文档库 最新最全的文档下载
当前位置:文档库 › 了解 PLSQL 条件控制和循环控制

了解 PLSQL 条件控制和循环控制

了解 PLSQL 条件控制和循环控制
了解 PLSQL 条件控制和循环控制

4、PL/SQL 条件控制和循环控制

PL/SQL 程序可通过条件或循环结构来控制命令执行的流程。PL/SQL 提供了丰富的流程控制语句,与Java 一样也有三种控制结构:

> 顺序结构构> 条件结构> 循环结构

条件控制

Java 中的条件控制使用关键字if和switch。PL/SQL 中关于条件控制的关键字有IF-THEN、IF-THEN-ELSE、IF-THEN-ELSIF 和多分支条件CASE。

> IF-THEN

该结构先判断一个条件是否为TRUE,条件成立则执行对应的语句块,与Java 中的if 语句很相似,具体语法是:

说明;

①用IF 关口字开始,END IF 关键字结束,注意END IF 后面有一个分号。

②条件部分可以不使用括号,但是必须以关键字THEN 来标识条件结束,如果条件成立,则执行THEN 后到对应END IF 之间的语句块内容。如果条件不成立,则不执行条件语句块的内容。

③Java 结构用一对大括号来包含条件结构体的内容。PL/SQL 中关键字THEN 到END IF 之间的内容是条件结构体内容。

④条件可以使用关系运算符合逻辑运算符。

> IF-THEN-ELSE语法:

兆隆IT云学院,办学最久,专业最全,师资最强,就业最好,QQ:598756835 说明:把ELSE与IF-THEN连在一起使用,如果IF条件不成立则执行就会执行ELSE部分的语句。

> IF-THEN-ELSIF

多重条件判断语句。

说明:PL/SQL 中的再次条件判断中使用关键字ELSIF,而Java使用else if。> CASE

CASE是一种选择结构的控制语句,可以根据条件从多个执行分支中选择相应的执行动作,也可以作为表达式使用,返回一个值。类似于java中的switch语句。语法是:

CASE[selector]

WHEN表达式1THEN语句序列1;

WHEN表达式2THEN语句序列2;

WHEN表达式3THEN语句序列3;

........

[ELSE语句序列N];

END CASE;

说明:如果存在选择器selector,选择器selector与WHEN后面的表达式匹配,匹配成功就执行THEN后面的语句。如果所有表达式都与selector不匹配,则执行ELSE后面的语句。

循环结构

PL/SQL 提供了丰富的循环结构来重复执行一些列语句。Oracle 提供的循环类型有:

1. 无条件饷环Loop-END LOOP语句

2. WHILE循环语句

3. FOR循环语句

在上面的三类循环中EXIT 用来强制结束循环,相当于Java 循环中的break。> LOOP循环

LOOP 循环是最简单的循环,也称为无限循环,LOOP和END LOOP 是关键字,语法是

LOOP

--循环体

END LOOP:

说明:

1. 循环体在LOOP 和END LOOP 之间,在每个LOOP 循环体中,首先执行循环体中的语句序列,执行完后再重新开始执行。

2. 在LOOP 循环中可以使用EXIT 或者[EXITWHEN 条件] 的形式终止循环。否则该循环就是死循环。

> WHILE循环

与java中的w

hile循环很类似。先判断条件,条件成立再执行循环体。

兆隆IT云学院,办学最久,专业最全,师资最强,就业最好,QQ:598756835 > FOR循环

FOR循环需预先确定的循环次数,可通过给循环变量指定下限和上限来确定循环运行的次数,然后循环变量在每次循环中递增(或者递减)。FOR循环的语法是:

FOR循环变量IN [REVERSE]循环下限..循环上限LOOP

--循环体

END LOOP;

说明:循环变量:该变量的值每次循环根据上下限的REVERSE关键字进行加1或者减1。

REVERSE:指明循环从上限向下限一次循环。

顺序结构

在程序顺序结构中有两个特殊的语句。GOTO 和NULL

> GOTO 语句

GOTO 语句将无条件的跳转到标签指定的语句去执行。标签是用双尖括号括起来的标示符,在PL/SQL块中必须具有唯一的名称,标签后必须紧跟可执行语句或者PL/SQL 块。GOTO 不能跳转到IF语句、CASE 语句、LOOP 语句、或者子块中。

> NULL语句

NULL 语句什么都不做,只是将控制权转到下一行语句。NULL 语句是可执行语句。NULL语句在IF 或者其他语句语法要求至少需要一条可执行语句,但又不需要具体操作的地方。比如GOTO 的目标地方不需要执行任何语句时。

与java一样,在PL/SQL中,各种循环之间可以相互镶嵌。

循环水控制指标及解释

循环水水质控制指标及注释 1、PH:7.0-9.2 在25℃时pH=7.0的水为中性,故pH=7.0-9.2的水大体上属于中性或微碱性的范围;冷却水的腐蚀性随pH值的上升而下降;循环水的pH值低于这一范围时,水的腐蚀性将增加,造成设备的腐蚀;循环水的pH值高于这一范围时,则水的结垢倾向增大,容易引起换热器的结垢。 2、悬浮物:≤10mg/L 悬浮物会吸附水中的锌离子,降低锌离子在水中的浓度;一般情况下,循环冷却水的悬浮物浓度或浊度不应大于20mg/L,当使用板式、翅片管式或螺旋板式换热器时,悬浮物浓度或浊度不宜大于10mg/L。 3、含盐量:≤2500mg/L 含盐量也可通过电导率来间接表示,天然淡水的电导率通常在50-500μS/cm;电导率与含盐量大致成正比关系,其比值1μS/cm的电导率相当于0.55-0.90mg/L的含盐量;在含盐量高的水中,Cl-和SO42-的含量往往较高,因而水的腐蚀性较强;含盐量高的水中,如果Ca2+、Mg2+和HCO3-的含量较高,则水的结垢倾向较大;投加缓蚀剂、阻垢剂时,循环冷却水的含盐量一般不宜大于2500mg/L。 4、Ca2+离子:30≤X≤200 mg/L 从腐蚀的角度看,软水虽不易结垢,但其腐蚀性较强,因此循环水中钙离子浓度不宜小于30mg/L;从结垢的角度看,钙离子是循环水中最主要的成垢阳离子,因此循环水中钙离子浓度也不宜过高;在投加阻垢分散剂的情况下,钙离子浓度的高限不宜大于200mg/L。 5、Mg2+离子: 镁离子也是冷却水中一种主要的成垢阳离子,循环水中镁离子浓度不宜大于60mg/L或2.5mmol/L(以Mg2+计);由于镁离子易与循环水中的硅酸根生成类似于蛇纹石组成的不易用酸除去的硅酸镁垢,故要求循环水中镁离子浓度遵从以下关系:[Mg2+](mg/L)*[SiO2](mg/L)<15000,式中[Mg2+]以CaCO3计,[SiO2]以SiO2计。

循环水控制指标及解释

循环水水质控制指标及注释 1、PH:7。0—9.2 在25℃时pH=7.0得水为中性,故pH=7.0-9.2得水大体上属于中性或微碱性得范围;冷却水得腐蚀性随pH值得上升而下降;循环水得pH值低于这一范围时,水得腐蚀性将增加,造成设备得腐蚀;循环水得pH值高于这一范围时,则水得结垢倾向增大,容易引起换热器得结垢。 2、悬浮物:≤10mg/L 悬浮物会吸附水中得锌离子,降低锌离子在水中得浓度;一般情况下,循环冷却水得悬浮物浓度或浊度不应大于20mg/L,当使用板式、翅片管式或螺旋板式换热器时,悬浮物浓度或浊度不宜大于10mg/L。 3、含盐量:≤2500mg/L 含盐量也可通过电导率来间接表示,天然淡水得电导率通常在50-500μS/cm;电导率与含盐量大致成正比关系,其比值1μS/cm得电导率相当于0。55-0。90mg/L得含盐量;在含盐量高得水中,Cl-与SO42-得含量往往较高,因而水得腐蚀性较强;含盐量高得水中,如果Ca2+、Mg2+与HCO3-得含量较高,则水得结垢倾向较大;投加缓蚀剂、阻垢剂时,循环冷却水得含盐量一般不宜大于2500mg/L。 4、Ca2+离子:30≤X≤200mg/L 从腐蚀得角度瞧,软水虽不易结垢,但其腐蚀性较强,因此循环水中钙离子浓度不宜小于30mg/L;从结垢得角度瞧,钙离子就是循环水中最主要得成垢阳离子,因此循环水中钙离子浓度也不宜过高;在投加阻垢分散剂得情况下,钙离子浓度得高限不宜大于200mg/L。 5、Mg2+离子: 镁离子也就是冷却水中一种主要得成垢阳离子,循环水中镁离子浓度不宜大于60mg/L或2、5mmol/L(以Mg2+计);由于镁离子易与循环水中得硅酸根生成

工业循环水主要分析报告指标及方法

附页1 工业循环水主要分析方法 一、水质分析中标准溶液的配制和标定 (一)盐酸标准溶液的配制和标定 取9mL市售含HCl为37%、密度为1.19g/mL的分析纯盐酸溶液,用水稀释至1000mL,此溶液的浓度约为0.1mol/L。 准确称取于270~300℃灼烧至恒重的基准无水碳酸钠0.15g (准确至0.2mg),置于250mL锥形瓶中,加水约50mL,使之全部溶解。加1—2滴0.1%甲基橙指示剂,用0.lmol/L盐酸溶液滴定至由黄色变为橙色,剧烈振荡片刻,当橙色不变时,读取盐酸溶液消耗的体积。盐酸溶液的浓度为 c(HCl) = m×1000 / (V×53.00) mol/L 式中 m——碳酸钠的质量,g; V——滴定消耗的盐酸体积,ml; 53.00——1/2 Na2C03的摩尔质量,g/mol。 (二)EDTA标准溶液的配制和标定 称取分析纯EDTA(乙二胺四乙酸二钠)3.7g于250mL烧杯中,加水约150mL和两小片氢氧化钠,微热溶解后,转移至试剂瓶中,用水稀释至1000mL,摇匀。此溶液的浓度约为0.015mol/L。 (1)用碳酸钙标定EDTA溶液的浓度准确称取于110℃干燥至恒重的高纯碳酸钙0.6g(准确至0.2mg),置于250mL烧杯中,加水100mL,盖上表面皿,沿杯嘴加入l+1盐酸溶液10mL。加热煮沸至不再冒小气泡。冷至室温,用水冲洗表面皿和烧杯内壁,定量转移至250mL容量瓶中,用水稀释至刻度,摇匀。 移取上述溶液25.00mL于400mL烧杯中,加水约150mL,在搅拌下加入10mL 20%氢氧化钾溶液。使其pH>l2,加约10mg钙黄绿素—酚酞混合指示剂①,溶液呈现绿色荧光。立即用EDTA标准溶液滴定至绿色荧光消失并突变为紫红色时即为终点。记下消耗的EDTA溶液的体积。 (2)用锌或氧化锌标定EDTA溶液的浓度准确称取纯金属锌0.3g (或已于800℃灼烧至恒重的氧化锌0.38g),称准至0.2mg,放入250mL烧杯中,加水50mL,盖上表面皿,沿杯嘴加入10mL l+1盐酸溶液,微热。待全部溶解后,用水冲洗表面皿与烧杯内壁,冷却。转移入250mL容量瓶中,用水稀释至刻度,摇匀,备用。 用移液管移取上述溶液25.00mL于250mL锥形瓶中,加水100mL,加0.2%二甲酚橙指示剂溶液1~2滴,滴加20%六次甲基四胺溶液至呈现稳定红色,再过量5mL,加热至60℃左右,用EDTA溶液滴定至由红色突变为黄色时即为终点。记下EDTA溶液消耗的体积。 EDTA溶液的浓度用下式计算: c(EDTA) = m×1000 / (M×V×10) mol/L 式中 m——基准物质的质量,mg; M——基准物质的摩尔质量,g/mol,选用碳酸钙时为100.08,选用金属锌(或氧化锌)时为65.39(或81.39); V——滴定消耗的EDTA溶液体积,mL。 用EDTA滴定法测定水硬度时,习惯使用c (1/2 EDTA),这时 c(1/2 EDTA)=2c (EDTA) (三)硝酸银标准溶液的配制和标定 称取1.6g分析纯硝酸银,加水溶解并稀释至1000mL,贮于棕色瓶中。此溶液的浓度约为0.01mol/L。 准确称取0.6g已于500~600℃灼烧至恒重的优级纯氯化钠(准确至0.2mg)。加水溶解后,移至250mL 容量瓶中并稀释至刻度,摇匀。用移液管移取氯化钠溶液10.00mL于250mL锥形瓶中加水约100mL5%铬酸钾溶液lmL,用硝酸银溶液滴定至砖红色出现时即为终点。 记下硝酸银溶液的体积。 用100mL水作空白,记录空白消耗硝酸银溶液的体积。硝酸银溶液的浓度为 c(AgNO3) = m×1000 / [58.44×(V—V0 ) ×25] mol/L 式中 m——氯化钠的质量,g; 58.44——NaCl的摩尔质量,g/mol; V——滴定氯化钠溶液时消耗硝酸银的体积,mL; V0——滴定空白时消耗硝酸银的体积,mL。 ①1g钙黄绿素和1g酚酞与50g分析纯干燥的硝酸钾混合,磨细混匀。 (四)硝酸汞标准溶液的配制和标定

循环水控制指标及解释

循环水水质控制指标及注释 1、PH:7、0-9、2 在25℃时pH=7、0的水为中性,故pH=7、0-9、2的水大体上属于中性或微碱性的范围;冷却水的腐蚀性随pH值的上升而下降;循环水的pH值低于这一范围时,水的腐蚀性将增加,造成设备的腐蚀;循环水的pH值高于这一范围时,则水的结垢倾向增大,容易引起换热器的结垢。 2、悬浮物:≤10mg/L 悬浮物会吸附水中的锌离子,降低锌离子在水中的浓度;一般情况下,循环冷却水的悬浮物浓度或浊度不应大于20mg/L,当使用板式、翅片管式或螺旋板式换热器时,悬浮物浓度或浊度不宜大于10mg/L。 3、含盐量:≤2500mg/L 含盐量也可通过电导率来间接表示,天然淡水的电导率通常在50-500μS/cm;电导率与含盐量大致成正比关系,其比值1μS/cm的电导率相当于0、55-0、90mg/L的含盐量;在含盐量高的水中,Cl-与SO42-的含量往往较高,因而水的腐蚀性较强;含盐量高的水中,如果Ca2+、Mg2+与HCO3-的含量较高,则水的结垢倾向较大;投加缓蚀剂、阻垢剂时,循环冷却水的含盐量一般不宜大于2500mg/L。 4、Ca2+离子:30≤X≤200 mg/L 从腐蚀的角度瞧,软水虽不易结垢,但其腐蚀性较强,因此循环水中钙离子浓度不宜小于30mg/L;从结垢的角度瞧,钙离子就是循环水中最主要的成垢阳离子,因此循环水中钙离子浓度也不宜过高;在投加阻垢分散剂的情况下,钙离子浓度的高限不宜大于200mg/L。 5、Mg2+离子: 镁离子也就是冷却水中一种主要的成垢阳离子,循环水中镁离子浓度不宜大于60mg/L或2、5mmol/L(以Mg2+计);由于镁离子易与循环水中的硅酸根生成类似于蛇纹石组成的不易用酸除去的硅酸镁垢,故要求循环水中镁离子浓度遵从以下

工业循环水水质标准 2

循环冷却水的水质标准表 项目 单位 要求和使用条件 允许值 悬浮物 Mg/L 根据生产工艺要求确定 <20 换热设备为板式,翅片管式, 螺旋板式 <10 PH 值 根据药剂配方确定 7-9.2 甲基橙碱度 Mg/L 根据药剂配方及工况条件确 定 <500 钙离子 Mg/L 根据药剂配方及工况条件确定 30-200 亚铁离子 Mg/L <0.5 氯离子 Mg/L 碳钢换热设备 <1000 不锈钢换热设备 <300 硫酸根离子 Mg/L 对系统中混凝土材质的要求 按现行的<岩土工程勘察规范>GB50021 94的规定执行 硫酸根离子与氯离子之和 <1500 硅酸 Mg/L <175 镁离子与二氧化硅的乘积 <15000 游离氯 Mg/L 在回水总管处 0.5-1.0 石油类 Mg/L <5 炼油企业 <10 注: 甲基橙碱度以碳酸钙计; 硅酸以二氧化硅计; 镁离子以碳酸钙计。 3.1.8密闭式系统循环冷却水的水质标准应根据生产工艺条件确定; 3.1.9敞开式系统循环冷却水的设计浓缩倍数不宜小于3.0.浓缩倍数可按下式计算: N=Q M /Q H +Q W (3.1.9) 式中 N 浓缩倍数; Q M 补充水量((M 3 /H); Q H 排污水量((M 3/H);

Q W 风吹损失水量(M 3 /H). 3.1.10敞开式系统循环冷却水中的异养菌数宜小于5×105个/ML 粘泥量宜小于4ML/M 3 ; 表10-3锅炉加药水处理时的水质标准 表10-4蒸汽锅炉采用锅外化学水处理时的 水质标准 项目 给水 锅水 额定蒸汽压力,MPA 《1 》1 《1.6 >1.6 <2.5 <1 >1 <1.6 >1.6 <2.5 悬浮物, <5 <5 <5 总硬度 <0.03 <0.03 <0.03 总碱度 无过热器 6-26 6-24 6-16 有过热器 <14 <12 PH >7 >7 >7 10-12 10-12 10-12 含油量 <2 <2 <2 溶解氧 <0.1 <0.1 <0.05 溶解固形物 无过热器 <4000 <3500 <3000 有过热器 <3000 <2500 亚硫酸根 10-30 10-30 磷酸根 10-30 10-30 相对碱度(游离氢氧化钠 <0.2 <0.2 <0.2 项目 单位 给水 锅水 悬浮物 Mg/L <20 PH 值 》7 10-12 总硬度 Mg/L <4 溶解固形物 Mg/L <5000 相对碱度 Mg/L 总碱度 Mg/L 8-26

循环水控制指标及解释

循环水控制指标及解释Last revision on 21 December 2020

循环水水质控制指标及注释 1、PH:在25℃时pH=的水为中性,故pH=的水大体上属于中性或微碱性的范围;冷却水的腐蚀性随pH值的上升而下降;循环水的pH值低于这一范围时,水的腐蚀性将增加,造成设备的腐蚀;循环水的pH值高于这一范围时,则水的结垢倾向增大,容易引起换热器的结垢。 2、悬浮物:≤10mg/L 悬浮物会吸附水中的锌离子,降低锌离子在水中的浓度;一般情况下,循环冷却水的悬浮物浓度或浊度不应大于20mg/L,当使用板式、翅片管式或螺旋板式换热器时,悬浮物浓度或浊度不宜大于10mg/L。 3、含盐量:≤2500mg/L 含盐量也可通过电导率来间接表示,天然淡水的电导率通常在50-500μS/cm;电导率与含盐量大致成正比关系,其比值1μS/cm的电导率相当于的含盐量;在含盐量高的水中,Cl-和SO42-的含量往往较高,因而水的腐蚀性较强;含盐量高的水中,如果Ca2+、Mg2+和HCO3-的含量较高,则水的结垢倾向较大;投加缓蚀剂、阻垢剂时,循环冷却水的含盐量一般不宜大于2500mg/L。 4、Ca2+离子:30≤X≤200mg/L 从腐蚀的角度看,软水虽不易结垢,但其腐蚀性较强,因此循环水中钙离子浓度不宜小于30mg/L;从结垢的角度看,钙离子是循环水中最主要的成垢阳离子,因此循环水中钙离子浓度也不宜过高;在投加阻垢分散剂的情况下,钙离子浓度的高限不宜大于200mg/L。 5、Mg2+离子: 镁离子也是冷却水中一种主要的成垢阳离子,循环水中镁离子浓度不宜大于60mg/L 或L(以Mg2+计);由于镁离子易与循环水中的硅酸根生成类似于蛇纹石组成的不易用酸除去的硅酸镁垢,故要求循环水中镁离子浓度遵从以下关系:[Mg2+](mg/L)*[SiO2](mg/L)<15000,式中[Mg2+]以CaCO3计,[SiO2]以SiO2计。

工业循环水处理技术改进措施

工业循环水处理技术改进措施 环境保护、节水减排、废水回用是对目前循环冷却水系统提出的新挑战。企业应根据自身特点,积极采用成熟的新技术、新材料和新装置,优化循环冷却水处理系统,提高循环冷却水处理技术水平,为企业甚至整个社会的可持续发展做出应有的贡献。 1导言 循环水处理是个巨大而艰巨的系统工程,我们要解决的就是腐蚀、结垢、微生物粘泥这三个问题,要针对本厂实际情况结合自己设备存在的问题,做出正确判断,更重要的是要对整个设备进行优化管理,加大管理监察力度,围绕水质稳定做工作,争取达到对循环水水质、水温的合理控制,防患于未然,在实现节能降耗的同时,为全厂生产设备的安全运行提供有利保障。 2段国内外循环水处理的实际情况 2.1现阶段国内外循环水处理情况 循环水冷却处理技术于上世纪初期已在国外得到了良好的应用和发展,但也因为诸多实际因素的限制暴露出各种问题。上世纪末期循环水处理技术才被引入我国,在经过了一段漫长的发展历程后,方呈现出逐渐成熟趋势。在近几年的发展过程中,全世界循环水处理效率得到了很大程度的提升,应用于循环水处理的相关处理剂也逐渐增多,更甚至发展成为国际化和规模化的处理剂产品,在此方面,我国对于循环水处理剂的进出口量也在不断增长。 2.2现阶段国内外循环水主要处理手段 现阶段我国在处理循环水方面主要应用以下几种方式:首先是化学处理方式,该方式主要通过应用化学药剂,对循环水中所包含的多种不稳定物质实施高强度处理,从而有效降低污水的腐蚀性以及阻止污水结垢,另一方面能够合理降低常规工作状态下的排水量和补水量;其次是物理处理方式,该方式主要是应用相关处理材料对循环水进行科学全面的分析,同时通过改变循环水的能量、温度及压强,有效加强循环水处理材料的抗腐蚀及抗结垢等功能。 3循环水运行中存在的问题 3.1循环水系统内长期漏油 由于设备老化等原因,循环水系统长期漏油,久而久之,这样就会使装置换热设备内表面形成一层油膜,影响循环水的处理效果,泄漏的油脂还会成为众多微生物丰富的营养源,造成循环水系统微生物大量迅速繁殖难以控制,微生物粘泥、藻类急剧增多,使换热器内表面长期被油泥覆盖,致使缓蚀阻垢剂无法与换热器内表面接触从而丧失其缓蚀阻垢作用,导致换热器极易产生结垢和腐蚀。 3.2阻垢缓蚀效果差 由于不同时期水质和生产工艺条件都会发生变化或波动,就要及时改进、调整、优化缓蚀阻垢剂配方,如果配方长期不换,菌藻对杀菌剂已产生了免疫功能,阻垢缓蚀效果抗冲击和污染能力就会降低,杀菌效果差。 3.3凉水塔排泥设施不完善,水池没有做到定期清淤 凉水塔底部一般呈平底状,池底排泥阀无法排掉池底的淤泥,所以循环水厂的排泥阀不起作用,淤泥只能靠清扫水池才能排掉。但由于生产的连续不间断性,给清池工作带来很大的困难。 4现代循环水处理技术 随着循环水处理技术的发展,现代循环水处理技术采用有机阻垢剂、缓蚀剂、杀菌灭澡剂综合运用的方法,轮换交替使用,这样可以达到药剂间相互增效的作用。目前有机阻垢剂品种繁多,主要有有机磷系列、聚羟酸系列、聚羟酸脂系列等,一般来讲,复合配方的阻垢

影响循环水水质的原因和处理

影响循环水水质的原因和处理

影响循环水水质的原因和处理 、

目录 摘要 (3) 关键词 (3) 一、物料泄漏对水质的影响及处理 (3) 二、环境变化对水质的影响及处理 (4) 三、结论 (5) 参考文献 (5)

影响循环水水质的原因和处理 摘要:冷却水重复利用是节水减排的必然趋势,循环水的水质直接影响装置水冷却器及管路的安全运行,水质超标,对换热器形成腐蚀,造成泄漏,泄漏进一步使水质恶化,恶化的水质再对冷换设备加重腐蚀,形成恶心循环,严重时可影响装置生产。 关键词:循环水、物料泄漏、水垢、剥离 工厂在生产过程中,循环水投用污水回用水,冷却水重复使用是节水减排的必然趋势。一方面, 水冷却器制造质量问题发生而使水冷却器发生泄漏的现象在实际生产中也会碰到,其中出现的主要问题是换热管与花板接头处焊接不实或涨管不严,从而引起泄漏;有些沉积物的存在还将处进碳钢表面腐蚀电池的形成,造成高传染区的腐蚀穿孔事故。另一方面循环水冷却塔不是一个封闭的系统, 塔池直接与外部世界接触,由外面的世界带来的污染物更多。因在塔池周围的粉尘、泥沙、杂草、树叶等杂物,在有风的日子里极易进入冷却塔水池。这些有机和无机杂质,可以跟水通过管道、热交换器,在其表面沉积下来形成污垢。如果热交换器漏油量大、这些漏油和其它污物会附着在换热器和管壁上。由于温度高,通过复杂的效果,也可以形成较硬的污垢。所以,结垢、腐蚀相互促进,形成了复杂的协同效应,影响甚至破坏了生产系统的正常运行。主要分析了影响循环水水质的因素,并提出了相应的保证循环水水质的措施。 一、物料泄漏对水质的影响及处理 因为水冷却器制造质量问题发生而使水冷却器发生泄漏的现象在实际生产中也会碰到,其中出现的主要问题是换热管与花板接头处焊接不实或涨管不严,从而引起泄漏;有些沉积物的存在还将处进碳钢表面腐蚀电池的形成,造成高传染区的腐蚀穿孔事故。同时微生物的大量繁殖使水质恶化,浊度升高,COD升高。泄漏发生后,由于循环水水质恶化,打破原来在循环水系统所建立起来的抑制腐蚀、污垢沉积和微生物繁殖的平衡,使水冷却器换热效率下降,腐蚀进一步加剧,因此直接影响到各装置的正常生产。循环水系统发生泄漏,可以使水中黏泥量增加,这种黏泥因黏性强而及易在换热器内形成污垢。如果发生物料泄漏后,一些换热管内因黏泥沉积使空间减小,严重时甚至将换热管完全堵塞,这对水冷却器的效果产生极大影响。由于泄漏时许多酸性物料会进入到循环水中,引起循环水PH值降低,因此还加

冶金工业废水处理技术

冶金工业废水处理技术 冶金工业产品繁多,生产流程各成系列,排放出大量废水,是污染环境的主要废水之一。冶金废水的主要特点是水量大、种类多、水质复杂多变。按废水来源和特点分类,主要有:冷却水,酸洗废水,除尘和煤气、烟气洗涤废水,冲渣废水以及由生产工艺中凝结、分离或溢出的废水等。 冷却水的处理 冷却水在冶金废水中所占的比例最大。钢铁厂的冷却水约占全部废水的70%。冷却水分间接冷却水和直接冷却水。间接冷却水,如高炉炉体、热风炉、热风阀、炼钢平炉、转炉和其他冶金炉炉套的冷却水,使用后水温升高,未受其他污染,冷却后,可循环使用。若采用汽化冷却工艺,则用水量可显著减少,部分热能可回收利用。直接冷却水,如轧钢机轧辊和辊道冷却水、金属铸锭冷却水等,因与产品接触,使用后不仅水温升高,水中还含有油、氧化铁皮和其他物质,如果外排,会对水体造成淤积和热污染,浮油会危害水生生物。处理方法是先经粗颗粒沉淀池或水力旋流器,除去粒度在100微米以上的颗粒,然后把废水送入沉淀,除去悬浮颗粒;为提高沉淀效果,可投加混凝剂和助凝剂;水中浮油可用刮板清除。废水经净化和降温后可循环使用。冷轧车间的直接冷却水,含有乳化油,必须先用化学混凝法、加热法或调节pH值等方法,破坏乳化油,然后进行上浮分离,或直接用超过滤法分离。所收集的废油可以再生,作燃料用。 酸洗废水的处理 轧钢等金属加工厂都产生酸洗废水,包括废酸和工件冲洗水。酸洗每吨钢材要排出1~2米废水,其中含有游离酸和金属离子等。如钢铁酸洗废水含大量铁离子和少量锌、铬、铅等金属离子。少量酸洗废水,可进行中和处理并回收铁盐;较大量的则可用冷冻法、喷雾燃烧法、隔膜渗析法等方法回收酸和铁盐或分离回收氧化铁。若采用中性电解工艺除氧化铁皮,就不会出酸洗废水。但电解液须经过滤或磁分离法处理,才能循环使用。 洗涤水的处理 冶金工厂的除尘废水和煤气、烟气洗涤水,主要是高炉煤气洗涤水、平炉和转炉烟气洗涤水、

有机朗肯循环低温余热发电系统的分析与优化

有机朗肯循环低温余热发电系统的分析与优化 马新灵,魏新利,孟祥睿 (郑州大学化工与能源学院,河南郑州450001) 摘要:应用热力学第一定律和第二定律对有机朗肯循环低温余热发电系统进行了热力计算、能量分析和火用分析。 为了提高系统的性能,以R245fa为工质,针对120℃左右的热源,在给定工况下用Aspen Plus软件对系统流程进行模拟和优化。研究结果表明:降低膨胀机入口工质的过热度,提高膨胀机入口工质的压力,改进设备在膨胀机后加装回热器都能提高系统的热效率和火用效率,同时降低系统的不可逆性。 关键词:有机朗肯循环;余热回收;分析;优化 Analysis and Optimization of ORC for Low-temperature Waste Heat Power Generation Abstract:This paper presents energy analysis, thermodynamic calculation and exergy analysis for waste heat power generation system of Organic Rankine Cycle based on the first and second laws of thermodynamics. In order to improve system performance, for low-temperature waste heat of 120℃and R245fa organic working fluid, using Aspen Plus software conducted simulation, optimization and improvement. Results from these analyses show that decreasing the expander inlet temperature, increasing inlet pressure of the expander, and adding regenerative heater can increase thermal and exergy efficiencies , at the same time reduce system irreversibility. Key words: Organic Rankine Cycle, waste heat recovery ,Analysis, Optimization 1.引言 大量工业过程产生的低温余热资源不能被有效地回收利用,不仅浪费了能源,还使得热污染成为了严重的环境问题。用有机朗肯循环可以很好地解决这一问题,它可以用有机工质将低温余热回收后进行发电。 有机朗肯循环的基本原理与常规的朗肯循环类似。两者最大的区别是有机朗肯循环的工质是低沸点、高蒸汽压的有机工质,而不是水。有机朗肯循环系统由蒸发器、膨胀机、冷凝器和工质泵组成,如图1所示。工质在蒸发器中从低温热源中吸收热量产生有机蒸气,进而推动膨胀机旋转,带动发电机发电,在膨胀机做完功的乏气进入冷凝器中重新冷却为液体,由工质泵打入蒸发器,完成一个循环。 主要可以用于有机朗肯循环发电的热源有工 业废热、地热能、太阳热能、生物质能等。有机朗肯循环主要的优势在于它能很好地回收低温到中温废热。一些典型的工业废热源包括:钢铁工业的高炉热温气体,燃气轮机的排气和柴油发动机的尾气,陶瓷工业窑炉排出的高温气体,造纸和纸浆工业的高温液体。这些低品位的工业废热占整个工业生产热量的50%以上[1,2]。 图1 有机朗肯循环余热发电系统原理图 Figure 1. A simple schematic of a Organic Rankine Cycle 2.热力过程和分析 本研究利用的热源是120℃左右的工业废热,根据前人的研究[3~7]使用R245fa(五氟丙烷, CF3CH2CHF2)这种干性有机物质做工质。热力学模型的假定如下:1)稳定状态条件,2)蒸发器、冷凝器以及管道中没有压降,3)膨胀机和泵中按等熵效率。 有机朗肯循环的温熵图如图2所示的 1-2-3-4-5-6-1,由四个热力过程组成,各部件的热力过程及能量分析如下(以单位质量工质为基准):

工业循环冷却水处理设计规范2007

工业循环冷却水处理设计规范 中华人民共和国国家标准 GB50050--2007 工业循环冷却水处理设计规范 Code for design of industrial recirculating cooling water treatment 中华人民共和国建设部 关于发布国家标准《工业循环冷却水处理设计规范》的公告 中华人民共和国建设部公告第742号 现批准《工业循环冷却水处理设计规范》为国家标准,编号为GB50050-2007,自2008年5月1日起实施。其中,第3.1.6(2、4、5、6)、3.1.7、3.2.7、6.1.6、8.1.7、8.2.1、8.2.2、8.5.1(1、2、3、4、5、6、7)、8.5.4条(款)为强制性条文,必须严格执行。原《工业循环冷却水处理设计规范》GB50050-95同时废止。本标准由建设部标准定额研究所组织中国计划出版社出版发行。 中华人民共和国建设部 二〇〇七年十月二十五日 1 总则 1.0.1 为了贯彻国家节约水资源和保护环境的方针政策,促进工业冷却水的循环利用和污水资源化,有效控制和降低循环冷却水所产生的各种危害,保证设备的换热效率和使用年限,减少排污水对环境的污染,使工业循环冷却水处理设计做到技术先进,经济实用,安全可靠,制定本规范。 1.0.2 本规范适用于以地表水、地下水和再生水作为补充水的新建、扩建、改建工程的循环冷却水处理设计。 1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1.0.4 工业循环冷却水处理设计应不断地吸取国内外先进的生产实践经验和科研成果,积极稳妥地采用新技术。 1.0.5 工业循环冷却水处理设计除应按本规范执行外,还应符合国家有关现行标准和规范的规定。 2 术语、符号 2.1 术语 2.1.1 循环冷却水系统Recirculating Cooling Water System 以水作为冷却介质,并循环运行的一种给水系统,由换热设备、冷却设备、处理设施、水泵、管道及其它有关设施组成。 2.1.2 间冷开式循环冷却水系统(间冷开式系统)Indirect Open Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与大气直接接触散热的循环冷却水系统。2.1.3 间冷闭式循环冷却水系统(闭式系统)Indirect Closed Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与冷却介质也是间接传热的循环冷却水系

循环水指标名词解释

循环水指标名词解释 浓缩倍数 浓缩倍数(cyclw of concentratin)循环冷却水中,由于蒸发而浓缩的物质含量与补充水中同一物质含量的比值,或指补充水量与排污水量的比值。 什么是浓缩倍数 在循环冷却水中,由于蒸发而浓缩的溶解固体与补充水中溶解固体的比值,或指补充水流量对排污水流量的比值。在实际测量中,通常为循环冷却水的电导率值与补充水的电导率之比。 提高冷却水的浓缩倍数的好处: ?提高冷却水的浓缩倍数,可以降低补充水的用量,节约水资源; ?提高冷却水的浓缩倍数,可以降低排污水量,从而减少对环境的污染和废水的处理量; ?提高冷却水的浓缩倍数,可以节约水处理剂的消耗量,从而降低冷却水处理的成本; 过多地提高冷却水的浓缩倍数的坏处: ?过多地提高冷却水的浓缩倍数,会使冷却水中的硬度、碱度太高,水的结垢倾向增大; ?过多地提高冷却水的浓缩倍数,会使冷却水中的腐蚀性离子的含量增加,水的腐蚀性增强,从而使腐蚀控制的难度增大; 因此,我们要保证冷却水的处理效果,必须控制好冷却水的浓缩倍数,通常,对于中央空调冷却水的浓缩倍数一般控制在4~5 为佳。 循环冷却水浓缩倍数关键是看水质是否结垢型 2006-10-14 08:16 循环冷却水浓缩倍数关键是看水质是否结垢型 作者:杜林琳; 摘要:针对循环水浓缩倍数低于集团公司指标的情况,进行了相关影响因素分析,依此提出了减少系统保有水量、增加热负荷、改造旁虑池、优化工艺管理及操作等改进措施,并对浓缩倍数提高后系统运行可能存在的问题及注意事项进行了讨论。 循环水浓缩倍数是反映和控制循环水系统运行的一个重要综合性指

标。提高循环水浓缩倍数不仅可以降低补充水量、节约水资源;降低排污水量、减少对环境的污染和废水处理量;还可以减少水处理剂及杀生剂的消耗量、降低水处理成本。 循环冷却水系统作为石油化工行业的一个总要组成部分,近几年来随着管理制度的不断完善;生产工艺技术的不断进步;水处理剂的不断改进、开发,集团公司对循环水质管理的要求也越来越高,特别是浓缩倍数N控制指标逐年提高。如下图示: 1 现状分析 我厂现共有五座循环水场,由于系统设计、处理能力、覆盖的生产装置、管理水平各异,因而各水场的水质差异较大。具体反映在浓缩倍数上详见表1。 表1 循环水场浓缩倍数统计表(2003年) 一循环水场 二循环水场 三循环水场 焦化水场 烷基化水场 浓缩倍数 (平均值) 2.88 3.35 2.63 3.24 2.16 浓缩倍数 合格率(%) 40.0 70.3 20.5 62.5 14.0 注:表中合格率统计均是以N≥3.00为计算依据

工业循环水常遇问题及解决方案

工业循环水常遇问题及解决方案 一、工业循环水 随着工业生产得发展,水用量急剧增加,很多地区已经出现供水不足得现象,节约用水刻不容缓!冷却水占工业用水主体,提高其重复利用率、循环使用就是节水节能得必须手段 二、循环水运行过程中常产生得问题 在工业生产得工艺条件下,工业循环水水质常会发生一系列变化,对生产造成危害,如:腐蚀、结垢、菌藻、粘泥等。这些问题如果得不到有效得解决,则无法进行安全生产,造成巨大得工业损失。 1 >水垢 由于循环水在冷却过程中不断地蒸发,使水中含盐浓度不断增高,超过某些盐类得溶解度而沉淀。常见得有碳酸钙、磷酸钙、硅酸镁等垢。 碳酸钙 碳酸钙就是工业循环冷却水中最常见得水垢,主要就是Ca (HC03)2 在循环冷却水得运行中受热分解成C02与CaC03o 磷酸钙 为了抑制系统材质得腐蚀,常常要加入聚磷酸盐来作为缓蚀剂,当水 温升高时,聚磷酸盐会分解为正磷酸盐。 硅酸镂

水中得Si02量过高,加上水得硬度较高,生成非常难处理得硅酸钙(镁)硕垢。水垢得质地比较致密,大大得降低了传热效率,0、6毫米得垢厚就使传热系 数降低了20%。 2、污垢 污垢主要由水中得有机物、微生物菌落与分泌物、泥沙、粉尘等构成。垢得 质地松软,阻隔传热、阻隔水流、引起垢下腐蚀,缩短设备使用寿命。 、3、电化学腐蚀 循环水对换热设备得腐蚀,主要就是电化腐蚀。产生原因有设备制造缺陷、 水中充足得氧乞、水中腐蚀性离子(Cl-、Fe2+、Cu2+)以及微生物分泌得黏液 所生成得污垢等因素。如果不加控制,极短得时间便使换热器、输水管路设备报废。 4、微生物粘泥 循环水中溶有充足得氧气、合适得温度及富养条件,很适合微生物得生长繁殖。如不及时控制将迅速导致水质恶化、发臭、变黑。冷却塔大量黏垢沉积甚至堵寒,冷却散热效果大幅下降,设备腐蚀加剧。 工业循环水处理技术 5、水垢得控制方法 从冷却水中去除成垢钙离子 从水中除去Ca2+,使水软化,则碳酸钙就无法结晶析出,也就形不成水垢, 主要两种方法。 ①离子交换树脂法 离子交换树脂法就就是让水通过离子交换树脂,将Ca2+、Mg2+从水中置换出

烟气余热有机朗肯循环发电系统介绍

烟气余热有机朗肯循环发电系统介绍 烟气余热有机朗肯循环发电系统中期完成了对有机朗肯循环(ORC)系统的整体设计,ORC系统有机工质的选择及模拟计算、高效蒸发器和冷凝器的设计和模拟计算以及高效一次表面换热器冷凝器的模具加工。 1、有机朗肯循环(ORC)系统的整体设计 本方案针对工业烟气的余热回收进行研究。目前国内对烟气余热回收的方式有热热回收和热电回收。由于热热回收后的中低温热能不易储存,经常被丢弃,本方案采用余热发电技术对工业烟气进行热电回收。 有些工业烟气余热温度较低(小于250℃),难以采用常规的发电技术进行余热回收发电。低沸点循环发电技术是解决这一问题的一条途径。 烟气余热ORC发电系统,其工艺装配示意图如图1所示。 图1ORC发电系统工艺装配示意图 系统包括烟气循环、有机朗肯循环和冷却水循环系统,其工艺流程图如图2所示(工艺图上包含了温度计、压力计等传感器):

图2烟气余热发电系统工艺流程图 1)烟气循环中。烟气经蒸发器换热,然后经风机回到烟气混合器中。 2)低沸点ORC系统。低沸点有机工质通过蒸发器与烟气进行换热,吸收热量后,由液体变成高温高压的气体,经汽轮机绝热膨胀,对外做功变成低温低压的气体,再经冷凝器放热变成饱和的液体,然后通过有机工质泵等熵压缩到高压并流到蒸发换器中进行换热。 3)冷却水循环。冷却水经冷凝器吸热后,通过循环水泵加压,进入冷却塔,经冷却塔冷却后,再回到冷凝器中。 2、ORC系统有机工质的选择 在余热发电过程中,工质对系统的性能起着关键作用。在选择工质时,力求工质在热源条件下吸热多,并能把吸收的热量有效地转化成功。 理想的有机朗肯循环工质应该具备有如下的特征: 1)临界温度应该略高于循环中的最高温度,以避免跨临界循环可能带来的诸 多问题; 2)工质的压力水平适宜。循环中蒸发温度所对应的饱和压力不应过高,冷凝 温度对应饱和压力不宜过低,最好能保持正压,以防止外界空气的渗入而影响循环性能; 3)在T—S图中饱和蒸气线上ds/dT应接近零或大于零; 4)比热容小,粘度低,传热系数高,热稳定性好;

循环水温度控制方案

水务中心循环水系统控制方案 水务中心 2016年3月

循环水控制方案 1目的 根据不同季节,对循环水冷水温度控制指标进行细化,满足装置运行。 2基本原则 2.1满足生产需求的原则,首先在流量稳定情况下以调节水温为主,水温由开停风机来调节,当水温无法调节时,阶段性调节水量。 2.2可操作性原则。 2.3节能原则。 3.具体内容 3.1一循控制方案 3.1.1一循所供装置为常减压装置、焦化装置、工贸污油装置。 3.1.2具体温度指标控制 3.1.3 当风机全开水温不能满足生产要求时,生产装置对冷却器的流量进行优化调整,循环水场通过调节泵流量保证循环水压力的稳定,满足生产需求。 3.1.4由于季节变化生产装置进行冷却器流量大幅调整前,要及时将信息汇报给生产调度,生产调度通知到水务中心,以避免循环

水压力出现大的波动。 3.1.5循环水场严格控制好温度指标,根据昼夜温差做好动态调整。 3.1.6一循装置循环水温度的控制首先采取开停风机的手段来进行,如出现风机调整达到最大,而无效果时,通过调整循环水量的方式来进行。 3.1.7由于焦化装置热负荷较大,以上调整方式无效时,可关闭常减压、焦化装置循环水联通阀门,采用焦化装置、常减压装置分区供水的方式来进行。 3.1.8及时调整风机的开停,循环水冷水高低温差不应超过6℃。 3.1.9为确保循环水冷却效果,每年5月份及10月份,应组织对一循系统进行集中清洗。 3.1.10装置区水冷器管程循环水流速不应小于0.9m/s,以避免结垢及污物沉积,影响换热效果。 3.1.11装置区应及时对冷却效果不好的水冷器进行反冲洗。 3.1.12确保循环水泵、风机等设备完好,做好巡回检查。 3.1.13及时发现设备隐患,做到检修不过夜。 3.1.14听从调度指令,根据生产需要,进行温度调节。 3.2二循控制方案 3.2.1二循所供装置为催化装置、气分装置、MTBE装置和聚丙烯装置。 3.2.2具体温度指标控制

钢铁厂循环水处理的分类、发展概况、处理技术及管理共18页word资料

钢铁厂循环冷却水处理技术及管理本文系统介绍了钢铁厂循环水处理的技术以及管理。分为:钢铁厂循环水处理的分类、钢铁厂循环水处理发展概况、钢铁厂循环水处理技术及管理。 一、钢铁厂循环水处理概述 水是地球上分布最广的自然资源之一,也是人类环境的一个重要组成部分。地球上的水总量约 1.4×1019m3,海洋中聚集着绝在部分的水,占地球总水量的97.2%,而淡水只占总水量的2.53%。水资源是指全球水量中对人类生存、发展的可利用的水量,主要是指逐年可以得到更新的那部分淡水量,所以淡水总量并不等于水资源,实际上能供人类生活和工农业生产使用的淡水资源还不到淡水总量的万分之一,可见水资源并不是取之不尽用之不绝的资源。 随着工业生产的发展,对工业用水的质和量的要求越来越高,加之水资源并非取之不尽用之不绝,因此合理和节约用水已成为发展工业生产的一个重要问题。这样以来,水处理技术:水的预处理、钢铁厂循环水处理、废水处理等技术得到迅速发展。在这里,我们只讨论钢铁厂循环水处理技术及管理。 工业用水包括锅炉用水,工艺用水、清洗用水和冷却用水,其中用水量最大的是冷却用水,约占工业用水量的90%以上。常用的冷却用水系统分类如表一: 敞开循环冷却水 间接冷却水密闭循环冷却水 直流水 冷却水系统敞开循环冷却水 直接冷却水密闭循环冷却水 直流水 表一:冷却水系统的分类 间接冷却水,是冷却水通过换热设备间接进行交换,冷却工艺介质,而直接冷却水是冷却水直接与物料接触进行冷却作用。(以下主要介绍间接冷却水的情况)冷却水循环系统如附图一。 根据理论计算,随着钢铁厂循环水处理浓缩倍数的提高,补充水量将大幅度下

降,如附图二所示,为循环冷却水浓缩倍数与补充水量,排污水量关系图。 图中E为系统蒸发水量m3/h,因此从图二中可见对于一个冷却水系统来讲,如果从直流水改为循环冷却水并浓缩2~3倍,那么其用水量将降为原来用量的1.5~2.0%,排污量将降到原来量的0.5~1%。例如一个需用冷却水量为2000 m3/h 的小氮肥厂系统,如改为循环水冷却并浓缩2倍,则每小时只需补充水60~80 m3,排污20 m3,可节省1900 m3/h,这样一是节约了用水量,二是减少了直流水排放而引起的热污染问题。 钢铁厂循环水处理使用后,浓缩倍数越高,补充水量越小,污染也相应越小,但是水中的溶解盐类浓度就相应增加,离子的浓度也增加,冷却塔进气中带入大量的溶解氧、尘土、细菌等杂质,使水质变坏,给整个系统会带来了比采用直流水严重得多的腐蚀、结垢、菌藻粘泥的危害,为了避免这些危害发生,就要搞水质稳定处理,投加各种药剂,来防止冷却水对设备的腐蚀、结垢及菌藻粘泥产生,这就是我们通俗称之为钢铁厂循环水处理技术。 循环冷却水经处理和直流冷却系统相比,有以下几个方面的优点: (1)节约用水量:以电厂为例,每小时直流冷却水的用量是22000m3/h,如果用循环冷却水,其补充水量一般只需560 m3/h,因此,就节约了用水量。 (2)减少排污量:上述电厂,直流排放水量达22000 m3/h,而使用循环水后,排污量仅110~440 m3/h,因此,循环冷却水系统将减少99.5%~98%的排污水量,相应也减少了污水处理的困难和费用。 (3)防止热污染:直流水系统直接排放热水,若热水温度升高10℃,则以1 m3直流水计每小时带出1×104千卡的热量,如果该厂用湖泊水作水源,热量往往就直接排入水源。上述氨厂每小时将带出2.2×10千卡的热量,使水体温度升高。将会影响钢铁厂循环水处理: a.造成自然水体的温度改变,降低冷却水的价值和水的可用性。 b.引起水各项物理指标如密度,运动粘度系数,蒸汽分压力,表面压

太阳能有机朗肯循环发电系统设计

太阳能有机朗肯循环发电系统设计 1背景: 太阳能是可再生的绿色能源。白天,在标准太阳光照下,即大气质量AM1.5、温度为25℃的条件下,辐射强度为1000W/m2,如果可以把这些能量用来发电,我们的能源紧张的问题肯定能得到缓解。若发电效率达到一定值,肯定能解决能源紧张和现有的化石燃料污染环境的问题 近年来,有机朗肯循环的研究工作正在大力进行,它是利用低温热源的热量输出机械能或发电的理想方式。可利用的热源种类包括:太阳能、生物质能、地热能以及工厂发热等。与朗肯蒸汽动力循环相似,不同的是有机朗肯循环使用的工质是有机物,因此相对于蒸汽循环,工质的蒸发温度可以减低。Fenton 等介绍了利用以R113 为循环工质,利用太阳能发电灌溉的系统[1]。有机朗肯循环的经济性直接决定于循环工质的热力学性质。因此应该选择合适的循环工质,评价标准包括循环效率高、排气比容小、工作压力正常及环境友好等。有些学者针对循环工质的评价标准,做出了相关的探讨。不同的循环工质需要单独的设计循环设备,从而决定循环设备投资大于运行费用。对于实际运行而言,有机工质的性质如环境友好性、化学稳定性等对有机朗肯循环也具有重要的影响。 在有机朗肯循环发电中,有机工质的选择是很重要的一点。有机朗肯循环工质的选择应尽量满足以下要求: (1) 工质的安全性( 包括毒性、易燃易爆性及对设备管道的腐蚀性等) . 为了防止操作不当等原因导致工质泄漏, 致使工作人员中毒, 应尽量选择毒性低的流体. (2) 环保性能. 很多有机工质都具有不同程度的大气臭氧破坏能力和温室效应, 要尽量选用没有破坏臭氧能力和温室效应低的工质, 如HFC 类、HC 类、FC 类碳氢化合物或其卤代烃. (3) 化学稳定性. 有机流体在高温高压下会发生分解, 对设备材料产生腐蚀, 甚至容易爆炸和燃烧, 所以要根据热源温度等条件来选择合适的工质. ( 4) 工质的临界参数及正常沸点. 因为冷凝温度受环境温度的限制, 可调节范围有限, 工质的临界温度不能太低, 要选择具有合适临界参数的工质. ( 5) 工质廉价、易购买. 2工作原理: 有机朗肯循环系统包括泵、蒸发器、膨胀机、发电机、冷凝器等。集热器吸收太阳辐照,集热器内换热介质温度升高,换热介质通过蒸发器把热量传给有机工质。有机工质在蒸发器中定压加热,高压的气态有机工质进入膨胀机膨胀做功,带动发电机发电;膨胀机尾部排出的有机工质进入冷凝器中定压冷凝,冷凝器出口的有机工质经过泵加压后进入蒸发器完成一次发电循环。

相关文档