文档库 最新最全的文档下载
当前位置:文档库 › 半水煤气湿法脱硫工艺设计

半水煤气湿法脱硫工艺设计

半水煤气湿法脱硫工艺设计
半水煤气湿法脱硫工艺设计

15万吨/年合成氨原料气净化脱硫工段设计

1总论

1.1概述

我国合成氨工业的生产始于20世纪50年代,但生产规模都很小,合成氨单系列装置的生产能力最大仅为4万吨/年,氨加工产品主要为碳酸氢铵,产量满足不了市场的需求。为了满足市场快速增长的需求,70年代,我国建设了一批中型氮肥生产装置,合成氨单系列装置的生产能力达到6-12万吨/年,主要氨加工产品为尿素或硝酸铵,大部分装置采用我国开发的以无烟煤为原料的固定层气化技术。随着现代农业的快速发展,高浓度化肥的市场需求不断增加,为了满足需求,增加生产能力,我国先后引进了30套以油、天然气和煤为原料的30万吨/年合成氨装置。除此之外,我国还自行研究设计制造了以轻油为原料的生产能力为30万吨/年的合成氨生产装置。

随着合成氨工业的发展,氨的生产要求越来越严格,比如氨原料的提取,氨原料气的净化,氨后续工艺的要求等等。各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。在此我们主要研究合成氨原料气的脱硫。

合成氨原料气中的硫是以不同形式的硫化物存在的,其中大部分是以硫化氢形式存在的无机硫化物,还有少量的有机硫化物。具体来说作为原料气的半水煤气中都含有一定数量的硫化氢和有机硫化物(主要有羰基硫、二硫化碳、硫醇、硫醚等),能导致甲醇、合成氨生产中催化剂中毒,增加液态溶剂的黏度,腐蚀、堵塞设备和管道,影响产品质量。硫化物对合成氨的生产是十分有害的,燃烧物和工业装置排放的气体进入大气,造成环境污染,危害人体健康。硫也是工业生

产的一种重要原料。因此为了保持人们优良的生存环境和提高企业最终产品质量,对半水煤气进行脱硫回收是非常必要的。

1.2文献综述

1.2.1合成氨原料气净化的现状

合成氨原料气(半水煤气)的净化就是清除原料气中对合成氨无用或有害的物质的过程,原料气的净化大致可以分为“热法净化”和“冷法净化”两种类型,原料气的净化有脱硫,脱碳,铜洗和甲烷化除杂质等,在此进行的气体净化主要是半水煤气的脱硫的净化。煤气的脱硫方法从总体上来分有两种:热煤气脱硫和冷煤气脱硫。在我国,热煤气脱硫现在仍处于试验研究阶段,还有待于进一步完善,而冷煤气脱硫是比较成熟的技术,其脱硫方法也很多。冷煤气脱硫大体上可分为干法脱硫和湿法脱硫两种方法,干法脱硫以氧化铁法和活性炭法应用较广,而湿法脱硫以砷碱法、ADA、改良ADA和栲胶法颇具代表性。

煤气干法脱硫技术应用较早,最早应用于煤气的干法脱硫技术是以沼铁矿为脱硫剂的氧化铁脱硫技术,之后,随着煤气脱硫活性炭的研究成功及其生产成本的相对降低,活性炭脱硫技术也开始被广泛应用。干法脱硫既可以脱除无机硫,又可以脱除有机硫,而且能脱至极精细的程度,但脱硫剂再生较困难,需周期性生产,设备庞大,不宜用于含硫较高的煤气,一般与湿法脱硫相配合,作为第二级脱硫使用。

湿法脱硫可以处理含硫量高的煤气,脱硫剂是便于输送的液体物料,可以再生,且可以回收有价值的元素硫,从而构成一个连续脱硫循环系统。现在工艺上应用较多的湿法脱硫有氨水催化法、蒽醌二磺酸法(A.D.A法)及有机胺法。其中蒽醌二磺酸法的脱除效率高,应用更为广泛。改良ADA法相比以前合成氨生产中采用毒性很大的三氧化二砷脱硫,它彻底的消除了砷的危害。

基于此,在合成氨脱硫工艺的设计中我采用改良ADA法工艺。

1.2.2改良ADA的简述

ADA 法是英国西北煤公司与克莱顿胺公司共同开发的, 于1959 年在英国

建立了第一套处理焦炉气的中间试验装置, 1961 年初用于工业生产。但由于此方法析硫的反应速度慢, 需要庞大的反应槽, 并且为防止HS- 进入再生塔引起副反

应, 溶液中HS- 的浓度必须控制在(50~100) ×10- 6之间, 溶液的硫容量很低, 因而使ADA 法的应用受到限制。为此, 研究者对ADA 法进行了改进, 在ADA 溶液中添加了适量的偏钒酸钠、酒石酸钾钠。偏钒酸钠在五价钒还原成四价钒的过程中提供氧, 使吸收及再生的反应速度大大加快, 提高了溶液的硫容量, 使反应槽容积和溶液循环量大大减少。酒石酸钾钠的作用是防止钒形成“钒- 氧- 硫”态复合物, 沉淀析出, 导致脱硫液活性下降, 这样使ADA 法脱硫工艺更趋于完善, 从而提高气体的净化度和硫的回收率, 经改进的ADA 法被称为改良ADA 法。

1.2.3ADA的理化性质

ADA是蒽醌二磺酸(Anthraqinone Disulphonic Acid)的缩写。作为染料中间体,它有几种主要的异构体。ADA的这几种异构体中,在产品中一般含量较高的是1, 52ADA , 1, 82ADA , 2, 62ADA , 2, 72ADA。其中2, 62ADA 与2, 72ADA 的脱硫活性较好, 而2, 72ADA 又优于2, 62ADA , 特别在溶解度上,2, 72ADA 在100 克水中的溶解度为: 20 ℃时3015 g, 100 ℃时10 g; 2, 62ADA 在100 克水中的溶解度为3 g (20 ℃)。两者在水中溶解度相差约一个数量级, 实际溶液中由于H2S 反应不彻底和伴生的副反应, 溶液中存在N a2SO 4、N aCN S 和

N a2S2O 3 等副产品, 这些副反应产物随着脱硫生产操作的运行, 在脱硫液中逐渐积累, 当达到相当含量时, 会使2, 62ADA 和2, 72ADA 溶解度快速下降, 影响脱硫效果, 而且析出的ADA 伴随硫磺夹带出脱硫系统, 增加ADA 消耗。

曾进行过N a2S2O 3 溶液、N aCN S 溶液和N a2S2O 3+ N aCN S+ N a2SO 4 混

合液在(25±1) ℃, 相同的浓度下, 2, 62ADA 和2, 72ADA 的溶解度试验, 数据见表1。表12, 62ADA 和2, 72ADA 溶解度试验结果如下:

溶液名称

2.62ADA2H2O 2.72ADA4H2O

N a2S2O 3

N aCN S

N a2S2O 3+ N aCN S+ N a2SO

平均平均0044

0053

0047

0044

0055

0050

006400640054

0065

0058

00830066

00590073

095

123

133

114

135

133

128

127

139

110

131

146

112

112

143 : 100m l

注: 上述溶解度均为100m l 溶液中的溶解度。

从实验数据可以看出, 二种不同键位的ADA在三种不同脱硫副反应溶液中的溶解度大致相同, 在100 m l 溶液中2, 62ADA 的溶解度约为0105~0106 g, 比在水中的溶解度降低了50~60倍; 相同状况下2, 72ADA 的溶解度约为112~113 g, 比在水中的溶解度降低了24 倍。从上述数据可以得出, 当脱硫液副反应产物含量较高时,ADA 溶解度将下降, 导致ADA 从溶液中析出,引起消耗定额上升。

1.2.4 ADA脱硫的优缺点

1.2.4.1优点

(1) ADA作为染料中间体,它有多种主要的异构体。ADA的这几种异构体中,在

产品中一般含量较高,便于提取。

(2) 脱硫溶液的活性好、性能稳定、腐蚀性小。

(3) 脱硫效率很高,所析出的硫容易浮选和分离。

(4) ADA脱硫整个脱硫和再生过程为连续在线过程,脱硫与再生同时进行,不需要设置备用脱硫塔。

(5) 煤气脱硫净化程度可以根据企业需要,通过调整溶液配比调整,适时加以控制,净化后煤气中H2S含量稳定。

1.2.4.2缺点

蒽醌二磺酸法脱硫在生产过程中存在一点问题。反应速度太慢,需时30min 以上,这就需要庞大的反应槽并使副反应加重,同时此法在操作中易发生堵塞,而且药品价格有些昂贵。

1.3 设计任务的依据

工艺参数:

半水煤气中H2S,C1=2.5%

净化气中H2S,C2=0.15%

入吸收塔半水煤气量,G0 = 13888.9m3/h

入冷却塔半水煤气温度,t1=50 ℃

出冷却塔入吸收塔半水煤气温度,t2=35 ℃

入吸收塔半水煤气压力,0.05MPa(表)

设计目标:

半水煤气中H2S浓度≤0.15%

回收率η不低于90﹪

2 生产流程或生产方案的确定

焦炉煤气的净化主要是要脱除煤气中的H2S,脱硫的方法有两种:干法脱硫、湿法脱硫。

干法脱硫既可以脱除无机硫,又可以脱除有机硫,而且能脱至极精细的程度,但脱硫剂再生较困难,需周期性生产,设备庞大,不宜用于含硫较高的煤气,一般与湿法脱硫相配合,作为第二级脱硫使用。

湿法脱硫可以处理含硫量高的煤气,脱硫剂是便于输送的液体物料,可以再生,且可以回收有价值的元素硫,从而构成一个连续脱硫循环系统。现在工艺上应用较多的湿法脱硫有氨水催化法、改良蒽醌二磺酸法(A.D.A法)及有机胺法。其中改良蒽醌二磺酸法的脱除效率高,应用更为广泛。

3 生产流程说明

3.1反应机理

改良ADA 的脱硫反应历程:

最新的研究表明, 改良ADA 法反应历程如下。

碱液吸收硫化氢

2N a2CO 3+ 2H2S= 2N aHS+ 2N aHCO 3 (1) 氧化析硫

2N aHS+ 4N aVO 3+ H2O = N a2V 4O 9+ 4N aOH+ 2S (2) 焦钒酸钠被氧化

N a2V 4O 9+ 2H2O 2+ 2N aOH+ ADA (氧化态) = 4N aVO 3+ 3H2O + ADA (还原态) (3) 碱液再生

2N aOH+ 2N aHCO 3= 2N a2CO 3+ 2H2O (4) ADA 再生

ADA (还原态) + O 2= ADA (氧化态) + H2O 2 (5) 当气体中有氧、二氧化碳、氰化氢存在时还产生如下副反应:

2N aHS+2O2=Na2S2O3+H2O

Na2CO3+CO2+H2O=2NaHCO3

Na2CO3+2HCN=2NaCN+H2O+CO2

NaCN+S=NaCNS

2NaCNS+5O2=Na2SO4+2CO+SO2+N2

从上述反应历程来看, 要使H2S 较彻底地还原为单质硫, 偏钒酸钠(N aVO 3) 是否足量是个重要的因素, 而要使偏钒酸钠浓度高, 焦钒酸钠较完全转化为偏钒酸钠是反应的关键。而在这一反应中H2O 2 浓度起着决定性的作用, 如H2O 2 浓度低, 就容易造成焦钒酸钠转化不彻底, 使溶液中有效偏钒酸钠浓度降低, 从而使溶液中HS- 含量上升, N a2S2O 3、N aCN S 等副产物增加, 加大了碱和钒

的消耗, 而且反应所需的H2O 2 是在ADA再生过程中生成的[反应式(5) ], 故操作中一定要保持ADA 有一定浓度和足够的再生空气。二者不足均会使溶液中氧化态的ADA 浓度降低,H2O 2 的生成量减少, 最终造成物耗上升。

3.2主要操作条件

3.2.1溶液组分

溶液的主要组分是碱度、NaVO3、ADA。

3.2.1.1 碱度

溶液的总碱度与其硫容量成线性关系,因而提高总碱度是提高硫容量的有效途径,一般处理低硫原料气时,采用的溶液总碱度为0.4N,而对高硫含量的原料气则采用1N的总碱度。

3.2.1.2 NaVO3含量

NaVO3的含量取决于脱硫液的操作硫容,即与富液中的HS-浓度符合化学计量关系。应添加的理论浓度可与液相中HS-的摩尔浓度相当,但在配制溶液时往往要过量。从反应机理可知,硫化氢首先被碱液吸收生成硫化物后再与ADA钒酸盐溶液反应,溶液PH值对硫化物与ADA钒酸盐溶液的比反应速率关系如下表2:

3.2.1.3ADA浓度

反应式(2)在氧的存在下进行是迅速的,但还原态焦钒酸盐不能为空气直接氧化再生,而必须依赖与反应(2),由ADA将它氧化而恢复活性,因此要求溶液中ADA与偏钒酸钠的化学当量比,按化学反应的当量计溶液中ADA含量必须等于或大于偏钒酸钠含量的1.69倍,工业上实际采用2倍以上。表3是工业上采用的两种溶液组,组成(一)适用于含高硫化氢含量与加压情况下的原料气脱硫,组成(二)适用于含低硫化氢含量与常压情况下的原料气脱硫,但也有使用低浓度的ADA溶液来脱硫。

表3工业生产使用的ADA溶液组成

3.2.2温度对ADA的影响

常温范围内,H2S、CO2脱除率及Na2S2O3生成率与温度关系不敏感。再生温度在45℃以下,Na2S2O3的生成率很低,超过45℃时则急剧升高。为了保证主要反应进行所需要的条件,又尽可能的抑制硫代硫酸盐的生成,适宜的吸收温度为20~30℃。

同时温度与ADA 的溶解度呈反比关系。据资料介绍从20 ℃上升到100 ℃, 2, 72ADA 在水中的溶解度将下降3 倍以上。这一点容易被人们忽视。由于传统

习惯, 一般ADA 和N a2CO 3 同时添加,而N a2CO 3 的溶解度与温度呈正比关系, 提高温度对N a2CO 3 溶解有利, 故在加料时, 采用了蒸汽加热直接搅拌的方法, 这样对N a2CO 3 溶解速度第4 期顾培忠: 改良ADA 脱硫消耗高的原因分析·21·的提高有利, 但对ADA 的溶解能力起到了很大的抑制作用。从我们溶解釜的情况看, 溶解釜有效容积约为850 L。在加热到近100 ℃时, 经粗略估算, 2, 72ADA 能溶解85 kg, 而2, 62ADA 约为815 kg, 如我们采用不定期、大剂量添加的方法,则2, 62ADA 因达饱和而无法溶解, 造成消耗上升。还有对脱硫液的温度控制, 对ADA 消耗同样很重要。从表1 可以看出, ADA 在有副产物的溶液中溶解度下降很快, 再加上温度的升高使ADA溶解度下降, 双重作用将使ADA 结晶析出。特别是对2, 62ADA 多的脱硫剂, 这一现象将更加明显, 加入量再多也无法提起溶液中ADA 浓度。我们曾经使用过某厂的ADA , 在使用中溶液浓度始终达不到要求, 且通过加大ADA 投放量的方法也无法改变这一现状, 通过全面检查我们在回收的硫磺中发现了一层异样物, 经分析ADA 达4%。这部分就是ADA 结晶析出物。另外, 氧化还原反应对温度比较敏感, 脱硫液温度升高, 反应速度明显加快, 析硫反应在脱硫塔内快速进行, 将会造成硫堵。温度升高, 还加快了副反应, 见图1。故从溶解度和反应来说,温度过高对消耗下降不利。

图1温度对硫代硫酸盐生成的影响

60

80

1.5

0.5

2.5

温度

硫代硫酸盐

3.2.3CO 2的影响

当气体中二氧化碳存在时,一部分碳酸钠转化成碳酸氢钠,但碱度对二氧化碳的吸收速度大大慢于对硫化氢的吸收速度,当脱硫塔中吸收的二氧化碳与再生塔中解析的二氧化碳达到平衡时,溶液中碳酸氢钠的含量达到一定的平衡值,此平衡数值与气体中的二氧化碳有关。同时有CO 2的存在后会使溶液的PH 值下降,使脱硫效率稍有降低。 3.2.4溶液PH 的影响

PH 值的适宜为8.5左右,以下是PH 值对硫代硫酸钠生成的影响。

12

0.75

0.25

1.25

6

溶液的PH值

硫代硫酸盐

3.3 工艺流程

蒽醌二磺酸钠法可用于常压与加压条件下煤气、焦炉气、天然气等原料气的脱硫。

图2所示是加压条件下蒽醌二磺酸于钠溶液脱出煤气中硫化氢的工艺流程图,

操作压力为1.8MPa 左右,进口气体中硫化氢含量2~5 g/m 3,出口气体中硫化氢含量小于10m g/m 3。煤气进入一个下部为空塔,上部有一段填料结构的脱硫塔,净化的气体经分液罐分离液滴后排出入后工序。由吸收塔出来的溶液进入反应槽中,在此,仅HS 离子与NaVO3的反应全部完成,并开始将还原态的钒酸钠用蒽醌二磺酸进行氧化。溶液出反应槽后减压流入再生塔,空气通入再生塔内,仅还原状态的蒽醌二磺酸钠氧化;单体硫磺浮集在氧化塔顶,使其溢流入稠厚桶,经过滤机分离而得到副产硫磺。溶液则由塔上部经液位调节器后进入溶液循环槽,然后用泵将压力升至2.0MP 左右,仍送入吸收塔应用。

3

4

5

6

14

8

9111213

107

18

17

16

15

1-吸收塔;2-分液罐;3-再生塔;4-液位调节器;5-硫泡沫槽;6-温水槽; 7-反应槽;8-循环槽;9-溶液过虑器;10,11-循环泵;12-地下槽;13-溶碱槽; 14-过滤机;15-空气压缩机;16-空气冷却机;17-空气缓冲器;18-空气过滤器

图2 湿法ADA 脱硫工艺流程简图

3.4主要设备介绍 3.

4.1填料塔

填料塔用于要求高的H 2S 脱除效率。用作脱硫的填料塔每段填料间设有人孔,以供检查用。国内有些直径为5~6m 大型塔,填料用聚丙烯的塑料鲍尔环(大小为 ?76mm×76mm×2.5mm ),塑料的表面较光滑,所以不易被硫堵塞,用这种填料同时有很高的脱硫效率。 3.4.2 氧化槽

世界上使用最多的是有空气分布板的垂直槽,圆形多孔板安装于氧化槽的底部,孔径一般为2mm ,空气压力必须克服氧化槽内溶液的压头与分布板的阻力,空气在氧化器的截面均匀的鼓泡,液体与空气并流向上流动,硫泡沫在槽顶部的溢流堰分离,分离硫后的清液在氧化槽顶部下面一点引出。这种形式的氧化槽需要鼓风机将空气压入。中国很多工厂使用一种自吸空气喷射型的氧化槽,不需要

空气鼓风机。液体加压从喷嘴进入,空气从文丘里的喉管吸入。

氧化槽是一大直径的圆槽,槽内放置多支喷射器。氧化槽目前使用最佳的是双套筒二级扩大式,脱硫液通过喷射再生管道反应,氧化再生后,经过尾管流进浮选筒,在浮选筒进一步氧化再生,并起到硫的浮选作用。由于再生槽采用双套筒,内筒的吹风强度较大,不仅有利于氧化再生,而且有利于浮选。内筒上下各有一块筛板,板上有正方形排列的筛孔,直径15mm,孔间距20mm,开孔率44%。内筒吹风强度大,气液混合物的重度小,而内外筒的环形区基本上无空气泡,因此液体重度大。在内筒和环形空间由于重度不同形成循环。

氧化槽的设计有如下三个基本参数①要求的空气流量;②氧化器的直径;③有效的液体容积。空气流量正比于硫的产量、反比于液体在氧化器内的有效高度,比值可按氧化器内每米有效液面高度氧利用率为0.6%~0.7%来计算。氧化器直径正比于空气流量与空气比重的平方,为了得到良好的硫浮选,空气流速一般选25~30m3/(min·m2)截面。液体在氧化器的停留时间正比于液体流量,要求的停留时间与氧化器数量有关,当用一个氧化器时,停留时间约45min,用两个氧化器停留时间不超过30min,多级氧化器有较高的气液传质效率,第一个氧化器出来的液体供给第二个氧化器,硫泡沫从第二个氧化器顶部分离,第一个氧化器的空气流量大,增大湍流使传质加快。第二个氧化器空气流量较小,使硫浮选。

3.4.3硫泡沫槽

硫泡沫槽是一锥形底的钢制圆筒,槽顶设有15~25转/min的搅拌机一个,以保持槽内硫泡沫经常呈悬浮状态。此槽容积可按存放3~6h的硫泡沫存量计算。

3.4.4过滤器

工业上常用连续作业的鼓形真空过滤机,所需过滤面积可按每1m2过滤面积于1h内能滤过干燥硫磺60~80kg计算。通常采用的真空过滤机,当过滤面积为10m2时,其直径为2.6m,长为1.3m。

传统的硫回收装置,是将硫泡沫经真空过滤机过滤成硫膏,硫膏再送入熔硫釜中熔融。

中国最近使用戈尔膜过滤器来过滤硫泡沫。该过滤元件是由多振过滤薄膜袋组成,多孔膜的材料是聚四氟乙烯薄膜,可根据工作负荷的大小调整过滤薄膜袋的数量和膜的孔径,以达到良好的过滤效果,单台过滤器的膜面积为22.5~50m2。

戈尔薄膜滤料由于表面有一层致密而多孔的薄膜,不需要传统滤料的初始滤饼层,一开始过滤就是有效过滤,当经过一段时间后滤饼层积累到一定厚度,同样也影响过滤流量,这时可以给滤料一个以秒计的反向推动力,将滤料表面全部的滤饼迅速而轻松地从滤料表面推卸下来,称为反清洗。由于聚四氟乙烯自身的化学特性,它与任何物质均不粘连,因而所有的滤饼均可被清洗下来,滤料又恢复新滤料的过滤能力,这样过滤,反清洗,再过滤,再反清洗,一次又一次循环。这一工艺可在同样的时间内达到传统过滤器5~20倍的过滤流量,而用传统的过滤材料是无法实现这种频繁的反清洗工艺的。

戈尔过滤器是由罐体、管路、花板、滤芯、气动挠性阀、自动控制系统等组成。戈尔膜过滤器一般安装在硫泡沫槽后。泡沫液经1#阀进入过滤器,空气经3#阀排放后关闭3#阀,溶液经上腔进入贮槽。过滤一段时间后滤饼达到定值时,控制系统进入反冲状态,1#、2#、4#阀自动切换,反冲清膜,滤饼脱离袋沉降到锥底部,系统重新进入过滤状态。滤饼达到一定量时,开6#阀排硫膏,去熔硫釜熔成硫磺或脱水生成硫膏出售。

使用戈尔膜过滤器,可将硫泡沫高度净化,如进过滤器前悬浮硫含量为8g/L,出膜过滤器清液悬浮硫含量8mg/L,取出的硫是硫膏,水分含量低,缩短了熔硫釜的熔硫时间,并节省蒸汽。

3.4.5熔硫釜

熔硫釜是一个装有直接蒸汽和间接蒸汽加热的设备,其操作压力通常为0.4MPa。其容积按能充满70%~75%计算,而放入的硫泡沫含有40%~50%的水分。对于直径1.2m,有效高度2.5m的熔硫釜,每次熔化所需的时间约为3~4h。脱硫主要设备都用碳钢制作,为了防腐,在吸收塔、再生器的内表面可用适当的涂料涂刷。中国常用大漆、环氧树脂作涂料。中国介绍,用玻璃纤维加强聚酯涂料,在液体浸湿到的部位涂刷1.5~2.0mm厚。溶液泵的主要部分要用不锈钢制

作,卧式再生槽的喷射器也用不锈钢,泵的密封用机械密封,以减少溶液的漏损。

4 工艺计算书

4.1原始数据

4.1.1焦炉煤气组分:

4.1.2脱硫液组分:

4.1.3设计工艺参数

焦炉煤气中H2S初始含量C1 = 2.5g/m3

净化气中H2S含量C2 =0.15g/m3

入吸收塔焦炉煤气气量G0 =13888.9m3/h

入吸收塔焦炉煤气压力P0 = 0.050 Mpa

出吸收塔焦炉煤气压力P i = 0.038 Mpa

入吸收塔焦炉煤气温度,t0=35o C

硫容S = 0.416 Kg(H2S)/m3

氨产量17.6 t/h

熔硫釜的工作周期4h

熔硫釜的操作压力0.4Mpa

硫泡沫中硫含量S1 = 30 Kg/m3

硫泡沫槽溶液初始温度t1 = 400C;

硫泡沫槽溶液终温t2 = 790C;

熔硫釜硫膏初始温度t3 = 15 0C

熔硫釜加热终温t4 = 135 o C

入熔硫釜硫膏初始含水率80﹪

出熔硫釜硫膏含水率50﹪

硫膏密度ρS = 1500 Kg/m3

硫泡沫密度ρf =1100Kg/m3

硫泡沫比热容,C f =3.68 KJ/(Kg·K);

常用熔硫釜全容积为V r = 1.6m3

熔硫釜装填系数为70﹪~75%

硫膏的比热容C s = 1.8 KJ/(Kg·K)

硫膏的熔融热C h=38.69 KJ/Kg

熔硫釜周围空间的散热系数λ= 12.56 KJ/(m·h·0C)

0.2MPa蒸汽的汽化热r1 = 2202.26 KJ/Kg

0.4MPa蒸汽的汽化热r2 = 2135.2 KJ/Kg

H2S气体密度ρG = 1.05 Kg/m3;

脱硫液液体密度ρG = 1050 Kg/m3

熔硫釜表面积F= 92 m2

喷射再生槽溶液流速W i = 25 m/s通常W i = 18~28 m/s 喷射再生槽喷嘴入口收缩角α1 = 14°

喷射再生槽喷嘴喉管长度L6 = 3mm

喷射再生槽吸气室收缩角α2 = 30°

喷射再生槽管内空气流速取W A =3.5 m/s ;

喷射再生槽尾管直径扩张角取α3 = 7°

尾管中流体速W e = 1 m/s ;

4.2物料衡算

4.2.1H2S脱除,G1,kg/h

G1 =

1000

) C

-

(C

G

2

1

0=13888.9×(2.5-0.15)/ 1000 = 32.6Kg/h=7.83 Kg/tNH3

4.2.2溶液循环量L T ,m 3/h

L T =

S

G 1

= 32.6 / 0.1 = 326m 3/h=78.24 Kg/tNH 3 式中 S — 溶液硫容量,kg/m 3,S = 0.1 Kg (H 2S)/m 3

4.2.3生成Na 2S 2O 3消耗H 2S 的量G 2, Kg/h

取Na 2S 2O 3的生成率为脱除量的8﹪,则:

G 2 = 32.6×8﹪ = 2.61 Kg/h=0.63Kg/tNH 3

4.2.4Na 2S 2O 3生成量,G 3,Kg/h

G 3 =

S

H O S Na M M G 23

2222= 2.61×158/2×34 = 6.00 Kg/h=1.44 Kg/tNH 3

式中M Na2S2O3 — Na 2S 2O 3分子量 M H2S — H 2S 分子量

4.2.5理论硫回收量G 4,kg/h

G 4 =(G 1-G 2)M S / M H2S = (32.6-2.61)×32/34 = 28.23 Kg/h=6.78Kg/tNH 3 式中 M S — 硫的分子量

4.2.6理论硫回收率θ,﹪

θ= G 4/ G 1 = 28.23/32.6= 86.6 ﹪ 4.2.7生成Na 2S 2O 3消耗纯碱的量G 5,Kg/h

G 5 = G 3M Na2CO3/ M Na2S2O3 =6.00×106 / 158 = 4.03 Kg/h=0.96 Kg/tNH 3 式中 M Na2CO3 — 碳酸钠的分子量;

4.2.8硫泡沫生成量G 6,m 3/h

G 6 = G 4/S 1 = 28.23/30 =0.94m 3/h =0.23m 3/tNH 3 式中 S 1 — 硫泡沫中硫含量,此处取S 1=30㎏/m 3;

4.2.9入熔硫釜硫膏量G 7

G 7 = G 4/S 2 = 28.23/0.2 = 141.15Kg/h =33.88Kg/tNH 3 式中 S 2 — 硫膏含量,此处取S 2=20%;

4.2.10回收率η,﹪

η = 1

21C C C -= (2.5-0.15)/ 2.5 =94﹪

4.3热量衡算 4.3.1冷却塔热量衡算

4.3.1.1冷却塔热负荷,1Q ,KJ/t NH 3

()10121122P Q G C

t t W i W i

=-+-???? 式中0G —入冷却塔焦炉煤气量,Kmol/(tNH 3);

P C —焦炉煤气平均等压比热容,KJ/( kmol.0C);

07.20/(.)30.15kJ/ kmol P C Kcal Kmol c ==

12,t t —入、出冷却塔焦炉煤气温度;

12,W W —入、出冷却塔焦炉煤气温含水量,Kg/Kmol. 查得 120.784/,0.784/W Kg Kmol W Kg Kmol ==

12,i i —入,出冷却塔条件下水蒸气的焓,Kcal/Kg, 查表知12,i i

12619/2591.63/,619.6/2564.83/i Kcal Kg kJ Kg i Kcal Kg kJ Kg ==== 代入公式计算得

()()135.2330.4450350.7842591.632564.83Q =?-+-????

335.23(30.44150.78426.8)

16826.2/k J t N H

=??+?=

4.3.1.2冷却水消耗量,3W ,33/m tNH

1

131000Q t W ?=

式中 1t ?——冷却水温升,O C ,此处取15O t C ?=。 ()33371068.44186.85 3.39/W m tNH =÷?=

4.3.2硫泡沫槽热量衡算

4.3.2.1硫泡沫槽热负荷Q 2,KJ/t NH 3

Q 2 = V f P f C f (t 3-t 4) = 0.94/4.167×1100×3.68×(79-40) = 35613 KJ/t NH 3

式中 V f — 硫泡沫体积,m 3,V f =G 6/17.6 ;

ρf — 硫泡沫密度,Kg/m 3 , ρf = 1100Kg/m 3; C f — 硫泡沫比热容,KJ/(Kg·K),C f =3.68 KJ/(Kg·K);

T 4 — 槽中硫泡沫初温,t 1 = 400C ;

T 3 — 槽中硫泡沫终温,t 2 = 790C ; 17.6— 小时氨产量,t/h 4.3.2.2蒸汽消耗量,W 4,Kg/t NH 3

W 4 = Q 2/r 1 = 35613/2202.26 =16.17 Kg/t NH 3 式中 r 1 - 0.2MPa 蒸汽的汽化热,r 1 = 2202.26 KJ/Kg

4.3.3熔硫釜热量衡算

4.3.3.1熔硫釜热负荷Q 3,KJ/釜

Q 2 =G 8C s ρs (t 5-t 6)+0.5G 8ρs C h +4λF(t 5-t 6)

= 1.2×1.8×1500×(135-79)+ 0.5×1.2×1500×38.69 + 4×12.56×92×

半水煤气脱硫

前言 1.1 合成氨工业在国民经济中的地位 合成氨工业是基础化学工业之一。其产量居各种化工产品的首位。氨本身是重要的氮素肥料,除石灰氮外,其它氮素肥料都是先合成氨,然后加工成各种铵盐或尿素。将氨氧化制成硝酸,不仅可用来制造肥料(硝酸铵、硝酸磷肥等),亦是重要的化工原料,可制成各种炸药。氨、尿素和硝酸又是氨基树脂、聚酰胺树脂、硝化纤维素等高分子化合物的原料。以其为原料可制得塑料、合成纤维、油漆、感光材料等产品。作为生产氨的原料一氧化碳、氢气合成气,可进行综合利用,以联产甲醇及羰基合成甲酸、醋酸、醋酐等一系列碳一化工产品。以做到物尽其用,减少排放物对环境的污染,提高企业生产的经济效益。已成为当今合成氨工业生产技术发展的方向。国际上对合成氨的需求,随着人口的增长而对农作物增产的需求和环境绿化面积的扩大而不断增加。 据资料统计:1997年世界合成氨年产量达103.9Mt。预计2000年产量将达111.8Mt。其化肥用氨分别占氨产量的81.7%和82.6%。我国1996年合成氨产量已达30.64Mt,专家预测2000年将达36Mt,2020年将增加至45Mt。即今后20年间将增加到现在的1.5倍。因而合成氨的持续健康发展还有相当长的路要走。未来我国合成氨氮肥的实物产量将会超过石油和钢铁。合成氨工业在国民经济中举足轻重。农业生产,“有收无收在于水,收多收少在于肥”。所以,合成氨工业是农业的基础。它的发展将对国民经济的发展产生重大影响。因此,我国现有众多的化肥生产装置应成为改造扩建增产的基础。我国七十至九十年代先后重复引进30多套大化肥装置,耗费巨额资金,在提高了化肥生产技术水平的同时,也受到国外的制约。今后应利用国内开发和消化吸收引进的工艺技术,自力更生,立足国内,走出一条具有中国特色的社会主义民族工业的发展道路。过去引进建设一套大型化肥装置,耗资数十亿元。当今走老厂改造扩建的道路,可使投资节省1/2—2/3。节省的巨额资金,用作农田水利建设和农产品深加工,将在加速农村经济发展,

焦炉煤气湿法脱硫工艺设计(初稿)

河南城建学院 毕业设计 题目:焦炉煤气湿法脱硫工艺设计学生姓名:张炳麒 年级: 101209127 专业:化学工程与工艺 申报学位:学士学位 院系:化学与化学工程系 指导教师:李霞 完成日期:2011-05-15 2011年05月15日

摘要

目录 1﹒绪论 (1) 1.1概述 (1) 1.2焦炉煤气净化的现状 (1) 1.3栲胶的认识 (2) 1.4栲胶法脱硫的缺点 (3) 1.5设计任务的依据 (8) 2.生产流程及方案的确定·················································· 3.生产流程说明··························································3.1反应机理·························································· 3.2主要操作条件··························································3.3工艺流程·························································· 3.4主要设备介绍·························································· 4.工艺计算·························································· 4.1原始数据·························································· 4.2物料衡算·························································· 4.3热量衡算·························································· 5.主要设备的工艺计算和设备选型····································· 5.1主要设备的工艺尺寸··················································· 5.2辅助设备的选型··················································· 6 设备稳定性及机械强度校核计算············································6.1壁厚的计算··················································· 6.2 机械强度的校核···················································

动力波烟气脱硫工艺(湿法)

动力波烟气脱硫工艺(湿法) 现有的湿法烟气脱硫工艺均为外置塔体式,即在锅炉后部的烟道上加装脱硫塔,经过碱液在塔体内部对烟气的的喷淋、洗涤达到脱除烟气中二氧化硫的目的。一般塔体高度约8m以上,甚至更高(此高度为保证烟气在塔内的停留时间)。 其缺点: 1、浪费材料:由于锅炉烟气温度过高,加上二氧化硫具有强烈的腐蚀作用,所以在塔体的结构、强度方面要求都比较高,一般外塔体用碳钢或用麻石砌筑用以增加强度,内衬防腐材料用以防腐。 2、一次性投资高:单独设立塔体,要延长烟道,一次性投资费用高。 3、运行不可靠:传统的湿法脱硫工艺,采用的是塔体内喷淋工艺,即通过高压水泵将碱液输送到塔体内,通过喷嘴的雾化,使液滴与烟气中的二氧化硫接触达到脱硫的目的,为保证脱硫效果、保证碱液与二氧化硫气体的充分接触,就需要碱液的雾化程度很高,这样对喷嘴的要求就高,喷嘴使用寿命短。喷嘴一旦损坏,维修不方便。 4、运行液气比大,脱硫效率低:由于采用喷淋吸收,为保证烟气和碱液的充分接触,必须大量的碱液,液气比通常为1.5—2,脱硫效率最高达80%。 5、系统阻力大,运行费用高:由于单独设立塔体,增加、改动

烟道,增加脱水器,造成系统阻力增大,影响锅炉出力,同时高效雾化也需要高压泵的运行功率增大,所以运行费用就增大。 6、管路结垢严重,影响系统运行:由于脱硫液采用石灰水,所以在运行过程中会产生硫酸钙附着在管路和喷嘴内部,导致管路堵塞,影响系统运行。 动力波烟气湿法脱硫塔 动力波脱硫塔是通过设计适当的洗涤器喉管,来控制烟气在管内的速度,使烟气与碱液在喉管内形成一个泡沫区,在泡沫区内气液充分接触,强烈的湍动使混合强化并使接触面更新,从而获得极高的反应效率。动力波洗涤器不需要碱液的雾化程度过高,而靠洗涤器内部形成的湍流达到气、液的充分接触,这样就减少了喷嘴的堵塞了影响脱硫效果,同时也减少碱液泵的运行功率。烟气在动力波洗涤器喉管内流速设计为25—30米/秒。动力波洗涤塔长度为6---8m,其中湍动区长度为2.5m。 动力波脱硫塔根据现场需要,可水平安装,也可竖直安装,作为烟道的一部分,直径仅为烟道的1.3倍。 循环液: 循环液采用“双碱流程”工艺,主要是是为了克服循环液系统容易结垢的弱点和提高SO2的去除率。 系统运行前,将循环池中灌满一定浓度的NaOH和Ca(OH)2溶液,系统运行时,烟气中的SO2与循环液中的Ca2+和OH-反应,生成 Ca(SO4)2和水,其中硫酸钙沉淀在循环池中,可定期打捞,只有OH-

锅炉烟气除尘脱硫工程工艺设计(精)

锅炉烟气除尘脱硫工程工艺设计 目前, 世界上烟气脱硫工艺有上百种, 但具有实用价值的工艺仅十几种。根据脱硫反应物和脱硫产物的存在状态可将其分为湿法、干法和半干法3 种。湿法脱硫工艺应用广泛, 占世界总量的85.0%, 其中氧化镁法技术成熟, 尤其对中、小锅炉烟气脱硫来说, 具有投资少, 占地面积小, 运行费用低等优点, 非常适合我国的国情。 采用湿法脱硫工艺, 要考虑吸收器的性能, 其性能的优劣直接影响烟气的脱硫效率、系统的运行费用等。旋流板塔吸收器具有负荷高、压降低、不易堵、弹性好等优点, 可以快速吸收烟尘, 具有很高的脱硫效率。 1 主要设计指标 1) 二氧化硫( SO2) 排放浓度<500mg/m3, 脱硫效率≥80.0%; 2) 烟尘排放浓度<150mg/m3, 除尘效率≥99.3%; 3) 烟气排放黑度低于林格曼黑度Ⅰ级; 4) 处理烟气量≥15000m3/h; 5) 处理设备阻力在800~1100 Pa之间, 并保证出口烟气不带水; 6) 出口烟气含湿量≤8.0%。 2 脱硫除尘工艺及脱硫吸收器比较选择 2.1 脱硫除尘工艺比较选择 脱硫除尘工艺比较选择如表1 所示 脱硫工艺 湿法半干法干法 石灰石石 膏法 钠法 双碱 法 氧化镁 法 氨法 海水 法 喷雾干 燥 炉内喷 钙 循环流化 床 等离子 体 脱硫效率/% 90~98 90~ 98 90~ 98 90~98 90~ 98 70~ 90 70~85 60~75 60~90 ≥90 可靠性高高高高一般高一般一般高高 结垢易结垢不结 垢 不结 垢 不结垢 不结 垢 不结 垢 易结垢易易不结垢 堵塞堵塞堵塞不堵 塞 不堵塞 不堵 塞 不堵 塞 堵塞堵塞堵塞不堵塞 占地面 积 大小中小大中中中中中 运行费 用 高很高一般低高低一般一般一般一般投资大小较小小大较小较小小较小大通过对脱硫除尘工艺———湿法、半干法、干法的对比分析: 石灰石- 石膏法虽然工艺非常成熟,但投资大, 占地面积大, 不适合中、小锅炉。相比之下, 氧化镁法具有投资少、占地面积小、运行费用低等优点, 因此, 本方案选用氧化镁法脱硫工艺。 2.2 脱硫吸收器比较选择

湿法脱硫毕业设计

. . ***学院 毕业设计说明书 年处理1亿M3烟气湿法脱硫工艺设计PROCESSING DESIGN OF THE WET PROCESS FLUE GAS DESULFURIZATION WHICH CAN DISPOSE 1 BILLION M3 EVERY YEAR 系别***系 专业*** 班级**班 学号** 姓名** 指导教师**

. . 摘要 本设计针对毕业设计任务书中所给出的烟气含量和脱硫要求,结合我国烟气脱硫的 技术现状而设计出的一套较完备的烟气脱硫系统。做此设计的目的是为烟气脱硫技术的国产化积极的作准备。 本设计的主要内容: 介绍了现有的烟气脱硫的工艺并进行分析之后决定了系统的脱硫方法为湿式石灰石-石膏法。介绍了一些主要的脱硫装置和类型,比较选择之后确定了吸收塔的类型、流程。对湿式石灰石-石膏烟气脱硫工艺的各个子系统进行了介绍并大致确定了本工艺中选用各子系统的的处理流程、装置和设备。设计了各设备的物料流量,操作压力,做了设备的选型。对所设计的烟气脱硫工艺进行了技术经济分析。 关键词:湿法石灰石-石膏法烟气脱硫物料衡算设备选型技术经济分析

. . Abstract According to the composition of the Flue Gas and the desurfurization request,combining with existing FGD technical process in our nation,this article designed a set of adequate FGD systems.The purpose of this artical is that do some prepares for the designing process of the FGD of our own country. This article's main work are: Analyzed and compared existing FGD technology of domestic and overseas ,chose the Limestone-Gypsum Wet Method Desurfurization Technology for Fume Gas.Introduced main equipment of the desurfurization ,then decided the type and the diagram flow of the absorber.Designed the arrangment of system's popes , design the equipment’s material flow, operating pressure made selection of equipment, Carried out economic and technical analysis of the FGD system designed. Key words: Limestone-Gypsum Wet Method Flue Gas Desulfuration Material Accounting Selection of equipment Technical and Economic Analysis

石灰石石膏湿法脱硫原理 (2)

石灰石-石膏湿法烟气脱硫工艺 石灰石(石灰)-石膏湿法脱硫工艺是湿法脱硫的一种,是目 前世界上应用范围最广、工艺技术最成熟的标准脱硫工艺技术。是当 前国际上通行的大机组火电厂烟气脱硫的基本工艺。它采用价廉易得 的石灰石或石灰作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅 拌成吸收浆液,当采用石灰为吸收剂时,石灰粉经消化处理后加水制 成吸收剂浆液。在吸收塔内,吸收浆液与烟气接触混合,烟气中的二 氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被脱除, 最终反应产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴, 经换热器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。 由于吸收浆液循环利用,脱硫吸收剂的利用率很高。最初这一技术是 为发电容量在100MW以上、要求脱硫效率较高的矿物燃料发电设备配 套的,但近几年来,这一脱硫工艺也在工业锅炉和垃圾电站上得到了 应用. 根据美国EPRI统计,目前已经开发的脱硫工艺大约有近百种,但真正实现工业应用的仅10多种。已经投运或正在计划建设的脱硫系统中,湿法烟气脱硫技术占80%左右。在湿法烟气脱硫技术中,石灰石/石灰—石膏湿法烟气脱流技术是最主要的技术,其优点是: 1、技术成熟,脱硫效率高,可达95%以上。 2、原料来源广泛、易取得、价格优惠 3、大型化技术成熟,容量可大可小,应用范围广

4、系统运行稳定,变负荷运行特性优良 5、副产品可充分利用,是良好的建筑材料 6、只有少量的废物排放,并且可实现无废物排放 7、技术进步快。 石灰石/石灰—石膏湿法烟气脱硫工艺,一般布置在锅炉除尘器后尾部烟道,主要有:工艺系统、DCS控制系统、电气系统三个分统。 基本工艺过程 在石灰石一石膏湿法烟气脱硫工艺中,俘获二氧化硫(SO2)的基本工艺过程:烟气进入吸收塔后,与吸收剂浆液接触、进行物理、化学反应,最后产生固化二氧化硫的石膏副产品。基本工艺过程为:(1)气态SO2与吸收浆液混合、溶解 (2) SO2进行反应生成亚硫根 (3)亚硫根氧化生成硫酸根 (4)硫酸根与吸收剂反应生成硫酸盐 (5)硫酸盐从吸收剂中分离 用石灰石作吸收剂时,SO2在吸收塔中转化,其反应简式式如下: CaCO3+2 SO2+H2O ←→Ca(HSO3)2+CO2 在此,含CaCO3的浆液被称为洗涤悬浮液,它从吸收塔的上部喷

年处理700万立方米烟气脱硫工艺设计

普通本科毕业设计(论文)说明书课题名称年处理700万立方米烟气脱硫工艺设计

摘要 此次设计通过对目前烟气除尘脱硫工艺的比较,因其具备脱硫效率高、系统运行稳定可靠、阻力低的特点,所以选取在工业上应用最广泛的湿式石灰石石膏法。 该工艺的脱硫吸收塔为喷淋空塔,此塔型为目前脱硫工艺的主流。烟气进口上方依次布置有冷却水管,喷淋层和两级除雾器。下方为浆液池,其内布置氧化空气管。 设计的主要内容为烟气除尘系统和烟气脱硫吸收系统的设计,重点是对这两个系统的设备进行设计计算及选型、设备的布置,并对该工艺进行简单的技术经济分析。 关键词:烟气脱硫、石灰石-石膏法、喷淋塔、设备计算

Abstract According to compare with different kinds of dust removal desulfurization methods, because of its high desulfurization efficiency, system runs stable and reliable, low resistance, so choose the wet limestone-gypsum process which is the most widely used in industry for this design. In the process, the desulfurization absorption tower is spray air tower, which is the main tower for the flue gas desulfurization. Above the flue gas desulfurization imports, decorate cooling water pipe, spray layer and two-level demister. Below is the slurry pond, there is oxidation air tube in it. The main content of this design: designing flue gas dust removal system and desulfurization absorption system, the focus is calculating and selecting the equipments for the two systems, and the arrangement of the equipments. In the last, makes some easily economic and technical analysis for the process. Keywords: Flue gas desulfurization limestone-gypsum method spray tower equipment calculation

湿法烟气脱硫技术的研究现状与进展

1.研究背景 众所周知,二氧化硫是当今人类面临的主要大气污染物之一,根据15年来60多个国家监测获得的统计资料显示,由人类制造的二氧化硫每年达1.8亿吨,比烟尘等悬浮粒子1.0亿吨还多,己成为大气环境的第一大污染物。 在我国的能源结构中,能源结构中煤炭所占比例高达73%,石油为21%,天然气和水能仅占2%和4%。这个比例在一个相当长的时期内不会有根本性的改变。而据对主要大气污染物的分类统计分析,在直接燃烧的燃料中,燃煤排放的大气 污染物数量约占燃烧排放总量的96%,大气中90%S0 2,71%CO,85%的CO 2 ,70%的 NO以及70%的粉尘来自煤炭的直接燃烧。因此,我国的大气环境污染仍然以煤烟 型为主,主要污染物是二氧化硫和烟尘。目前我国S0 2 年排放量连续超过2000 万吨,超过欧洲和美国,使我国成为世界S0 2 排放第一大国。 二氧化硫污染对人类造成的危害己被世人所知,二氧化硫的污染属于低浓度、长期的污染,它的存在对自然生态环境、人类健康、工农业生产、建筑物及 材料等方面都造成了一定程度的危害。S0 2 污染排放问题已成为制约我国国民经 济发展的一个重要因素,对S0 2 排放的控制与治理己刻不容缓。其中,火力发电机组二氧化硫排放量的削减更成为了重中之重。 与此同时,气候变暖也已经成为一项全球性的环境问题,受到了许多国家的关注。人类活动所释放的二氧化碳是导致全球变暖的最重要的温室气体。其中火 电厂燃用矿物燃料所释放的CO 2 ,是全球二氧化碳浓度增加的主要原因之一。 随着我国经济的快速发展,控制能源消耗造成的环境污染,特别是控制燃煤造成的二氧化硫污染和二氧化碳的排放成为保证社会和经济可持续发展的迫切要求。 烟气脱硫是目前世界上唯一大规模商业化应用的脱硫方式,是控制酸雨和二氧化硫污染的主要技术手段。湿法石灰石一石膏烟气脱硫作为一种相对较成熟、脱硫效率较高的脱硫技术,得到了广泛的应用。石灰石- 石膏湿法烟气脱硫因其脱硫效率高、工艺成熟、安全性可靠性高、系统运行稳定、维护简单、投资成本与运行成本较低、脱硫副产物可综合利用等优势而成为目前火电厂烟气脱硫最常采用的工艺。世界各国的湿法烟气脱硫工艺流程、形式和机理大同小异,主要是使用石灰石(CaCO3)、石灰(CaO)等浆液作洗涤剂,在反应塔中对烟气进行洗涤,从而除去烟气中的SO2。 2.湿法石灰石/ 石膏脱硫工艺原理 当采用石灰为吸收剂时,石灰粉经经破碎磨细成粉状后加水搅拌制成吸收浆。在吸收塔内,吸收浆液与烟气接触混合,烟气中的So2与浆液中的碳酸钙进行化学反应、再通过鼓入空气氧化,最终产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴,经换热器加热升温后排人烟囱。脱硫石膏浆经脱水装置脱水后回收。 石灰或石灰石法主要的化学反应机理为:

合成氨厂半水煤气脱硫技术现状及展望

合成氨厂半水煤气脱硫技术现状及展望 汪碧容,周 斌,吴 玫 (四川理工学院材料与化学工程学院,四川 自贡 643000) 摘 要:合成氨厂半水煤气中的硫化物主要为H 2S ,脱硫方法分为干法和湿法。目前中小型合成氨厂常用的湿式氧化脱硫法 有:氨水催化法、栲胶法、改良ADA 法、PD S 法、M SQ 法,K C A 法,888法。888 脱硫催化剂脱硫全面,能脱除无机硫,也可脱有机硫。其有广泛的应用前景。 关键词:合成氨厂;半水煤气;脱硫 Status and Prospects of D esulfazation T echnol ogy for Se m i -water -gas i n Amm onia Plant WANG B i -rong,Z HOU B in,WU M ei (Schoo l ofM aterial and Che m ica lEng ineeri n g ,Sichuan University o f Sc i e nce&Eng i n eeri n g , S i c huan Zigong 643000,Ch i n a) Abst ract :The m ain sulphide co m pound of se m i-w ater-gas i n a mm on ia plan tw asH 2S ,and the process of desulfu -rati o n w ere dry and w et process .A t the presen ,t the w et ox i d ation processesw ere the a mm on ia liquor catalysis process for desu lfuration ,the tann i n ex tract desu lfuration,the rap i d and effective ADA m ethod ,t h e PDS process ,t h e M SQ process ,t h e KC A process and the 888process .The 888pr ocess had w ide potentia l app lication because the techno logy desu lfuriza -ti o n catalyst no t only re m oved inorgan ic desulfur but a lso re m oved organic desu lfur . K ey w ords :t h e a mm onia p l a n;t se m i-w ater-gas ;desulfuration 作者简介:汪碧容,讲师,主要从事化工及环境治理方面的研究。 在合成氨厂中半水煤气含有大量的硫化物,而硫化物对合成氨工艺有很大的危害,常见的有:对催化剂的危害;对产品质量的危害;对碳酸丙烯酯脱碳操作的危害;对铜洗操作的危害;对金属腐蚀;对人体的危害。 合成氨厂半水煤气中硫化物的种类较多。其主要是硫化氢,约占硫化物总量的90%。另外还含有少量的有机硫化物,主要是二硫化碳、羰基硫、硫醇等。硫化氢分子式为H 2S ,是无色气体,有类似腐烂鸡蛋的恶臭味。性剧毒,易溶于水,其水溶液呈酸性,能与碱生成盐。可用碱溶液来吸收它以除去气体中的硫化氢。硫化氢有很强的还原能力,易被氧化成硫磺和水,这一性质被广泛的用于脱除硫化氢并副产硫磺的工艺上。硫化氢还容易与金属、金属氧化物或金属的盐类生产金属硫化物。由于在生产过程中的H 2S 会对生产造成很大的危害,同时硫化氢为有毒有害气体,为了减少生产的损失、保护环境必须除掉H 2S 气体。 脱硫的方法很多,可分为干法和湿法两大类,其中湿式氧化法脱硫多用于半水煤气和变换气的一次脱硫,而干法脱硫多用于变换气脱硫和碳化气的精脱硫。干法脱硫具有流程短,设备结构简单,气体净化度高,操作平稳的优点。但此法经常采用固定层反应器,需要定期更换脱硫剂,不能连续。由于受脱硫剂硫容量(单位质量脱硫剂能脱除硫的最大含量)的限制,干法脱硫一般用于含硫量较低的情况。 1 脱硫技术 在合成氨厂中常采用湿式氧化法脱硫,目前中小型合成氨厂常用的湿式氧化脱硫法有:氨水催化法、栲胶法、改良ADA 法、PD S 法、M S Q 法,KCA 法,888法。 1.1 氨水催化法 氨水催化法系采用8~25滴度的氨水,其中加0.2~0.3g /L 对苯二酚作催化剂,使溶解于液相的硫化氢氧化为元素硫;本法有氨损失较大的缺点,此外,溶液的硫容量较低,仅为0.1~0.15g /L 。当煤气中硫化氢含量高时,所需的溶液循环量较大,电耗也随之增高[1]。本法的气体净化度可小于50mg /m 3。 1.2 改良ADA 法 ADA 法发展初期,由于析硫过程缓慢,生成硫代硫酸盐较多[2] 。后来发现溶液中添加偏钒酸钠后,使硫氧化速度大为提高,从而形成了现今的改良ADA 法[3]。 改良ADA 溶液组分中,碳酸钠(N a 2C O 3)作吸收介质,ADA 为析硫的载氧体,偏钒酸盐为ADA 析硫过程的催化剂,溶液中加入酒石酸钾钠的目的在于稳定溶液中的钒,防止生成 钒 氧 硫 复合物沉淀。 改良ADA 法是技术成熟、过程规范程度高、溶液性能稳定、技术经济指标较好的脱硫方法。该方法还具有硫磺回收率高,回收的硫磺纯度高,溶液对人和生物无毒害作用,对碳钢无腐蚀 29 2011年39卷第8期广州化工

烟气脱硫基本原理及方法

烟气脱硫基本原理及方 法 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

烟气脱硫基本原理及方法 烟气脱硫基本原理及方法: 1 、基本原理: =亚硫酸盐(吸收过程) 碱性脱硫剂+ SO 2 亚硫酸盐+ O =硫酸盐(氧化过程) 2 ,先反应形成亚硫酸盐,再加氧氧化成为稳定的硫酸盐,然碱性脱硫剂吸收 SO 2 后将硫酸盐加工为所需产品。因此,任何烟气脱硫方法都是一个化工过程。 2 、主要烟气脱硫方法 烟气脱硫的技术方法种类繁多。以吸收剂的种类主要可分为: ( 1 )钙法(以石灰石 / 石灰-石膏为主); ( 2 )氨法(氨或碳铵); ( 3 )镁法(氧化镁); ( 4 )钠法(碳酸钠、氢氧化钠); ( 5 )有机碱法; ( 6 )活性炭法; ( 7 )海水法等。 目前使用最多是钙法,氨法次之。钙法有石灰石 / 石灰-石膏法、喷雾干燥法、炉内喷钙法,循环流化床法、炉内喷钙尾部增湿法、 GSA 悬浮吸收法等,其中

用得最多的为石灰石 / 石灰-石膏法。氨法亦多种多样,如硫铵法、联产硫铵和硫酸法、联产磷铵法等,以硫铵法为主。 二、烟气脱硫技术简介: ( 一 ) 石灰石 / 石灰 - 石膏湿法烟气脱硫技术: 石灰石 / 石灰 - 石膏湿法烟气脱硫工艺采用价廉易得的石灰石作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。在吸收塔内吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的空气进行化学反应,最终反应产物为石膏。同时去除烟气中部分其他污染物,如粉尘、 HCI 、 HF 等。脱硫后的烟气经除雾器除去带出的细小液滴,经热交换器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。该技术采用单循环喷雾空塔结构,具有技术成熟、应用范围广、脱硫效率高、运行可靠性高、可利用率高,有大幅度降低工程造价的可能性等特点。

湿法烟气脱硫除尘器实验装置设计

湿法烟气脱硫除尘器实验装置设计 组号: 9 班级:环工1302 姓名:李璐 学号:131702207 指导老师:张键 扬州大学环境科学与工程学院 2016年12月

目录 湿法烟气脱硫除尘实验指导书 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验装置及各部分组成(集体讨论完成) (4) 四、实验步骤 (7) 五、参数测定方法 (7) 六、实验注意事项 (9) 七、实验结果讨论 (9) 实验考核任务: 实验室完成的烟气脱硫性能实验是一种简单的模拟实验,距研究型试验装置有较大差异。试设计一套湿法烟气脱硫除尘实验装置(石灰石/石灰—石膏法)。装置含供风系统、烟气制备系统、喷淋塔反应器、浆液循环部分、烟气测量系统,主要测定参数为SO2浓度、烟气压力管内风速、烟气量、塔内粉尘浓度、浆液pH值、烟气流速、烟气温度等。要求有设计简图和实验指导书。 特别说明:1综合考查题完成时间为1个工作日;2.每组一题。小组成员在查阅相关资料和教材后讨论并相对独立完成,但每人需提交1份材料,必须注明个人完成内容和集体讨论完成内容,不注明且相似度大于50%的按抄袭计分;3.打印并同时提交电子文稿(word格式);4.题中涉及的规范、标准请查阅文献,相关数据及结论亦可查阅引用文献。请注明参考文献(包括规范、标准);5.所有设计实验装置均须附简图(须原创,不得粘贴参考文献中的附图);6.提交材料的字数不得少于5000字(含简图但不含参考文献)。7.根据作业质量,小组成员本次考查分数不一定相同。本课程最终成绩根据平时成绩(实验报告)(30%)、实验过程表现(10%)、考查成绩(60%)按占比确定。

半水煤气湿法脱硫工艺设计

15万吨/年合成氨原料气净化脱硫工段设计 1总论 1.1概述 氮肥尿素1.2文献综述 1.2.1合成氨原料气净化的现状 合成氨原料气(半水煤气)的净化就是清除原料气中对合成氨无用或有害的物质的过程..原料气的净化大致可以分为“热法净化”和“冷法净化”两种类型..原料气的净化有脱硫..脱碳..铜洗和甲烷化除杂质等..在此进行的气体净化主要是半水煤气的脱硫的净化。煤气的脱硫方法从总体上来分有两种:热煤气脱硫和冷煤气脱硫。在我国..热煤气脱硫现在仍处于试验研究阶段..还有待于进一步完善..而冷煤气脱硫是比较成熟的技术..其脱硫方法也很多。冷煤气脱硫大体上可分为干法脱硫和湿法脱硫两种方法..干法脱硫以氧化铁法和活性炭法应用较广..而湿法脱硫以砷碱法、ADA、改良ADA和栲胶法颇具代表性。 煤气干法脱硫技术应用较早..最早应用于煤气的干法脱硫技术是以沼铁矿为脱硫剂的氧化铁脱硫技术..之后..随着煤气脱硫活性炭的研究成功及其生产成本的相对降低..活性炭脱硫技术也开始被广泛应用。干法脱硫既可以脱除无机硫..又可以脱除有机硫..而且能脱至极精细的程度..但脱硫剂再生较困难..需周期性生产..设备庞大..不宜用于含硫较高的煤气..一般与湿法脱硫相配合..作为第二级脱硫使用。 湿法脱硫可以处理含硫量高的煤气..脱硫剂是便于输送的液体物料..可以再生..且可以回收有价值的元素硫..从而构成一个连续脱硫循环系统。现在工艺上应用较多的湿法脱硫有氨水催化法、蒽醌二磺酸法(A.D.A法)及有机胺法。其中蒽醌二磺酸法的脱除效率高..应用更为广泛。改良ADA法相比以前合成氨生产中采用毒性很大的三氧化二砷脱硫..它彻底的消除了砷的危害。 基于此..在合成氨脱硫工艺的设计中我采用改良ADA法工艺。

焦炉煤气脱硫效率分析及工艺选择

焦炉煤气脱硫效率分析及工艺选择 煤气中的硫来自原料煤中,存在形式主要是 H2S,亦有少量有机硫(主要是COS)。H2S 不仅会造成环境的污染,还会腐蚀设备,使催化剂中毒,对生产造成很多不良影响,所以必须要脱去煤气中的硫。煤气脱硫即采用一定的技术手段将H2S、HCN 等有害物质从焦炉煤气中脱除,采用的工艺方法一般分为湿法和干法。 1 焦炉煤气脱硫技术 焦炉煤气常用的脱硫方法从脱硫剂的形态上来分包括干法脱硫技术和湿法脱硫技术。 1.1焦炉煤气干法脱硫技术 干法脱硫工艺是利用固体吸收剂脱除煤气中的硫化氢,同时脱除氰化物及焦油雾等杂质。干法脱硫又分为中温脱硫、低温脱硫和高温脱硫。常用脱硫剂有铁系和锌系,氧化铁脱硫剂是一种传统的气体净化材料,适宜于对天然气、油气伴生气、城市煤气以及废气中硫化氢含量高的气体。常温氧化铁脱硫原理是用水合氧化铁(Fe2O3·H2O)脱除 H2S,其反应包括脱硫反应与再生反应。 干法脱硫工艺多采用固定床原理,工艺简单,净化率高,操作简单可靠,脱硫精度高,但处理量小,适用于低含硫气体的处理,一般多用于二次精脱硫。但由于气固吸附反应速度较慢,工艺运行所需设备一般比较庞大,而且脱硫剂不易再生,运行费用增高,劳动强度大,不能回收成品硫,废脱硫剂、废气、废水严重污染环境。 1.2焦炉煤气湿法脱硫技术 湿法工艺是利用液体脱硫剂脱除煤气中的硫化氢和氰化氢。常用的方法有氨水法、vasc法、单乙醇胺法、砷碱法、改良 ADA法、TH 法、苦味酸法、对苯二酚法、HPF 法以及一些新兴的工艺方法等。 1.2.1氨水法(AS 法) 氨水法脱硫是利用焦炉煤气中的氨,在脱硫塔顶喷洒氨水溶液(利用洗氨溶液)吸收煤气中 H2S,富含 H2S 和 NH3的液体经脱酸蒸氨后再循环洗氨脱硫。在脱硫塔内发生的氨水与硫化氢的反应是:H2S+2NH3·H2O→(NH4)2S+2H2O。AS 循环脱硫工艺为粗脱硫,操作费用低,脱硫效率在 90 %以上,脱硫后煤气中的 H2S 在200~500 mg·m-3。 1.2.2VASC 法 VASC 法脱硫过程是洗苯塔后的煤气进入脱硫塔,塔内填充聚丙烯填料,煤气自下而上流经各填料段与碳酸钾溶液逆流接触,再经塔顶捕雾器出塔。煤气中的大部分 H2S 和 HCN 和部分 CO2被碱液吸收,碱液一般主要是 Na2CO3或K2CO3溶液。吸收了酸性气体的脱硫富液与来自再生塔底的热贫液换热后,由顶部进入再生塔再生,吸收塔、再生塔及大部分设备材质为碳钢,富液与再生塔底

石灰石-石膏湿法烟气脱硫工艺的化学原理

石灰石-石膏湿法烟气脱硫工艺的化学原理 一、概述:脱硫过程就是吸收,吸附,催化氧化和催化还原,石灰石浆液洗涤含SO烟气,产生化学反应分离出脱硫副产物,化学吸收速率较快与扩散速率有关, 2又与化学反应速度有关,在吸收过程中被吸收组分的气液平衡关系,既服从于相平衡(液气比L/G,烟气和石灰石浆液的比),又服从于化学平衡(钙硫比Ca/S,二氧化硫与炭酸钙的化学反应)。 1、气相:烟气压力,烟气浊度,烟气中的二氧化硫含量,烟尘含量,烟气中的氧含量,烟气温度,烟气总量 2、液相:石灰石粉粒度,炭酸钙含量,黏土含量,与水的排比密度, -,它们与溶解了的CaCO和SOHSO的反应3、气液界面处:参加反应的主要是323是瞬间进行的。 二、脱硫系统整个化学反应的过程简述: 1、 SO在气流中的扩散,2 2、扩散通过气膜 3、 SO被水吸收,由气态转入溶液态,生成水化合物2 4、 SO水化合物和离子在液膜中扩散2 5、石灰石的颗粒表面溶解,由固相转入液相 6、中和(SO水化合物与溶解的石灰石粉发生反应)2 7、氧化反应 8、结晶分离,沉淀析出石膏, 三、烟气的成份:火力发电厂煤燃烧产生的污染物主要是飞灰、氮氧化物和二氧化硫,使用静电除尘器可控制99%的飞灰污染。 四、二氧化硫的物理、化学性质: ①. 二氧化硫SO的物理、化学性质:无色有刺激性气味的有毒气体。密度比2 空气大,易液化(沸点-10℃),易溶于水,在常温、常压下,1体积水大约能溶解40体积的二氧化硫,成弱酸性。SO为酸性氧化物,具有酸性氧化物的通性、2 还原性、氧化性、漂白性。还原性更为突出,在潮湿的环境中对金属材料有腐蚀性,液体SO无色透明,是良好的制冷剂和溶剂,还可作防腐剂和消毒剂及还原2剂。 ②. 三氧化硫SO的物理、化学性质:由二氧化硫SO催化氧化而得,无色易挥23发晶体,熔点16.8℃,沸点44.8℃。SO为酸性氧化物,SO极易溶于水,溶于33水生成硫酸HSO,同时放出大量的热,42③. 硫酸HSO的物理、化学性质:二元强酸,纯硫酸为无色油状液体,凝固点423,浓硫酸溶于水会放出大量的热,密度为1.84g/cm具有10.4℃,沸点338℃,为强氧化性(是强氧化剂)和吸水性,具有很强的腐蚀性和破坏性, 五、石灰石湿-石膏法脱硫化学反应的主要动力过程: 1、气相SO被液相吸收的反应:SO经扩散作用从气相溶入液相中与水生成亚硫 22-+,当PHH 亚硫酸迅速离解成亚硫酸氢根离子HSO值较高时,和氢离子酸HSO3232-,要使SO吸收不断进行下去,必须中和HSO二级电离才会生成较高浓度的SO233++当,即降低吸收剂的酸度,碱性吸收剂的作用就是中和氢离子电离产生的HH 吸收液中的吸收剂反应完后,如果不添加新的吸收剂或添加量不足,吸收液的酸度迅速提高,PH值迅速下降,当SO溶解达到饱和后,SO的吸收就告停止,脱22硫效率迅速下降

氨水法焦炉煤气脱硫的基本原理

范守谦(鞍山立信焦耐工程技术有限公司) 1 气体在液体中的溶解度——亨利定律 任何气体在一定温度和压力下与液体接触时,气体会逐渐溶解于液体中。经过相当长的时间,气相和液相的表观浓度不再发生变化,即处于平衡状态。这时,对于不同气体,如果组分在气相中的分压(对单组分气体即为总压)保持定值,则不同气体在液体中的浓度称为气体在液体中的溶解度。该组分在气相中的分压称为气相平衡分压,表示了气相的平衡浓度。 很多气体的液相平衡浓度X与气体的平衡分压P*有定量关系。如:二氧化碳为直线关系,硫化氢和氨只有在较大浓度范围时不呈直线关系,在浓度较小时,可视为直线关系。因此,在一定温度下,对于接近于理想溶液的稀溶液,在气相压力不大时,气液平衡后气体组分在液相中的浓度与它在气相中的分压成正比,即亨利定律。 P* =EX 式中的P* 为气体组分在气相中的分压,大气压;X为气体组分在液相中的浓度,分子分数; E 为亨利系数(与温度有关)。 上式经浓度单位换算后可改写为: C =HP* 式中的P*为气体组分在气相中的分压,mmHg;C 为气体组分在液相中的浓度,gmol;H为亨利系数,gmol/mmHg。

注:①亨利定律是一个稀溶液定律,它只适用于微溶气体; ②只适用于气相和液相中分子状态相同的组分。如: NH3(气态)? NH3(溶解态) NH3(溶解态)+H2O ? NH4OH ? NH+4 + OH- 用亨利定律时,应把NH+4的量减去,才能得到水溶液中氨的浓度C氨C氨=H0P *氨 式中的H0为氨在纯水中的亨利系数,kgmol/(m3·mmHg)。 温度,℃H0 20 0.099 40 0.0395 60 0.017 80 0.0079 90 0.0058 在氨水脱硫过程中 C氨=H氨·P *氨

湿法烟气脱硫的原理

湿法烟气脱硫的原理 湿法烟气脱硫的原理 1 湿法烟气脱硫的基本原理 (1)物理吸收的基本原理 气体吸收可分为物理吸收和化学吸收两种。如果吸收过程不发生显著的化学反应,单纯是被吸收气体溶解于液体的过程,称为物理吸收,如用水吸收SO2。物理吸收的特点是,随着温度的升高,被吸气体的吸收量减少。 物理吸收的程度,取决于气--液平衡,只要气相中被吸收的分压大于液相呈平衡时该气体分压时,吸收过程就会进行。由于物理吸收过程的推动力很小,吸收速率较低,因而在工程设计上要求被净化气体的气相分压大于气液平衡时该气体的分压。物理吸收速率较低,在现代烟气中很少单独采用物理吸收法。 (2)化学吸收法的基本原理 若被吸收的气体组分与吸收液的组分发生化学反应,则称为化学吸收,例如应用碱液吸收SO2。应用固体吸收剂与被吸收组分发生化学反应,而将其从烟气中分离出来的过程,也属于化学吸收,例如炉内喷钙(CaO)烟气脱硫也是化学吸收。 在化学吸收过程中,被吸收气体与液体相组分发生化学反应,有效的降低了溶液表面上被吸收气体的分压。增加了吸收过程的推动力,即提高了吸收效率又降低了被吸收气体的气相分压。因此,化学吸收速率比物理吸收速率大得多。 物理吸收和化学吸收,都受气相扩散速度(或气膜阻力)和液相扩散速度(或液膜阻力)的影响,工程上常用加强气液两相的扰动来消除气膜与液膜的阻力。在烟气脱硫中,瞬间内要连续不断地净化大量含低浓度SO2的烟气,如单独应用物理吸收,因其净化效率很低,难以达到SO2的排放标准。因此,烟气脱硫技术中大量采用化学吸收法。用化学吸收法进行烟气脱硫,技术上比较成熟,操作经验比较丰富,实用性强,已成为应用最多、最普遍的烟气脱硫技术。 (3)化学吸收的过程 化学吸收是由物理吸收过程和化学反应两个过程组成的。在物理吸收过程中,被吸收的气体在液相中进行溶解,当气液达到相平衡时,被吸收气体的平衡浓度,是物理吸收过程的极限。被吸收气体中的

最新烟气脱硫 设计工艺实例

烟气脱硫工艺设计说明书

目录 1 概述 1.1 工程概况 1.2 脱硫岛的设计范围 2 设计基础数据及主要设计原则 2.1 设计基础数据 2.2 吸收剂分析资料 2.3 脱硫用水资料 2.4 主要工艺设计原则 2.5 脱硫工艺部分设计接口 3 吸收剂供应和脱硫副产物处置 3.1 吸收剂来源 3.2 脱硫副产物 4 工艺系统及主要设备 4.1 工艺系统拟定 4.2 吸收剂系统 4.3 烟气系统 4.4 SO2吸收系统 4.5 排放系统 4.6 石膏脱水系统 4.7 工艺水系统

4.8 压缩空气系统 4.9 物料平衡计算(二台锅炉BMCR工况时烟气量) 4.10 主要设备和设施选择 5 起吊与检修 6 保温油漆及防腐 6.1 需要保温、油漆的设备、管道及设计原则 6.2 防腐 7 脱硫装置的布置 8 劳动安全及职业卫生 8.1 脱硫工艺过程主要危险因素分析 8.2 防尘、防毒、防化学伤害 8.3 防机械伤害及高处坠落 8.4 防噪声、防震动 8.5 检修安全措施 8.6 场地安全措施 9 烟气脱硫工艺系统运行方式 9.1 FGD启动 9.2 FGD系统整组正常停运 9.3 FGD紧急停运 9.4 FGD装置负荷调整 9.5 FGD停运措施

1 概述 1.1 工程概况 锅炉:华西能源工业股份有限公司生产的超高压自然循环汽包炉,单炉膛,一次中间再热,固态排渣,受热面采用全悬吊方式,炉架采用全钢结构、双排布置。 汽轮机:东方电气集团东方汽轮机有限公司公司生产的超高压参数、一次中间再热、单轴、双缸双排汽、6级回热、直接空冷抽汽凝汽式汽轮机。 发电机:山东济南发电设备厂生产的空冷却、静止可控硅励磁发电机。 本期工程需同步建设烟气脱硫装置,因有大量石灰石资源,且生产电石亦需要大量石灰石,故暂定采用石灰石—石膏湿法烟气脱硫装置(以下简称FGD),不设GGH,脱硫装置效率不低于95%,设备可用率不低于95%,按照《GB13223-2003 火电厂大气污染物排放标准》执行。 本章所述采用的环境保护标准、脱硫方式、脱硫效率等环保措施均以批复的环境影响报告书为准。 1.2 脱硫岛的设计范围 本工程脱硫岛设计范围包括:烟气脱硫工程需要的工艺、电气、控制、供水、消防、建筑、结构、暖通等,本卷册说明中包括的内容为工艺、起吊检修、保温防腐方面内容,其它见相关专业说明书中内容。脱

相关文档
相关文档 最新文档