文档库 最新最全的文档下载
当前位置:文档库 › 范德瓦尔斯方程与真实气体状态试验

范德瓦尔斯方程与真实气体状态试验

范德瓦尔斯方程与真实气体状态试验
范德瓦尔斯方程与真实气体状态试验

范德瓦耳斯(Van der Walls)方程与真实气体状态实验

在近代工程技术和科学研究中,经常需要处理高压或低温条件下的气体问题,例如在现代化的大型蒸汽涡轮机中,为了提高效率,都采用高压下的高温蒸汽作为工作物质;又如化学工程中的气体合成,以及许多尖端材料和产品的加工制造,也都需要在高压的条件下进行。所以学习真实气体的物态方程及其压力、体积、温度关系的测绘方法十分必要并有意义。

实验原理:

一般气体,在密度不太高,压力不太大(与大气压比较)和温度不太低(与室温比较)的实验范围内,遵守玻意耳定律、盖?吕萨克定律和查理定律。我们把在任何情况下都遵守上述三条实验定律的气体称为理想气体。对于质量为m,摩尔质量为M 的理想气体的物态方程为

RT M m PV = (1)

但真实气体只是在温度不太低,压力不太高的条件下,才能遵守理想气体的状态方程。理想气体的等温线是等轴双曲线,而真实气体的等温线,并非都是等轴双曲线。研究真实气体的等温线,就可了解真实气体偏离理想气体定律的情况,从而对真实气体的性质得到进一步的认识。因此,理想气体状态方程应用到真实气体,必须考虑到真实气体的特征,予以必要的修正。上世纪以来,许多物理学家先后提出了各种不同的修正意见,建立了各种不同形式的气体状态方程,其中形式较为简单,物理意义比较清楚的就是范德瓦耳斯方程。范德瓦耳斯方程为

RT b V V a P ννν

=?+))((22 (2)

式中是考虑到气体分子本身体积的修正量,对于给定的气体,是一个恒量,可由实验来测定,一般约等于1摩尔气体分子本身体积的四倍。另一常数是由气体分子间的引力引起,决定于气体的性

质,可由实验来测定。对于一定量气体,其摩尔数b b a M m =ν

图1:CO 2实验等温线 图2: 范德瓦耳斯三次方程图

范德瓦耳斯方程等温线与真实气体的实验等温线作比较(见图1),二者都有一条临界等温线。在临界等温线以上,二者比较接近;在温度很高时,二者之间没有区别,在临界等温线以下,却有显著的区别。

范德瓦耳斯等温线的ABCDE 是一个三次曲线,如图2,曲线中BCD 段的斜率为正,意味着体积愈膨胀,压强愈大,因而无法平衡。而AB 和DE 段是亚稳态,只可在谨慎的实验条件下才能实现,但极易失稳。真实气体的等温线有一个液化过程,也就是说有一个汽液共存区域,在汽液共存区当体积逐渐减小时,压力基本不变,近似为一水平直线(图2中ACE ),该线被称为汽液共存线,它不能由范德瓦耳斯方程给出,其高度P 可用相平衡条件求得。范德瓦耳斯方程也可写成:

2

2V a b V RT P ννν??= (3) 公式右边第一项为动理压强,在K P b V ν→时,,反映了原子的不可入性。第二项为内压强,是负的。在温度不太高时,它叠加到前一项,使P-V 曲线在高密度区出现凹陷。在一般实验中这一段曲线(ABCDE )观察不到。

∞→K P Pu 当温度足够高时,上述凹陷不出现,P-V 等温线呈单调下降(近似为理想气体状态曲线)。在这两种情况之间,存在一条临界等温线,其上有一拐点C (见图1),称之为临界点。在拐点K 处曲线的一阶、二阶导数皆为零。所以应有:

03222)()(=+??=??V

a b V RT T V P ννν (4) 04263)(2)22(=??=??V a b V RT T V P ννν (5) 再由范德瓦耳斯方程2

2V a b V RT P ννν??=可得临界点: 温度

(6) Rb a K T 27/8=体积 (7)

b K V ν3=压强 (8)

227/b a K P =如测绘出等温线为临界等温线,则可以从实验曲线中求得临界温度、临界体积、临界压强。并从(6)(7)(8)公式中可求出范德瓦耳斯方程中的、修正值,以及实验气体的摩尔数a b ν。

实验仪器:

1.范德瓦耳斯方程真实气体实验仪:

范德瓦耳斯方程与真实气体实验需在低温或高压下才能实现。所以一般进行此实验有一定难度。同济物理实验室开发研制的范德瓦耳斯方程与真实气体实验仪器可从室温开始实现对真实气体进行物理教学演示并进行实验定量测试,其外形结构见图3。

图3:范德瓦耳斯方程真实气体实验仪

实验仪器核心是一个耐高压、密封性非常好的玻璃管实验室,见图3中有机玻璃罩(恒温水箱)内的一细长玻璃管。该细长玻璃管内被抽真空后,注入六氟化硫(SF6)气体,并将水银作气体体积变化的压缩剂。细长玻璃管容器与一压力表连接,在被良好密封情况下,转动加压手轮使玻璃管容器内的水银上升或下降,也就是改变了容器内的气体体积,并引起气体压力变化。气体体积的变化可由玻璃管上刻度标尺读出计算、压力变化值直接由压力表读出。当有机玻璃外罩与座架上的两孔端口用橡皮管与一恒温控制箱连接,使可控制温度的水循环地从水箱中流入与流出,达到细长玻璃管内工作物质温度被控温,所以实验可实现温度、压力、体积同时测定。

2.超级恒温控制器:

实验所采用的恒温器是一个大的盛水容器,容器内主要有一测水温的水银温度计、搅拌水并使水作循环流动的小水泵、一电热丝加热器。加热器由一继电器与一水银导电表调节与控制温度。水温的控制靠水银导电表上部的磁力螺旋调节,改变金属丝针尖的高低,即改变水温的控制设置。当水温达到设置温度时,水银面上升碰到金属丝针尖,水银导电表导通,带动继电器工作,切断加热电路。当水温下降时,水银面下降,与金属丝脱离,水银导电表断开,继电器工作连通加热电路。实验时,水银导电表是进行控温调节的,而恒温器的水温需要水银温度计读出。使用应注意:(1)检查恒温器内水面高度,水须将加热器浸没,才能通电加热。(2)水泵循环回路需接好后才能开启水泵开关。(3)水银导电表容易损坏,调节温度时要细心。

实验内容:

1. 学习恒温控制器调节与应用。

2. 观察室温(低于25℃)的汽液相变状态。

a b

3. 测绘多组P-V等温曲线。由临界等温线计算、修正值及气体摩尔数。

实验指导:

a) 连接范德瓦耳斯方程实验仪与超级恒温控制器。了解超级恒温控制器的构造并学习恒温控

制。

b) 在较低温度下(一般在25℃以下),调节加压手轮,观察气液相变过程。

c) 测绘25℃、46-47℃左右、55℃三组等温的P-V曲线。

d) 绘制三组等温曲线,并求出临界等温线的临界温度,临界体积,临界压力。压

力在汽液相变后快速上升后即停止测量。

k T k V K P e) 计算六氟化硫(SF 6)气体的范德瓦耳斯方程修正值a 、b 值。计算实验玻璃管内六氟化硫

(SF 6)气体的摩尔数ν。

实验注意事项:

1.实验温度从低温(室温)开始测试,调整仪器方便。

2.加压手轮调节时,压力表有一超前然后再稳定过程,需待压力表稳定后再读数。

3.注意压力表上升不要超过

4.5Mpa 。

4.每次实验结束,请将压力降至2Mpa 左右。

实验讨论:

1.如何才能正确地测绘出临界等温线?

2.实验中由哪些因素会造成实验系统误差?能否修正?

3.能否由理想气体方程曲线计算实验气体的摩尔数?与由范德瓦耳斯方程计算得摩尔数有何区别?

怎样运用理想气体状态方程解题

§7 怎样运用理想气体状态方程解题 理想气体处在平衡状态时,描写状态的各个参量(压强P 、体积V 和温度T )之间关系式,叫理想气体状态方程,其数学表达式为: (1)M PV RT μ= 此式的适用条件是:①理想气体;②平衡态。 上式中: M -气体的质量; μ--摩尔质量; M μ-是气体的摩尔数。 对于一定质量, 一定种类的理想气体,在热平衡下,状态方程可写为: 112212PV PV M R const T T μ==== 此式表明:一定质量、一定种类的理想气体,几个平衡状态的各参量之间的关系。 对于种类相同的两部分气体的状态参量分别为1P 、1V 、1T 、2P 、2V 、2T ,现将其混合。其状态参量为P 、V 、T ,则状态参量间具有下列关系式: 112212 PV PV PV T T T =+ 此式实质上说明了质量守恒:12M M M =+(1M 、2M 与M 分别表示混合前后的质量),按照质量守恒与状态方程是否可以得知:式(3)对不同气体也照样适合?请思考。 一、关于气体恒量R 的单位选择问题: 一摩尔质量的理想气体,要标准状况下,即01P atm =,0273.15T K =,022.4V L =,故有000 PV R T =。 在国际单位制() 23P /,a N m m -压强体积用作单位中,R 的量值选8.31J/mol K ?。

因为:32331.01310/22.410/8.31/273.15N m m mol R J mol K K ???==?; 在压强用大气压、体积用3m 时,R 的量值取3 8.2110/atm m mol K -???,因为: 335122.410/8.2110/273.15atm m mol R atm m mol K K -??==??? 在压强用大气压作单位、体积用升作单位时,R 的量值选0.082/atm l mol K ??,因为: 122.4/0.082/273.15atm l mol R atm l mol K K ?==?? 应用M PV RT μ=计算时,压强、体积单位的选取必须与R 一致在同时温度必须用热力 学温标。 二、怎样用状态方程来解题呢? 1、根据问题的要求和解题的方便,倒塌选取研究对象。研究对象选择得合理,解题就会很方便,否则会造成很多麻烦。选择对象时,容易受容器的限制。事实上,有时一摆脱容器的束缚,就能巧选研究对象。选择时应注意:在独立方程的个数等于未知量的个数的前提下,研究对象的数目应尽可能地少。最好是,研究对象的数目恰好等于待求的未知量的数目,此时,中间未知量一个也没出现。 2、描写研究对象的初、未平衡状态,即确定平衡状态下的P 、V 、T ; 3、根据过程的特征,选用规律列出方程,并求解。选择研究对象与选用规律,其根据都是过程的特征,因此,这两者往往紧密联系。列方程时,一般用状态方程的式子多,而用状态变化方程时式子较少,故能用状态变化方程时应尽可能优先考虑。 气体的混合(如充气、贮气等)和分离(如抽气、漏气等)有关的习题不少。对于这类习题,可从不同角度出发去列方程:①从质量守恒定律或推广到不同种类的分子气体时总摩尔数不变来考虑;②从同温、同压下的折合的加和减来考虑。由于气体体积是温度、压强的函数,所以,在利用利用“气体折合体积的加和性”时必须注意,只有统一折算成相同温度

专题三:气体实验定律_理想气体的状态方程

专题三:气体实验定律 理想气体的状态方程 [基础回顾]: 一.气体的状态参量 1.温度:温度在宏观上表示物体的________;在微观上是________的标志. 温度有________和___________两种表示方法,它们之间的关系可以表示为:T = ________.而且ΔT =____(即两种单位制下每一度的间隔是相同的). 绝对零度为____0 C,即___K ,是低温的极限,它表示所有分子都停止了热运动.可以无限接近,但永远不能达到. 2.体积:气体的体积宏观上等于___________________________________,微观上则表示_______________________.1摩尔任何气体在标准状况下所占的体积均为_________. 3.压强:气体的压强在宏观上是___________;微观上则是_______________________产生的.压强的大小跟两个因素有关:①气体分子的__________,②分子的_________. 二.气体实验定律 1.玻意耳定律(等温变化) 一定质量的气体,在温度不变的情况下,它的压强跟体积成______;或者说,它的压强跟体积的________不变.其数学表达式为_______________或_____________. 2.查理定律(等容变化) (1)一定质量的气体,在体积不变的情况下,温度每升高(或降低)10 C ,增加(或减少)的压强等于它在___________.其数学表达式为_______________或_____________. (2)采用热力学温标时,可表述为:一定质量的气体,在体积不变的情况下,它的压强与热力学温度成______.其数学表达式为____________. (3)推论:一定质量的气体,从初状态(P ,T )开始,发生一等容变化过程,其压强的变化量△P 与温度变化量△T 的关系为_____________. 3.盖·吕萨克定律(等压变化) (1)一定质量的气体,在压强不变的情况下,温度每升高(或降低)10 C ,增加(或减少)的体积等于它在___________.其数学表达式为_______________或_____________. (2)采用热力学温标时,可表述为:一定质量的气体,在压强不变的情况下,它的体积与热力学温度成______.其数学表达式为____________. (3)推论:一定质量的气体,从初状态(V ,T )开始,发生一等压变化过程,其体积的变化量△V 与温度变化量△T 的关系为_____________. 三.理想气体状态方程 1.理想气体 能够严格遵守___________的气体叫做理想气体.从微观上看,分子的大小可忽略,除碰撞外分子间无___________,理想气体的内能由气体_____和_____决定,与气体_____无关.在___________、__________时,实际气体可看作理想气体. 2.一定质量的理想气体状态方程: 2 2 2111T V P T V P = 3.密度方程: 2 22111ρρT P T P = [重难点阐释]: 一.气体压强的计算

高中物理 范德瓦尔斯方程与真实气体状态研究

实验七 范德瓦尔斯方程与真实气体状态研究 一、实验目的 1. 测定等温线 2. 范德瓦尔斯方程曲线的描绘 3. 观察物质汽液态相变过程 二、实验原理 一般气体,在密度不太高,压力不太大(与大气压比较)和温度不太低(与室温比较)的实验范围内,遵守玻意耳定律、盖·吕赛克定律和查理定律。我们把在任何情况下都遵守上述三条实验定律的气体称为理想气体。对于质量为m ,摩尔质量为M 的理想气体的物态方程为 m PV RT M = (1) 其中,P 为气体的压强,V 为气体的体积,R 为普适气体衡量,T 为热力学温标,单位是开尔文。但真实气体只是在温度不太低,压力不太高的条件下,才能遵守理想气体的状态方程。理想气体的等温线是等轴双曲线,而真实气体的等温线,并非都是等轴双曲线。研究真实气体的等温线,就可了解真实气体偏离理想气体定律的情况,从而对真实气体的性质得到进一步的认识。因此,理想气体方程应用到真实气体,必须考虑到真实气体的特征,予以必要的修正。上世纪以来,许多物理学家先后提出了各种不同的修正意见,建立了各种不同形式的气体状态,其中形式较为简单,物理意义比较清楚的就是范德瓦尔斯方程: ()22v a P V vb vRT V ??+-= ?? ? (2) 式中的b 是考虑到气体分子本身体积的修正量,对于给定的气体,b 是一个恒量,可由实验来测定,一般约等于1摩尔气体分子本身体积的四倍。另一常数a 是由气体分子间的引力引起,决定于气体的性质,可由实验来测定。对于一定量的气体,其摩尔数M m v = 。 图1 CO 2实验等温线 图2 范德瓦尔斯三次方程

范德瓦尔斯方程等温线与真实气体的实验等温线作比较(见图1),二者都有一条临界等温线。在临界等温线以上,二者比较接近;在温度很高时,二者之间没有区别。在临界等温线以下,二者却有显著的区别。范德瓦尔斯等温线的ABCDE 是一个三次曲线,如图2,曲线中BCD 段的斜率为正,意味着体积愈膨胀,压强越大,因而无法平衡。而AB 和DE 段是亚稳态,只可在谨慎的实验条件下才能实现,但极易失稳。真实气体的等温线有一个液化过程,也就是说有一个汽液共存区域,在汽液共存区当体积逐渐减小时,压力基本不变,近似为一水平直线(图2中ACE ),该线被称为汽液共存线,它不能由范德瓦尔斯方程给出,其高度P 可用相平衡条件求得。范德瓦尔斯方程也可以写成: 22 vRT v a P V vb V =-- (3) 公式右边第一项为动理压强P K ,在V →vb 时,P K →∝,反映了原子的不可入性。第二项为内压强P u ,是负的。在温度不太高时,它叠加到前一项,使P-V 曲线在高密度区出现凹陷。在一般实验中这一段曲线(ABCDE )观察不到。 当温度足够高时,上述凹陷不出现,P-V 等温线呈单调下降(近似为理想气体状态曲线)。在这两种情况之间,存在一条临界等温线,其中有一拐点C (见图1),称之为临界点。在拐点K 处曲线的一阶、二阶导数皆为零。所以应有: ()22320P vRT v a T V V V vb ???=-+= ????- (4) ()22324260P vRT v a T V V V vb ???=-= ??-?? (5) 再由范德瓦尔斯方程可得临界点: 温度 8/27K T a R b = (6) 体积 3K V v b = (7) 压强 2/27K P a b = (8) 如果测绘出等温线,则可以从实验曲线中求得临界温度、临界体积、临界压强。并从 (6)(7)(8)公式中可求出范德瓦尔斯方程中的a 、b 修正值,以及实验气体的摩尔数v 。 三、实验仪器: 1、范德瓦尔斯方程真实气体实验仪, 2、恒温水槽, 3、智能数字压力表。

理想气体状态方程式

第1章第零定律与物态方程 一、基本要点公式及其适用条件 1.系统的状态和状态函数及其性质 系统的状态—就是系统物理性质和化学性质的综合表现,它采用系统的宏观性质来描述系统的状态,系统的宏观性质,也称为系统的"状态函数"。 系统的宏观性质(状态函数)—就是由大量(摩尔级)的分子、原子、离子等微观粒子组成的宏观集合体所表现出的集团行为,简称"热力学性质"或“热力学函数”如p、V、T、U、H、S、A、G等。 Z=f(x,y)表示一定量、组成不变的均相系统,其任意宏观性质(Z)是另两个独立宏观性质(x,y)的函数。状态函数Z具有五个数学特征: (1),状态函数改变量只决定于始终态,与变化过程途径无关。 (2),状态函数循环积分为零,这是判断Z是否状态函数的准则之一。 (3),系Z的全微分表达式 (4),系Z的 Euler 规则,即微分次序不影响微分结果。 (5),系Z、x、y满足循环式,亦称循环规则。 2.热力学第零定律即热平衡定律: 当两个物态A和B分别与第三个物体C处于热平衡,则A和B之间也必定彼此处于热平衡。T=t+273.15,T是理想气体绝对温标,以"K"为单位。t是理想气体摄氏温标,以"℃"为单位。 绝对温标与摄氏温标在每一度大小是一样的,只是绝对温标的零度取在摄氏温标的 -273.15℃处,可以看出,有了绝对温标的概念后,只需确定一个固定参考点(pV)0p=0,依国际计量大会决定,这个参考点选取在纯水三相点,并人为规定其温度正好等于 273.16K。 3.理想气态方程及其衍生式为: ;式中p、V、T、n单位分别为 Pa、m3、K、mol;R=8.314J·mol-1·K-1,V m为气体摩尔体积,单位为 m3·mol-1,ρ为密度单位kg·m-3,M 为

气体状态方程

推导 宁业栋

摘要:气体状态方程是化学学习中的一个重要工具,在高中的学习中主要使用的是理想气体方程。然而在现实生活中更加实用的是实际气体方程,又被称为Van der waals方程。本文通过对理想气体方程和Van der waals方程的推导探究对于气体状态造成影响的因素。 关键词:气体状态方程影响因素推导历史

一、理想气体状态方程的历史

文艺复兴后期,科学界开始其启蒙运动。在化学方面,化学成为了一门独立的学科,而不是炼金术士和炼丹术士的工具。化学的“文艺复兴”主要以气体问题的研究为主。当时人们并不知道气体的微观构成,但对于气体的宏观行为的研究因此进行了几个世纪。1662年,英国物理学家Robert Boyle根据实验结果提出了Boyle定律*。18世纪,法国科学家Amontons Grillaume和Jacque Alexandre Cesar Charles 均先后发现:一定质量的气体,在保持压强不变的情况下,温度每升高(降低)1℃,增加(减小)的提及等于它在0℃时的体积的1/273。19世纪初,法国科学家Gay-Lussac经多种气体的实验,终于确定了这一关系,后人称为Gay定律。这个Gay总结了他和基友Boyle和Charles的成果,总结出了一个让高中生头疼的方程式,就是 PV=nRT 注释: *:Boyle定律为P1×V1=P2×V2

二、理想气体 假设有一种气体,同时它的分子只有位置而不占提及,是一个质点;且分子间没有互相的吸引力,不遵循万有引力定律,分子之间和容器之间发生的碰撞不会造成动能的损失。这种气体就被称为理想气体。 这种气体明显是不存在的,只是人为规定的一种气体模型。因为理想气体将气体状态问题简化了许多,所以在中学阶段我们使用理想气体模型进行气体状态的研究。 在研究中发现,在高温低压的情况下某些气体的性质可以接近理想气体。因为在高温低压的条件下,分子间的间距极大,一方面可以忽略气体分子自身的体积,另一方面也使分子间的作用力微乎其微。所以尽管理想气体是一种人为模型,不过在现实的研究中仍然有意义,尤其对于中学阶段的粗略研究。

理想气体状态方程练习题

选修3-3理想气体状态方程练习题 学号班级姓名 1.关于理想气体,下列说法正确的是( ) A.理想气体能严格遵守气体实验定律 B.实际气体在温度不太高、压强不太大的情况下,可看成理想气体 C.实际气体在温度不太低、压强不太大的情况下,可看成理想气体 D.所有的实际气体任何情况下,都可以看成理想气体 2.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p1、V1、T1,在另一平衡状态下的压强、体积和温度分别为p2、V2、T2,下列关系正确的是( ) A.p1=p2,V1=2V2,T1=1 2 T2 B.p1=p2,V1= 1 2 V2,T1=2T2 C.p1=2p2,V1=2V2,T1=2T2 D.p1=2p2,V1=V2,T1=2T2 3.一定质量的理想气体,经历一膨胀过程,这一过程可以用下图上 的直线ABC来表示,在A、B、C三个状态上,气体的温度T A、T B、T C相比 较,大小关系为( ) A.T B=T A=T C B.T A>T B>T C C.T B>T A=T C D.T B

5 有两个容积相等的容器,里面盛有同种气体,用一段水平玻璃管把它们连接起来。在玻璃管的正中央有一段水银柱,当一个容器中气体的温度是0℃,另一个容器中气体的温度是20℃时,水银柱保持静止。如果使两容器中气体的温度都升高10℃,管中的水银柱会不会移动?如果移动的话,向哪个方向移动? 6一艘位于水面下200m 深处的潜水艇,艇上有一个容积为3 2m 的贮气筒,筒内贮有压缩空气,将筒内一部分空气压入水箱(水箱有排水孔和海水相连),排出海水3 10m ,此时筒内剩余气体的压强是95atm 。设在排水过程中温度不变,求贮气钢筒里原来压缩空气的压强。(计算时 可取Pa atm 5 101=,海水密度2 3 3 /10,/10s m g m kg ==ρ)

理想气体状态方程

理想气体状态方程 理想气体状态方程(ideal gas,equation of state of),也称理想气体定律或克拉佩龙方程,描述理想气体状态变化规律的方程。质量为m,,摩尔质量为M的理想气体,其状态参量压强p、体积V和绝对温度T之间的函数关系为pV=mRT/M=nRT 式中ρ和n分别是理想气体的摩尔质量和物质的量;R是气体常量。对于混合理想气体,其压强p是各组成部分的分压强p1、p2、……之和,故 pV=(p1+p2+……)V=(n1+n2+……)RT,式中n1、n2、……是各组成部分的摩尔数。 以上两式是理想气体和混合理想气体的状态方程,可由理想气体严格遵循的气体实验定律得出,也可根据理想气体的微观模型,由气体动理论导出。在压强为几个大气压以下时,各种实际气体近似遵循理想气体状态方程,压强越低,符合越好,在压强趋于零的极限下,严格遵循。 pV=nRT(克拉伯龙方程[1]) p为气体压强,单位Pa。V为气体体积,单位m3。n为气体的物质的量,单位mol,T为体系温度,单位K。 R为比例系数,数值不同状况下有所不同,单位是J/(mol·K) 在摩尔表示的状态方程中,R为比例常数,对任意理想气体而言,R是一定的,约为8.31441±0.00026J/(mol·K)。 如果采用质量表示状态方程,pV=mrT,此时r是和气体种类有关系的,r=R/M,M为此气体的平均分子量. 经验定律 (1)玻意耳定律(玻—马定律) 当n,T一定时V,p成反比,即V∝(1/p)① (2)查理定律 当n,V一定时p,T成正比,即p∝T ② (3)盖-吕萨克定律 当n,p一定时V,T成正比,即V∝T ③ (4)阿伏伽德罗定律 当T,p一定时V,n成正比,即V∝n ④ 由①②③④得 V∝(nT/p)⑤ 将⑤加上比例系数R得 V=(nRT)/p 即pV=nRT 实际气体中的问题当理想气体状态方程运用于实际气体时会有所偏差,因为理想气体的基本假设在实际气体中并不成立。如实验测定 1 mol乙炔在20℃、101kPa 时,体积为24.1 dm,,而同样在20℃时,在842 kPa下,体积为0.114 dm,,它们相差很多,这是因为,它不是理想气体所致。 一般来说,沸点低的气体在较高的温度和较低的压力时,更接近理想气体,如氧气的沸点为-183℃、氢气沸点为-253℃,它们在常温常压下摩尔体积与理想值仅相差

实际气体状态方程

实际气体状态方程式 1.范德瓦尔方程式 2.R-K方程(*) 3.维里方程(*) …范德瓦尔方程式 按照理想气体状态方程式,定质量气体等温变化时p V=常数(或pv=常数),但实际气体 仅在压力较低,温度较高的情况下近似满足此关系。试验证明,气体的压力愈高、温度愈低,这一偏差愈大。因此需要适用于实际气体的状态方程式来描述气体p-v-T之间的关系。 最早的实际气体状态方程式是1873年范德瓦尔(Van der Wals)提出的方程式。他针对理想气体的两个基本假设,对理想气体状态方程式进行了修正,提出了实际气体的范德瓦尔方程式: (2-17) 式中的常数a和b叫做范德瓦尔常数,与分子的大小和相互作用力有关,随物质不同而异, 可由实验方法确定。是考虑到分子之间吸引力的修正值,b是考虑到分子本身所占有体积的修正值, V m为比摩尔体积,即1mol气体的体积。 范德瓦尔方程式是从理论分析得出的。如果把式(2-17)与理想气体状态方程式 作一比较即可看出,比摩尔体积V m愈大,则两者之间的差别就愈小。随着压力的降低与温度的升高,气体比体积增大。因此,当压力愈低,温度愈高时,实际气体的性质愈接近于理想气体。 范德瓦尔方程式比理想气体状态方程式有了显著的进步,对于离液态颇远的气体,即使压力很高,也能得到较准确的结果,但对于较易液化的气体就显得不很准确,对于接近液态的气体,例如水蒸汽,即使在不怎么高的压力下已可见到很显著的误差。范德瓦尔方程式仍不能在量上正确反映实际气体状态参数间的关系,不宜作为工程计算的依据。范德瓦尔方程式的价值在于能近似地反映实际气体性质方面的特征,并为实际气体状态方程式的研究开拓了道路。 百多年来,有不少的学者,通过长期的理论分析和实验研究,提出了多种不同的状态方程式。如R-K方程、BWR方程、M-H方程、维里型方程,等等。这些状态方程式可归结为理论型、半经验型和通用型三类,但由于各种不同气体存在着不同的分子间聚集态,分子间力的变化又是错综复杂的,故很难用既合理又简单的方程适合所有物质和不同聚集态。所以,每一个方程式都有其一定的应用范围。 工程上为了求得未经详细研究的工质的热力学性质,目前常运用对应态原理,通过少量实验数据,进行估算,在一定程度上可以得到相当满意的近似结果。

实际气体状态方程

5.3 实际气体状态方程 研究实际气体性质首先要求得出精确的状态方程式。对实际气体状态方程己作了百余年的研究,导得了许多不同形式的方程,至今仍在不断地发展和改进。得出状态方程有两种方法。一是直接利用由实验得到的各种热系数数据,按热力学关系组成状态方程。这种方法己在4-4节作过简单的介绍;二是从理论分析出发,考虑气体分子运动的行为而对理想气体状态方程引入一些常数加以修正,得出方程的形式,引入常数的值则根据实验数据确定。这一节着重介绍这一种方法。 5.3.1 范德瓦尔斯状态方程 1873年范德瓦尔斯针对理想气体模型的两个假定(分子自身不占有体积;分子之间不存在相互作用力),考虑了分子自身占有的体积和分子间的相互作用力,对理想气体状态方程进行了修正。分子自身占有的体积使其自由活动空间减小,在相同温度下分子撞击容器壁的频率增加,因而压力相应增大。 如果用表示每摩尔气体分子自由活动的空间,参照理想气体状态方程,气体压力应为。另一方面,分子间的相互吸引力使分子撞击容器壁面的力量减弱,从而使气体压力减小。压力减小量与一定体积内撞击器壁的分子数成正比,又与吸引它们的分子数成正比,这两个分子数都

与气体的密度成正比。因此,压力减小量应与密度的平方成正比,也就是与摩尔体积的平方成反比,用表示。这样考虑上述两种作用后,气体的压力为 或写成 (5-24) 这就是范德瓦尔斯导出的状态方程式,称为范德瓦尔斯状态方程式。它在理想气体状态方程的基础上又引入两个常数:; 做范德瓦尔斯常数,其值可由实验测定的数据确定。 范德瓦尔斯方程的引出,是从理论分析出发导出气体状态方程的一个典型例子。范德瓦尔斯方程只不过是用两个常数很粗略地考虑了气体内分子运 动的行为,所以还不能精确地表述气体的关系。但是,它为用理论方法研究状态方程开拓了道路。特别是它在定性上能反映出物质气—液相

理想气体状态方程典型例题解析

理想气体状态方程(1)·典型例题解析 【例1】钢筒内装有3kg 气体,当温度为-23℃,压强为4atm ,如果用掉1kg 气体后温度升高到27℃,求筒内气体压强? 解析:以2kg 气体为研究对象,设钢筒容积为V ,初状态时,p 1 =,= ,=,末状态时,=,=,4 atm V V T 250 K V V T 300K 112223 p 2=? 由理想气体的状态方程=得:==×××=p V T p V T p V T V T 111222 1122123004p 3250atm 3.2atm 2 点拨:解决此题的关键是如何选取研究对象,方法较多.研究对象选择的好,解答会变得简便. 【例2】如图13-52所示,用销钉将活塞固定,A 、B 两部分体积比为2∶1,开始时,A 中温度为127℃,压强为1.8 atm ,B 中温度为27℃,压强为1.2atm .将销钉拔掉,活塞在筒内无摩擦滑动,且不漏气,最后温度均为27℃,活塞停止,求气体的压强. 解析:对A 部分气体:p 1=1.8atm ,V 1=2V ,T 1=400K , p p V T 300K 111′=,′,′= 对B 部分气体:p 2=1.2 atm ,V 2=V ,T 2=300K ,p 2′=p ,V 2′,T 2′=300K 根据理想气体的状态方程:=得:p V T p V T 111222

对:·=……①对:·=……②A B p V T pV T p V T pV T 1111 22222'''' V 1′+V 2′=3V ………………③ 将数据代入联解①②③得p =1.3atm . 点拨:此题中活塞无摩擦移动后停止,A 、B 部分气体压强相等,这是隐含条件,两部分气体还受到容器的几何条件约束.发掘题中的隐含条件是顺利解题的关键. 【例3】一定质量的理想气体处于某一初始状态,若要使它经历两个状态变化过程,压强仍回到初始的数值,则下列过程可以实现的有: [ ] A .先等容降温,再等温压缩 B .先等容降温,再等温膨胀 C .先等容升温,再等温膨胀 D .先等温膨胀,再等容升温 点拨:由于一定质量的理想气体,=可先设一初态、、pV T C p V 00 T 0,再根据选项中各量的变化,看是否可回到p 0,也可借助图象,从图象上直观地看出选项是否符合题意. 参考答案:ACD 【例4】某容器内装有氮气,当温度为273℃时,其压强为2×10-10Pa ,试估算容器中1 cm 3气体中的分子数和分子间的平均距离. 点拨:估算在非标准状态下,气体的分子密度和分子间的平均距离,可依据在标准状况下的分子密度,应用理想气体的密度方程求解,显得容易. 参考答案:n =2.7×104 d =3.3×10-2cm 跟踪反馈 1.一定质量的理想气体,当温度为127℃时,压强为4atm ,当温度变为27℃时,压强为2 atm ,在此状态变化过程中: [ ] A .气体密度不变 B .气体的体积增大

高中物理热学 理想气体状态方程试题及答案

高中物理热学-- 理想气体状态方程 试题及答案 一、单选题 1.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p 1、V 1、T 1,在另一平衡状态下的压强、体积和温度分别为p 2、V 2、T 2,下列关系正确的是 A .p 1 =p 2,V 1=2V 2,T 1= 21T 2 B .p 1 =p 2,V 1=21 V 2,T 1= 2T 2 C .p 1 =2p 2,V 1=2V 2,T 1= 2T 2 D .p 1 =2p 2,V 1=V 2,T 1= 2T 2 2.已知理想气体的内能与温度成正比。如图所示的实线为汽缸内一定 质量 的理想气体由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的 内能 A.先增大后减小 B.先减小后增大 C.单调变化 D.保持不变 3.地面附近有一正在上升的空气团,它与外界的热交热忽略不计.已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能) A.体积减小,温度降低 B.体积减小,温度不变 C.体积增大,温度降低 D.体积增大,温度不变 4.下列说法正确的是 A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力 B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量 C. 气体分子热运动的平均动能减少,气体的压强一定减小 D. 单位面积的气体分子数增加,气体的压强一定增大 5.气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的 A .温度和体积 B .体积和压强 C .温度和压强 D .压强和温度 6.带有活塞的汽缸内封闭一定量的理想气体。气体开始处于状态a ,然后经过过程ab 到达状态b 或进过过程ac 到状态c ,b 、c 状态温度相同,如V-T 图所示。设气体在状态b 和状态c 的压强分别为Pb 、和PC ,在过程ab 和ac 中吸收的热量分别为Qab 和Qac ,则 A. Pb >Pc ,Qab>Qac B. Pb >Pc ,QabQac D. Pb

气体状态方程的发展及应用

气体状态方程的发展及应用 (方源成楚旸陈其伟张少斐北京大学化学与分子工程学院100871) 摘要:气体状态方程是描述宏观气体p-v-t行为的解析式方程,在科学研究及工业生产方面发挥着重要的作用。本文通过对气体状态方程历史的回顾与各种气体状态方程的分析和评价,给出了判断气体方程如何应用之标准,并对气体状态方程的研究应用方向作出了判断。 关键词:气体状态方程历史应用判断标准 1.气体状态方程的历史 文艺复兴后期,科学界开始其启蒙思想运动。化学方面,这一运动以气体问题研究为主。当时的人们并不清楚气体的微观构成,但对于气体宏观行为的研究从此进行了几个世纪。1 662年,英物理学家Robert Boyle根据实验结果提出Boyle定律。18世纪,法国物理学家A montons Grillaume和Jacques Alexandre Cesar Charles均先后发现:一定质量的气体,在保持压强不变的情况下,温度每升高(或降低)1℃,增加(或减小)的体积等于它在0℃时 体积的1/273 。1800年左右,法国另一位化学家Gay-Lussac经多种气体的实验,最终确立 了这一关系,后世称之为Gay-Lussac定律。19世纪中期,法国科学家Clapeyron综合Boyl e定律与Charles- Gay-Lussac定律,把描述气体状态的三个参量归并于一个方程,即PV/T= C(恒量)。后于1874年经Менделе?ев推广,人们开始普遍使用现行理想气体状态方程: PV = nRT 为了解释这些从实验里总结出的经验规律,Boyle曾提出两种微粒模型:第一种模型认为气体粒子相互挤在一起,他们每一个都具有弹性;第二种模型认为气体粒子并非挤在一起,而是处于剧烈运动之中。Daniel Bernoulli于1738年给上述第二种模型一个更精确的说明,并由此提出了气体压强的碰撞理论,很好地解释了Boyle定律。但这一理论在当时并未获得应有的重视。约100年后,一位英国杂志编辑赫拉派斯独立地提出Bernoulli曾提出过的气 体理论。1848年,Joule在赫拉派斯的工作基础上,测量了许多气体的分子速度,在他的推动下,这一理论获得了越来越多人的关注,是为气体分子运动论之先驱。此后不久,Rudol f Clausius引入统计概念,精确解释了Boyle定律与Gay-Lussac定律。伴随着众多气体定律与气体模型的提出,人们对气体的研究进一步发展,分子运动论越来越成熟。它基于从分子微观运动出发,运用统计力学研究气体的方法。根据这个理论理想,气体状态方程得到了很好的解释。 此外,人们根据这一理论的研究方法,开始尝试对实际气体进行描述。于是,众多的实际气体状态方程被提出。其中最早的为1873年提出的范德瓦尔斯方程式(Van der Waals Eq uation of State)。二十世纪上半叶,量子力学与统计力学的飞速发展又为纯理论性的气体状态方程——维里方程的产生与成熟提供了可能。与此同时,为提高状态方程结果的精确度,人们不断引入经验参数,最著名参数方程的是1928年提出的Beattie-Bridge man方程式与1

理想气体状态方程四种情况

理想气体状态方程 1、如图所示,U形管右管横截面积为左管2倍,管内水银在左管内封闭了一段长为26cm、温度为 280K的空气柱,左右两管水银面高度差为36cm,大气压为76cm Hg.现向右管缓慢补充水银. ①若保持左管内气体的温度不变,当左管空气柱长度变为20cm时,左管内气体的压强为多大? ②在①条件下,停止补充水银,若给左管的气体加热,使管内气柱长度恢复到26cm,则左管内气 体的温度为多少? 2、如图所示,两端开口、粗细均匀的足够长的玻璃管插在水银槽中,管的上部有一定长度的 水银,两段空气柱被封闭在左右两侧的竖直管中。开启上部连通左右水银的阀门A,当温度为 300 K平衡时水银的位置如图(h1=h2=5 cm,L1=50 cm),大气压为75 cmHg。求: (1)右管内空气柱的长度L2; (2)关闭阀门A,当温度升至405 K时,左侧竖直管内气柱的长度L3。 3、如图所示,截面均匀的U形玻璃细管两端都开口,玻璃管足够长,管内有两段水银柱封闭着一段空气柱,若气柱温度是270C时,空气柱在U形管的左侧,A、B两点之间封闭着的空气柱长为15cm,U形管底边长CD=10cm,AC高为 5cm。已知此时的大气压强为75cmHg。 (1)若保持气体的温度不变,从U形管左侧管口处缓慢地再注入25cm长的水银柱,则管内空 气柱长度为多少?某同学是这样解的: 对AB部分气体,初态p1=100cmHg,V1=15S cm3,末态p2=125cmHg,V2=LS cm3, 则由玻意耳定律p1V1=p2V2解得管内空气柱长度L=12cm。 以上解法是否正确,请作出判断并说明理由, 如不正确则还须求出此时管内空气柱的实际长度为多少? (2)为了使这段空气柱长度恢复到15cm,且回到A、B两点之间,可以向U形管中再注入一些水银,且改变气体的温度。问:应从哪一侧管口注入多长的水银柱?气体的温度变为多少? 4、一圆柱形气缸,质量M为10 kg,总长度L为40 cm,内有一厚度不计的活塞,质量m为5 kg,截 面积S为50 cm2,活塞与气缸壁间摩擦不计,但不漏气,当外界大气压强p0为1′105Pa,温度t0为7° C时,如果用绳子系住活塞将气缸悬挂起来,如图所示,气缸内气体柱的高L1为35 cm,g取 10 m/s2.求:①此时气缸内气体的压强;②当温度升高到多少摄氏度时,活塞与气缸将分离. 5、如图所示,两个绝热、光滑、不漏气的活塞A和B将气缸内的理想气体分隔成甲、乙两部分, 气缸的横截面积为S = 500 cm2。开始时,甲、乙两部分气体的压强均为1 atm(标准大气压)、 温度均为27 ℃,甲的体积为V1 = 20 L,乙的体积为V2 = 10 L。现保持甲气体温度不变而使 乙气体升温到127 ℃,若要使活塞B仍停在原位置,则活塞A应向右推多大距离? 6、如图所示,一导热性能良好、内壁光滑的气缸竖直放置,在距气缸底部l=36cm处有一与气缸固定 连接的卡环,活塞与气缸底部之间封闭了一定质量的气体.当气体的温度T0=300K、大气压强p0=1.0 ×105Pa时,活塞与气缸底部之间的距离l0=30cm,不计活塞的质量和厚度.现对气缸加热,使活塞缓 慢上升,求: ①活塞刚到卡环处时封闭气体的温度T1.②封闭气体温度升高到T2=540K时的压强p2. 7、使一定质量的理想气体的状态按图中箭头所示的顺序变化,图线 BC是一段以纵轴和横轴为渐近线的双曲线。 (1)已知气体在状态A的温度T A=300K,问气体在状态B、C和D的温度 各是多大? (2)将上述气体变化过程在V-T中表示出来(图中要标明A、B、C、D 四点,并且要画箭头表示变化方向)。

范德瓦尔斯气体方程模拟

电子科技大学 大物实验报告 姓名:学号: 专业: 实验项目:一、对真实二氧化碳气体p-v性质探究 二、模拟磁滞回线 指导教师: 2013年 1月 2日

一、实验项目名称 对真实二氧化碳气体p-v 性质探究 二、实验原理 一般气体,在密度不太高,压力不太大(与大气压比较)和温度不太低(与室温比较)的实验范围内,遵守玻意耳定律、盖·吕赛克定律和查理定律。我们把在任何情况下都遵守上述三条实验定律的气体称为理想气体。对于质量为m ,摩尔质量为M 的理想气体的物态方程为 m PV RT M = R 为普适气体衡量。但真实气体只是在温度不太低,压力不太高的条件下,才能遵守理想气体的状态方程。理想气体的等温线是等轴双曲线,而真实气体的等温线,并非都是等轴双曲线。研究真实气体的等温线,就可了解真实气体偏离理想气体定律的情况,从而对真实气体的性质得到进一步的认识。因此,理想气体方程应用到真实气体,必须考虑到真实气体的特征,予以必要的修正。上世纪以来,许多物理学家先后提出了各种不同的修正意见,建立了各种不同形式的气体状态,其中形式较为简单,物理意义比较清楚的就是范德瓦尔斯方程: ()22v a P V vb vRT V ?? +-= ?? ? 式中的b 是考虑到气体分子本身体积的修正量,对于给定的气体,b 是一个 恒量,可由实验来测定,一般约等于1摩尔气体分子本身体积的四倍。另一常数a 是由气体分子间的引力引起,决定于气体的性质,可由实验来测定。对于一定量的气体,其摩尔数M m v = 。 三、实验内容 (1)绘制真实气体在不同温度及参数下得p-v 图 (2)学习用mathcad 绘制三维图形 四、实验数据 (1) 真实二氧化碳气体在不同温度下的p —v 图:

《理想气体的状态方程》(2016学案)

8.3《理想气体的状态方程》导学案 1.在任何温度、任何压强下都遵从________________的气体叫做理想气体.事实上,玻意耳定律、查理定律、盖—吕萨克定律等气体实验定律,都是在压强____________、温度 ____________的条件下总结出来的.当压强__________、温度__________时,由上述定律计算的结果与实验测量结果有很大的差别.实际气体在温度____________、压强____________时,可近似看做理想气体. 2.一定质量的理想气体发生状态变化时,它的________跟________的乘积与______________的比值保持不变,这种关系称为理想气体的状态方程. 3.用p、V、T分别表示气体某状态的压强、体积和温度,理想气体状态方程的表达式为:________________________.用p1、V1、T1分别表示初态压强、体积和热力学温度,p2、V2、T2分别表示末态压强、体积和热力学温度,则理想气体状态方程表达式为: ____________________. 4.关于理想气体,下列说法正确的是( ) A.理想气体也不能严格地遵守气体实验定律 B.实际气体在温度不太高、压强不太小的情况下,可看成理想气体 C.实际气体在温度不太低、压强不太大的情况下,可看成理想气体 D.所有的实际气体在任何情况下,都可以看成理想气体 5.对于一定质量的理想气体,下列状态变化中可能的是( ) A.使气体体积增加而同时温度降低 B.使气体温度升高,体积不变、压强减小C.使气体温度不变,而压强、体积同时增大 D.使气体温度升高,压强减小,体积减小6.下列叙述正确的是( ) A.一定质量的某种气体,当温度和体积都保持不变时,它的压强一定不会发生变化 B.一定质量的某种气体,当其体积增大时,压强不可能增大 C.一定质量的某种气体,当其温度升高时,体积一定增大 D.一定质量的某种气体的压强增大,温度降低,这种气体的密度一定增大 【概念规律练】 知识点一理想气体的状态方程 1.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p1、V1、T1,在另一平衡状态下的压强、体积和温度分别为p2、V2、T2,下列关系中正确的是( ) A.p1=p2,V1=2V2,T1=1 2 T 2 B.p1=p2,V1= 1 2 V 2 ,T1=2T2 C.p1=2p2,V1=2V2,T1=2T2 D.p1=2p2,V1=V2,T1=2T2 2.对一定质量的理想气体( ) A.若保持气体的温度不变,则当气体的压强减小时,气体的体积一定会增大B.若保持气体的压强不变,则当气体的温度减小时,气体的体积一定会增大C.若保持气体的体积不变,则当气体的温度减小时,气体的压强一定会增大D.若保持气体的温度和压强都不变,则气体的体积一定不变 知识点二理想气体状态变化图象 3.如图1所示,A、B两点代表一定质量理想气体的两个不同的状态,状态A 的温度为T A,状态B的温度为T B.由图可知( ) A.T A=2T B B.T B=4T A C.T B=6T A D.T B=8T A 4.一定质量的理想气体经历了如图2所示的一系列过程,ab、bc、cd和da

范德华方程

范德华方程 范德华方程范德华方程是范德瓦耳斯方程的另一种翻译,简称范氏方程,是荷兰物理学家范德瓦耳斯(van der Waals,又译“范德华”、“凡德瓦耳”)于1873年提出的一种实际气体状态方程。 1范德华方程 范德华方程是范德瓦耳斯方程的另一种翻译,简称范氏方程,是荷兰物理学家范德瓦耳斯(van der Waals,又译“范德华”、“凡德瓦耳”)于1873年提出的一种实际气体状态方程。范氏方程是对理想气体状态方程的一种改进,特点在于将被理想气体模型所忽略的的气体分子自身大小和分子之间的相互作用力考虑进来,以便更好地描述气体的宏观物理性质。 2适用范围 范氏方程对气-液临界温度以上流体性质的描写优于理想气体方程。对温度稍低于临界温度的液体和低压气体也有较合理的描述。 但是,当描述对象处于状态参量空间(P,V,T)中气液相变区(即正在发生气液转变)时,对于固定的温度,气相的压强恒为所在温度下的饱和蒸气压,即不再随体积V(严格地说应该是单位质量气体占用的体积,即比容)变化而变化,所以这种情况下范氏方程不再适用。 3与理想气体方程模拟结果的比较 3.1低压状况 在气体压强不太高的情况下,以下事实成立: 排斥体积b 的影响相对V 而言极小,可以忽略;以二氧化碳(CO2)为例,在标准状况(0°C,1标准大气压)下,一摩尔CO2体积V 为22414 cm3,而相应的b= 43 cm3,比V 小3个数量级; 分子间的距离足够大,a/V2 项完全可以视为0;譬如在一大气压下二氧化碳气体的a/V2 值只有7‰。 所以此时理想气体方程是范氏方程(也是对实际气体行为的)的一个良好近似。 分别用理想气体方程和范德瓦耳斯方程模拟的二氧化碳气体70°C时的p-V等温线

理想气体状态方程典型例题解析

理想气体状态方程·典型例题解析 【例1】某房间的容积为20m 3,在温度为17℃,大气压强为74 cm Hg 时,室内空气质量为25kg ,则当温度升高到27℃,大气压强变为76 cm Hg 时,室内空气的质量为多少千克? 解析:以房间内的空气为研究对象,是属于变质量问题,应用克拉珀龙方程求解,设原质量为m ,变化后的质量为m ′,由克拉珀龙方程 pV RT =可得:m M m m m m 25kg 24.81kg =……①′=……②②÷①得:=∴′==×××=.MpV RT Mp V RT m m p T p T p T p T 122 211221127629074300 点拨:对于变质量的问题,应用克拉珀龙方程求解的比较简单. 【例2】向汽车轮胎充气,已知轮胎内原有空气的压强为1.5个大气压,温度为20℃,体积为20L ,充气后,轮胎内空气压强增大为7.5个大气压,温度升为25℃,若充入的空气温度为20℃,压强为1个大气压,则需充入多少升这样的空气(设轮胎体积不变). 解析:以充气后轮胎内的气体为研究对象,这些气体是由原有部分加上充入部分气体所混合构成. 轮胎内原有气体的状态为:p 1=1.5 atm ,T 1=293K ,V 1=20L . 需充入空气的状态为:p 2=1atm ,T 2=293K ,V 2=? 充气后混合气体状态为:p =7.5atm ,T =298K ,V =20L 由混合气体的状态方程:+=得:p V T p V T pV T 111222 V (pV T )(7.520298)117.5(L)2=-·=×-××=p V T T p 1112215302932931 . 点拨:凡遇到一定质量的气体由不同状态的几部分合成时,可考虑用混合气体的状态方程解决. 【例3】已知空气的平均摩尔质量为2.9×10-2 kg/mol ,试估算室温下,空气的密度. 点拨:利用克拉珀龙方程=及密度公式ρ=可得ρ=, pV RT m M m V pM RT

相关文档