站防雷工作的重中之重。 一、变电站接地网作用概述 接地网作为变电站交直流设备接地极防雷保护接地,对系统的安全运行起着重要的作用。由于接地网作为隐性工程容易被人忽视,往往只注意最后的接地电阻的测量结果。随着电力系统电压等级的升高及容量的增加,接地不良引起的事故扩大问题屡有发生。因此,接地问题越来越受到重视。变电站接地网因其在安全中的重要地位,一次性建设、维护苦难等特点在工程建设中受到重视。另外,在设计及施工时也不易控制,这也是工程建设中的难点之一。因此,为保证电力系统的安全运行,降低接地工程造价,应采用最经济、合理的接地网设计思路,本文拟重点就材料选用方面进行相关探讨。 二、变电站接地网常用材料比较 目前广泛使用的接地工程材料有各种金属材料、非金属接地体、降阻剂和离子接地系统等。 1、金属接地材料。金属接地材料(主要指铜材和钢材),由于其具备良好的导电性和经济性,很长时期以来一直是接地工程中最重要的材料之一。但是由于金属材料存在容易腐蚀的问题,对接地电阻的影响也比较大,是安全生产中的一个大的隐患,这个问题一直困扰着用户。同时,近年生产资料价格猛涨造成接地成本增加,使得金属接地材料的缺点逐渐突显,一些行业或地区已经在渐渐地减少金属接地材料的使用,转而使用其它新型的接地材料。 2、非金属接地体。非金属接地材料是目前行业里新生的一种金属接地体的替换产品,由于其特有的抗腐蚀性能和良好的导电性和较高的性价比被广大用户所接受。目前非金属接地产品主要是以石墨为主要材料。基本成分是导电能力优越的非金属材料材料符合加工成型的,加工方法有浇注成型和机械压模成型。一般来说浇注成型的产品结构松散、强度低、导电性能差,而且质量不稳定,一些小型厂家少量生产使用这样的办法:机械压模法,是使用设备在几到十几吨的压力下成型的,不仅尺寸精度较高、外观较好,更重要的是材料结构致密、电学性能好、抗大电流冲击能力强,质量也相当稳定,但是生产成本较高,批量生产多采用。选型时,尽量采用后者,特别是接地体有抗大电流或打冲击电流的要求(如电力工作地、防雷接地)时,不宜采用浇注成型的非金属接地体。非金属接地体的特点是稳定性优越,其气候、季节、寿命都是现有接地材料中最好的,是不受腐蚀的接地体,所以,不需要地网维护,也不需要定期改造,但是,非金属接地体施工需要的地网面积比传统接地面积小很多,但是在不同地质条件下也需要的保证足够接地面积才可以达到良好的效果。 3、降阻剂。降阻剂分为化学降阻剂和物理降阻剂,化学降阻剂自从发现有污染水源事故和腐蚀地网的缺陷以后基本上没有使用了,现在广泛接受的是物理降阻剂(也称为长效型降阻剂)。物理降阻剂是接地工程广泛接受的材料,属于材料学中的不定性复合材料,可以根据使用环境形成不同形状的包裹体,所以使用范围广,可以和接地环或接地体同时运用,包裹在接地环和接地体周围,达到降低接触电阻的作用。并且,降阻剂有可扩散成分,可以改善周边土壤的导电属性。 现在的较先进降阻剂都有一定的防腐能力,可以加长地网的使用寿命,其防腐原理一般来说有几种:牺牲阳极保护(电化学防护),致密覆盖金属隔绝空气,加入改善界面腐蚀电位的

变电站接地设计及防雷技术实用版

YF-ED-J6717 可按资料类型定义编号 变电站接地设计及防雷技 术实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

变电站接地设计及防雷技术实用 版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 引言 变电站接地系统的合理与否是直接关系到 人身和设备安全的重要问题。随着电力系统规 模的不断扩大,接地系统的设计越来越复杂。 变电站接地包含工作接地、保护接地、雷电保 护接地。工作接地即为电力系统电气装置中, 为运行需要所设的接地;保护接地即为电气装 置的金属外壳、配电装置的构架和线路杆塔 等,由于绝缘损坏有可能带电,为防止其危及 人身和设备的安全而设的接地;雷电保护接地

即为为雷电保护装置向大地泄放雷电流而设的接地。变电站接地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。 1 变电站接地设计的必要性 接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。因此,没有合理而良好的接地装置,就不能有效地防雷。从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为接地装置。接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。 变电站的接地网上连接着全站的高低压电

接地网的规范

接地网 ?摘要接地网等间距布置存在地电位分布不均匀的问题。在建220kV新塘变电站采用了不等间距布置,即从地网边缘到中心,均压导体间距按负指数规律增加。运用GPC接地参数计算程序对两种方法进行分析和计算,结果表明接地网优化设计能显著地改善导体的泄漏电流密度分布,使土壤表面的电位分布均匀,提高安全水平,节省钢材和施工费用。随着电力系统容量的不断增加,流经地网的入地短路电流也愈来愈大,因此要确保人身和设备的安全,维护系统的可靠运行,不仅要强调降低接地电阻,还要考虑地网上表面的电位分布。在以往接地设计中,接地网的均压导体都按3m,5m,7m,10m等间距布置,由于端部和邻近效应,地网的边角处泄漏电流远大于中心处,使地电位分布很不均匀,边角网孔电势大大高于中心网孔电势,而且这种差值随地网面积和网孔数的增加而加大。本文结合在建工程220kV 新塘变电站的接地网设计,阐释了接地网不等间距布置的方法及其合理性。1接地网优化设计的合理性1.1改善导体的泄漏电流密度分布图1是面积为190m×170m的新塘变电站接地网,在导体根数相同的情况下,分别按10m等间距布置和平均10m不等间距布置。沿平行导体①、②、③、④、⑤的泄漏电流密度分布曲线见图2。从图中可见,不等间距布置的接地网,边上导体①的泄漏电流密度较等间距布置的接地网平均低15%左右;对于导体②的泄漏电流密度,这两种布置的接地网几乎相等;对于中部导体③、④、⑤,不等间距布置的接地网的泄漏电流较等间距布置的接地网分别提高了9%,14%和15%。由此可见,不等间距布置能增大中部导体的泄漏电流密度分布,相应降低了边缘导体的泄漏电流密度,使得中部导体能得到更充分的利用。1.2均匀土壤表面的电位分布由表1的计算结果可知,不等间距布置的接地网能较大地改善表面电位分布,其最大与最小网孔电位的相对差值不超过0.7%,使各网孔电位大致相等,而等间距地网,其最大与最小网孔电位的相对差值在12.2%以上。同时不等间距地网的最大接触电势较等间距地网的最大接触电势降低了60.1%,极大地提高了接地网的安全水平。表1计算结果比较布置最大网孔电位Vmax/kV最小网孔电位Vmin/kV最大接触电势Vjmax/kV接地电阻R/Ωδ/%等间距5.7095.0810.7990.52312.2不等间距5.5445.5060.3150.5190.7注:1)δ=/Vmin;2)地网面积为190m×170m;3)长方向导体根数n1=18,宽方向导体根数n2=20。1.3节省大量钢材和施工费用假如按10m等间距布置的新塘变电站接地网,最大接触电势在边角网孔,其值为0.799kV,但采用不等间距布置时,保持最大接触电势与该值接近,这时可节省钢材31.2%,见表2。2接地网优化设计的方法在设计时采用尝试的方法来确定均压导体的总根数和总长度,即先对地网长和宽方向的导体根数n1和n2进行试算,对于大地网一般可采用均压导体间距为10m左右试算,若接触电势满足要求,进行技术经济比较后再考虑增减导体的根数。如图3所示,当确定了n1和n2后,则地网长宽方向的分段数就确定了:长方向上导体分段为k1=n2-1,宽方向上的导体分段为k2=n1-1,然后按下式得出各分段导体的长度。

变电站接地设计及防雷技术正式样本

文件编号:TP-AR-L6587 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 变电站接地设计及防雷 技术正式样本

变电站接地设计及防雷技术正式样 本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 引言 变电站接地系统的合理与否是直接关系到人身和 设备安全的重要问题。随着电力系统规模的不断扩 大,接地系统的设计越来越复杂。变电站接地包含工 作接地、保护接地、雷电保护接地。工作接地即为电 力系统电气装置中,为运行需要所设的接地;保护接 地即为电气装置的金属外壳、配电装置的构架和线路 杆塔等,由于绝缘损坏有可能带电,为防止其危及人 身和设备的安全而设的接地;雷电保护接地即为为雷 电保护装置向大地泄放雷电流而设的接地。变电站接

地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。 1 变电站接地设计的必要性 接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。因此,没有合理而良好的接地装置,就不能有效地防雷。从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为接地装置。接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。 变电站的接地网上连接着全站的高低压电气设备的接地线、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。如果接地电阻较大,在发生电力

变电站地网工程设计方案模版

二、接地电阻降阻方法 为了达到降低接地网接地电阻之目的,首先需要从理论上研究降低接地电阻的方法。由公式R= P£/C可以看出,降低接地电阻有以下两种途径,?是增人接地体几何尺寸,以增人接地体的电容C;二是改善地质电学性质,减小地的电阻率P和介电系数 接地网是在接地系统的基础,由接地环(网)、接地极(体)和引下线组成,以往常有种谋解,把接地环作为接地的主体,很少使用接地体,在接地妥求不高或地质条件相当优越的情况下,接地环也能够起到接地的作用,但是通常的情况下,这是不可行的,接地环可以起到辅助接地地作用,主导作用是用接地体来完成的。决定接地电阻人小的因素很多,下而先来分析?下计算传统地网接地电阻的公式(仅以接地环接地时)。 式中: P (Q.m) -?土壤电阻率: d(m)----- 钢材等效直径; S (m2)------ 地网面积: H(m)----- 埋设深度: L(m)------ 接地极长度(m): A ----------- 形状系数。 式(1)衣明,传统的接地力式在土壤电阻率已经确定的情况下,妥想达到设计要求的电阻必须有足够的接地而积,要降低接地电阻只有扩人接地而积,每扩人4倍的接地面积,接地电阻会降低?倍。 式(2〉、(3)衣明,在上述的接地网中,要降低接地电阻的另?个方法是加大接地材料的尺寸,但是耗材太大而且效果并不理想。以下降低接地电阻的-些常用的合理的方法。 、增大接地网面积1. 由上而接地电阻的物理概念,人地电阻率P和介电系数£不容易改变,而接地电阻R与接地网电容C成反比:从理论上分析,接地网电容C主要由它的面积尺寸决定,与而积成正比,所以接地网而积与接地电阻成反比。减小接地网接地电阻,增人接地网面积是可行途径。?个有多根水平接地体组成的接地网可以近似地看成?块孤立的平板,借用平板接地体接地电阻计算公式,当平板面积增大一倍时,接地电阻减小29.3%。 2、增加垂直接地体 依据电容概念,增加垂直接地体可以增人接地网电容。当增加的垂宜接地体长度和接地网长、宽尺寸可比拟时,接地网由原来的近似于平板接地体趋近于?个半球接地体,电容会有较人增加,接地电阻会有较大减小。由埋深为零半径为r的圆盘和半径为r的半球电容之比4 er/ 2 n er 可得,接地电阻将减小3 6%。但是对于人型接地网,其电容主要是由它的面积尺寸决定,附加于接地网上有限长度(2?3 m)的垂直接地体,不足以改变决定电容人小的几何尺寸,因而电容增加不大,亦接地电阻减小不多。所以人型接地网不应加以增加垂直接地体作为减小接地电阻的主要方法,垂直接地体仅作为加强集中接地散泄雷电流之用。唯-有效的途径是釆用深井接地。 3、人工改善地电阻率 在高电阻率地区采用人工改善地电阻率的方法,对减小接地电阻具有?定效果。例如,对于?个半径为r的半圆球接地体而言,其接地电阻的50%集中在自接地体农而至距球心2 r的半圆球内, 如果将r至2 r间的土壤电阻率降低,可使接地电阻大大减小。 设原地电阻率为P 2,将r至2 I?范圉内的电阻率为q 2的土壤用低电阻率的材料P 1置换,则半

变电所的防雷保护与接地装置的设计知识讲解

精品文档 第9章变电所的防雷保护与接地装置的设计 第10章变电所的防雷保护与公共接地装置的设计 10.1变电所的防雷保护 由设计任务书中气象资料得知,化纤工厂所在地区的年雷暴雨日数为20天。虽然发生雷暴的几率不属于高频地区,但是雷电过电压产生的雷电冲击波对供电系统的危害极大,因此必须对雷电过电压加以防护。 10.1.1 直击雷防护 根据GB50057-1994有关规定,在总降压变电所和车间变电所川(其所供负荷为核心负荷,且靠近办公区和生活区,考虑防雷保护)屋顶可装设避雷带,避雷带采用直径8mm勺圆钢敷设,并经两根引下线(直径8mm与变电所公共接地装置相连,引下线应沿建筑物外墙敷设。 10.1.2雷电波入侵的防护 1.35kV 架空线路上,在距总降压变电所1km的范围内,可架设避雷线。 2. 在35kV电源进线的终端杆上装设FZ-35型阀式避雷器。其引下线采用 25mm< 4mm镀锌扁钢,下边与公共接地装置焊接相连,上面与避雷器接地 端螺栓相连。 3. 在35kV总降压变电所主变压器的高压侧,装设JYN1-35-102型高压开关 柜,其中配有FZ-35型避雷器,靠近主变压器配置,其用来防护雷电波入侵 对主变压器造成的危害。 4. 在10kV车间变电所的高压配电室的母线上,装设GG-1A(F)-54型高压开关 柜,其中配有FS-10型避雷器,靠近主变压器配置,其用来防护雷电波入侵 对主变压器造成的危害。 10.2变电所公共接地装置的设计 10.2.1. 接地电阻的要求 根据GB50057-1994规定,对于1kV以上的小接地电流系统,公共接地装置 的接地电阻应满足以下条件: R E250且R E 10 I E 式中I E的计算可根据下列经验公式计算: U N(l oh 35〔cab ) I E 350 式中,U N为电网的额定电压,单位kV; l oh为与U N侧有电联系的架空线路 长度,单位为km;l cab为与U N侧有电联系的电缆线路长度,单位为km。 1. 总降压变电所公共接地装置的接地电阻计算:

XX变电站接地网大修工程施工方案

llOkVXX变电站 接地网大修工程施工方案 批准: 审查: 编写: XXXXXX电力建设有限公司

2012年7月

一.编制依据 (2) 二工程概况 (2) 三、施工流程图 五、施工组织安排 六. 主要施工方法 1.施工准备 (8) 2?施工方法 (9) 七、 ............................................. 质量控制 10 1?质量控制目标及要求 (10) 2.质量检查 (10) 八、 ......................................... 安全文明施工 11 九、 ...................... 接地工程施工危险点分析及预控措施 12 十.施工监督验收 (13)

一、编制依据 1、《电气装置安装工程接地装置施工及验收规范》(GB50169—2006) 2、《交流电气装置接地》(DL/T621-1977) 3、H OkVXX变电站接地网大修工程《设计方案》 4、《电力建设安全工作规程》(SDJ63-2002) 二、工程概况 工程名称:llOkVXX变电站接地网大修 工程地点:llOkVXX变电站 工程内容:对110RVXX变接地网大修工程进行施工,地网阻值现为0.7欧,对地网电阻进行降阻施工,施工结束后接地电阻值应满足小于0.5欧的要求。 HOkVXX变电站位于XXX县城内,于1998年建成投运,设110kV/35kV/10kV电压等级,llOkV为户外常规布置,35kV/10kV为户内开关柜布置,主控楼与10kV配电装置楼为一栋建筑,占地而积为66mX 77m。 XX变站址土壤表层为耕作土,下层为沙土,水分含量一般,土壤 电阻率较高,全站接地变电站采用复合接地网,以水平接地体为主,以垂直接地极为辅,接地网外沿闭合,接地网内敷设水平均压带,水平接地体深埋为0. 6mo在避雷针和装有辟雷器的地方应设集中接地装置。 水平接地体采用水平接地体采用40x6〃林彳热镀锌扁钢,垂直接地

变电站主接地网施工工艺流程及操作要点

变电站主接地网施工工艺流程及操作要点 变电站防雷接地是为防止电气设备意外带电造成电网、设备、人身事故的基本措施。本文从施工实际角度简述主接地网施工工艺流程及操作要点,力求能促进工程施工技术水平的提高,保证防雷接地工程的施工质量。从而确保接地装置安全运行,将对保障变电站运行安全有着十分重要的意义。 1、施工工艺流程

2、施工工艺流程及操作要点 2.1前期准备工作 2.1.1施工技术资料的准备 开工前首先应组织有关人员熟悉施工图及有关设计文件,了解设计意图,并按照设计要求做好接地施工方案、作业指导书编制等技术准备工作,并进行技术交底工作。其次根据经会审后的设计施工图编制材料清册,并校对材料规格和数量。 2.1.2施工材料的准备及材料质量保证措施 施工材料到达现场后,应对材料的规格、数量及外观质量进行检查。同时将材料厂家的产品合格证、质保书及厂家资质证明等相关文件报监理项目部审核,业主确认后方可进场使用。严禁不合格材料进入施工程序。 2.1.3施工前应配置最基本的施工人员和配备足够完好的施工机具 表1 主要施工机具的配置表 表2 主接地网施工施工人员配置表

2.1.4施工现场准备 根据业主指定的区域,首先设置接地材料加工棚、生活临时设施等。其次根据施工图纸和现场实际情况在预施工区域设置安全围栏,并悬挂安全标示牌等安全防护措施。 2.2接地沟开挖 2.2.1根据主接地网设计图纸要求,对对接地体(网)的敷设位置、网格大小进行放线。 2.2.2按照设计或规范要求的接地敷设深度进行接地沟开挖,深度按照设计或规范要求的最高标准为 准,超挖50-100mm左右。宽度为一般为500-1000mm,沟壁需放坡处理,底部如有石块应清除。 开挖完成的接地沟 2.2.3接地沟宜按场地或分区域进行开挖,充分利用土建开挖,减少重复工作,同时应及时恢复各类 安全防护措施,确保安全文明施工。 进行接地沟深度深测量 2.3垂直接地体安装 2.3.1按照设计或规范长度进行进行采购垂直接地体。 2.3.2垂直接地极采用人力锤击方式的安装,为避免垂直接地体施工时顶部敲击部位的损伤,在垂直 接地体顶部进行保护(如加自制钢管金属保护帽)。碰到强风化石时采用机械成孔安装。 2.3.3按设计图纸的位置安装垂直接地体。 2.3.4垂直接地体的埋入深度、间距必须满足设计要求。 2.3.5接地体安装结束后,顶部敲击部位应进行防腐处理。

变电所接地设计

浅谈变电所接地设计 【摘要】本文主要针对某市变电所接地设计方面的一些基本概念进行阐述,并结合具体工程设计,提出了一些安全、可靠、切实可行的做法,以利于变电所的安全运行。 【关键词】变电所;接地电阻;短路电流 【 abstract 】 this article mainly aims at the design of city substation grounding some basic concepts is expounded, combined with a specific engineering design, and put forward some safe, reliable, practical and feasible practice, so as to facilitate the safe operation of the substation. 【 keywords 】 substation; grounding resistance; short-circuit current 中图分类号:s611文献标识码:a 文章编号: 0、引言 接地网的重要性能就是保证人员的安全及机械的正常运行,但是接地工作很容易令人忽视,因为它是一项隐蔽工程,平时不被人所关注,对它的测定仅仅凭借观察电阻测量的数据。随着电力系统电压等级的升高及容量的增加,接地不良引起的事故扩大问题屡有发生。因此,接地问题越来越受到重视。变电所地网因其在安全中的重要地位,一次性建设、维护困难等特点在工程建设中受到重视。另外,在设计及施工时也不易控制,这也是工程建设中的难点之一。因此,为保证电力系统的安全运行,如何降低接地工程造价,本文

接地网施工方法

接地网施工方法 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

主要施工方法 1.施工准备 1.1材料及工具 ①根据施工图做好扁钢、接地极等材料的计划,并报物资管理部按计划采购。 ②材料进场必须具备相应的检测合格资料,并报监理认可。 ③准备好合格焊条,作好焊条贮存工作,严防受潮。 ④施工机具配备,挖掘机、交流电弧焊机、十字镐、铁铲、铁撬、铁锤。1.2作业条件 ①施工场地符合施工要求。 ②施工前对施工人员进行安全培训技术交底,让施工人员了解和熟悉设计及施工规范要求。 ③做好沟槽开挖时的排水工作。 ④检查好施工机械(或工具),保证满足施工要求。 ⑤做好施工人员安排计划,配置劳动力。 ⑥与土建做好沟通,尽量减少交叉作业,合理安排作业面。 2.施工方法 2.1主接地网施工 ①水平接地网敷设之前,要求质检员认真检查开挖深度,并做好记录。 ②施工顺序:先放主干线,后放分支线,用于电缆沟的扁钢必须先调直20/00再焊接。 ③扁钢搭接长度不小于扁钢的2倍宽度,焊接高度同扁钢厚度,具体搭接方法及尺寸见图纸《防雷接地》中C810.201.E41.00-17-06号图纸。 ④接地网距离建筑物宜不少于1.5m。接地网干线应连成闭合体,其转弯处做成圆弧形,圆弧半径要不小于均压带间距的一半。

⑤当扁钢相互交叉搭接,要求将一方向的扁钢弯起不少于2倍扁钢宽度的长度,然后与另一方向的扁钢一起焊接,搭接方法及尺寸见《全地防雷接地》中C810.201.E41.00-17-06号图纸。 ⑥横穿电缆沟的接地网干线,要求敷设在电缆沟下,而不要穿越电沟内,以防止沟内积水后严重腐蚀扁钢。 ⑦扁钢焊接要求设专人焊接,持证上岗。 ⑧焊接前应将扁钢端头外表面的污物清除,使之具有金属光泽。 ⑨焊缝应平正而无间断焊缝不得有夹渣气泡未焊透处及咬边等情况。 ⑩扁钢弯制:在水平接地体与垂直接地极连接的部位、接地网边沿角等位置敷设的扁钢需要进行弯制。 2.2垂直接地极施工 1.垂直接地极安装作业:成孔后,将长度为 2.5m的φ50钢管垫上厚木块轻敲将其打入设计深度,避免直接打击钢管,否则容易造成钢管弯曲或焊接接头脱落,而影响接地网施工质量。顶端露出150mm与水平接地体焊接。 2 垂直接地极与水平接地体的连接方式:水平接地体与垂直接地极采用焊接连接,并使用-30扁钢做抱箍固定。接地体之间的连接应牢固,无虚焊.如下图所示。 2. 3阴极保护系统的施工 1.检验阳极表面是否有油污、油漆等杂物,有则一定清除干净;电缆绝缘皮是否完好,接头是否牢靠。 2.阳极坑的开挖:坑的大小、深度应能保证阳极能够水平放置且阳极与地网在同一水平面上,坑的位置应保证阳极与地网的距离在0.5—1.0m范围内。

变电站接地网优化设计

编号:AQ-JS-05799 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 变电站接地网优化设计 Optimization design of substation grounding grid

变电站接地网优化设计 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 摘要:接地网等间距布置存在地电位分布不均匀的问题。在建220kV新塘变电站采用了不等间距布置,即从地网边缘到中心,均压导体间距按负指数规律增加。运用GPC接地参数计算程序对两种方法进行分析和计算,结果表明接地网优化设计能显著地改善导体的泄漏电流密度分布,使土壤表面的电位分布均匀,提高安全水平,节省钢材和施工费用。 关键词:变电站接地网设计 随着电力系统容量的不断增加,流经地网的入地短路电流也愈来愈大,因此要确保人身和设备的安全,维护系统的可靠运行,不仅要强调降低接地电阻,还要考虑地网上表面的电位分布。在以往接地设计中,接地网的均压导体都按3m ,5m ,7m

,10m 等间距布置,由于端部和邻近效应,地网的边角处泄漏电流远大于中心处,使地电位分布很不均匀,边角网孔电势大大高于中心网孔电势,而且这种差值随地网面积和网孔数的增加而加大。本文结合在建工程220kV新塘变电站的接地网设计,阐释了接地网不等间距布置的方法及其合理性。 1接地网优化设计的合理性 1.1改善导体的泄漏电流密度分布 面积为190m ×170m 的新塘变电站接地网,在导体根数相同的情况下,分别按10m 等间距布置和平均10m 不等间距布置。沿平行导体①、②、③、④、⑤的泄漏电流密度分布曲线。从此可见,不等间距布置的接地网,边上导体①的泄漏电流密度较等间距布置的接地网平均低15%左右;对于导体②的泄漏电流密度,这两种布置的接地网几乎相等(仅相差0.3%);对于

220KV变电站接地网的设计

220KV 变电站接地网的设计 庞国栋 (内蒙古送变电有限责任公司,内蒙古呼和浩特 010020) 摘 要:针对目前变电站和发电厂接地网的分布不均匀,以及接地电阻存在一定问题等缺陷,本文则是结合变电站接地网的设计原则,以220KV 变电站为参考地点,对接地网进行设计和计算。其中包括对短路电流和工频电阻以及均压带的计算。 关键词:变电站;接地网;短路电流;工频接地电阻;均压带 中图分类号:T M862+.3 文献标识码:A 文章编号:1006—7981(2012)12—0095—05 电力行业在我国的现代化建设中扮演着一个重要的角色,而变电站接地网对于电力系统的可靠运行和变电站工作人员的人身安全起着重要作用。随着现代社会快速化的发展,电力系统规模不断扩大,接地系统的设计也越来越复杂。所以变电站接地技术成为电力行业研究的重点之一。 接地网作为变电站交直流设备接地对系统的安全运行起着重要的作用。由于接地网作为隐性工程容易被人忽视,往往只注意最后的接地电阻的测量结果。随着电力系统电压等级的升高及容量的增加,接地不良引起的事故时有发生,因此,接地问题越来越受到重视。 而本设计结合变电站接地网的一般设计原则,具体内容包括:计算接地网的保护接地电阻和工频接地电阻,设计接地网的形状和均压带的布置方式,设计变电站接地网图。对变电站人员以及设备安全可靠,解决了一些个弊病。1 变电站接地网的设计1.1 220KV 变电站资料 图1 变电站一次系统接线图 V 变电站占地总面积3平方米,变电站的接地网要求采用水平接地作为主边缘闭合的复合接地网,土壤电阻率为6欧米。站中有主变压 器型号--180000/220三绕组变压器两台,各绕组间短路电压标幺值:U k1-1=14%,U k2-3=9%,U k1-3=24%。远期220KV 母线最大系统阻抗X 1=0.0080X 0=0.0133,接线组别为Y N ,Y n0,d 11,电压比220+8* 1.25%/121/38.5/10.5KV 。 本设计按两台变压器运行以某一台变压器中性点接地考虑计算短路电流,变压器容量基准值取100MVA 。 1.2 最大短路电流的计算 1.2.1 变压器正序阻抗的计算 设基准功率取S B =100MVA,额定功率取S e =180MVA,U B =230KV 三绕组变压器各绕组间短路电压百分比分别为:U k1-2=14%,U k2-3=9%,U k 1-3=24%则各绕组的电抗为: X 1=12(U k1-2+U 1-3-U k2-3)=12 (0.14+0. 24-0.09)=0.145 X 2=12(U 1-3+U k2-3-U 1-3)=1 2(0.14+0.09-0.24)≈0 X 3=12(U k2-3+U 1-3-U k1-2)=1 2(0.09+0.24-0.14)=0.095 转化为标幺值为: X *1=X 1S B S e =-0.145×100 180=0.0806 X * 2=X 2S B S e 0 X *3=X 3S B S e =0。095×100 180=0.05281.2.2 流经接地装置的短路电流计算 发生短路时,变压器按一台中性点接地考虑,设正序阻抗为X 、负序阻抗为X 、零序阻抗为,且X =X 。 95  2012年第12期 内蒙古石油化工 收稿日期35 2202842180.1212:2012-0-2

【精品】牵引变电所接地防雷系统的设计

齐鲁工业大学 毕业设计 题目:牵引变电所接地防雷系统的设计 系别: 专业: 班级: 学生姓名: 指导教师: 完成日期:

摘要 牵引变电所是铁路供电系统的枢纽,它担负着电网供电的重要任务。雷电具有很强的危害性,因此应该重视牵引变电所的雷电的防护。 综合运用高电压技术、电力系统过电压、接地系统及供防雷接地的设计方法,对110kV牵引变电所进行防雷接地设计.引变电所雷击的配电技术等相关的专业知识,采用理论和实践相结合的方法,研究牵,基于常用的形式及防雷接地的几种措施,研究接地装置的类型和降阻方式 关键词雷电放电防雷保护装置防雷接地装置牵引变电所

目录 1绪论.............................................. 错误!未指定书签。2雷................................................ 错误!未指定书签。 2。1雷电........................................ 错误!未指定书签。 2。1。1雷电的发生机理....................... 错误!未指定书签。 2.1。2雷电放电.............................. 错误!未指定书签。 2。1.3雷电放电的过程........................ 错误!未指定书签。 2.1。4雷电放电的基本形式.................... 错误!未指定书签。 2.1.5雷电放电的选择性....................... 错误!未指定书签。 2.1.6我国雷电活动分布的规律................. 错误!未指定书签。 2.1.7雷电的危害............................. 错误!未指定书签。 2.1.8雷电的防护措施......................... 错误!未指定书签。 2.2雷电参数..................................... 错误!未指定书签。

接地网接地电阻测试的原理方法和意义

接地网接地电阻测试的原理方法和意义 一、概述近些年来,国内多处变电站因雷击形成扩大事故,多数与地网接地电阻不合格有关,接地网起着工作接地和保护接地的作用,当接地电阻过大则:发生接地故障时,使中性点电压偏移增大,可能使健全相和中性点电压过高,超过绝缘要求的水平而造成设备损坏。在雷击或雷电波袭击时,由于电流很大,会产生很高的残压,使附近的设备遭受到反击的威胁,并降低接地网本身保护设备(架空输电线路及变电站电气设备)带电导体的耐 雷水平,达不到设计的要求而损坏设备。同时接地系统的接地电阻是否合格直接关系到变电站运行人员、变电检修人员人身安全;但由于土壤对接地装置具有腐蚀作用,随着运行时间的加长,接地装置已有腐蚀,影响变电站的安全运行;因此,必须大力加强对地网接地电阻的定期监测;运行中变电站地网接地电阻的测量,由于受系统流入地网电流的干扰以及试验引线线间的干扰,使测试结果产生较大的误差。特别是大型接地网接地电阻很小(一般在0.5Ω以下),即使细微的干扰也会对测试结果产生很大的影响;如果对地网接地电阻测试不准确,不仅损坏设备,而且会造成诸如地网误改造等不必要的损失,结合我对接地网接地阻抗测试方法的研究,现总结如下: 二、接地电阻测试原理及方法:测试接地装置的接地阻抗时电流极要布置的尽量远,通常电流极与被试接地装置边缘的距离dcG应为被试接地装置最大对角线长度D的4~5倍(平行布线法),在土壤电阻率均匀的地区可取2倍及以上(三角形布线法),电压引线长度为电流引线长度0.618倍(平线布线法)或等于电流线(三角形布线法)。1、电位降法电位降法测试接地装置的接地阻抗是按图1布置测试回路,且符合测试回路的布置的要求。 G—被试接地装置;C—电流极;P—电位极;D—被试接地装置最大对角线长度;dCG—电流极与被试接地装置边缘的距离;x—电位极与被试接地装置边缘的距离;d—测试距离间隔;流过被试接地装置G和电流极C的电流I使地面电位变化,电位极P从G的边缘开始沿与电流回路呈30°~45°的方向向外移动,每间隔d(50m或100m或200m)测试一次P与G之间的电位差U,绘出U与x的变化曲线。曲线平坦处即为电位零点,与曲线点间的电位即为在试验电流下被试接地装置的电位升高U,接地装置的接地阻抗为: Z=Um/I 如果电位测试线与电流线呈角度放设确实困难,可与之同路径放设,但要保持尽

模块化智能变电站建设模式研究

模块化智能变电站建设模式研究 发表时间:2017-11-02T12:16:46.597Z 来源:《电力设备》2017年第18期作者:张海文[导读] 摘要:随着全球经济的飞速发展,人们对能源的高效利用日益重视,变电站的作用就显得格外重要,本文就化智能变电站这一课题,探讨其建设背景、模块划分以及典型的设计技术,希望对读者有所助益。 (国网海北供电公司青海 812200)摘要:随着全球经济的飞速发展,人们对能源的高效利用日益重视,变电站的作用就显得格外重要,本文就化智能变电站这一课题,探讨其建设背景、模块划分以及典型的设计技术,希望对读者有所助益。 关键词:模块化智能变电站设计 1智能变电站模块化建设背景 1.1研究背景 随着国际国内能源形势的深刻变化,加快建设智能电网的需求迫在眉睫。变电站是电力网络的节点,它连接线路、输送电能,担负着变换电压等级、汇集电流、分配电能、控制电能流向等功能,变电站的智能化运行是实现智能电网的基础环节之一。模块化智能变电站是变电站建设的一种创新模式,从设计到建设阶段将全过程遵循“标准化设计、工厂化加工、装配式建设”的管理理念,通过电气一、二次集成设备最大程度实现工厂内规模生产、集成调试、模块化配送,减少现场安装、接线、调试工作,建筑物采用装配式结构,工厂预制、现场机械化安装,将工业建筑实现标准化设计,统一建筑结构、材料、模数等,实现设计、建设标准化,有效提高建设质量、效率,提升电网建设能力。 1.2研究现状 2012年以来,新一代智能变电站概念设计方案应运而生,构建了以集成化智能设备、一体化业务系统及站内统一信息流为特征的新一代智能变电站设计方案。2013年,变电站模块化建设研究工作和试点工程又取得了突飞猛进的进展,提出了“模块化建设”的工程建设理念。设备厂商设计生产的电气设备质量的提高和电网可靠性的增加及电网发展的需求,推动了变电站设计模块化方案的可行性。 2智能变电站的模块化划分 智能变电站是随着科学技术的普及而出现的一种新型变电站形式,具有自动化和信息化的特点。对于它的模块化来说,属于变电站建设的一种新型模式,是时代发展的产物,它的模块化建设主要涉及到主变压器、高压开关、中压开关、中压配套设备和综合自动化等五个部分,它们相互作用、联系,共同构成智能化变电站。 第一,主变压器。它是通过拔插的方式,和高压进线电缆接头相互连接,在全封闭和多股电缆母线桥架,来实现和中压出线的相互连接。 第二,高压开关。它是在进出线部位选择拔插的具体方式,在气体绝缘封闭方式的利用下,来实现和组合电器的相互连接。 第三,中压开关。它是选择一体化的预装性质的组合电器。 第四,中压配套设备。这一设备中,它的结构构成主要是以消弧线圈、接地变压器以及无功补偿装置为主的o 第五,综合自动化。它属于是选择一体化预装式的控制室。 在实际的变电站建设中,这五个功能模块都是需要在事前进行调试的,在开始安装操作时,依次选择的是一次电缆、连接变压器、开关和配套设备、综合自动化选择通讯线路、电缆连接,在各个部分连接完成之后,最后开始进行整体上的调试工作,对各个功能组成进行性能的测试,以确保智能变电站模块化建设的顺利进行。 3 智能变电站模块化典型设计技术 3.1预制舱式二次组合设备设计 针对原来变电站单独配置的二次设备室,占地面积相对比较大,新一代智能变电站通过设计优化,提出了预制舱式二次组合设备,用体积较小的舱体来替代二次设备室,从而节省了变电站占地面积。 预制舱式二次组合设备按设备对象模块化设计,以方便运行、维护,变电站根据需要设置公用设备预制舱、间隔设备预制舱等,可根据变电站具体建设规模、布置方式等进行选择调整组合设计。预制舱内二次设备采用前接线、前显示式装置,屏柜采用双列靠墙布置,屏正面开门,屏后面不开门。舱体内集成二次设备及相应辅助设施,包括安防、消防、暖通、照明、检修、接地等。舱内与舱外光纤联系采用预制式光缆,舱内与舱外电缆联系可采用预制式电缆。舱内设备在工厂内完成相关接线、调试等工作,从而缩短施工周期。 3.2预制电缆设计 现有智能变电站中使用最多的控制电缆大多为4芯、7芯、14芯铠装电缆,接线芯数较多,容易出现接头不牢固而断线,采用预制电缆,按双端、单端预制方式,统一航空插头、电缆的型号,从而大大减小断线概率。预制电缆可以使用于主变压器、GIS本体与智能控制柜之间二次控制电缆连接。对于AIS变电站,断路器、隔离开关与智能控制柜之间二次控制电缆宜采用预制电缆。预制电缆可采用穿管、槽盒、电缆沟等敷设方式,从而使屏柜内的电缆接线简洁清晰,便于运行与维护。 3.3装配式建筑物设计 结合实际工程出线情况,对于采用组合电器(GIS)的工程规模,在组合电器全部为架空出线的情况下,可以利用架空出线套管作为后期试验、耐压的场所。充分利用建筑本身的结构,考虑后期设备运行、检修的移动,适当考虑取消目前GIS室双层层高的现状,能够优化建筑体量,实现建筑和设备的紧凑布局: 3.4配电装置选型设计 模块化设计要求设备选型均严格按照工厂预制现场装配的理念设计,一次设备本体加智能组件的方式实现一次设备智能化,智能组件统一由一次设备厂家场内集成,体现模块化设计的高效;电气装置的布置方式采用“单元”布置方式,一台主变所带设备成“单元”分区就近布置,并满足二次接线的要求。开关设备同无功补偿设备分区明确,充分体现电气布置模块化。一、二次设备高度集成,现场只需完成合并单元及保测装置至二次设备室的相关交直流电源电缆及光缆的敷设,全站电缆大幅减少,电缆敷设、电缆施工接线的工作量相应减轻,缩短电缆施工安装周期,节约工程造价。

相关文档
相关文档 最新文档