文档库 最新最全的文档下载
当前位置:文档库 › 聚偏氟乙烯中空纤维膜化学接枝改性研究

聚偏氟乙烯中空纤维膜化学接枝改性研究

聚偏氟乙烯中空纤维膜化学接枝改性研究
聚偏氟乙烯中空纤维膜化学接枝改性研究

文章编号:1007-8924(2007)02-0015-05

聚偏氟乙烯中空纤维膜化学接枝改性研究

韩 ,黎 雁,吕晓龙3

(天津工业大学中空纤维膜材料与膜过程教育部重点实验室,天津300160)

摘 要:通过化学接枝反应在聚偏氟乙烯(PVDF )中空纤维膜表面接枝了2-丙烯酰胺-2-甲基丙磺酸并讨论了反应体系、单体浓度反应温度和时间等因素对接枝率的影响.试验表明,

接枝AMPS 可有效提高PVDF 中空纤维膜的耐污染性,并且改性后中空纤维膜的通量随溶液离子强度的增加而增加.

关键词:PVDF 中空纤维膜;2-丙烯酰胺-2-甲基丙磺酸;接枝聚合中图分类号:TQ02818;TQ34218 文献标识码:A

聚偏氟乙烯(PVDF )中空纤维微孔膜是新发展起来的一种特种纤维膜,已成功地应用于化工、电子、纺织、食品、生化等领域[1-3].由于PVDF 具有强疏水性,在处理水基流体时PVDF 中空纤维膜易产生吸附污染,膜分离性能下降,限制了其在生化制药、食品饮料及水净化等水相分离体系的应用领域中的应用.目前,改性PVDF 微孔膜的方法可分为两类:一类是PVDF 的本体改性,即通过物理共混或化学共聚的方法,改变材料本体的性质而达到改善微孔膜的目的[4,5];另一类是对PVDF 微孔膜的表面改性,即在不改变材料本体性质的同时,改善微孔膜表面的亲水性、粘接性、生物相容性等,这类改性方法包括表面涂覆、表面处理及各类表面接枝反应等[6-9].本文采用化学接枝的方法在PVDF 中空纤维膜表面接枝2-丙烯酰胺-2-甲基丙磺酸,研究了反应条件对接枝率的影响并对改性后膜性能进行了研究.

1 实验部分

111 主要试验材料与试剂

PVDF 中空纤维膜,内径:018mm,外径:112mm,天津工业大学膜天膜工程技术有限公司生产;

2-丙烯酰胺-2-

甲基丙磺酸(AMPS ),工业品,天

津碱厂古龙精细化工厂.112 PVDF-g-AMPS 中空纤维制备

将预处理后的PVDF 中空纤维膜,放入含二甲基甲酰胺(DMF )和单体AMPS 水溶液中,于室温下浸泡2小时.将浸泡后的中空纤维膜取出,放入三口烧瓶中(瓶内已配好一定浓度的单体溶液),水浴加热,加入引发剂,在磁力搅拌和氮气保护下,反应一定时间.反应结束后,将中空纤维膜取出,用超声波清洗仪除掉未反应的单体和均聚物.接枝率按如下公式计算:

G =(W 1-W 0)/W 0×100%式中,W 0为接枝前PVDF 中空纤维膜重量,g;W 1

为接枝后PVDF 中空纤维膜重量,g.113 膜表面分析

将改性前后的PVDF 中空纤维膜干燥后,在VCTOR22型傅立叶红外光谱仪上测出红外吸收谱

图.使用XL30型扫描电子显微镜观察PVDF 中空

纤维膜改性前后的表面及断面形貌.114 膜性能测试

将接枝前后PVDF 中空纤维膜制成组件,在室温和011MPa 下分别测定不同浓度氯化钠溶液通量,通量由下式计算:

J =

V t ?m

式中,V 为滤液体积,L;t 为获得V 体积滤液所需

收稿日期:2005-05-18;修改稿收到日期:2005-08-01

基金项目:863重大专项(2002AA601240),973计划(2003CB615700)

作者简介:韩 (1979-),男,湖北宜昌人,硕士.3通讯联系人 E-mail:luxiaolon

g@https://www.wendangku.net/doc/fb5921005.html,

第27卷 第2期膜 科 学 与 技 术

Vol.27 No.2

2007年4月MEMBRANESCIENCEANDTECHNOLOGY Apr.2007

的时间,h;m 为有效膜面积,m 2.115 改性膜抗污染实验

自配含油污水,质量浓度为60m g/L.分别测定改性前后PVDF 中空纤维膜初始通量J 0和一定时间后通量J t ,通量衰减率按如下公式计算:

通量衰减率%=(J 0-J t )

/J 0×100%

2 结果与讨论

211 红外光谱分析

图1为改性前后的PVDF 中空纤维膜傅立叶红外光谱图,图中a 为PVDF 中空纤维膜傅立叶红外光谱图,3440和1670cm -1处吸收峰是由于中空纤维膜在纺制时添加助剂造成;b 为预处理后的PVDF 中空纤维膜的傅立叶红外光谱图,与a 相对

图1 改性处理前后的PVDF 中空纤维膜傅立叶红外光谱图

Fig 11 FTIR-ATRs

pectraofcontrolandmodified

PVDFhollow-fibermembranes

比,在3400cm -1

处的羟基伸缩振动峰面积和强度

增加,在1719~1519cm -1有C O 和C C 伸缩

振动吸收峰出现[10,11],这充分说明PVDF 可在强碱和强氧化剂的混合液中发生消除反应;c 为接枝后的PVDF 的傅立叶红外光谱图,谱图上可以明显看到羟基伸缩振动峰3400cm -1,并且特征峰的强度和峰面积变大,1647cm -1和1557cm -1处的吸收峰对应着仲酰胺基的吸收峰,1040cm -1是磺酸基团—SO 3H 的红外特征吸收峰[12].这说明确实发生了接枝共聚反应,证明了接枝共聚物的存在.212 接枝前后膜表面形貌图2是接枝前后PVDF 中空纤维膜表面及断面电镜照片.从图中可以看出,接枝前膜表面是匀质而又致密的,经AMPS 接枝聚合后,膜表面呈现出比较疏松的孔状结构,出现凹凸不平的表面形貌.这是因为,预处理后膜表面大分子链上并不是均匀地产生活性点,某些部位无接枝点,某些部位有接枝点,接枝增长链在这些接枝点上不断增长,同时,处于不同深度的活性点,其引发AMPS 接枝聚合的先后次序不同,导致膜表面某些部位接枝链增长较快,可以获得比较大的聚合度,而其周围的某些点上,接枝链则会相对较小,这些长短不一的接枝链以无规

线团彼此缠绕堆积,出现了照片上的形貌.此外,从

接枝前后PVDF 中空纤维膜横截面可以看出,膜内

部结构无明显变化.

图2 接枝前后PVDF 中空纤维膜电镜照片

Fig 12 Scanningelectronmicro graphsofcontrolandmodifiedPVDFhollowfibermembranes

213 反应条件对接枝率的影响

21311 两种引发体系的比较

考察了(NH 4)2S 2O 8/NaHSO

3

和硝酸铈铵

(CAN )对接枝反应的影响,结果见表1.从反应结果来看,以CAN 为引发剂,得到的接枝率要相对大于由(NH 4)2S 2O 8/NaHSO 3引发的结果,这是因为由前

者引发得到的自由基量较少[13],所以均聚物的量也较少,而且经预处理后的膜表面本身含有一定的羟基,利于Ce 4+与其反应生成大分子活性中心,从而

引发单体在膜表面的接枝增长[14];从反应速度看,后者的反应速度较快,半小时内基本达到稳定接枝状态,而前者的接枝过程中,反应速度也较快,但达到饱和接枝的时间较长,一般需115h ;另外,在使用相同量的引发剂时,(NH 4)2S 2O 8/NaHSO 3的放热较为明显,而CAN 的放热现象较为温和;从引发剂的用量来看,浓度增大对均聚有利,对接枝共聚反应是不利的.总体而言,不管两种引发剂的引发机理和过程如何,最后得到的接枝膜的亲水性能都有所增加,

 ?16 ?膜 科 学 与 技 术第27卷 

然而,从经济角度讲,CAN 的价格偏高,在实际应用中,要考虑这一点.在以下讨论中,本实验采用的引发剂都是CAN.

表1 引发剂对均聚的影响

Table1 Theeffectofinitiatin

ga genton polymerization

引发剂

引发剂用量

/(mg/150mL )

均聚物黏度/(mPa ?s )产物接

枝率/%

(NH 4)2S 2O 8/NaHSO 3

500 3178×102614510004138×1034132硝酸铈铵

500 113×102

71641000

310×103

6178

 注:T =60℃,c [AMPS]=115mol/L,t =3h.

21312 单体浓度对接枝率的影响

单体浓度对接枝率的影响如图3所示,从图中

可看出,AMPS 浓度较低时,接枝率随单体浓度的增加而增加,当浓度增加到某一数值时,接枝率达到一个最大值,然后,不再有明显变化,因为在反应体系中,同时存在着AMPS 与预处理后的PVDF 的共聚反应及AMPS 自身的均聚反应,当AMPS 浓度增大到一定程度后,随着单体浓度的继续增大,体系中产生的单体自由基的数目也随之增大,有利于形成AMPS 均聚物.同时,形成大分子自由基的数目相对

减少,导致接枝共聚比例的减小,从而使接枝率也有所下降.由于接枝率反映的是接枝共聚与均聚的竞争比例,该图也说明,在单体浓度较低时,共聚占主导地位,当其较高时,均聚比例较大

.

图3 单体浓度对接枝率的影响

Fig 13 Theeffectofmonomerconcentration

onthede greeof grafting

21313 反应温度对接枝率的影响

反应温度对接枝率的影响如图4所示.从图中

可知,随着反应温度的升高,接枝率逐渐增加,当反应温度升高到60℃时,接枝率出现最大值,之后再升高温度时,接枝率逐渐降低

.

图4 反应温度对接枝率的影响

Fig 14 Theeffectofreactiontem

perature

onthede greeof grafting

当温度低于60℃时,随着温度的升高,AMPS 单体的活性随之增强,同时,CAN 与羟基的引发反应速率加快,使得体系中大分子初级自由基数目增多.并且,反应温度升高,也增强了AMPS 分子与大分子链的活动能力,使接枝聚合反应的链增长速率加快,几个因素的共同结果最终导致接枝率的增大.当反应温度高于60℃时,接枝率呈下降趋势,这可能是因为温度高于60℃时,单体的活性大大增强,使均聚反应程度增加,相对削弱了接枝共聚反应,使接枝率开始下降.21314 反应时间对接枝率的影响图5是反应时间对接枝率的影响,从中可以看出,时间越长对接枝越有利,在反应1小时后,接枝率的增加较为缓慢而趋于一定值,这符合自由基聚合的基本特性

.

图5 反应时间对接枝率的影响

Fig 15 Theeffectofreactiontimeonthede

greeof grafting

214 离子强度对改性膜通量的影响

图6是离子强度对接枝前后PVDF 中空纤维膜通量影响.从图6(a )可看出接枝前PVDF 中空纤维膜的通量随着氯化钠溶液的离子强度增加而下降,这是由于随着氯化钠溶液离子强度的增加,溶液

 第2期韩 等:聚偏氟乙烯中空纤维膜化学接枝改性研究?17 ? 

的黏度增加,从而膜通量下降.从图6(b )中可以看出,接枝后PVDF 中空纤维膜的通量随着氯化钠溶液的离子强度的增加而增加.这是由于当透过溶液中的离子浓度较高时,聚2-丙烯酰胺-2-甲基丙磺酸的分子链之间的排斥被屏蔽,分子链是卷曲状态而不

是伸展状态.因此,当氯化钠溶液通过膜孔时不会被接枝聚合物阻挡,通量相对增加.相反,当离子浓度低时,聚2-丙烯酰胺-2-甲基丙磺酸的分子链是伸展状态,使膜孔径变小,阻碍氯化钠溶液通过膜孔[12]

.

图6 离子强度对接枝前后PVDF 中空纤维膜通量影响

Fig 16 Effectofionicstren

gthonfluxwithcontrolandmodifiedPVDFhollowfibermembranes

215 

改性膜抗污染性研究

由图7可看出,未经过改性的PVDF 中空纤维膜表面应用于油水分离时,通量衰减很快,这说明膜

表面极易被污染,因为其疏水的膜表面容易吸附同样疏水的长链脂肪烃类物质,使得膜表面形成一层憎水的吸附层,运行时间越长,吸附层的厚度增加,膜孔被堵塞,通量也逐渐下降,在经过预处理后,膜表面的亲水性大大增加,羟基的引入增加了膜表面与水分子的结合力,膜通量衰减较慢,但随着运行时间的延长,由于链段的不规则运动,这种小分子的极性基团有可能不再位于膜表面,使得膜表面逐渐被疏水油类物质吸附而污染,透水通量开始下降.对于接枝后的膜,亲水性能不仅得到了显著改善,而且接枝上的长链大分子能长期有效地固定所需的亲水性.因此膜的透水通量衰减较为缓慢.

图7 改性前后的PVDF 中空纤维膜通量衰减图

Fig 17 FluxdeclineofcontrolandmodifiedPVDF

hollowfibermembranes

3 结论

1)采用化学方法可在PVDF 中空纤维膜表面

接枝AMPS,通过红外光谱和扫描电子显微镜等测试表明:接枝物依附于膜表面,接枝反应对膜的微孔结构没有影响.

2)比较了两种引发体系对接枝反应的影响,并考察了单体浓度、反应时间和温度等因素对接枝率的影响.试验结果表明,引发体系CAN 的引发效果要优于(NH 4)2S 2O 8/NaHSO 3;单体浓度和反应温度的升高都使接枝率出现一个最大值.

3)改性后PVDF 中空纤维膜的耐污染性增强,且对溶液离子强度有荷电响应,随透过溶液离子强度的变化,膜通量有显著变化.

考文献

[1]OshinaKH.Theuseofamicro

porous polyvinylidenefluo 2

ridemembranefiltertose paratecontaminatin gviral parti 2

clesfrombiolo gicallyim portant proteins[J],iolo

gicals,

1996,24(2):137-145.[2]De genPeterJohn.Pol

yvinylidenefluoridemembraneand methodforremovin

gvirusesfromsolutions[P],US

Patent:5736051,1998-04-07.

[3]Yan gZY,Useofmembraneinwastewatertreatmentin

China,Ex perimentswithhollowfibermembranesina bioreactor,Stutt g[J].BerSiedlun gswasserwirtsch,1997,

145:75-86.

 ?18 ?膜 科 学 与 技 术第27卷 

[4]Mahendran.Methodofmakin

gado

pecom prisingh y 2

drophilizedPVDFandal pha-alumina,andamembrane madetherefrom[P],USPatent:6024872,2000-02-15.

[5]丁 健.具有IPN 结构的复合超滤膜在华北油田的应

用研究[J],工业水处理,2000,20(3):21-23.

[6]董声雄,洪俊明.聚偏氟乙烯超滤膜的制备及亲水改性

[J],福州大学学报(自然科学版),1998,26(6):119-

122.

[7]DetlefD,EberhardS,Hetero

geneousmodificationoful

2trafiltrationmembranesmadefromPVDFandtheirchar 2

acterization[J].JMembrSci,1993,78:45-51.[8]Pen gWan g,TanKL,Kan

gET,

et al .P1asm-induced

immobilizationof po1y (eth ylene g1ycol )onto poly (vinyli 2denefluoride )microporousmembrane[J].JMembrSci,

2002,195:103-114.

[9]陆晓峰,汪庚华,梁国明.聚偏氟乙烯超滤膜的辐照接枝

改性研究[J],膜科学与技术,1998,18(6):54~57.

[10]张正行.有机光谱分析[M],北京:人民卫生出版社,

1995.

[11]赵瑶兴,孙祥玉.光谱解析与有机结构鉴定[M].合肥:

中国科技出版社,1992.

[12]Ghola pSG,MusaleDA,KulkarniSS,Proteinand

buffertrans portthrou ghanionicall y graftedn ylonmem 2

branes[J].JMembrSci,2001,183:89-99.

[13]潘祖仁.高分子化学[M],北京:化学工业出版社,

1986.

[14]EmmettM.Partain,cerium

(Ⅳ)mediated graftingof

acrylicmonomersontoh ydroxyethylcellulose[J],Pol ymer

Preprints,1999,40

(2):136-137.

Studyonchemical

graftingmodificationof poly(vin ylidenefluoride)

hollowfibermembranes

HAN Xun ,LI Yan ,LV Xiaolon g

(TheKe yLabofHollowFiberMaterialandProcessofMinistr

yofEducation,

TianjinPol ytechnicUniversit y,Tian jin300160,China )

Abstract:Poly (vinylidenefluoride )hollow-fibermembranesweremodifiedb yachemicall y graftin gof polar

monomersontothemembranesurface,andtheeffectofseveralreactionconditionsonthede greeof graftin gwas

investi gatedanddiscussedindetail.Theresultsshowthattheantifoulin g propert yofmodifiedmembranewas

improvedb y graftin gAMPS;Solutionfluxesofthemodifiedmembraneincreasedwiththeincreaseinthesolu

2

tionionicstren gth.

Ke ywords:PVDFhollow-fibermembrane;2-acr ylamido-2-meth

ylpropanesulfonicacid;

graftin g poly 2

merization

六项科研项目获第二届“中国膜工业协会科学技术奖”

第二届“中国膜工业协会科学技术奖”评选工作已经结束,经过中国膜工业协会科学技术奖励委员会初步筛

选,第二届“中国膜工业协会科学技术奖”共有以下六个项目被推荐到评审专家组进行评定.经过对高从 、徐南平、邓麦村等十位专家评审意见的汇总,评选结果并在中国膜工业协会第三届理事会第四次会议上讨论通过. 获奖单位名单如下:

获奖单位名称获奖项目名称

获奖等级

海南立净水科技实业有限公司

PVC 合金毛细管式超滤膜的研发与应用一等奖天邦膜技术国家工程研究中心有限责任公司用于烯烃单体回收的复合气体分离膜、膜组件与膜过程一等奖浙江千秋环保水处理有限公司电驱动膜和电驱动膜分离器的研制开发一等奖清华大学化学工程系

渗透汽化透水膜、膜组器及其应用技术一等奖山东省海洋化工科学研究院中国科学技术大学

新型均相阴离子交换膜产业化及工业应用

一等奖蓝星水处理技术有限公司

50000吨/日海滩涂污染地表水深度处理工程

二等奖

中国膜工业协会 供稿

 第2期

韩 等:聚偏氟乙烯中空纤维膜化学接枝改性研究

?19 ? 

聚偏氟乙烯的多晶型转化关系的研究进展

聚偏氟乙烯晶体结构及多晶型转化关系的研究进展 (兵器工业集团五三研究所,济南250031) 摘要:介绍了聚偏氟乙烯(PVDF)两种主要的晶体结构:α晶型、β晶型,同时简要的介绍了PVDF的其它晶型。探讨了不同环境因素下各晶型之间的转化关系。指出PVDF压电材料在多个领域具有广阔的应用前景。 关键字:聚偏氟乙烯晶体结构晶型转化 1引言 近年来,聚偏氟乙烯(PVDF)在功能高分子材料领域引起人们的特别关注。其原因在于它具有实际应用价值的压电性,热释电性以及复杂多变的晶型结构。 PVDF是由CFCH键接成的长链分子,通常状态下为半结晶高聚物,结晶度约为50%。迄今报道有五种晶型:α、β、γ、δ及ε型[1-2],它们在不同的条件下形成,在一定条件下(热、电场、机械及辐射能的作用)又可以相互转化[3-6]。在这五种晶型中,β晶型最为重要,作为压电及热释电应用的PVDF,主要是含有β晶型。 2 PVDF多晶型的晶体结构及其形成条件 2.1 α晶型 α晶型是PVDF最普通的结晶形式。其为单斜晶系,晶胞参数为a=0.496nm,b=0.964nm,c=0.462nm[7]。a晶型的构型为TGTG ,并且由于a晶型链偶极子极性相反,所以不显极性[8]。α晶型的ab平面结构示意图,如图1所示。 图1α晶的ab平面结构示意图 Fig 1 Projection of poly(vinylidene fluoride) chain onto the ab plane of the unit cell for polymorphic α ________________________________________________________________ ______作者简介:张军英(1978-),女(汉族),在读硕士研究生,主要从事功能材料方面的研究。通讯作者:E-mail: Tel:

聚乙烯醇PVA在各领域的应用

PVA自工业化生产以来,经过几十年的发展,其用途得到了极大的拓展,由最初的只用于维纶生产,逐步发展到用于纺织、造纸、建筑、化工、电子等行业,目前PVA新的用途仍在不断地被开发出来,PVA已经成为一个重要的、必不可少的材料。同时,PVA作为“最生态友好产品”,在环保和安全方面也得到了广泛的重视和应用。由于PVA具有许多优异的物理和化学性能,其在实际生产中具有十分广泛的用途,并且近些年得到了长足的发展,在各个新领域的应用开发如火如荼。

(1)织物及织物加工由于分子间的高黏着性,PVA具有良好的拉丝、成膜性,曾经奠定了PVA作为维纶纤维原料的地位。用PVA 制造的维纶纤维可与棉、毛、黏胶纤维混纺或纯纺,用于衣着及篷布、帘子线、绳索等生产,是石棉的理想代用品。近年开发的水溶性纤维具有水溶性、耐酸性、耐碱性、耐有机溶剂性以及良好的耐盐、耐化学药品性,可以根据需要在不同的水温中得以溶解,其废液经活性污泥处理后,完全降解而无公害,是一种极有应用前景、使用较广的环保材料。水溶性纤维主要作为造纸原料、无纺布原料、生产水溶性纱线或与其它纤维混纺后织成高档纺织品,以及制作军工用品的纺织材料。 织物加工对PVA的需求量最大,使用范围大致如下:浆料——经纱浆、印染浆、织物整理;改性剂——织物树脂整理;黏合剂——毡和无纺布等的黏合剂。 在上述应用中作为经纱浆料用的比例最大。PVA是一种能使经纱的抱合力,上浆纱强力、耐磨性、可挠性以及对大气条件变化的保护性等得以提高的一种理想的低成本经纱浆料。国外PVA浆料上百种,主要区别在于醇解度和聚合度,最常用的是1799和1788。 (2)纸加工PVA在造纸工业中主要用于表面施胶剂、颜料黏合剂和打浆机添加剂等。用PVA制作的纸张表面施胶剂,可增强纸品表面强度和内部张力、耐破裂度、耐折和耐磨强度,改善纸张的光泽及平滑性,提高纸张耐水性、耐油及耐有机溶剂性。由于PVA水溶液对纸的黏合力强,成膜性好,可代替价格昂贵、容易腐败的干酪素制作颜料胶黏剂,涂布纸的白度和光泽度好,不易卷曲,成本低,因此在美术纸、

PVDF聚偏氟乙烯

PVDF聚偏氟乙烯,分子式:-(C2H2F2)n- ,英文缩写poly(vinylidene fluoride),主要 是指偏氟乙烯均聚物或者偏氟乙烯与其他少量含氟乙烯基单体的共聚物,它兼具和通用树 脂的特性,除具有良好的耐化学腐蚀性、耐高温性、耐氧化性、耐候性(可在户外长期使用)、耐辐射性能外,还具有压电性、介电性、热电性等特殊性能,化学结构中以氟一碳 化合键结合,这种具有短键性质的结构与氢离子形成最稳定最牢固的结合。PVDF亲水性较差。 PVDF膜在处理前是疏水性的膜,经过甲醇处理后,PVDF膜就成了亲水性的了。这个你在 实验中也应该看到了。 所以,只要用甲醇处理PVDF膜30s左右就可以完全的把PVDF膜从疏水性状态转变成亲水性的了,时间延长后效果都是一样的。 同时,用肉眼观察,膜表面是否还有白色的点状或者块状区域存在,没有了再浸泡到transfer buffer中15 min。用过millipore、Pall-Gelman、osmonics的PVDF膜,都是 在甲醇中浸泡1-2 MIN。millipore公司的膜说明书都说的是在甲醇中浸泡1-2min。 PVDF膜可以结合蛋白质,而且可以分离小片段的蛋白质,最初是将它用于蛋白质的序列 测定,因为在Edman试剂中会降解,所以就寻找了PVDF作为替代品,虽然PVDF膜结合蛋 白的效率没有硝酸纤维素膜高,但由于它的稳定、耐腐蚀使它成为蛋白测序理想的用品, 一直沿用至今。PVDF膜与硝酸纤维素膜一样,可以进行各种染色和化学发光检测,也有很广的适用范围。这种PVDF膜,灵敏度、分辨率和蛋白亲和力在精细工艺下比常规的膜都要高,非常适合于的检测。 但是使用PVDF膜前,一定要先用无水甲醇预处理,再在transfer buffer中平衡好才可以使用(PVDF膜用甲醇泡的目的是为了活化PVDF膜上面的正电基团,使它更容易跟带 负电的蛋白质结合)。经过预处理的PVDF膜在转膜时,可以使用不含甲醇的transfer buffer。

氟硅改性丙烯酸防污涂料添加剂

氟硅改性丙烯酸防污涂料添加剂 美威化工UV固化氟硅改性丙烯酸添加剂(助剂)介绍 涂料行业广泛使用丙烯酸树脂作为表面处理,丙烯酸具有良好的成膜、光学性。但单一使用丙烯酸树脂会存在明显的缺陷,耐候性及防污效果比较差。 为了解决上述的问题我们推荐,在丙烯酸树脂里添加含氟硅丙烯酸助剂,可以改变原有的一些性能:疏水、疏油、耐候、抗氧化等。 信越KY-1200系列产品介绍 日本信越KY-1203氟化丙烯酸化合物,添加小量于丙烯酸UV涂料中达到如下性能: 1、与丙烯酸化合物具有良好的相容性; 2、高防污能力、防指纹; 3、不改变原有的生产工艺,仅添加至涂料中; 4、具有良好的疏水、疏油性; 5、透明度好,不改变原有材质。 氟硅改性助剂的基本参数 性能单位KY-1203 外观- 淡黄色透明液体 23℃粘度Mm2/s 1.2 25℃比重- 0.89 固含量Wt% 20 溶剂- MET MIBK 信越氟硅改性丙烯酸涂料添加剂应用范围 触控面板 ---手机、触摸屏等视窗面板 光学膜 各种塑料板 电子产品外壳(需求防污、防刮花)

信越氟硅改性丙烯酸涂料添加剂使用方法 KY-1203改性添加剂与丙烯酸硬膜树脂混合比例:(0.5~5):1 混合后充分搅拌 实例:(1wt%固含量) 硬膜:EBECRYL 40(DAICEL-CYTEC) 100parts 稀释剂:2-propanol 142parts 起发剂:IRGACURE 184(CIBA) 3parts 添加剂:KY-1203 5parts 基材:聚碳酸酯板 涂层:旋转涂布;500rpm/10sec+3000rpm/20sec 预干燥:80℃/min 固化装置:传送式的UV紫外线照射装置,功率80W/cm 照射条件:氮气环境中,累计光亮1600mj/cm2 信越氟硅改性丙烯酸涂料添加剂添加后性能改进 性能KY-1203混合W/O KY-1203 水接触角114°59° 油酸接触角73°22° 油酸滑落角3°不可测 油性笔测试good NG

聚四氟乙烯膜的亲水化改性研究进展

高性能氟塑脂涂料在灯泡行业中的应用 由于室内的高瓦数灯泡温度非常高,常因忽然吹至冷风或从天而降的雪引至爆裂,玻璃四溅,伤及行人。高品质的高性能氟塑脂PFA涂料可长期在高温使用,对灯炮炸裂的问题,可以迎刃而解。因为: (1)高性能氟塑脂PFA是十分好的绝缘材料,涂在灯泡表面后,可以减少玻璃突变的温差而减低爆炸的机会; (2)即使玻璃在炸裂时,氟塑脂涂料PFA 薄膜会进抓住玻璃的碎片,避免飞溅伤人; (3)氟塑脂涂料PFA是高品质产品纯度极高,即使涂在灯泡上也不会影响其光亮度; (4)高性能氟塑脂涂料符合美国食品条例,可以使用在需接触食物的灯泡上使用了高性能氟塑脂涂料处理的灯泡不易破裂,行人不会为四溅的玻璃争相走避,管理法人也不用为灯泡伤人而赔偿。因此,经高性能氟塑脂涂料处理的灯泡,是优质生活的必须品。 —文章摘自网络 聚四氟乙烯膜的亲水化改性研究进展 聚四氟乙烯(PTFE)是综合性能非常优良的塑料,具有优良的化学稳定性,能耐热、耐寒和耐化学腐蚀性,同时,它还具有优良的电绝缘性、低的表面张力和摩擦系数、不燃性、耐大气老化性和高低温适应性能,并且具有较高的力学性能,广泛应用于航空航天、石油化工、机械、电子电器、建筑、纺织等诸多领域。但是这种极强的非极性使PTFE的疏水性很强,从而极大限制了其在医疗、卫生等工业领域的应用。随着PTFE膜应用范围的不断扩大,国内外研究人员围绕PTFE 膜的表面改性已进行了大量研究,包括等离子体处理、功能单体聚合、化学处理和溅涂等。这些处理方法都能有效提高其黏结性和湿润性,增加表面能。 1 PTFE疏水性强的原因 PTFE的水接触角高达120°,也就是其润湿程度很差。从表面特征来看,主要有3方面的原因。 1.1化学键能高 PTFE是以碳原子链为骨架,链周围被氟原子包围的结构。由极强C-F键(键能为485.3kJ/mol,约50eV)和被原子所强化的C-C键(键能为345.6kJ/mol,约3.5eV)组成的一种线形高分子,具有完全对称结构。 1.2 表面张力(Yc)低 当液体的表面张力低于固体平面的临界表面张力时,则能在该固体表面随意铺展和润湿,而高于固体平面Yc,则形成不连续的液滴,其接触角大于零。不同高分子化合物固体平面的Yc见表1。表面张力低的聚四氟乙烯、聚偏氟乙烯都不易浸润。 1.3 PTFE显示出与其他聚合物最小的亲和性(相容性) 二种成分A、B混合时能量变化e为: e=(eA1/2-eB1/2)2 eA1/2、eB1/2为成分A、B的溶度参数。一般e是作为低分子物质相互溶解性的量度,把该理论应用于高分子物质的疏水性上,可以得出这样的推断:e愈小,其亲水性愈强。

聚偏氟乙烯膜(PVDF)亲水性改善方法的研究进展

聚偏氟乙烯膜(PVDF)亲水性改善方法的研究进展 以下是为大家整理的聚偏氟乙烯膜(pVDF)亲水性改善方法的研究进展的相关范文,本文关键词为聚偏,乙烯,pVDF,水性,改善,方法,研究进展,聚偏,乙烯,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。 聚偏氟乙烯膜(pVDF)亲水性改善方法的研究进展 摘要:聚偏氟乙烯(pVDF)有价格低廉、化学和热稳定性好、机械强度高等优点,但pVDF分子链上氟原子对称分布导致了材料表面的

表面能低、疏水性强,在含油废水分离过程中污染严重,从而制约了pVDF分离膜的应用,因此需要对膜材料表面进行亲水化改性处理。对于聚偏氟乙烯膜的改性主要有物理和化学两种方法,然后可用接触角、膜的纯水通量等测试对其亲疏水性表征。关键词:聚偏氟乙烯,亲水性,接触角 1、聚偏氟乙烯简介[1] pVDF由偏氟乙烯单体ch2=cF2经悬浮聚合或乳液聚合得到,它是一种成膜性能较好的聚合物材料,使用诸如二甲基甲酞胺(DmF)、二甲基乙酞胺(DmAc)和n-甲基毗咯烷酮(nmp)等极性溶剂溶解。从pVDF分子结构分析,整体符合一般聚烯烃分子碳链的锯齿构型,氟原子替代氢原子,因为氟原子电负性大,原子半径很小,c-F键长短,其键能达到50kJ.mol-1,整个分子链呈柔性使聚合物具有一定的结晶性,表现为突出的热稳定性,熔点为170℃,热分解温度在316℃以上,连续在150℃高温以下暴露2年内不会分解。由于氟原子对称分布,整个分子显示非极性,聚合物表面能很低,仅为25J.m-3。通常太阳能中可见光---紫外光部分对有机物起破坏作用,光子波长在200--700nm之间,而c-F键能接近220nm光子在总数中所占比例极少,所以氟材料耐环境气候性好。由于性质稳定的氟原子包围在碳链四周,使pVDF具有很好的化学稳定性,在室温条件下不易被酸、碱和强氧化剂及卤素腐蚀。因pVDF能溶于一些强极性溶剂中,且具有很好的可纺制性能,它可以被用来纺丝制备中空纤维膜。聚偏氟乙烯在1961年首先在建筑领域被商品化,迄今数十年的使用中pVDF树

聚乙烯醇

聚乙烯醇的合成与应用 08206020222 08高分子<2>班吴家彬 【摘要】本文介绍聚乙烯醇的基本性质以及合成和应用,从不同方面说明聚乙烯醇的制备方法,同时介绍聚乙烯醇在工业以及生活上的应用和发展前景。【关键字】聚乙烯醇制备前景 聚乙烯醇,英文名称: polyvinyl alcohol,vinylalcohol polymer,poval,简称PVA 有机化合物,白色片状、絮状或粉末状固体,无味。溶于水,不溶于汽油、煤油、植物油、苯、甲苯、二氯乙烷、四氯化碳、丙酮、醋酸乙酯、甲醇、乙二醇等。微溶于二甲基亚砜。聚乙烯醇是重要的化工原料,用于制造聚乙烯醇缩醛、耐汽油管道和维尼纶合成纤维、织物处理剂、乳化剂、纸张涂层、粘合剂等。 聚乙烯醇的制备方法 聚乙烯醇的制备方法原料路线聚乙烯醇是由醋酸乙烯(VAc)经聚合醇解而制成,生产 PVA 通常有两种原料路线,一种是以乙烯为原料制备醋酸乙烯,再制得聚乙烯醇;另外一种是以乙炔 (分为电石乙炔和天然气乙炔)为原料制备醋酸乙烯,再制得聚乙烯醇。 ( 1)乙烯直接合成法)石油裂解乙烯直接合成法。目前,国际上生产聚乙烯醇的工艺路线以乙烯法占主导地位,其数量约占总生产能力的 72%。美国已完成了乙炔法向乙烯法的转变,日本的乙烯法也占 70%以上,而中国的生产企业只有两家为乙烯法。其工艺流程包括:乙烯的获取及醋酸乙烯(VAc)合成、精馏、聚合、聚醋酸乙烯(PVAc)醇解、醋酸和甲醇回收五个工序。石油乙烯法的工艺特点:生产规模较乙炔法大,产品质量好,设备易于维护、管理和清洗、热利用率高,能量节约明显,生产成本较乙炔法低 30%以上。 (2)电石乙炔合成法)电石乙炔合成法,最早实现工业化生产,其工艺特点是操作比较简单、产率高、副产物易于分离,因而国内至今仍有 1O 家工厂沿用此法生产,且大部分应用高碱法生产聚乙烯醇。但由于乙炔高碱法工艺路线产品能耗高、质量差、成本高,生产过程产生的杂质污染环境亦较为严重,缺乏市场竞争力,属逐渐淘汰工艺。国外先进国家早于 20 世纪 7O 年代已全部用低碱法生产工艺。 (3)天然气乙炔合成法)天然气乙炔为原料的 Borden 法,不但技术成熟,

一种聚偏氟乙烯多孔膜的制备方法

(10)申请公布号 (43)申请公布日 2013.06.19C N 103157391 A (21)申请号 201210347108.9 (22)申请日 2012.09.18 B01D 71/34(2006.01) B01D 69/08(2006.01) B01D 67/00(2006.01) (71)申请人中南大学 地址410083 湖南省长沙市岳麓区左家垅 (72)发明人蒋兰英 宋正伟 (74)专利代理机构中南大学专利中心 43200 代理人黄键 (54)发明名称 一种聚偏氟乙烯多孔膜的制备方法 (57)摘要 本发明公开了一种聚偏氟乙烯多孔膜的制备 方法,包括:铸膜液、芯液和外凝胶浴的配制;中 空纤维膜的纺制等步骤,本发明的制备方法,工艺 简单,能实现工业化生产,产品质量稳定;由于采 用了非溶剂致相变固化技术,所制备的膜孔隙率 达到80%,在较低的操作温度65℃下通量达到 21kg·m -3h -1,截留率可以达到99%以上,很适合应 用于膜蒸馏分离技术。 (51)Int.Cl. 权利要求书1页 说明书3页 (19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书1页 说明书3页(10)申请公布号CN 103157391 A *CN103157391A*

1/1页 1.一种聚偏氟乙烯多孔膜的制备方法,其特征是,包括以下步骤: ①铸膜液、芯液和外凝胶浴的配制: 铸膜液采用聚偏氟乙烯聚合物、极性溶剂和添加剂三种物质按重量百分比12-18%、70-88%,0.-10%在60-70℃混合均匀;其中极性溶剂为N-甲基吡咯烷酮;添加剂组成是丙三醇、乙二醇中和聚乙烯吡咯烷酮的一种; 芯液的组成为水或者有机试剂N-甲基吡咯烷酮和水的混合液,其中有机试剂与水的质量比例为10-50%; 外凝胶浴为水或者另一有机试剂与水的混合液,其中另一有机试剂为甲醇、乙醇、异丙醇和N-甲基吡咯烷酮中的一种,另一有机试剂与水的质量比为10-50%; ②中空纤维膜的纺制: 使铸膜液从喷丝头外孔流出,同时使芯液从喷丝头内孔流出,并且二者流速为3-10ml/min ;形成的膜丝经过2-16cm 的气隙高度后,以3-10m/min 的绕丝速度进入外凝胶浴相变成型后收集,上述过程中的铸膜液温度25-50℃,芯液温度25-50℃,凝胶浴温度为25-50℃。 2.根据权利要求1的一种聚偏氟乙烯多孔膜的制备方法,其特征是,所述外凝胶浴分为不同的两组;在中空纤维膜的纺制过程中从喷丝头流出的铸膜液和芯液先后通过不同的两组外凝胶浴。 3.根据权利要求1的一种聚偏氟乙烯多孔膜的制备方法,其特征 是,在中空纤维膜的纺制步骤后还包括中空纤维膜后处理步骤,将收集的膜丝首先放入水中浸泡48-64小时,除去残余的极性溶剂,然后在甲醇浸泡2-3小时除去膜丝中所含的水溶液,最后放入正己烷浸泡2-3小时,脱去甲醇溶液后进行干燥。 权 利 要 求 书CN 103157391 A

聚偏氟乙烯的发展与应用

聚偏氟乙烯的发展与应用 高倩 (北京化工大学理学院应用化学系,北京,20110522) 摘要:本文从结构性质到其发展应用全面介绍了聚偏氟乙烯这一物质,重点从石油化工、电子电气和氟碳涂料三个方面来介绍聚偏氟乙烯的应用与发展现状的。 关键词:聚偏氟乙烯;应用;氟碳涂料;绝缘介质膜 1、聚偏氟乙烯的结构和性质 聚偏氟乙烯(PVDF),是由l,2-二氟乙烯(VDF)单体均聚或共聚而成的线性高分子化合物,聚合度约1500,属于热塑性氟塑料。 PVDF是一种白色粉末状结晶聚合物,密度为1.75~1.789g/cm3,吸水率小于0.04%,玻璃化温度-39℃,脆化温度-62℃以下,结晶熔点约170℃,热分解温度大于316℃,长期使用温度在-40℃~150℃之间。它不耐高浓度强碱和某些胺类化合物;可溶解于二甲基甲酰胺和二甲基乙酰胺等少数几种极性溶剂;在较高温度下可溶解于某些酸类和酯类化合物。 PVDF具有优良的耐化学介质性能,对大多数无机酸、盐类、氧化剂、弱碱以及脂肪酸、芳香族和卤代溶剂等均有优良的抵抗性。它的耐腐蚀性能介于聚四氟乙烯(PTFE)和聚全氟乙丙烯(FEP)之间,特别是对强酸、卤素、卤素化合物及极强氧化剂等具有优异的抵抗力,是化工设备理想的防腐材料。 2、聚偏氟乙烯的应用概述 PVDF应用主要集中在石油化工、电子电气和氟碳涂料三大领域。 首先,因PVDF对氯、溴卤素及卤素化合物有极其优异的抵抗特性,及其良好的耐化学性、加工性及抗疲劳和蠕变性,是石油化工设备流体处理系统整体或者衬里的泵、阀门、管道、管路配件、储槽和热交换器的最佳材料之一。PVDF在化工防腐蚀方面的应用,有其它氟树脂无可比拟的优点。 同时,聚偏氟乙烯膜介电常数较高,有优良的耐化学品性、耐溶剂性、抗紫外性、耐辐射性和耐候性,同时在氟树脂中它也具有最高的抗张强度和抗压缩强度以及最出色的加工性能,是膜绝缘材料的不错选择。另外,聚偏氟乙烯压电薄膜是一种新型的高分子聚合物型敏感材料,使偏氟乙烯及其共聚物成为目前研究最广泛的铁电聚合物材料,在执行器、传感器、存储器、仿真肌肉及微流控方面具有应用前景。 最后,PVDF是氟碳涂料最主要原料之一,由于PVDF树脂具有超强的耐候性,可在户外长期使用,无需保养,该类涂料被广泛应用于发电站、机场、高速公路、高层建筑等;目前在我国以偏氟乙烯为含氟单体和其他含氟单体共聚的涂料用常温固化型氟碳树脂尚未出现,在这方面具有巨大的发展空间。另外PVDF树脂还可以与其他树脂共混改性,如PVDF与ABS 树脂共混得到复合材料,已经广泛应用于建筑、汽车装饰、家电外壳等。 (1)化工领域:采用模压、挤如、注射成型可加工PVDF衬里或全塑阀门、泵、管道、管件、

聚乙烯醇性能

聚 乙 烯 醇 在 油 田 领 域 的 应 用 系别:石油工程系 班级:10级油田化学二班 姓名:张博 日期:2012年5月13日

聚乙烯醇(PVA)在油田领域的应用 【摘要】聚乙烯醇(Polyvinyl Alcohol,简称P.V.A)首先是在1924年,由德国的科学家Dr.Hermann与Dr.Haenel共同合成得到此一崭新的水溶性高分子化合物,PVA历经无数科学家、工程师、制造者与使用者共同持续的努力开发新制程,探讨新用途,使PVA的需求量逐年上升(1995年全球产量达600,000公吨),各种新的用途也不断的扩大中。 关键词:聚乙烯醇、PVA、降滤失、滤失量 石油作为当前主要的战略能源,在各国经济军事领域占有举足轻重的地位。因而,各国在原油的开采方面投入了大量的资金和人员进行研究和创新。目前,国内外在钻井及采油方面积极研制和开发各类新型、高效、无毒和多功能的化学处理剂,其产品的效能、质量、技术水平实际上代表了钻井工艺水平的发展方向。随着科技的进步,所用的处理剂由过去单一的无机物发展到现在多功能高分子有机物。其中有机物主要包括水溶性聚合物。水溶性聚合物在石油和天然气开采工业中,有广泛的用途,从七十年代到目前使用量几乎以每十年翻一番的速度增加。现在,全世界用于油、气田的水溶性聚合物总量超过15万吨。它们主要将降失水剂、增稠剂、絮凝剂、分散剂、淌度控制剂、减阻剂等助剂用于固井、完井、酸化、压裂、三次采油等过程。常用的水溶性聚合物有聚酰亚胺、聚丙烯酰胺、聚丙烯酸钠、纤维素、黄原胶等。但对聚乙烯醇(PVA)在油田中的应用研究和报道较少,限制了聚乙烯醇在这一领域的应用。聚乙烯醇具有优异的稳定性、交联性能、增稠性能及可降解性等,可以广泛的应用于油田领域,比如,可以在注水中作为增稠剂,可以作为稠化酸的添加剂使工作液延缓与岩石作用并降低酸的损失;与交联剂配合使用再与水泥混合用于压裂液作用于固井、封井。 一、PVA的特性 (一) PVA之一般特性: 1.外观:白色到淡黄色颗粒或粉末。 2.比重:真比重1.26-1.31,充填比重0.5-0.7

聚偏氟乙烯膜(PVDF)亲水性改善方法的研究进展

聚偏氟乙烯膜(PVDF)亲水性改善方法的研究进展 摘要:聚偏氟乙烯(PVDF)有价格低廉、化学和热稳定性好、机械强度高等优点,但PVDF分子链上氟原子对称分布导致了材料表面的表面能低、疏水性强,在含油废水分离过程中污染严重,从而制约了PVDF分离膜的应用,因此需要对膜材料表面进行亲水化改性处理。对于聚偏氟乙烯膜的改性主要有物理和化学两种方法,然后可用接触角、膜的纯水通量等测试对其亲疏水性表征。 关键词:聚偏氟乙烯,亲水性,接触角 1、聚偏氟乙烯简介[1] PVDF由偏氟乙烯单体CH2=CF2经悬浮聚合或乳液聚合得到,它是一种成膜性能较好的聚合物材料,使用诸如二甲基甲酞胺(DMF)、二甲基乙酞胺(DMA C)和N-甲基毗咯烷酮(NMP)等极性溶剂溶解。从PVDF分子结构分析,整体符合一般聚烯烃分子碳链的锯齿构型,氟原子替代氢原子,因为氟原子电负性大,原子半径很小,C-F键长短,其键能达到50kJ.mol-1,整个分子链呈柔性使聚合物具有一定的结晶性,表现为突出的热稳定性,熔点为170℃,热分解温度在316℃以上,连续在150℃高温以下暴露2年内不会分解。由于氟原子对称分布,整个分子显示非极性,聚合物表面能很低,仅为25J.m-3。通常太阳能中可见光---紫外光部分对有机物起破坏作用,光子波长在200--700nm之间,而C-F键能接近220nm光子在总数中所占比例极少,所以氟材料耐环境气候性好。由于性质稳定的氟原子包围在碳链四周,使PVDF具有很好的化学稳定性,在室温条件下不易被酸、碱和强氧化剂及卤素腐蚀。因PVDF能溶于一些强极性溶剂中,且具有很好的可纺制性能,它可以被用来纺丝制备中空纤维膜。聚偏氟乙烯在1961年首先在建筑领域被商品化,迄今数十年的使用中PVDF树脂的优良性能得到广泛的证明,在X射线平板印刷术、光纤、涂料等方面己被广为应用。近些年来含氟聚合物又作为一种性能优异的膜材料,在膜分离工程领域的研究应用成为人们热点关注对象。 PVDF相对于聚醚砜(PES)、聚丙烯睛(PAN)等其它膜材料,PVDF膜的特点是疏水性强,是膜蒸馏和膜吸收等分离过程的理想材料。但是,同样因其强疏水性而导致在含油废水分离时污染严重、通量减小,制约了其在此领域应用。对

聚乙烯醇

聚乙烯醇(简称PV A)最早由德国的化学家赫尔曼(W.O.Hemnann)和海涅尔(W.Hachnel)于1924年发明的。1951年我国已经从事PV A 的研究和开发工作,20世纪70年代市场上出现了PV A商品。由于合成技术的不断提高和价格不断下降,它的用途日益广泛,发展速度很快。 聚乙烯醇是通过醋酸乙烯酯聚合制得聚醋酸乙烯酯(PvAC),然后再醇解或者水解得到的。由于羟基基团的存在,使PvA有很高的吸水性,是一种性能优良,用途广泛的水溶性聚合物。聚乙烯醇为一种可溶性树脂,一般用作纺织浆料,粘合剂、建筑等行业。也可通过改性制成薄膜,用来制作可降解的地膜、保鲜膜等。聚乙烯醇的最大特点就是可以自然降解,环境友好。 1聚乙烯醇的性质 聚乙烯醇一般为白色或微黄色,为絮片状、颗粒状、粉末状固体。无毒无味,性能介于塑料和橡胶之间。PV A溶液遇碘液变深蓝色,这种变色受热后消失而冷却又重现。由于分子链上含有大量的侧基一羟基,具有良好的水溶性,同时还具有良好的成膜性、粘接力和乳化性,有卓越的耐油脂和耐溶剂性能。聚乙烯醇的相对密度为(25℃/4℃)1.27~1.31(固体)、1.02(10%溶液),熔点230℃,玻璃化温度75-85℃,在空气中加热至100℃以上慢慢变色、脆化。加热至160一170℃脱水醚化,失去溶解性,加热到200℃开始分解。超过250℃变成含有共轭双键的聚合物。折射率1.49"-'1.52,热导率0.2w/(m·K),比热容l~5J/(kg·K),电阻率(3.1~3.8)×107 ?·cm。

1.1PV A在水中的溶解性 聚乙烯醇溶于水,几乎都是溶解在水中使用,其溶解性很大程度上受聚合度、特别是醇解度的影响。PV A是一种含有大量羟基的高聚物,而羟基是强亲水性基团,所以它是一种水溶性的高分子化合物。然而,由于大分子内和分子间存在者较强的氢键,所以阻碍了其水溶性。PV A中残余的醋酸根(表现在醇解度的高低)是疏水性基团。它的存在,一方面阻碍了聚乙烯醇在水中的溶解;另一方面,它的空间位阻很大,妨碍了大分子之间或大分子本身氢键的形成,促进了水溶性。例如:1799-PV A残余醋酸根<0.2%,其结晶度高,所以只能溶解在95℃的热水中。1788—PV A残余醋酸根为12%,故在20℃时几乎完全溶于水。 PV A不溶于汽油、煤油、植物油、苯、甲苯、二氯乙烷、四氯化碳、丙酮、醋酸乙酯、甲醇、乙二醇等。微溶于二甲基亚砜乙二醇,溶于丙三醇、乙醇胺、甲酰胺等。120--150℃可溶于甘油。但冷至室温时成为胶冻。一般说来,聚合度增大,聚乙烯醇水溶液的粘度增大,成膜后的强度和耐溶剂性增大,但在水中的溶解度下降,成膜后的伸长率下降。醇解度增大,在冷水中溶解度下降,而在热水中的溶解度提高。聚乙烯醇的溶解性随其醇解度的高低而有很大差别。醇解度小于66%,由于憎水的乙酰基含量增大,水溶性下降。醇解度在50%以下,聚乙烯醇即不再溶于水。以上品种的产品,一旦制成水溶液,就不会在冷却时从溶液中再析出来。 温度对聚乙烯醇溶解性能的影响也因醇解度的高低而不同。在醇

聚偏氟乙烯(PVDF)压电膜

聚偏氟乙烯(PVDF)压电膜是本世纪70年代在日本问世的一种新型高分子压电材料。到目前为止,世界上只有少数先进国家生产。锦州科信电子材料有限公司以清华大学为技术依托,成功地实现了PVDF压电膜国产化批量生产。它具有独特的介电效应、压电效应、热电效应。与传统的压电材料相比具有频响宽、动态范围大、力电转换灵敏度高、机械性能强度高、声阻抗易匹配等特点,并具有重量轻、柔软不脆、耐冲击、不易受水和化学药品的污染、易制成任意形状及面积不等的片或管等优势。在力学、声学、光学、电子、测量、红外、安全报警、医疗保健、军事、交通、信息工程、办公自动化、海洋开发、地质勘探等技术领域应用十分广泛。产品主要有金、银、铝三个品种,膜厚30—500μm,产品形状、面积大小,可根据用户需要确定,是制作改进压力动态传感器和超声、智能探测的新型换能材料。 性能及特点: PVDF压电膜具有较高的化学稳定性、低吸湿性、高热稳定性、高抗紫外线辐射能力、高耐冲击、耐疲劳能力,其化学稳定性比陶瓷高10倍,在80℃以下可长期使用。PVDF压电膜质地柔软、重量轻,与水的声阻抗相近,匹配状态好,应用灵敏度高;PVDF压电膜在厚度方向的伸缩振动的谐频率很高,可以得到较宽的平坦响应,频响宽度远优于普通压电陶瓷换能器;电容值高,可以采用低淙胱杩沟囊瞧髯鞯推到邮铡?SPAN lang=EN-US>PVDF压电膜优点如下: (1) 良好的工艺性。可用现有设备进行加工; (2) 能制作大面积的敏感元件; (3) 频带响应宽(0~500MHz); (4) 声阻抗接近于人体组织和水,所以可用于医疗诊断的敏感装置结构中; (5) 具有高冲击强度(可使用于冲击波的传感器中); (6) 耐腐蚀性(在活性介质中使用时这种性能是必需的); (7) 相对介电常数较低;相应较高的压电常数值d33(约比其它压电材料高一个数量级以上)和热信号灵敏度(p/ε)值; (8) 与压电陶瓷相比有更低的导热性;并能制得更薄的薄膜; (9) 柔软坚韧(PVDF的柔顺系数约为PzT的30倍,并且轻(比重只有PzT的1/4左右);能制成所需的各种较复杂的形状(锥形、穹顶形等),可使用在需要具有特殊定向的元件中。 总的来说:PVDF压电膜比石英、PzT等具有压电常数大,频响宽,机械强度好,耐冲击,质轻,柔韧,声阻抗易匹配,易加工成大面积,不易受水和一般化学品的污染、价格便宜等特点。它不仅在许多领域中可替代压电陶瓷材料使用,而且还可以应用在压电陶瓷材料不能使用的场合。因此它是一种极有发展前途的换能性高分子敏感材料。 PVDF压电膜品种技术规格: 1、感观要求: 项目指标 色泽有金属光泽,基本一致

聚偏氟乙烯(PVDF)

聚偏氟乙烯(PVDF) 百科名片 PVDF聚偏氟乙烯,外观为半透明或白色粉体或颗粒,分子链间排列紧密,又有较强的氢键,含氧指数为46% ,不燃,结晶度65%~78%,密度为1.17~1.79g/cm3,熔点为172℃,热变形温度112~145℃,长期使用温度为—40~150℃。基本化学属性: CAS号:24937-79-9 分子式:-(C2H2F2)n- 外观:白色或者透明固体 水溶性:不溶于水 1 PVDF聚偏氟乙烯 用树脂的特性,除具有良好的耐化学腐蚀性、耐高温性、耐氧化性、耐候性、耐射线辐射性能外,还具有压电性、介电性、热电性等特殊性能,是目前含氟塑料中产量名列第二位的大产品,全球年产能超过4.3万吨。PVDF应用主要集中在石油化工、电子电气和氟碳涂料三大领域,由于PVDF良好的耐化学性、加工性及抗疲劳和蠕变性,是石油化工设备流体处理系统整体或者衬里的泵、阀门、管道、管路配件、储槽和热交换器的最佳材料之一。 其良好的化学稳定性、电绝缘性能,使制作的设备能满足TOCS以及阻燃要求,被广泛应用于半导体工业上高纯化学品的贮存和输送,近年来采用PVDF树脂制作的多孔膜、凝胶、隔膜等,在锂二次电池中应用,目前该用途成为PV DF需求增长最快的市场之一。PVDF是氟碳涂料最主要原料之一,以其为原料制备的氟碳涂料已经发展到第六代,由于PVDF树脂具有超强的耐候性,可在户外长期使用,无需保养,该类涂料被广泛应用于发电站、机场、高速公路、高层建筑等。另外PVDF树脂还可以与其他树脂共混改性,如PVDF与ABS树脂共混得到复合材料,已广泛应用于建筑、汽车装饰、家电外壳等。 化学结构中以氟一碳化合键结合,这种具有短键性质的结构与氢离子形成最稳定最牢固的结合.因而氟碳涂料具有特异的物理化学性能,不但有很强的耐磨性和抗冲击性能,而且在极端严酷与恶劣的环境中有很高的抗褪色性与抗紫外线性能。 2 PVDF转移膜 PVDF是一种高强度、耐腐蚀的物质,通常是用来制造水管的。PVDF膜可以结合蛋白质,而且可以分离小片段的蛋白质,最初是将它用于蛋白质的序列测定,因为硝酸纤维素膜在Edman试剂中会降解,所以就寻找了PVDF作为替代品,虽然PVDF膜结合蛋白的效率没有硝酸纤维素膜高,但由于它的稳定、耐腐蚀使它成为蛋白测序理想的用品,一直沿用至今。PVDF膜与硝酸纤维素膜一样,可以进行各种染色和化学发光检测,也有很广的适用范围。这种PVDF膜,灵敏度、分辨率和蛋白亲和力在精细工艺下比常规的膜都要高,非常适合于低分子量蛋白的检测。 但是使用PVDF膜前,一定要先用无水甲醇预处理,再在transfer buffer中平衡好才可以使用(PVDF膜用甲醇泡的目 的是为了活化PVDF膜上面的正电基团,使它更容易跟带负电的蛋白质结合)。经过预处理的PVDF膜在转膜时,可以使用不含甲醇的transfer buffer。而使用NC膜时,有的需要用无水甲醇处理,有的则不必,直接用transfer buffer平衡好就可以了。 产品介绍 PVDF是由纯度≥99.99%的偏氟乙烯(VDF)均聚而成的涂料用PVDF可熔性氟碳树脂。有70%PVDF树脂制成的氟 碳涂料经喷涂或辊涂等工艺经烘烤制成的漆膜具有无与伦比的超耐候性能及加工性能。完全符合美国建筑材料标准A AMA2605及中华人民共和国行业标准HG/T3793-2005。PVDF不但有很强的耐磨性和抗冲击性能,而且在极端严酷与

有机硅改性丙烯酸树脂

有机硅改性丙烯酸树脂 集丙烯酸酯的结构特征是主链由饱和的c—c键构成,侧链为带有极性的羧酸酯基。故赋予其良好的耐热氧化、耐候性、耐油耐溶剂及牯结性,但其硫化性、耐寒性、耐水、耐碱性及电气性能较差。有机硅改性丙烯酸树脂具有较好的固化性,既可加热固化,也可室温催化固化,此外还具有良好的粘接性、耐油耐溶剂性、耐候性及耐水性等。 丙烯酸改性硅树脂区男别于丙烯酸改性硅橡胶,从所用原料及制备方法看,后者主要从活性线型硅氧烷与丙烯酸橡胶(为丙烯酸酯与氯乙纂乙烯基醚或丙烯腈等的共聚物),特别是过氧化物交联型丙烯酸橡胶出发,通过物理改性(共混)法或化学改性法(如本体聚合、溶液聚合及乳液聚合等)制得;丙烯酸改性硅树脂主要采用化学改性法, 一OH)键的耐热丙烯酸树脂与含而且主要是由含C一OH(主要为CH 2 SiOH或SiOR的多官能硅烷或硅树脂中间体,通过缩台反应(脱水或脱酵)而得。由于丙烯酸树脂对硅树脂的相容性优于其他有机树脂,特别是在增溶剂存在下,两者能良好混合,因而丙烯酸改性硅树脂也可通过物理混合法配制。 近年来,湖北大学采用水溶性自由基引发剂,以含氢硅油与丙烯酸丁酯为原料,通过乳液聚合方法合成了性能优异的有机硅丙烯酸醣复合聚合物乳液,该乳液具有很好的耐酸碱、耐高低温及耐电解质稳定性,用其配制的涂料具有很好的耐候性和耐沾污性能,湖南湘潭师 )与丙烯酸酯等的乳液共聚反应,当范大学用八甲基环四硅氧烷(D 4 温度为83"C、时间为3h、转化率80%以上时,共聚乳液的综合性能尤

其是胶膜耐甲苯性能(25"C时膨胀为75%)及耐烫性(120"C)明显优于丙烯酸树脂,济南化工研究所以丙烯酸酯类单体、D 和乙烯基七甲 4 基环四硅氧烷为原料,通过加入一定量的接枝剂,采用一次投料法合成r稳定的聚丙烯酸酯+聚硅氧烷复合乳液,四川省建材工业科学研究院通过预乳化工艺,采用活性硅油与丙烯酸酯类单体进行乳液共聚,得到有机硅改性丙烯酸乳液,用该乳液配制的涂料涂层耐沾污性好,综合性能优异,复旦大学采用含乙烯基官能团的有机硅单体与甲基丙烯酸酯、丙烯酸酯、丙烯酸羟基酯等单体通过种子乳液聚合,得到了稳定的性能优异豹有机硅改性丙烯酸醋乳液,此硅胶适用于人造文化石模具硅胶领域,浙江大学采用有机硅单体对丙烯酸树脂进行改性,制得硅丙乳胶材料,重庆大学合成了聚有机硅氧烷一聚丙烯酸醇互穿材料,该材料可避免因使用单一有机硅材料或丙烯酸系涂料而造成的“保护性”破坏,具有无色透明、硬度高、附着力强、耐酸沉降、耐热老化性及透水性好等优点.可用作摩岩石刻防风化材料和复制精密模具和树脂树脂饰品的专用硅胶,上海市市建筑科学研究院开发的有机硅丙烯酸树脂适合于配制耐候性达15年以上的高耐候性材料,合肥工业大学用正硅酸乙酯部分水解缩聚而得的聚硅氧烷与带羟基的丙烯酸树脂反应制得有机硅接枝改性丙烯酸树脂.该树脂在耐酸碱、耐盐、耐溶剂性能及冲击强度等方面较纯聚硅氧烷有明显改善,且在耐高温性方面较丙烯酸树脂有明提高,江苏省建筑材料研究设计院在丙烯酸树脂的合成中引入一定量的有机硅官能团,制得丁溶剂型高耐候性有机硅改性丙烯酸树脂材料,中科院兰州化学物理研究所用羟基

聚乙烯醇PVA

聚乙烯醇PV A 聚乙烯醇,有机化合物,白色片状、絮状或粉末状固体,无味。溶于水,不溶于汽油、煤油、植物油、苯、甲苯、二氯乙烷、四氯化碳、丙酮、醋酸乙酯、甲醇、乙二醇等。微溶于二甲基亚砜。聚乙烯醇是重要的化工原料,用于制造聚乙烯醇缩醛、耐汽油管道和维尼纶合成纤维、织物处理剂、乳化剂、纸张涂层、粘合剂、胶水等。 中文名:聚乙烯醇英文名polyvinyl alcohol, vinylalcohol polymer 别称:PV A 化学式[C2H4O]n 分子量 44.05(单体)CAS登录号9002-89-5 熔点230-240℃水溶性:溶于水外观:白色片状、絮状或粉末状固体 闪点:79℃应用:粘合剂、乳化剂、分散剂等 危险性描述:吸收后对身体有害,可燃,具有刺激性。 目录 1 技术指标 2 医药级 3 危险性 4 急救措施 5 消防措施 6 泄漏处理 7 操作处置 8 接触控制 9 个体防护 10 理化特性 ?特性 ? PV A薄膜制造 11 主要用途 12 配伍禁忌 13 用途应用 ?产品性能 ?产品用途 ?使用方法 ?贮存 ?消泡剂添加 ?储运 14 市场分析 技术指标编辑

聚乙烯醇产品标准(USP25)低黏度 中黏度

医药级编辑 医药用EG的等级及规格,EG系统的用途。医药级聚乙烯醇,不同于化工级别聚乙烯醇,它是一种极安全的高分子有机物,对人体无毒,无副作用,具有良好的生物相容性,尤其在医疗中的如其水性凝胶在眼科、伤口敷料和人工关节方面的有广泛应用,同时在聚乙烯醇薄膜在药用膜,人工肾膜等方面也有使用。其安全性可以从用于伤口皮肤修复,和眼部滴眼液产品可见一斑。其中一些型号也常被用在化妆品中的面膜、洁面膏、化妆水及乳液中,是一种常用的安全性成膜剂。 医药级主要规格 医药级用途 危险性编辑 健康危害:吸入、摄入对身体有害,对眼睛有刺激作用。 燃爆危险:该品可燃,具刺激性。 急救措施编辑 皮肤接触:脱去污染的衣着,用流动清水冲洗。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:脱离现场至空气新鲜处。如呼吸困难,给输氧。就医。 食入:饮足量温水,催吐。就医。 消防措施编辑 危险特性:粉体与空气可形成爆炸性混合物,当达到一定浓度时,遇火星会发生爆炸。加热分解产生易燃气体。 有害燃烧产物:一氧化碳、二氧化碳。 灭火方法:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。 泄漏处理编辑 应急处理:隔离泄漏污染区,限制出入。切断火源。建议应急处理人员戴防尘面具(全面罩),穿防毒服。避免扬尘,小心扫起,置于袋中转移至安全场所。也可以用大量水冲洗,洗水稀释后放入废水系统。若大量泄漏,用塑料布、帆布覆盖。收集回收或运至废物处理场所处置。

聚乙烯醇的改性研究

聚乙烯醇的改性研究 引言:本文介绍了聚乙烯醇的性质、改性的必要性以及改性的方法、最后介绍下聚乙烯醇的应用。 关键词:聚乙烯醇性质;聚乙烯醇改性;聚乙烯醇应用 一CH(OH)一基团的高聚物,由聚醋酸乙烯醋醇解而聚乙烯醇是分子主链含一CH 2 制得。其别名为PVA ,Poval,使用得最多的部门是它的特性而用于油田、纤维、胶粘剂、涂料、功能高分子材料、膜材料、造纸、土壤改良剂等等。近年来, 利用其单体开发出一系列新产品, 其附加值和新用途颇受业内人士的亲睐。[1] 1聚乙烯醇概况 1.1聚乙烯醇性质 聚乙烯醇为白色或微带黄色粉末或粒状, 密度为1.27一1.3 一。折射率(n 气)1.49 一1.53。热稳定性: 在10一140 ℃时稳定; 高于150 ℃时漫漫变色, 在170 ~200 ℃时分子间脱水, 高于250 ℃时分子内脱水, 颜色很深, 不溶解; 玻璃化温度65 ~ 87 ℃ , 无定形聚乙烯醉玻璃化温度一般为7 0 一8 0 ℃。比热(卡/克·℃ )0.4。与强酸作用, 溶解或分解。与强碱作用, 变软或溶解。与弱酸作用, 变软或溶解。对矿物油、脂肪、烃类、醇、醋、酮二硫化碳等具有良好的耐浸蚀性。分子量越低, 水溶性越好。依水解度不同, 产物溶于水或仅能溶胀。透气性很小, 除水蒸汽和氨外, 氢、氮、氧、二氧化碳等气体透过率很低。高水解度的聚乙烯醉膜在25 ℃下, 对氧的透气性几乎为零, 二氧化碳的透气性仅为0. 2g/m2 , 不吸收声音, 能很正确地传声。 根据聚合度和醉解度的不同, 聚乙烯醇可分为许多类。工业产品按聚合度分, 低聚合度在20℃,4%水溶液, 粘度为5x10-3Pa·S;中聚合度粘度为(20-30)X10-3Pa·S ; 高聚合度粘度为(40 一50)x10 -3Pa·S。根据醇解度分, 有82、86、88、90、97、98、99、l00(摩尔, % )等, 大于98者称完全醇解型, 其余均为部分醇解型, 随着醉解度的加大, 其在水中的溶解度明显下降, 醇解度为8%时水溶性最好。最普遍的产品规格是17一8和17一9两种型号, 其中17表示平均聚合度为1700一1800。[1] 1.2聚乙烯醇的特性及其改性的必要性 我国是聚乙烯醇(PVA)的生产大国,产量高达全球的1/3,主要应用范围遍及纺织、造纸、粘合剂和包装印刷等多个领域。聚乙烯醇具有良好的成膜性、优越的阻隔性,而且可生物降解、绿色环保,因此国外将聚乙烯醇作为高阻隔性包装材料的应用越来越多。在国内,原国家经济贸易委员会发布“工业行业近期发展导向”(国经贸行[20021716 号)提出“开发高阻隔性容器、包装材料,多功能薄膜、水溶性薄膜和可降解性材料的工艺和设备”,在塑料包装材料“十五”及2010 年发展规划中把聚乙烯醇高阻隔薄膜的开发作为专用包装基材新品种,列入包装薄膜重点产品的发展方向。聚乙烯醇高阻隔包装材料的加工方式有两种:涂布加工和挤出加工。现阶段国内主要以涂布加工为主。由于聚乙烯醇中含有大量的亲水性基团羟基,在高湿环境中,对水表现出强烈的亲合作用,因此聚乙烯醇虽然在干燥环境中具有很好的阻气性能,但是随着环境湿度的升高,其阻隔性能会急剧降低。因此,采用聚乙烯醇作为高阻隔性包装材料就必须进行耐水改性,

相关文档