文档库 最新最全的文档下载
当前位置:文档库 › RNA二级结构预测中动态规划的优化和有效并行

RNA二级结构预测中动态规划的优化和有效并行

RNA二级结构预测中动态规划的优化和有效并行
RNA二级结构预测中动态规划的优化和有效并行

动态规划之-0-1背包问题及改进

动态规划之-0-1背包问题及改进

有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。在选择装入背包的物品时,对于每种物品i,只能选择装包或不装包,不能装入多次,也不能部分装入,因此成为0-1背包问题。 形式化描述为:给定n个物品,背包容量C >0,重量第i件物品的重量w[i]>0, 价值v[i] >0 , 1≤i≤n.要求找一n元向量(X1,X2,…,X n,), X i∈{0,1}, 使得∑(w[i] * Xi)≤C,且∑ v[i] * Xi达最大.即一个特殊的整数规划问题。 数学描述为: 求解最优值:

设最优值m(i,j)为背包容量为j、可选择物品为i,i+1,……,n时的最优值(装入包的最大价值)。所以原问题的解为m(1,C) 将原问题分解为其子结构来求解。要求原问题的解m(1,C),可从m(n,C),m(n-1,C),m(n-2,C).....来依次求解,即可装包物品分别为(物品n)、(物品n-1,n)、(物品n-2,n-1,n)、……、(物品1,物品2,……物品n-1,物品n)。最后求出的值即为最优值m(1,C)。 若求m(i,j),此时已经求出m(i+1,j),即第i+1个物品放入和不放入时这二者的最大值。 对于此时背包剩余容量j=0,1,2,3……C,分两种情况: (1)当w[i] > j,即第i个物品重量大于背包容量j时,m(i,j)=m(i+1,j) (2)当w[i] <= j,即第i个物品重量不大于背包容量j时,这时要判断物品i放入和不放入对m的影响。 若不放入物品i,则此时m(i,j)=m(i+1,j) 若放入物品i,此时背包

关于动态规划方法的最优消费路径

关于动态规划方法的最优消费路径有些学者从微观经济理论的角度探索消费和投资的最优比率。例如,Phelps构建了不确定收入下的最优消费率[2 ]。基于这一模型,Me r t o n以布朗运动模拟不确定收益,利用动态规划建模的方式,求出在连续时间假设下获得最大消费效用的消费和资产投资组合[3 ]。然而M e r t o n的模型采用了P r a t t的绝对风险厌恶度(absolute risk aversion)[4], 即假设投资者的风险偏好是和年龄、财富无关的常数,从而把家庭总财富比率设计成常数。为了改进过于严格的常系数风险厌恶假设,F a r h i和Pan — ageas假设投资者可以通过控制退休时间来调整劳动供给,从而实现最优消费和投资[5]。另外有些学者拓展了M e F t o n等人的模型,如Ilakansso n和Ri c h a r d研究了存在保险时的生命周期最优消费[6 ][ 7 ]; Karat z a s使用鞅方法研究了个人如何选择消费率来实现消费和财富效用最大化[8 ]; B o d i e等人探讨了退休期间的最优消费投资问题[9]。有些学者则从宏观经济学的角度阐述消费和投资对消费效用最大化的影响。李嘉图的古典消费理论强调了消费对经济的刺激。凯恩斯绝对收入假说认为消费主要取决于当期绝对收入,平均消费倾向(APC)随收入增加而减少。按此假说,一战后,美国人民收入增加,储蓄应随之增加。但是,K u z n e t s实证研究发现战后储蓄并未增加,长期A P C稳定[10]。为解析上述矛盾现象,D u esenberr y提出相对收入假说,家庭会比较其他家庭的收入, 即相对水平,来决定自己的消费水平[1 1 ] ( P 3 )。相对收入假说的缺陷在于家庭的消费是短视行为,没有考虑未来收入。

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20 世纪30~40 年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943 年一直算到1947 年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学" 。 从20 世纪60 年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

算法合集之《动态规划算法的优化技巧》

动态规划算法的优化技巧 福州第三中学毛子青 [关键词] 动态规划、时间复杂度、优化、状态 [摘要] 动态规划是信息学竞赛中一种常用的程序设计方法,本文着重讨论了运用动态规划思想解题时时间效率的优化。全文分为四个部分,首先讨论了动态规划时间效率优化的可行性和必要性,接着给出了动态规划时间复杂度的决定因素,然后分别阐述了对各个决定因素的优化方法,最后总结全文 [正文] 一、引言 动态规划是一种重要的程序设计方法,在信息学竞赛中具有广泛的应用。 使用动态规划方法解题,对于不少问题具有空间耗费大、时间效率高的特点,因此人们在研究动态规划解题时更多的注意空间复杂度的优化,运用各种技巧将空间需求控制在软硬件可以承受的范围之内。但是,也有一部分问题在使用动态规划思想解题时,时间效率并不能满足要求,而且算法仍然存在优化的余地,这时,就需要考虑时间效率的优化。 本文讨论的是在确定使用动态规划思想解题的情况下,对原有的动态规划解法的优化,以求降低算法的时间复杂度,使其能够适用于更大的规模。 二、动态规划时间复杂度的分析 使用动态规划方法解题,对于不少问题之所以具有较高的时间效率,关键在于它减少了“冗余”。所谓“冗余”,就是指不必要的计算或重复计算部分,算法的冗余程度是决定算法效率的关键。动态规划在将问题规模不断缩小的同时,记录已经求解过的子问题的解,充分利用求解结果,避免了反复求解同一子问题的现象,从而减少了冗余。 但是,动态规划求解问题时,仍然存在冗余。它主要包括:求解无用的子问题,对结果无意义的引用等等。 下面给出动态规划时间复杂度的决定因素: 时间复杂度=状态总数*每个状态转移的状态数*每次状态转移的时间[1] 下文就将分别讨论对这三个因素的优化。这里需要指出的是:这三者之间不是相互独立的,而是相互联系,矛盾而统一的。有时,实现了某个因素的优化,另外两个因素也随之得到了优化;有时,实现某个因素的优化却要以增大另一因素为代价。因此,这就要求我们在优化时,坚持“全局观”,实现三者的平衡。 三、动态规划时间效率的优化 3.1 减少状态总数 我们知道,动态规划的求解过程实际上就是计算所有状态值的过程,因此状态的规模直接影响到算法的时间效率。所以,减少状态总数是动态规划优化的重要部分,本节将讨论减少状态总数的一些方法。

基于动态规划的面试时间优化模型概述

2015年天津商业大学数学建模竞赛 承诺书 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、 电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨 论与赛题有关的问题。 我们明白,抄袭不人的成果是违反竞赛规则的, 假如引用不人的成 果或其他公开的资料(包括网上查到的资料),必须按照规定的参考 文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。 如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B中选择一项填写): B 参赛队员 (打印并签名) :1. 叶恒扬 2. 施艺敏 3. 张一鸣 日期: 2015 年 4 月 27 日

基于动态规划的面试时刻优化模型 摘要 现代信息社会中,求职面试差不多成为就业的一个重要环节。科学有效的组织和安排不管对面试者依旧对组织单位、用人单位差不多上省时省力、节略成本的。因此如何紧凑、高效、省时地安排面试者按顺序完成面试具有重要研究意义。 本文综合运用运筹学、统计学、经济学、平面设计、计算机软件等知识,通过建立数学模型来求解面试的最短时刻,进一步规划最优的面试流程。 针对问题一,通过分析给定的面试时期顺序和不同意插队等特性,为满足面试时刻最短,建立了求解最短时刻的0-1非线性规划模型(见公式(1)),然后利用Lingo11.0程序(见附录1),求解出最短面试时刻为100分钟,最佳安排顺序为:3 → →,同学最早9:40 → 4→ 1 5 2 一起离开。接着利用AutoCAD2007分不绘制出同学和面试官的面试过程时刻图(见图1~2)。在此基础上,利用Excel2007制作出同学的

经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。不存在一种万能的动态规划算法。但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。 多阶段决策过程最优化问题 ——动态规划的基本模型 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。 【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少? 【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下: S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3 S2: K=3,有: F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8 F3(C2)=d3(C2,D1)+f4(D1)=5+3=8 F3(C3)=d3(C3,D3)+f4(D3)=8+3=11 F3(C4)=d3(C4,D3)+f4(D3)=3+3=6

3 (修改)大规模状态空间中的动态规划和强化学习问题

3 大规模状态空间中的动态规划和强化学习问题 本章我们将讨论大规模状态空间中的动态规划和强化学习问题。对于这类问题,我们一般很难求得问题的精确解,只能得到问题的近似解。前面章节所介绍的一些算法,如值迭代、策略迭代和策略搜索,无法直接用于这类问题。因此,本章将函数近似引入这些算法,提出三类基于函数近似的算法版本,分别是近似值迭代、近似策略迭代和近似策略搜索。本章将从理论和实例两个角度分析算法的收敛性,讨论如何获取值函数逼近器的方法,最后比较分析三类算法的性能。 3.1 介绍 第二章详细介绍了DP/RL中三类经典算法,这三类算法都需要有精确的值函数及策略表示。一般来说,只有存储每一个状态动作对回报值的估计值才能得到精确地Q值函数,同样V值函数只有存储每一个状态的回报值的估计值才能得到;精确的策略描述也需要存储每一个状态对应的动作。如果值函数中某些变量,比如某些状态动作对、状态等,存在很多个或者无穷多个潜在值(又或者这些值是连续的),那么我们就无法精确描述对应的Q值函数或者V值函数,因此,考虑将值函数和策略通过函数近似的方式来表示。由于实际应用中大部分问题都存在大规模或者连续状态空间,因此,函数近似方法是求解动态规划和强化学习问题的基础。 逼近器主要可以分为两大类:带参的和非参的。带参的逼近器主要是从参数空间到目标函数空间的映射。映射函数及参数的个数由先验知识给定,参数的值由样本数据进行调整。典型的例子是对一组给定的基函数进行加权线性组合,其中权重就是参数。相比之下,非参的逼近器通过样本数据直接得到。本质上,非参的函数逼近器也是含带参数的,只是不像带参的函数逼近器,参数的个数及参数的值直接有样本数据决定。例如,本书中所讨论的基于核函数的逼近器就是带参数的函数逼近器,它为每一个数据点定义一个核函数,并对这些核函数做加权线性组合,其中权重就是参数。 本章主要对大规模状态空间中动态规划和强化学习问题进行广泛而深入的讨论。第二章中所介绍的三类主要算法,值迭代、策略迭代和策略搜索,将与函数近似方法相结合,获得三类新的算法,分别是近似值迭代、近似策略迭代以及近似策略搜索。本章将从理论和实例两个角度讨论算法的收敛性,并对比分析三类算法的性能。关于值函数近似与策略逼近的一些其他重要问题,本章也将给予讨论。为了帮助读者更好的阅读本章的内容,图3.1给出一个本章的内容脉络图。

运用动态规划模型解决最短路径问题

运用动态规划模型解决物流配送中的最短路径问题 王嘉俊 (盐城师范学院数学科学学院09(1)班) 摘要:随着现代社会的高速发展,物流配送成为了连接各个生产基地的枢纽,运输的成本问题也成为了企业发展的关键。运费不但与运量有关,而且与运输行走的线路相关。传统的运输问题没有考虑交通网络,在已知运价的条件下仅求出最优调运方案,没有求出最优行走路径。文中提出“网络上的物流配送问题“,在未知运价,运量确定的情况下,将运输过程在每阶段中选取最优策略,最后找到整个过程的总体最优目标,节省企业开支。 关键词:动态规划,数学模型,物流配送,最优路径 1 引言 物流配送是现代化物流系统的一个重要环节。它是指按用户的订货要求, 在配送中心进行分货、配货, 并将配好的货物及时送交收货人的活动。在物流配送业务中, 合理选择配送径路, 对加快配送速度、提高服务质量、降低配送成本及增加经济效益都有较大影响。物流配送最短径路是指物品由供给地向需求地的移动过程中, 所经过的距离最短(或运输的时间最少, 或运输费用最低) , 因此, 选定最短径路是提高物品时空价值的重要环节。[1] 经典的Dijkstra 算法和Floyd 算法思路清楚,方法简便,但随着配送点数的增加,计算的复杂性以配送点数的平方增加,并具有一定的主观性。我国学者用模糊偏好解试图改善经典方法[]5,取得了较好的效果。遗憾的是,模糊偏好解本身就不完全是客观的。文献[]6详细分析了经典方法的利弊之后,提出将邻接矩阵上三角和下三角复制从而使每条边成为双通路径,既适用于有向图也适用于无向图, 但复杂性增加了。为了避免上述方法存在的不足,本文以动态规划为理论,选择合理的最优值函数,用于解决物流配送最短路径问题。 动态规划是解决多阶段决策过程最优化问题的一种数学方法。1951年美国数学家Bellman(贝尔曼)等人根据一类多阶段决策问题的特性,提出了解决这类问题的“最优性原理”,并研究了许多实际问题,从而创建了最优化问题的一种新方法——动态规划。 动态规划在工程技术、管理、经济、工业生产、军事及现代控制工程等方面都有广泛的应用,而且由于动态规划方法有其独特之处,在解决某些实际问题时,显得更加方便有效。由于决策过程的时间参数有离散的和连续的情况,故决

浅谈我国动态规划算法研究与应用

动态规划算法研究与应用 1.引言 动态规划被认为是组成运筹学其中的一部分,也被当成为进行运算决定时最好的一种数学方式。在1950年左右,美国相关方面的几位数学家,对阶段决策期间关于优化的问题做了大量的研究,并发布著名的最优化理论,将众多的阶段变成了一个一个单一的问题,并分别进行解答,最后,发明了能够处理这种相关优化方面事情新的解决措施——动态规划。到了1957年,创造出了Dynamic Programming这一名著,被称为该领域创作第一人[1]。 在数学和计算机科学领域,动态规划算法对于求解最优解的问题方便快捷。动态规划方法经常用来解决生活中的实际问题,这些问题往往可以分解为很多个子问题,每个子问题都有一个对应解,其中的临界值就是我们所要求得的最优解。动态规划并非一种数学算法,而是用于最优化解题的一种技巧和方法。它非但不具有一个标准的数学方程式,不能够推导出清晰明确的解题步骤,更不具备万能性。对于要解决的若干问题,一定要建立在正确理解的基础上具体问题具体分析,用我们现有的数学知识和丰富的想象力创建模型,结合日常的技巧分析求解。客观人为的介入时间和空间因素,只要可以分为若干子问题的多状态过程,就可以用此方法快速求解。 2.动态规划算法简介 动态规划诞生之后,很快就在在工业生产、金融管理、工程技术、和资源最大化利用等领域得到了好评。在处理路线规划、物品进出库管理、资源最优化利用、更换设备、顺序、装载等问题,动态规划算法相比于其他算法更有优势而且更加便捷。 2.1基本原理 其主要的理论可以被理解成是将求解的划分成若干个子问题,并将其称作为N,然后这些子问题又有N个解的情况,其中这些可行解之中一定会有一个最优解,研究动态规划也就是希望能够找到最优解[2]。 如何能够合理的推导出基本的最优化方程式和找出唯一的临界值是研究动

动态规划

动态规划的特点及其应用 摘要:本文的主要内容就是分析它的特点。第一部分首先探究了动态规划的本质,因为动态规划的特点是由它的本质所决定的。第二部分从动态规划的设计和实现这两个角度分析了动态规划的多样性、模式性、技巧性这三个特点。第三部分将动态规划和递推、搜索、网络流这三个相关算法作了比较,从中探寻动态规划的一些更深层次的特点。文章在分析动态规划的特点的同时,还根据这些特点分析了我们在解题中应该怎样利用这些特点,怎样运用动态规划。这对我们的解题实践有一定的指导意义。本文介绍了动态规划的基本思想和基本步骤,通过实例研究了利用动态规划设计算法的具体途径,讨论了动态规划的一些实现技巧,并将动态规划和其他一些算法作了比较,最后还简单介绍了动态规划的数学理论基础和当前最新的研究成果。 关键词: 动态规划,阶段 1 引言 动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 2 动态规划的基本思想 一般来说,只要问题可以划分成规模更小的子问题,并且原问题的最优解中包含了子问题的最优解(即满足最优子化原理),则可以考虑用动态规划解决。动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解

电动汽车动态

电动汽车最新动态

————————————————————————————————作者:————————————————————————————————日期: 2

四项电动车国标出台新能源车迎标准时代 2010年05月17日09:47南方都市报朱中齐 记者上周从全国汽车标准化技术委员会获悉,在该标准化技术委员会电动车辆分技术委员会于4月底举行的重庆会议上,《电动汽车传导式充电接口》、《电动汽车充电站通用要求》、《电动汽车电池管理系统与非车载充电机之间的通信协议》和《轻型混合动力电动汽车能量消耗量试验方法》4项标准,顺利通过审查成为电动车“国家标准”。 新能源汽车迎来“标准”时代 截至目前,我国已制定并发布了新能源汽车相关国家标准和行业标准共计42项,其中22项已列为新能源汽车产品准入的专项检验标准。 据悉,在《电动汽车传导式充电接口》等四项标准成为国家标准之后,还将有《燃料电池电动汽车加氢口》、《车载氢系统技术条件》、《燃料电池电动汽车最高车速试验方法》和《燃料电池混合动力电动汽车氢消耗量测量方法》等新能源汽车标准陆续出台。 充电设施的建设离不开相关标准的规范和引导,在电动汽车推广初期,国家的鼓励政策会起到至关重要作用。 该专家表示,4月底作为国家标准而出台的《电动汽车传导式充电接口》、《电动汽车充电站通用要求》和《电动汽车电池管理系统与非车载充电机之间的通信协议》是和电动车充电密切相关的重要标准。而《轻型混合动力电动汽车能量消耗量试验方法》,则为科学评价该类型混合动力汽车的能耗,奠定基础。 据悉,针对目前电动汽车充电站还没有形成确定统一经营模式,整车充电模式和分箱充电模式都具有一定的发展前景的实际情况,此次出台的《电动汽车充电站通用要求》涵盖不同充电模式中的共同部分,包括充电、供电、监控、计量等方面的要求。而对于特定模式下的特殊要求(如分箱充电模式下可能包括电池更换场地和设备的要求)及充电站的一些扩展功能(如电池检测等),将另行做出规定。 将成国际标准重要参考 专家表示,关于电动车的充电站、充电接口和通讯协议,国际标准也在制定当中,但进程比中国国标速度慢,中国国标将成为相关国际标准的重要参考。 有关专家也表示,上述国家标准的推行,也是众所关注的新能源汽车能否获得补贴的重要依据之一。

运筹学之动态规划(东南大学)汇总

引言——由一个问题引出的算法 考虑以下问题 [例1] 最短路径问题 现有一张地图,各结点代表城市,两结点间连线代表道路,线上数字表示城市间的距离。如图1所示,试找出从结点A到结点E的最短距离。 图 1 我们可以用深度优先搜索法来解决此问题,该问题的递归式为 其中是与v相邻的节点的集合,w(v,u表示从v到u的边的长度。 具体算法如下: 开始时标记所有的顶点未访问过,MinDistance(A就是从A到E的最短距离。 这个程序的效率如何呢?我们可以看到,每次除了已经访问过的城市外,其他城市都要访问,所以时间复杂度为O(n!,这是一个“指数级”的算法,那么,还有没有更好的算法呢? 首先,我们来观察一下这个算法。在求从B1到E的最短距离的时候,先求出从C2到E的最短距离;而在求从B2到E的最短距离的时候,又求了一遍从C2到E的最短距离。也就是说,从C2到E的最短距离我们求了两遍。同样可以发现,在求从C1、C2到E的最短距离的过程中,从D1到E的最短距离也被求了两遍。而在整个程序中,从D1到E的最短距离被求了四遍。如果在求解的过程中,同时将求得的最短距离"记录在案",随时调用,就可以避免这种情况。于是,可以改进该算法,将每次求出的从v到E的最短距离记录下来,在算法中递归地求MinDistance(v时先检查以前是否已经求过了MinDistance(v,如果求过了则不用重新求一遍,只要查找以前的记录就可以了。这样,由于所有的点有n个,因此不同的状态数目有n 个,该算法的数量级为O(n。 更进一步,可以将这种递归改为递推,这样可以减少递归调用的开销。 请看图1,可以发现,A只和Bi相邻,Bi只和Ci相邻,...,依此类推。这样,我们可以将原问题的解决过程划分为4个阶段,设

论文—浅谈室内区域活动规则的建立

浅谈室内区域活动规则的建立 室内区域活动是教师根据幼儿的发展现状和发展目标,创设多种领域的学习区域。提供活动材料,让幼儿通过自身的摆弄、操作去感知、思考、寻找问题的答案。而教师的任务是关注幼儿在活动中的表现和反应,敏感的察觉他们的需要,及时以适当的方式应答,形成合作探究式的师生互动。 我国著名学前教育家陈鹤琴先生曾说过:“小孩子是生来好动的,是以游戏为生命的”。孩子们就是在游戏中、在玩中一天天长大和进步的。如何使游戏真正成为孩子们自己的游戏,如何在游戏中最大限度的发挥孩子们的主观能动性,他们玩什么,怎样玩,玩多久等等,这就需要我们放开手,给予他们自由发挥潜能的机会。 爱玩游戏是每个孩子的天性,游戏一直以他独特的魅力吸引着无数的孩子。人们对游戏的认识越来越深入。而区角活动作为一种教育游戏活动,同样受到了孩子们的普遍欢迎。它重在创设一种宽松、和谐的环境,提供丰富的材料,以及选择广泛的内容。而教师在此过程中只是一个观察者,引导者。因此,孩子们学的特别轻松、自然、没有压力,他们可以做自己想做的事。这种个别化的教育形式尊重了幼儿的个体差异,满足了幼儿个体发展的需要。 都说“没有规矩,不成方圆”就像象棋里的楚河汉界,马路上的红绿灯,都是规则,幼儿园区域活动也都应有合适的规则,这样才能给幼儿充分自主活动的机会,帮助他们有计划、有目的、守规则地进行区域游戏,才好让游戏进行得更加顺畅。 一、规则包含的内容 1、人数的规定 幼儿园活动空间小,各个区域提供的材料比较有限,也有幼儿兴趣不同,所以对每个活动区角规定人数是很有必要的。它提示幼儿关注游戏开展的情况,也能培养孩子的协商能力。

我班在设计区域游戏人数时,每个人都有一个写着自己的名字的小钥匙,在各个区域明显的位置贴好对应数的口袋,当幼儿听到音乐时把自己的小钥匙插到 各区的口袋里,只要幼儿拿好进区卡插满进区标志后,后面的幼儿就要选择其它的区域进行游戏。比如,我班的“美食城”为幼儿提供了许多的富有天津特产的小吃,十八街麻花、煎饼果子、狗不理包子、龙嘴茶汤、传统火锅。这个角色区一直是孩子们的最爱。平时活跃的、内向的,每到区域开始,都争先恐后地去插卡,每次都很拥挤,但是看到区域卡插满了,就知道去别的区域玩了。 2、游戏的玩法 每个区域的游戏玩法,我们都可以在规则中告诉幼儿,小班时我们大都采用图画的方式告诉幼儿;中班采用了用图文并茂的形式,但还是文字比较多,幼儿还不太看得懂,所以我们也就采用照片的形式,将幼儿在玩的过程将照片拍下来,在规则区展示,这样孩子们就更加容易理解了。如中班上学期的时候,我们在益智区提供了系鞋带,现在的孩子都不会系鞋带,在这个区域的规则中,我们一个老师在示范,另外一个老师就将步骤拍下来展示在区域规则区。那天,班上的赵朗琪小朋友去益智区玩,她拿起了鞋面,就系鞋带,可是总也弄不好,这时张佳茵小朋友过来了,看了一会儿,她发现规则区的照片,就拉着赵朗琪的手说:“我们一起去看那边的照片。”说着,两个人就看着照片一起“研究”起来,终于在区域游戏时间快到的时候,两个人兴高采烈的过来告诉我说:“老师,我们会系鞋带了。我们两个看着照片做的。”通过这个案例,我发现,提供给孩子直观的游戏玩法,还是很有用的。 3、游戏中应注意的事项 我觉得规则中应该提醒幼儿该注意的事项,这也是非常重要的,每个区域都会有不同的注意内容,如阅读区我们会让孩子要注意安静看书,不破坏书,一页一页翻书;在美工区,我们会让孩子注意,使用剪刀时不剪到手,纸屑要放入垃圾桶,不能扔地上等等。有一次,我们玩区域活动,孩子们玩的很尽兴,音乐一响,每个孩子都在忙碌,忙着收拾自己在区域的材料,收完后孩子们都回到了位置,等待老师的评价,当我

以模拟生长的动态规划引领新区的滚动开发

以模拟生长的动态规划引领新区的滚动开发 【摘要】新区的规划与开发成为国内城市建设的热点问题。本文通过模拟生长的动态规划方法,寻求城市整体的有序协调、开发时序的近实远虚、目标定位的分期诠释、结构布局的有序组合、支撑系统的合理衔接,以促进新区的滚动开发。 【关键词】新区规划模拟生长动态规划滚动开发 1前言 随大都市扩张,以滚动开发主导的新城(含新区)建设持续升温。尽管规划对新城的研究逐步由特征、结构、演变等空间实体转向模式、思路等综合内容,但是从滚动开发角度探讨新城规划编制方法的研究仍很少。传统蓝图式的规划编制方法已不能应对新城滚动开发建设,尤其是在基本没有现状建设和规划基础的郊区建设新城,即使是以CA模型的空间模拟增长也难以应用或指导。 2规划背景 石家庄是因交通而催生的都市。随着京津冀一体化的加速和北京首都功能的分流,处于重要战略机遇期的石家庄有望成为传统产业扎实、新兴产业崛起的京津冀第三极。 河北省及石家庄市政府适时提出城市“北跨”发展战略,通过行政中心的搬迁,谋划在滹沱河北岸启动滹沱新区建设,拉开城市骨架,壮大中心城市,强化省会。 3滹沱新区规划 3.1现状概况 滹沱新区东至现京珠高速,西至规划京珠高速,南邻滹沱河,北至张石高速支线,总面积176平方公里。滹沱新区位于国家历史文化名城——正定古城东侧,距离800米;位于正定机场南侧,距离10公里;位于石家庄主城东北侧,距离主城中心15公里;位于东部产业区北侧,距离区产业区中心10公里。 滹沱新区现状用地以未建为主。现状用地包括村镇建设用地、水域、耕地、林地等,其中现状村镇建设用地约28平方公里,占总用地面积比例的16%,空间均质分布。 3.2发展判断 3.2.1发展定位判断:高举高打

浅谈幼儿园区域活动规则的探索

浅谈幼儿园区域活动规则的探索 姓名:胡君教龄:17年职务:年级组长地址: 江苏省无锡市长安街道新惠幼儿园 邮编:214174 电话号码:83562280 摘要: 区域活动是一种人为创设自然情景下的幼儿自愿、自发的游戏,是我们现在普遍采取的一种教育活动形式。在幼儿园里要有序有质量的开展好区域活动,那首先就要制定出有效的规则:1、在讨论中共同商讨2、在试误中逐步形成3、在活动前明确规定。另外是区域活动规则的遵守,我们可以运用以下三种方法来更好的帮助幼儿来掌握:1、暗示法。2、图示法。3、提醒法。 区域活动是一种人为创设自然情景下的幼儿自愿、自发的游戏,是我们现在普遍采取的一种教育活动形式。区域活动以其个别化的教育形式尊重了幼儿的个体差异,满足了幼儿个体发展的需要,成为幼儿园所喜欢的活动形式,也是当前幼儿园落实《幼儿园教育指导纲要》所指出的幼儿园教育应为幼儿“提供自由活动的机会,支持幼儿自主地选择、计划活动。”“为每个幼儿提供表现自己长处和获得成功的机会,增强其自尊心和自信心。”的最有效的措施。而区域活动所具有的自选性、自主性、小组活动,教育价值依托于操作材料、情境和相应的活动中的特点,决定了教师对区域活动的指导更多的只能是以间接的方式来进行。再加之,区域活动的规则所承载的独有的教育价值,如可以有机地将教育者的教育意图渗透其中;可以活动中起着组织、约束、调整幼儿活动行为和相互关系,最大限度地保证幼儿的活动权利等方面的作用,使得我们清楚地意识到,抓好区域活动规则的建设工作,是保证区域活动有效地开展的重要前提。 那么在区域活动中,如何帮助幼儿建立起适宜有效的规则,并让幼儿在活动中自觉地遵守呢?通过多年的实践,下面就此问题浅淡几点个人的看法。 一、区域活动规则的制订 区域活动既是幼儿的一种学习活动形式,同时也是教师所组织的一种教育活动形式。因而,区域活动规则的制订应该是由教师和幼儿来共同完成,偏废某一方都是不妥的。在实践中,我们慢慢的总结出师幼共同制订活动规则的三种比较有效的方法: 1、在讨论中共同商讨 讨论往往是围绕在区域活动中所遇到的带有普遍性的“问题”而展开的,这种“问题”一般是会影响到该活动正常进行,又是幼儿无法自行解决的。讨论的目的就是要建立起相应的规则来解决当前所面临的“问题”。如,有些区域因人数较多,而发生了幼

动态规划经典教程

动态规划经典教程 引言:本人在做过一些题目后对DP有些感想,就写了这个总结: 第一节动态规划基本概念 一,动态规划三要素:阶段,状态,决策。 他们的概念到处都是,我就不多说了,我只说说我对他们的理解: 如果把动态规划的求解过程看成一个工厂的生产线,阶段就是生产某个商品的不同的环节,状态就是工件当前的形态,决策就是对工件的操作。显然不同阶段是对产品的一个前面各个状态的小结,有一个个的小结构成了最终的整个生产线。每个状态间又有关联(下一个状态是由上一个状态做了某个决策后产生的)。 下面举个例子: 要生产一批雪糕,在这个过程中要分好多环节:购买牛奶,对牛奶提纯处理,放入工厂加工,加工后的商品要包装,包装后就去销售……,这样没个环节就可以看做是一个阶段;产品在不同的时候有不同的状态,刚开始时只是白白的牛奶,进入生产后做成了各种造型,从冷冻库拿出来后就变成雪糕(由液态变成固态=_=||)。每个形态就是一个状态,那从液态变成固态经过了冰冻这一操作,这个操作就是一个决策。 一个状态经过一个决策变成了另外一个状态,这个过程就是状态转移,用来描述状态转移的方程就是状态转移方程。 经过这个例子相信大家对动态规划有所了解了吧。 下面在说说我对动态规划的另外一个理解: 用图论知识理解动态规划:把动态规划中的状态抽象成一个点,在有直接关联的状态间连一条有向边,状态转移的代价就是边上的权。这样就形成了一个有向无环图AOE网(为什么无环呢?往下看)。对这个图进行拓扑排序,删除一个边后同时出现入度为0的状态在同一阶段。这样对图求最优路径就是动态规划问题的求解。 二,动态规划的适用范围 动态规划用于解决多阶段决策最优化问题,但是不是所有的最优化问题都可以用动态规划解答呢? 一般在题目中出现求最优解的问题就要考虑动态规划了,但是否可以用还要满足两个条件: 最优子结构(最优化原理) 无后效性 最优化原理在下面的最短路径问题中有详细的解答; 什么是无后效性呢? 就是说在状态i求解时用到状态j而状态j就解有用到状态k…..状态N。 而求状态N时有用到了状态i这样求解状态的过程形成了环就没法用动态规划解答了,这也是上面用图论理解动态规划中形成的图无环的原因。 也就是说当前状态是前面状态的完美总结,现在与过去无关。。。 当然,有是换一个划分状态或阶段的方法就满足无后效性了,这样的问题仍然可以用动态规划解。 三,动态规划解决问题的一般思路。 拿到多阶段决策最优化问题后,第一步要判断这个问题是否可以用动态规划解决,如果不能就要考虑搜索或贪心了。当却定问题可以用动态规划后,就要用下面介绍的方法解决问题了:(1)模型匹配法: 最先考虑的就是这个方法了。挖掘问题的本质,如果发现问题是自己熟悉的某个基本的模型,就直接套用,但要小心其中的一些小的变动,现在考题办都是基本模型的变形套用时要小心条件,三思而后行。这些基本模型在先面的分类中将一一介绍。 (2)三要素法 仔细分析问题尝试着确定动态规划的三要素,不同问题的却定方向不同: 先确定阶段的问题:数塔问题,和走路问题(详见解题报告) 先确定状态的问题:大多数都是先确定状态的。 先确定决策的问题:背包问题。(详见解题报告) 一般都是先从比较明显的地方入手,至于怎么知道哪个明显就是经验问题了,多做题就会发现。 (3)寻找规律法: 这个方法很简单,耐心推几组数据后,看他们的规律,总结规律间的共性,有点贪心的意思。 (4)边界条件法 找到问题的边界条件,然后考虑边界条件与它的领接状态之间的关系。这个方法也很起效。 (5)放宽约束和增加约束 这个思想是在陈启锋的论文里看到的,具体内容就是给问题增加一些条件或删除一些条件使问题变的清晰。 第二节动态规划分类讨论

动态规划的发展及研究内容

动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 多阶段决策问题 多阶段决策过程,是指这样的一类特殊的活动过程,问题可以按时间顺序分解成若干相互联系的阶段,在每一个阶段都要做出决策,全部过程的决策是一个决策序列。要使整个活动的总体效果达到最优的问题,称为多阶段决策问题。 引言——由一个问题引出的算法 [例1] 最短路径问题 现有一张地图,各结点代表城市,两结点间连线代表道路,线上数字表示城市间的距离。如图1所示,试找出从结点A到结点E的最短距离。 图1 我们可以用深度优先搜索法来解决此问题,该问题的递归式为 其中是与v相邻的节点的集合,w(v,u)表示从v到u的边的长度。 具体算法如下: function MinDistance(v):integer; begin if v=E then return 0 else begin min:=maxint; for 所有没有访问过的节点i do if v和i相邻then begin 标记i访问过了; t:=v到i的距离+MinDistance(i); 标记i未访问过; if t

数学建模案例分析--最优化方法建模6动态规划模型举例

§6 动态规划模型举例 以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。例如: (1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。 (2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。 (3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。使用时间俞长,处理价值也俞低。另外,每次更新都要付出更新费用。因此,应当如何决定它每年的使用时间,使总的效益最佳。 动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。 (1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。 (2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。各阶段的状态通常用状态变量描述。常用k x 表示第k 阶段的状态变量。n 个阶段的决策过程有1+n 个状态。用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。 (3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。描述决策的变量称为决策变量。决策变量限制的取值范围称为允许决策集合。用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。 (4)策略 一个由每个阶段的决策按顺序排列组成的集合称为策略。由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为)}(,),(),({)(11n n k k k k k k x u x u x u x p Λ++=。在实际问题中,可供选择的策略有一定范围,称为允许策略集合。其中达到最优效果的策略称为最优策略。 (5)状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第1+k 阶段的状态变量1+k x 也被完全确定。用状态转移方程表示这种演变规律,写作(1k k T x =+k x ,)k u (6)最优值函数 指标函数是系统执行某一策略所产生结果的数量表示,是用来衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上。指标函数的最优值称为最优值函数。 下面的方程在动态规划逆序求解中起着本质的作用。

浅谈对系统工程的认识

谈对系统工程的认识 摘要:随着社会经济发展和科学的进步,人类社会出现了越来越多的大型复杂的系统。这些系统的规划建造及运用都要建立在科学的基础之上,系统工程作为对系统的进行组织管理的技术便由此而产生。 1.1引言 “系统”这个名词,这个词在拉丁语中,是“在一起”“放置”的意思,因此,很久以来,他都是表示群体集合的概念的。但作为一个科学概念,还是在20世纪以来由于科学发展和人类文化的累积才是他的内涵逐步明确起来。他作为一门现代化的学科,还是从20世纪40年代开始的,是由美国贝尔电话公司在发展微波通信网时,首先提出的“系统工程”这个名词,并提出了工程按系统思想分成阶段进行工作的一套工作方式。后来,由于二战的需要,为了把整个军事系统的行动从科学上加以研究,便形成了运筹学这门学科,并且起到了很大的作用。战后,人们把它应用到经营管理方面,也起到了重要的作用,使它成为系统工程的一个有力基础。在1957年,第一本《系统工程》专著出版,标志这这门学科正式产生。 现在,系统工程已经有了长远的发展,他的思想和方法来自不同的行业和领域,又吸收了不同的邻近学科理论,所以造成了系统工程上定义的多样性,但从实用性上来说,他方法性的应用工程学科,它跨越了各个学科领域的横断性学科,从整体,全局的方向去考虑解决问题,同时,他不仅涉及到技术方面,还用在了难以精确描述上的社会,心理因素上,因此,可以说,它是一门总揽全局,着眼整体,从不同视角和不同方法来处理的系统中的各个部分,来规划和设计组建运行整个系统,是系统中的技术经济社会效果达到最优的方法性学科。 虽然说他是不可界定的,当然不妨碍我们去掌握和追随他的思想,发展他的细想。 2谈对线性规划问题的认识 2.1线性规划解释含义 前面谈到系统分析,在进行系统分析时,我们总要用所研究的系统进性描述,而线性规划,就是我们在描述系统中我们所用到的一种系统分析语言。 它是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,它所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素. 它的数学模型的一般形式是(1)列出约束条件及目标函数(2)画出约束条件所表示的可行域(3)在可行域内求目标函数的最优解 2.2线性规划问题及其数学模型 一问题的提出 例1 某工厂在计划期内要安排生产甲乙两种产品,已知条件如下,如何安排计划可

相关文档