文档库 最新最全的文档下载
当前位置:文档库 › 高分子纳米复合材料研究进展:(Ⅱ)—高分子纳米复合材料的结构和性能

高分子纳米复合材料研究进展:(Ⅱ)—高分子纳米复合材料的结构和性能

高分子纳米复合材料研究进展:(Ⅱ)—高分子纳米复合材料的结构和性能
高分子纳米复合材料研究进展:(Ⅱ)—高分子纳米复合材料的结构和性能

维普资讯 https://www.wendangku.net/doc/f27948003.html,

聚合物基纳米复合材料研究进展

聚合物基纳米复合材料研究进展 摘要: 针对聚合物基纳米复合材料的某些热点和重点问题进行了总结和评述,并讨论了碳纳米管、石墨烯及纳米增强界面等以增强为主的纳米复合材料的研究状况和存在的问题;系统地评述了纳米纸复合材料、光电纳米功能复合材料以及纳米智能复合材料等以改善功能的纳米功能复合材料的研究动态。 关键词 : 复合材料;纳米材料;聚合物;功能材料 引言 复合材料作为材料大家族中的重要一员,已经深入到人类社会的各个领域,为社会经济与现代科技的发展作出了重要贡献。复合材料科学与技术的发展经历了从天然复合材料到人工复合材料的历程,而人工复合材料的诞生更是材料科学与技术发展中具有里程碑意义的成就。20 世纪 50 年代以玻璃纤维增强树脂的复合材料(玻璃钢)和 20 世纪 70 年代以碳纤维增强树脂的复合材料(先进复合材料) 是两代具有代表性的复合材料。这两代材料首先在航空航天和国防领域得到青睐和应用,后来逐渐扩大到体育休闲、土木建筑、基础设施、现代交通、海洋工程和能源等诸多领域,使得复合材料的需求越来越强烈,作用越来越显著,应用领域越来越广泛,用量也越来越多,而相应的复合材料科学与技术也在不断地丰富和发展。随着纳米技术的出现和不断发展,纳米复合材料已经凸显了很多优异的性能,从一定意义上有力地推进了新一代高性能复合材料的发展。纳米化与复合化已经成为新材料研发和推动新材料进步的重要手段和发展方向。 纳米复合材料是指以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的颗粒、纤维、纳米管等为分散相,通过合适和特殊的制备工艺将纳米相均匀地分散在基体材料中,具有特殊性能的新型复合材料。本研究的重点是讨论聚合物基纳米复合材料的研究概况,系统介绍利用碳纳米管、石墨烯、碳纳米纸、纳米界面改性等提升和改善复合材料力学性能及物理性能的机理与作用。 1 纳米增强复合材料 纳米复合材料的性能依据其基体材料和纳米增强相种类的不同而差异巨大,因此提高力学性能是纳米复合材料研究领域中最具代表性的研究工作之一。纳米相对聚合物基体的力学性能改性主要包括强度、模量、形变能力、疲劳、松弛、蠕变、动态热机械性能等。 1.1 碳纳米管纳米复合材料 碳纳米管是由碳原子形成的石墨片层卷成的无缝、中空管体,可依据石墨片层的数量分为单壁碳纳米管和多壁碳纳米管。由于纳米中空管及螺旋度共同作用,碳纳米管具有极高的强度和理想的弹性,其弹性模量甚至可达1.3 TPa,与金刚石

纳米复合材料

纳米复合材料的制备及其应用 分析化学饶海英20114209033 摘要:聚合物基复合材料目前已经成为复合材料发展的一个重要方向,它涉及了材料物理、材料化学、有机材料、高分子化学与物理等众多学科的知识。本文主要针对纳米复合材料的制备方法、性能及应用等方面的研究进展情况进行了综述。 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国航、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分。80年代初Roy等提出的纳米复合材料[1-3],为复合材料研究应用开辟了崭新的领域。纳米复合材料是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。由于纳米微粒独特的效应,使其物理和化学性能方面呈现出不同的性能。将纳米材料与复合材料结合起来,所构成的纳米复合材料兼有纳米材料和复合材料的优点,因而引起科学家的广泛关注和深入的研究[4-5,44,45]。纳米复合材料的基体不同,所构成的复合材料类型也不同,如:金属基纳米材料[9-11,43]。陶瓷基纳米材料[12]、聚合物基纳米材料。 近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。 1纳米聚合物基复合材料 1.1 纳米聚合物基复合材料的合成进展 在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。较早发展起来的几种聚合物纳米复合材料的制备方法[13-14]有共混法、溶胶-凝胶法(sol-ge1)、插层复合技术(interaction),可分为插层和剥离(exfoliate)两种技术、原位(in-situ)法、母料法、模定向合成法(template directed)包括化学方法和电化学方法。 声化学合成(sonochemical synthesis)是制备具有独特性能的新材料的有效方法。

高分子结构与性能精华版

第一章链结构 1聚合物:是不同聚合度分子的聚集体,是指宏观的物体。而高聚物指分子量很高的聚合物,属聚合物的一部分。高分子、大分子:单个的孤立分子,由许多小分子单体聚合而成。 2.物理缠结:无数根高分子链共享一个扩张体积, 链与链间互相围绕穿透,运动受到缠结点的限制。产生物理缠结的条件:1. 刚性分子链不发生物理缠结;2. M(分子量)大于M c (临界分子量) ,M小于M c不发生物理缠结。化学交联:高分子链之间通过化学键或链段连接成一个空间网状的结构,可限制高分子链的在轮廓方向的运动。。 3高分子链以不同程度蜷曲的特性称为柔性。两个可旋转单键之间的一段链,称为链段。链段是分子链上最小的独立运动单元。链段长度b愈短,柔性愈好。 4分子构造:一维、合成高分子多为线形,如HDPE、PS、PVC、POM;二维、环形高分子;三维、三维交联高分子、?-环糊精、纳米管。 5支化高分子:无规(树状)、疏形和星形。无规、不同长度的支链沿着主链无规分布。如LDPE。疏形、一些线性链沿着主链以较短的间隔排列而成。如苯乙烯采用阴离子聚合。星形、从一个核伸出三个或多个臂(支链)的高分子。如星形支链聚苯乙烯。 6链结构鉴别:红外光谱与拉曼光谱区别:红外活性与振动中偶极矩变化有关,而拉曼活性与振动中诱导偶极矩变化有关。红外光谱为吸收光谱,拉曼光谱为散射光谱。红外光谱鉴别分子中存在的基团、分子结构的形状、双键的位置以及顺、反异构等结构特征。拉曼光谱在表征高分子链的碳-碳骨架结构上较为有效,也可测定晶态聚合物的结晶度和取向度。核磁共振谱研究共聚物中共聚体的化学结构较有效,核磁共振发法是研究高聚物链内单个原子周围环境最有效的结构研究方法,共振吸收强度比例于参加共振吸收核的数目。7超支化聚合物的性质1低粘度较低的粘度意味着其分子间链缠结较少。2较好的溶解性3热稳定性和化学反应性。 第二章高聚物的凝聚态结构 1高聚物非晶态指非晶高聚物的玻璃态,高弹态以及所有高聚物的熔融态。从分子结构角度看,包括:1分子链化学结构的规格性很差,以致根本不能形成结晶;2链结构具有一定的规整性,可以形成结晶。但在通常条件下结晶速率太低,以致得不到可观的结晶PC、PET;3链结构虽然具有规整性,但因分子链扭折不易结晶,常温下呈现高弹态结构,低温时才能形成可观的结晶。 2非晶态结构模型:单相无规律团模型,每个链分子形成无规线团,其直径正比于分子中链段数的平方根。不同分子链有较多的相互贯穿,每个线团内的其余空而均为相邻分子链所占有,在同一分子链以及不同分子链的链段之间存在着不同程度的缠结。局部有序模型:大分子区域模型,该模型认为:非晶态高聚物中存在一个―区域‖,其分子链有相当大的一部分链段集中于此―区域‖内,―区域‖内的链段密度是均匀分布的,不服从高斯分布。―区域‖主要是由同一种分子链的链段所组成,很少有不同分子链之间的相互贯穿和缠结。―区域‖中的有些链段可以横向有序排列,形成某种相对有序区。折叠链缨束粒子模型(两相模型)包括粒子相(有序区、粒界区)和粒间相。 3高聚物晶体结构特点:1、晶体中的每根分子链按照能量最小的原则采取一种特定的构象,由于分子间作用力使之密堆排列,分子链轴恒与一根晶胞主轴相平行。2、分子链内原子的共价键连接使得结晶时分子链段不能自由运动妨碍其规整堆砌排列,因此在高聚物晶体中常常有许多畸变的晶格。3、在高聚物晶体的晶胞中与分子链轴相垂直的方向有独立的分子链,而沿分子链轴方向上只包含分子链的链节,即晶胞中的结构单元是分子链中的化学重复单元。 4球晶是一个三维球形对称生长,含有结晶及非晶部分的多晶聚集体。球晶生长过程:当成核后球晶在生长过程中,亚结构单元沿球晶的半径方向向外生长,同时不断产生小角度的分叉以填补不断增加的空间,一直长到球晶的边缘为止;另一方面不断将小分子添加物,不结晶成分(如无规立构)以及来不及结晶的分子链或链段排斥到片晶、片晶束或球晶之间。 5黑十字消光成因:一束自然光通过起偏镜后变成偏正光,使其振动都在同一方向上。一束偏振光通过球晶时,发生双折射,分成两束电矢量相互垂直的偏振光,这两束光的电矢量分别平行和垂直于球晶半径方向。由于两个方向的折射率不同,两束光通过样品的速度是不等的,必然产生一定的相位差而发生干涉现象。结果,通过球晶一部分区域的光线可以通过与起偏镜处于正交位置的检偏镜,另一部分的光线不能通过检偏镜,最后形成亮暗区域。 6球晶消光环的成因:片晶的协同扭曲造成的。随着晶片的扭曲,微晶的位置将发生周期性的变化,透过偏光镜的情况随之发生周期性变化。 7球晶的形态与分子量关系:分子量越高,晶核生长速度越快;分子量越低,晶核生长速度越快慢。分子量越高,晶体生长速度越慢;分子量越低,晶体生长速度越快。分子量越高,球晶中片层相互缠结越显著;分子量越低,则相反。低温利于成核,高温利于生长。8附生结晶:一种结晶物质在另一种晶体基底上的取向结晶,是一种表面诱导结晶现象。(1)聚合物在聚合物基底上的附生结晶,①聚合物均相附生结晶(串晶)②聚合物异相附生结晶(穿晶)(2) 聚合物附生结晶对材料力学性能的影响:协调效应明显,力学性能提高聚合物附生晶体间存在强的相互作用;异相附生结晶中的附生晶体和基底的分子链轴方向成一定角度交叉取向结构对力学性能产生协调效应。 9晶态结构研究手段:POM宏观形态,线生长速度;TEM片晶形态;AFM微观形态;SAXS片晶厚度,片晶取向;W AXD结晶度,晶型,晶胞参数,链取向;DSC结晶度,总体结晶动力学。 10在受限条件下结晶,膜越薄,取向程度越大,球晶被拉长的程度越明显,最后成纤维结构。

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

聚合物基纳米复合材料的结构与性能研究

聚合物基纳米复合材料的结构与性能研究 摘要:聚合物的结构与性能是材料科学研究的重点。通过改变或优化材料的结构,而得到性能更为优越的材料也一直是人们的研究方向,随着研究的不断深入,所采取的方法也越来越为多元化,其中,在高分子聚合物材料中引入纳米结构就是材料改型的一种办法。以下对聚合物基纳米复合材料的结构和性能的研究作一总结。分析了由插层复合法、溶胶一凝胶法和纳米微粒直接共混法制备的聚合物基纳米复合材料的结构和性能的紧密联系。 关键词:高分子聚合物;纳米材料;结构;性能 1、引言 1.1高分子聚合物材料概述[1] 材料是各门科学技术应用和发展的基础和载体。按照传统的分类,可将材料分为金属、半导体、陶瓷和有机高分子材料,而在科学技术迅速发展的今天,与其它材料相比,聚合物材料的研究与应用呈现非常快的增长趋势,有着广阔的发展前景。 聚合物材料作用和功能的发挥,与它的结构有着密切的关系。为了合成具有指定性能的高分子材料,人们总是从化学结构开始设想,为了改进高分子材料的某种性能,人们也总是首先从改变其结构入手。无数的事实表明:人们无时无刻不在利用高聚物结构与性能间的关系,根据需要选择高分子材料,改性高分子材料,创造高新的高分子材料。高聚物结构与性能间的关系是高分子材料设计的基础,同时也是确定高分子材料加工成型工艺的依据。 对于实际应用中的高分子材料或制品,有的时候它们的高级结构,如相态结构和聚集态结构,对高分子材料、尤其是高分子功能材料的影响更为明显,并且其使用性能直接决定于加工成形过程中的聚集态结构,因此对高分子聚集态结构的研究有着重要的理论意义和实际意义。了解高分子聚集态结构特征、形成条件及其与材料性能之间的关系,对于获得具有理想性能的材料是必不可少的,同时也可为新型高聚物材料的物理改性和材料设计提供科学的依据。 高分子聚合物的结构主要包括高分子链结构和聚集态结构。高分子链结构分为近程结构和远程结构,近程结构包括化学组成、单体单元的键合(键合方式、序列)、高分子的构型(结构单元空间排列)、单个高分子链的键接(交联与支化)。远程结构包括高分子的大小(分子量及其分布)、高分子链的尺寸(末端距、旋转半径)、高分子的形态(构象、柔性、刚性)。高分子的聚集态结构包括晶态、非晶态、取向态、液晶态、织态等。 高分子结构特点主要有五点:①链式结构②链的柔顺性③不均一性(多分散性)④聚集态结构的复杂性。⑤交联网状结构。聚集态结构是决定高分子材料使用性能的直接因素,交联程度对橡胶弹性体或热固性聚合物这类材料的力学性能有重要影响。除了一级结构,即分子链的化学结构,还有其高级结构,即高聚物在宏观上体现为若干高分子链以一定的规律堆集形成的状态,这种高分子链之间的排列和堆砌结构称为聚集态结构。高分子的链结构影响高分子的运动方式和堆砌方式,凝聚态结构将直接影响材料的力学、光学、热学、声学、电学等使用性能。经验证明:即使有同样链结构的同一种高聚物,由于加工成型条件不同,制品性能也有很大差别。例如:缓慢冷却的PET(涤纶片)是脆性的;迅速冷却,双轴拉伸的PET(涤纶薄膜)是韧性很好的材料。 对于高分子材料来讲,它具有密度小、强度高,易加工等优良性能,并且易于通过化学和物理方法进等行改性特性而拓展其应用范围。

高分子材料的结构特点和性能精选. - 副本

高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料。 高分子材料的性能是其内部结构和分子运动的具体反映。掌握高分子材料的结构与性能的关系,为正确选择、合理使用高分子材料,改善现有高分子材料的性能,合成具有指定性能的高分子材料提供可靠 的依据。 高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特点。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。 1. 近程结构 (1) 高分子链的组成 高分子是链状结构,高分子链是由单体通过加聚或缩聚反应连接而成的链状分子。高分子链的组成是指构成大分子链的化学成分、结构单元的排列顺序、分子链的几何形状、高聚物分子质量及其分布。 高分子链的化学成份及端基的化学性质对聚合物的性质都有影响。通常主要是指有机高分子化合物,它是由碳-碳主链或由碳与氧、氮或硫等元素形成主链的高聚物,即均链高聚物或杂链高聚物。 高密度聚乙烯(HDPE)结构为-[CH2CH2]n-,是高分子中分子结构最为简单的一种,它的单体是乙烯,重复单元即结构单元为CH2CH2 ,称为链节,n为链节数,亦为聚合度。聚合物为链节相同,集合度不同的混合物,这种现象叫做聚合物分子量的多分散性。 聚合物中高分子链以何种方式相连接对聚合物的性能有比较明显的影响。对于结构完全对称的单体(如乙烯、四氟乙烯),只有一种连接方式,然而对于CH2=CHX或CH2=CHX2类单体,由于其结构不对称,形成高分子链时可能有三种不同键接方式:头-头连接,尾-尾连接,头-尾连接。如下所示: 头-头(尾-尾)连接为: 头-尾连接为: 这种由于结构单元之间连接方式的不同而产生的异构体称为顺序异构体。一般情况下,自由基或离子型聚合的产物中,以头-尾连接为主。用来作为纤维的高聚物,一般要求分子链中单体单元排列规整,使 聚合物结晶性能较好,强度高,便于抽丝和拉伸。 (2) 高分子链的形态 如果在缩聚过程中有三个或三个以上的官能度的单体存在,或是在加聚过程中有自由基的链转移反应发生,

聚合物纳米复合材料

聚合物纳米复合材料的研究进展 摘要 关键字 Abstract 1.引言 纳米材料是指材料的显微组织中至少有一相的一维尺寸在1-100nm以内的材料。由于平均粒径小,表面原子多,比表面积大,表面能高,因而呈现出独特的小尺寸效应、表面效应、量子隧道等特性,具有许多材料所没有的性能。介于其超凡特性,纳米材料越来越得到广泛的关注。不少学者认为纳米材料将是21世纪最有前途的材料之一,尤其是聚合物纳米材料。本文就聚合物纳米复合材料的分类、制备、改性、应用及问题和未来展望展开叙述。 2.聚合物纳米复合材料定义与分类 2.1定义 聚合物纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,纳米单元可以是金属、无机物和高分子等。 2.2分类 根据组分不同,可分为: a)聚合物/聚合物纳米复合材料:由两种或两种以上的聚合物混在一起而其中有一纳米尺寸的聚合物分散于其它聚合物单体所构成的 复合材料。如第三代环氧树脂粘接剂,它是将预聚合的球状交联 橡胶粒子分散于环氧树脂中固化而成的。 b)聚合物/层状纳米无机物复合材料:是将层状的无机物以纳米尺度分散于聚合物中而形成的。通常采用插层法制备。目前用的最多 的是蒙脱土,蒙脱土是以片状晶体而构成的。 c)聚合物/无机纳米复合粒子复合材料:是将纳米级无机粒子填充到聚合物当中去的。由于小尺寸效应使材料具有光、电、声、磁等 功能,赋予材料良好的综合性能。 3.聚合物纳米复合材料制备 3.1插层复合法 插层复合法是目前制备聚合物纳米复合材料的主要方法。根据复合过程,插层复合法可分为两类,1)插层聚合法:原理是将聚合物单体分散,插层进入层状硅酸盐片层中,然后再原位聚合,利用聚合时放出的大量的热量克服硅酸盐片层间的库仑力,使其剥离,从而使硅酸盐片层与聚合物基体以纳米尺度相复合;2)熔体插层法:原理是将插层无机物与高聚物插入层状无机的层间,该方法优

高分子纳米复合材料的制备

高分子纳米复合材料的制备 摘要: 纳米材料科学是一门新兴的并正在迅速发展的材料科学。由于纳米材料体系具有许多独特的性质,应用前景广阔,而且涉及到原子物理、凝聚态物理、胶体化学、配位化学、化学反应动力学和表面、界面科学等多种学科,在实际应用和理论上都具有极大的研究价值,所以成为近些年来材料科学领域研究的热点之一,被誉为“21世纪最有前途的材料”[1, 2]。 关键词:高分子纳米复合材料,纳米单元,制备 由于纳米微粒尺寸小、比表面积大,表面原子数、表面能和表面张力随粒径的下降急剧增大,表现出小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特点,从而使纳米粒子出现了许多不同于常规固体的新奇特性,展示了广阔的应用前景;同时它也为常规的复合材料的研究增添了新的内容,含有纳米单元相的纳米复合材料[5]通常以实际应用为直接目标,是纳米材料工程的重要组成部分,正成为当前纳米材料发展的新动向,其中高分子纳米复合材料[6~10]由于高分子基体具有易加工、耐腐蚀等优异性能,且能抑止纳米单元的氧化和团聚,使体系具有较高的长效稳定性,能充分发挥纳米单元的特异性能,而尤受广大研究人员的重视。 高分子纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,所采用的纳米单元按成分分可以是金属,也可以是陶瓷、高分子等;按几何条件分可以是球状、片状、柱状纳米粒子,甚至是纳米丝、纳米管、纳米膜等;按相结构分可以是单相,也可以是多相,涉及的范围很广,广义上说多相高分子复合材料,只要其某一组成相至少有一维的尺寸处在纳米尺度范围(1 nm~100 nm)内,就可将其看为高分子纳米复合材料。对通常的纳米粒子/高分子复合材料按其复合的类型大致可分为三种:0-0复合,0-2 复合和0-3复合,纳米粒子在高分子基体中可以均匀分散,也可以非均匀分散;可能有序排布,也可能无序排布,甚至粒子聚集体形成分形结构;复合体系的主要几何参数包括纳米单元的自身几何参数,空间分布参数和体积分数,本文主要涉及后两种类型的高分子纳米复合材料。此外,还有1-3复合型,2-3复合型高分子纳米复合材料,高分子纳米多层膜复合材料,有机高分子介孔固体与异质纳米粒子组装的复合材料等等[1]。 纳米单元与高分子直接共混 此法是将制备好的纳米单元与高分子直接共混,可以是溶液形式、乳液形式,也可以是熔融形式共混。可用于直接共混的纳米单元的制备方法种类繁多[15~18],通常有两种形式的制备:从小到大的构筑式,即由原子、分子等前体出发制备;从大到小的粉碎式,即由常规块材前体出发制备(一般为了更好控制所制备的纳米单元的微观结构性能,常采用构筑式制备法)。总体上又可分为物理方法、化学方法和物理化学方法三种。 物理方法有物理粉碎法,采用超细磨制备纳米粒子,利用介质和物料间相互研磨和冲击,并附以助磨剂或大功率超声波粉碎,达到微粒的微细化;物理气相沉积法(PVD):在低压的惰性气体中加热欲蒸发的物质,使之气化,再在惰性气体中冷凝成纳米粒子,加热源可以是电阻加热、高频感应、电子束或激光等,不同的加热方法制备的纳米粒子的量、大小及分布等有差异;还有流动液

聚合物纳米复合材料发展现状

聚合物纳米复合材料发展现状 一、聚合物纳米复合材料的发展现状 1.1 聚合物纳米复合材料的市场应用状况 聚合物纳米复合材料还处于发展阶段,但根据预测,纳米复合材料将会迅速发展,成为近10年来对塑料工业影响最大的技术。聚合物通过熔融复合或者原位聚合技术利用2%~5%的纳米填料进行增强改性,即可大幅度改善其热学-力学性能、气体阻隔性能和阻燃性能,而且可以获得比常规填料增强的聚合物材料高得多的耐热性能、尺寸稳定性能和导电性能。 聚合物纳米复合材料已经在汽车和包装领域获得应用[1]。通用汽车公司最新推出的“悍马(hummer)12”越野车的车身使用了重达3 kg的纳米复合材料作为饰件、中心桥、嵌板和盒路保护。尽管目前经济效益不佳,发展速度低于预期。但是根据在美国旧金山召开的nanocomposites 2004、在美国芝加哥召开的spe antec 2004和在比利时布鲁塞尔召开的nanocomposites 2004三大纳米复合材料技术会议总结的信息,全球对聚合物纳米复合材料的研究和开拓市场的热情极为高涨,这将推动聚合物纳米复合材料的快速发展。 1.2 聚合物/纳米粘土复合材料 市场预测和研究公司[2] business communications的调查报告统计2003年全球聚合物纳米复合材料市场为2450万磅,价值9080万美元,并且预测到2008年将以年均18%的速度增长,增至21110万美元。即使聚合物纳米复合材料市场发展遇到一些障碍,但business communications预测其部分应用将以20%/年的速度增长。 研究与开发和商业化生产中主要的纳米填料是层状硅酸盐纳米粘土和纳米云母,其次是碳纳米管和片状石墨。其他一些纳米填料也在积极研究之中,例如合成粘土、多面体低聚半氧硅烷(poss)和天然纳米填料(亚麻纤维和大麻纤维)。 研究最广泛的、首先商业化应用的纳米填料是纳米粘土和碳纳米管。为了获得较好的分散状态和最终产品的综合性能,纳米填料都必须经过表面改性剂进行化学改性。纳米粘土和碳纳米管均能改善聚合物材料的结构性能、热学性能、气体阻隔性能和阻燃性能。碳纳米管还能增强导电性能。 迄今为止,纳米粘土由于其价格低廉(2.23~5.25美元/磅)而获得最为广泛的应用,一般用于通用树脂(如聚丙烯、热塑性弹性体、聚酯、聚乙烯、聚苯乙烯和尼龙)改性。目前,纳米粘土主要是纳米蒙脱土。纳米蒙脱土是一种层状硅铝酸盐,单片直径为1微米,比表面积为1000 :1。生产纳米蒙脱土的两大厂商为:nanocor公司,建有nanomer生产线;southern clay products公司,建有cloisite生产线。这两家公司都与树脂供应商、表面活性剂生产商以及树脂加工商、汽车制造商和包装材料生产商建立了联盟。相关企业进行的研究都申请了专利,并获得了商业成功。 gerneral motors公司已经在应用聚合物纳米复合材料方面领先一步。gerneral motors公司首次采用纳米复合材料是用于生产2002年款的“通用游猎(gmc safari)”和“雪佛兰星旅(chevrolet astro)”的辅助台阶,使用纳米复合材料制备的辅助台阶比目前汽车使用的塑料材料轻20%,而且更耐用,也更有利。2004年1月,该公司推出的“雪佛兰英帕拉(chevrolet impala)”的车身使用纳米复合材料制备,质量减轻了7%。该车型使用的纳米热塑性弹性体材料是由gerneral motors公司与basell north america和southern clay products合作生产的。目前,gerneral motors公司每年使用660 000磅的纳米复合材料,这是世界上使用聚烯烃基纳米复合材料最大的应用。 1.3 聚合物/碳纳米管复合材料 纳米粘土可以增强聚合物,碳纳米管则赋予聚合物以导电和导热性能。碳纳米管的商业

浅析高分子材料性能与组成、结构的关系

浅析高分子材料性能与组成、结构的关系 一.概述 1.高分子材料及其分类: 相对分子质量超过10000的化合物称之高分子材料,又称高聚物或聚合物。高分子材料可分天然高分子(如淀粉、纤维素、蚕丝、羊毛等)和合成高分子,通常所说高分子材料指的是后者。 按其应用来分,高分子材料可分为塑料、橡胶、化纤、涂料和粘合剂五大类,有时又将塑料和橡胶合称为橡塑。由于大量新材料的不断出现,上述分类方法并非十分合理。 2.决定高分子材料性能主要因素: (1)化学组成: 高分子材料都是通过单体聚合而成,不同单体,化学组成不同,性质自然也就不一样,如聚乙烯是由乙烯单体聚合而成,聚丙烯是由丙烯单体聚合而成的,聚氯乙烯是由氯乙烯单体聚合而成。由于单体不同,聚合物的性能也就不可能完全相同。 (2)结构: 同样的单体即化学组成完全相同,由于合成工艺不同,生成的聚合物结构即链结构或取代基空间取向不同,性能也不同。如聚乙烯中的HDPE、LDPE和LLDPE,它们的化学组成完全一样,由于分子链结构不同即直链与支链,或支链长短不同,其性能也就不同。 (3)聚集态 高分子材料是由许许多多高分子即相同的或不相同的分子以不同的方式排列或堆砌而成的聚集体称之聚体态。同一种组成和相同链结构的聚合物,由于成型加工条件不同,导致其聚集态结构不同,其性能也大不相同。高分子材料最常见的聚集态是结晶态、非结晶态,又称玻璃态和橡胶态。聚丙烯是典型的结晶态聚合物,加工工艺不同,结晶度会发生变化,结晶度越高,硬度和强度越大,但透明降低。PP双向拉伸膜之所以透明性好,主要原因是由于双向拉伸后降低了结晶度,使聚集态发生了变化的结果。 (4)分子量与分子量分布(相对分子质量与相对分子质量分布): 对于高分子材料来说,分子量大小将直接影响力学性能,如聚乙烯虽然都是由乙烯单体聚合而成,分子量不同,力学性能不同,分子量越大其硬度和强度也就越好。如PE蜡,分子量一般为500~5000之间,几乎无任何力学性能,只能用作分散剂或润滑剂。而超高分子量聚乙烯,其分子量一般为70~120万,其强度都超过普通的工程塑料。表-1列出LDPE性能与相对分子质量的关系。 )的关系 × 高分子材料实际上是不同分子量的混合体,任何高分子材料都是由同一种组成而分子量却不相同的化合物构成。通常所说的分子量大小是指的平均分子量。分子量分布这一专用述语是用来表示该聚合物中各种分子量大小的跨度。分子量分布越窄即跨度越小,同样平均分子量的高分子材料其耐低温脆折性和韧性越好,而耐长期负荷变形和耐环境应力开裂性下降。 3.表征高分子材料性能常用的两个物理量: (1)密度: 单位体积物质的质量称之密度,其单位一般用g/cm3表示。对于高分子材料来说,密度大小表示高分子链之间接近的程度,或者说密堆积的程度。同一种高分子材料,密度大小将表示支链化的程度。支链化程度越小,密度越大,材料的硬度强度越好,而韧性降低。表-2列出聚乙烯性能与密度的关系。

第六章 功能高分子材料及新技术研究

第六章功能高分子材料及新技术研究 功能材料的概念最早由美国贝尔实验室J. A. Morton博士提出,主要指具有声、光、电、磁、热、化学、生物学等功能及转换功能的一类材料。功能高分子是功能材料中的新军,由于高分子材料具有轻、强、耐腐蚀、原料丰富、种类繁多、制备简便、易于分子设计等特点,功能高分子材料的研究和发展十分迅速,成为近年来高分子科学最活跃的研究领域。功能高分子及有关新技术研究的前沿领域包括:电子功能聚合物及信息技术研究(光电磁功能高分子、高分子液晶显示技术、电致发光技术、塑料高密度电池、分子器件、非线性光学材料、高密度记录材料等)、医药功能高分子及卫生保健技术研究(高分子药物、控制药物释放材料、医用材料、医疗诊断材料、人体组织修复材料等)、信息高分子的合成及应用技术等。此外,通用高分子的改性技术、天然高分子的利用及改性、聚合物生物降解材料及聚合物资源的再利用技术等,也归属于这一领域。本章重点选择电子功能高分子及电光技术、医药功能高分子及卫生保健技术、环境友好高分子材料——完全生物降解高分子材料的应用予以介绍。 第一节电子功能高分子及电光技术研究 电子功能材料具体指那些具有电特性的材料,如电阻材料、导电材料、介电材料、超导材料、电光转换材料、电热转换材料等。电子功能材料在微电子技术、激光技术,特别是近年来迅速发展的信息技术方面发挥着越来越重要的作用。 一、结构型导电高分子(π共轭高分子) (一)典型 共轭高分子的合成 有机高分子一直是以电绝缘性著称的,广泛被用作电器开关、闸刀、电线电缆外绝缘层等。直到1977年日本的白川英树发现掺杂聚乙炔具有与传统的金属,如铜、铝接近的电导率时,结构导电高分子才被认识。经过二十几年的发展,导电高分子已成为化学及物理学的重要研究领域,不仅提出了孤子理论(SSH理论)解释聚乙炔的导电行为,还相继合成了聚对苯、聚吡咯、聚噻吩、聚苯胺、聚苯硫醚等多种结构导电高分子,产生了导电高分子这门新兴的学科。导电高分子的三位发明人黑格教授、麦克迪尔米德教授和白川英树教授也被授予2000年诺贝尔化学奖。 表6-1 几种典型导电高分子的结构和室温电导率

(整理)高分子基碳纳米管复合材料

高分子基纳米管复合材料 院系:化学与材料科学学院 专业班级:高分子材料与工程 姓名: 学号: 指导教师:

目录 内容摘要 (1) 前言 (1) 1 纳米材料的特性 (1) 1.1 表面效应 (2) 1.2 量子效应 (2) 1.3 小尺寸效应 (2) 2 纳米材料在高分子复合材料中的应用 (3) 2.1高分子纳米复合材料的制备方法 (3) 2.1.1插层复合 (3) 2.1.2共混法 (3) 2.1.3 原位聚合法 (3) 2.1.4溶胶--凝胶法 (4) 2.1.5自主装技术 (4) 2.2聚合物基纳米复合材料的性能及应用 (5) 2.2.1力学性能 (5) 2.2.2电学性能 (6) 2.2.3其他性能 (6) 2.3、碳纳米管的发现及结构特点 (6) 2.4、碳纳米管的在高分子复合材料领域的应用 (7) 结束语 (8) 参考文献 (8)

有关碳纳米管复合材料的研究 摘要:自从上个世纪末纳米技术的出现,纳米材料的独特性能引起人们的广泛关注。把纳米材料与高分子材料复合,制备高性能和功能化的复合材料成为高分子材料领域的热点之一。作为纳米材料领域之一的碳纳米管(CNTs)具有独特的物理性能,是一种具有纳米直径的管状碳纤维,它具有超强的韧性和强度以及优异的导电性能。通过不同的复合方法可制备出增强、导电和电磁屏蔽的优异性能的材料,具有广泛的应用前景。 本论文通过不同的方法制备了不同高分子基碳纳米管复合材料,研究了CNTs在基体中分散状况和复合材料的力学、热学和导电性能,并探讨了CNTs对复合材料的结构和性能的影响。 关键词:纳米材料碳纳米管复合材料 前言:由于高分子材料来源丰富、制造方便、加工容易、节省能源和投资、效益显著、品种繁多、用途广泛,因而在材料领域占有的比重越来越大。但是随着科学技术的发展以及人们生活水平的提高,对高分子材料不断提出各种各样的新要求,使高分子材料科学的发展呈现出高性能化、功能化、复合化、精细化和智能化的趋势。而纳米技术的出现则为材料科学的发展带来革命性的变化,为高性能、功能化的材料开创了新的领域。因而世界上许多国家把纳米材料的开发放在了特别重要的位置,并形成一股纳米复合材料的热潮[1]。 纳米材料是指平均粒径在纳米级(1-100nm)范围内的固体材料的总称。而作为其中重要的一个部分则是聚合物/无机纳米粒子复合材料,一般是指以有机高分子聚合物为连续相与纳米粒子进行复合而得到的复合材料。这种材料能够充分的结合高分子材料以及纳米粒子所具有的特性,大大的扩展了高分子材料的应用领域,而成为纳米材料里的研究热门。 1、纳米材料的特性 1992年国际纳米材料会议对纳米材料定义如下:一相任一维的尺寸达到 100nm以下的材料为纳米材料[2]。由此可知,纳米材料的几何形状既可以是粒径小于100nm的零维纳米粉末,也可以是径向尺寸小于100nm的一维纳米纤维或二维纳米膜、三维纳米块体等。纳米材料的材质可以是金属或非金属;相结构可以是单相或多相;原子排列可以是晶态或非晶态。当物质进入纳米级后,其在催化、光、电、热力学等方面都出现特异化,这种现象被称为“纳米效应”。具体表现在

医用高分子材料的结构与性能

目录 摘要 (1) 1 前言 (2) 2 医用高分子材料的分类 (2) 2.1 来源 (2) 2.2 降解性 (3) 2.3 应用方向 (4) 2.3.1 人工脏器 (4) 2.3.2 人工组织 (4) 2.3.3 护理和医疗用具相关的医用材料 (4) 2.3.4 药用高分子 (5) 3 医用高分子的性质 (5) 3.1 生物功能性 (5) 3.2 生物相容性 (5) 4 医用高分子的表面改性方法 (6) 4.1 物理方法 (6) 4.1.1 表面涂层 (6) 4.1.2 物理共混 (7) 4.2 化学方法——表面接枝法 (7) 4.2.1 表面接枝改性 (7) 4.2.2 等离子体表面改性 (8) 4.2.3 光化学固定法 (8)

4.3 表面仿生化改性 (9) 4.3.1 表面肝素化 (9) 4.3.2 表面磷脂化 (9) 4.3.3 表面内皮化——内皮细胞固定法 (9) 5 总结与展望 (10) 参考文献 (11)

摘要 由于其良好的生物相容性,医用高分子材料是现阶段最为安全的一类医用材料。同时,合成加工的简便,来源的广泛,使得医用高分子材料的功能性越来越多,应用范围也越来越广泛。但由于结构的限制,医用高分子材料在人体中的相容性还未达非常理想地到人们要求。因此,也就产生了以表面改性为主的一系列增进其相容性的改性方法。本文通过对医用高分子材料的定义、分类、性质以及表面改性方法的介绍,体现了医用高分子材料的优越和不足之处,同时也对医用高分子材料的未来进行了展望。 关键词:医用高分子;生物相容性;表面改性

1 前言 医用高分子材料(medical polymer)是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料,是生物医用材料的重要组成之一[1]。医用高分子材料需长期与人体体表、血液、体液接触,有的甚至要求永久性植入体内。因此,这类材料必须具有优良的生物体替代性(力学性能、功能性)和生物相容性[2]。 生物医用高分子材料需要满足的基本条件:在化学上是不活泼的,不会因与体液或血液接触而发生变化;对周围组织不会引起炎症反应;不会产生遗传毒性和致癌;不会产生免疫毒性;长期植入体内也应保持所需的拉伸强度和弹性等物理机械性能,具有良好的血液相容性;能经受必要的灭菌过程而不变形;易于加工成所需要的复杂的形态[3]。 随着近代医学及材料科学的发展,对生物医用高分子材料的需求越来越大。目前全世界应用的有90多个品种,西方国家消耗的医用高分子材料每年以10%-20%的速度增长。以美国为例,每年有数以百万计的人患有各种组织、器官的丧失或功能障碍,需进行800万次手术进行修复,年耗资超过400亿美元,器官衰竭和组织缺损所需治疗费占整个医疗费用的一半[4]。随着人民生活水平的提高和对生命质量的追求,我国对医用高分子材料的需求也会不断增加。 2 医用高分子材料的分类 2.1 来源 按照来源,可将医用高分子材料分为合成医用高分子材料和天然高分子材料。 常见的合成医用高分子材料包括PE(polyethylene,聚乙烯)、PP (polypropylene,聚丙烯)、PC(polycarbonate,聚碳酸酯)、PLA(polylactic acid,聚乳酸)及其衍生物、有机硅橡胶等。其优点是工艺成熟,机械性能相对较好,加工性能较好,能够同时表现多种功能性[5]。 常见的天然医用高分子材料包括壳聚糖、明胶、海藻酸盐类、纤维素等。天

高分子石墨烯纳米复合材料的前沿与趋势

石墨烯聚合物纳米复合材料的前沿与趋势 聚合物与其他塑料结合形成混纺纤维,与滑石粉及云母混合形成填充系统,和与其他非均质加固物进行模型挤压生产复合材料和杂化材料。这种简单的“混合搭配”方法使得塑料工程师们能够利用聚合物团生产一系列能够控制极端条件的有用的材料。在这种方法中最后加入的事石墨烯------人们早就了解到它的存在但是知道2004年才被制备与鉴定出的碳单原子层。英国曼彻斯特大学的Andre K.Geim和Konstantin S.Novoselov因为分离出碳单原子层而被授予诺贝尔物理学奖。他们的成就导致了聚合物纳米材料的蓝图发生了变化。人们已经长期熟知碳基材料,像金刚石,六方碳和石墨烯。但是聚合物纳米材料研究团体重新燃起的热情主要由于石墨烯可与塑料结合的特性以及它来自于廉价的先驱体。石墨烯的性价比优势在纳米复合材料、镀膜加工、传感器和存储装置的应用上正挑战着碳纳米管。接着,这些只能被想象出来的应用将会出现。事实上,Andre Geim说过“石墨烯对于它的名字来说就是一种拥有最佳性能的非凡的物质。”这能够在目前大量发表的文献中可以看出。石墨烯为什么能够这样引起人们的兴趣呢?本篇综述尝试去处理在石墨烯纳米复合材料新兴潮流中所产生的这类问题。这个工作的范围被石墨烯聚合物纳米复合材料(GPNC)研究员提出期望的发展潜力进行了拓展。 神奇的石墨烯 石墨烯被频繁引用的性能是它的电子传输能力。这意味着一个电子可以在其中不被散射或无障碍地通行。石墨烯的电子迁移率可达到20000cm2/Vs,比硅晶体管高一个数量级。一片最近的综述表明,以改良样品制备的石墨烯,电子迁移率甚至可以超过25000cm2/Vs。石墨烯是否缺少禁带以及大量合成纯石墨烯是否可行只有将来的研究可以解释。目前,非凡的电子传导性能使得石墨烯居于各类物质之首。所以,利用石墨烯代替硅作为基质的可能性将指日可待。虽然石墨烯的电子传导能力要比铜高得多,但是其密度只有铜的1/5。文献中大量记载了石墨烯的电子传导性能极其影响方面的细节。 由于它固有的特性人们开始对它在纳米复合材料的应用产生了兴趣。据预测,一个单层无缺陷的石墨烯薄膜的抗拉强度要比其他任何物质都要大。事实上,James Hone’s小组已经用原子力显微镜研究了独立的单层石墨烯薄膜的断裂强度。他们测得的平均断裂力为1700nN。他们还发现石墨烯这种物质可以抵挡超高的应力(约25%)。这些测量值使得这个团队计算出无缺陷石墨烯薄片的内在强度为45Nm-1。这儿的内在强度被规定为无缺陷的纯物质在断裂之前所能承受的最大应力。石墨烯如此卓越的是由于它相当于1.0Tpa的杨氏模量。在其他的特性中Paul McEuen和同事们只有一个原子厚度的石墨烯薄膜即可隔绝气体,包括氦气。即石墨烯在实际应用中可作为密闭的微室。石墨烯所表现出的热传导性能要比铜高出很多倍。这就意味着石墨烯能够很容易地进行散热。最近对大块石墨烯薄膜的研究表明其热传导系数是600W/(m.K)。石墨烯另外的一个特性是其具有高的比表面积,计算值为2630m2g-1,而碳纳米管仅为1315m2g-1,这使得石墨烯在储能装置应用上成为一个候选材料。Rod Ruoff’s小组通过改性的石墨烯演示了其具有的超高电容性能。对石墨烯的新奇属性的详细描述随处可见石墨烯与碳纳米管相比有一个截然相反的属性是其不含杂质(不含金属),这对构建可靠的传感器和储能装置来说是一个重要的优势。,更进一步,由于它形状与结构,石墨烯或许有更低的毒性,这也成为目前研究的主题。 独立的纳米材料的这些性质使得物理学家,化学家,和材料学家,不论作为理论学家还是实验学家,都为石墨烯的潜力而感到振奋。然而,最重要的问题是去区分炒作还是现实。

相关文档
相关文档 最新文档