文档库 最新最全的文档下载
当前位置:文档库 › 块状物品推送机 机械原理课程设计

块状物品推送机 机械原理课程设计

块状物品推送机 机械原理课程设计
块状物品推送机 机械原理课程设计

机械原理课程设计说明书设计题目:块状物品推送机的机构综合与结构设计

班级:

姓名:

学号:

同组成员:

组长:

指导教师:

时间:

一、设计题目 (2)

二、设计数据与要求 (2)

三、设计任务 (3)

四、方案设计 (4)

1.凸轮连杆组合机构 (4)

2.凸轮机构 (5)

3.连杆机构 (6)

4.凸轮齿轮组合机构 (7)

五、方案尺寸数据及发动机参数 (7)

六、运动分析 (8)

1.位移分析 (8)

2.速度分析 (9)

3.加速度分析 (10)

七、飞轮设计 (11)

八、个人总结 (11)

一、设计题目

在自动包裹机的包装作业过程中,经常需要将物品从前一工序转送到下一工序。现要求设计一用于糖果、香皂等包裹机中的物品推送机,将块状物品从一位置向上推送到所需的另一位置,如图所示。

二、设计数据与要求

1.向上推送距离H=120mm,生产率为每分钟推送

物品120件。

2.推送机的原动机为同步转速为3000转/分的三

相交流电动机,通过减速装置带动执行机构主动件等速转动。

3.由物品处于最低位置时开始,当执行机构主动件转过1500时,推杆从最

低位置运动到最高位置;当主动件再转过1200时,推杆从最高位置又回

到最低位置;最后当主动件再转过900时,推杆在最低位置停留不动。

4.设推杆在上升运动过程中,推杆所受的物品重力和摩擦力为常数,其值

为500N;设推杆在下降运动过程中,推杆所受的摩擦力为常数,其值为

100N。

5.使用寿命10年,每年300工作日,每日工作16小时。

6.在满足行程的条件下,要求推送机的效率高(推程最大压力角小于350),

结构紧凑,振动噪声小。

三、设计任务

1.至少提出三种运动方案,然后进行方案分析评比,选出一种运动方案进

行机构综合。

2.确定电动机的功率与满载转速。

3.设计传动系统中各机构的运动尺寸,绘制推送机的机构运动简图。

4.在假设电动机等速运动的条件下,绘制推杆在一个运动周期中位移、速

度和加速度变化曲线。

5.如果希望执行机构主动件的速度波动系数小于3%,求应在执行机构主

动件轴上加多大转动惯量的飞轮。

6.进行推送机减速系统的结构设计,绘制其装配图和两张零件图。

7.编写课程设计说明书。

四、方案设计

1.凸轮连杆组合机构

凸轮-连杆组合机构也可以实现行程放大功能,在水平面得推送任务中,优势较明显,但在垂直面中就会与机架产生摩擦,加上凸轮与摆杆和摆杆与齿条的摩擦,积累起来,摩擦会很大,然后就是其结构较为复杂,非标准件较多,加工难度比较大,从而生产成本也比较大,连杆机构上端加工难度大,而且选材时,难以找到合适的材料,使其既能满足强度刚度条件又廉价,因此不宜选择该机构来实现我们的设计目的。

方案结构简单紧凑,噪音小,运用蜗轮蜗杆传递动力,采用了带传动,凸轮机构回转运动,易于完成小范围内的物料推送任务,效率较高并且运动精确稳定效应迅速,可使推杆有确定的运动,完全符合设计目标。

利用等价的平面连杆机构实现机构的推送任务,几何封闭,传送稳定性高,通过设计合适的杆长可以实现预期的运动,当以AB杆作为原动件时,运动传到推杆K产生一定的增力效果,但是此机构由于运用了很多杆件,进行了多次中间传力,会导致机械效率的降低和误差的积累,而且连杆及滑块产生的惯性力难以平衡加以消除,因此在高速推送任务中,不宜采用此机构。

4.凸轮齿轮组合机构

凸轮-齿轮组合机构,可以将摆动从动件的摆动转化为齿轮齿条机构的齿条直线往复运动。当扇形齿轮的分度圆半径大于摆杆长度时,可以加大齿条的位移量。但是比较难设计,不好实现。

经过比较,选定方案2。

五、方案尺寸数据及发动机参数

经程序运算和查询相关资料,最终尺寸确定为 凸轮基圆半径r0=100mm, 推程h=120mm ,滚子半径rb=20mm ;经附录程序运算,得推程最大压力角为29.8度,符合要求。

蜗杆m=4,头数为一,分度圆直径d=40mm ;右旋; 蜗轮m=4,齿数25,分度圆直径d=100mm ; V 带基准长度250; 带轮1基准直径

a d =50,外径a d =52.2; 槽型为 Y ;

带轮2基准直径a d =20,外径a d =23.2 槽型为 Y ;

电动机效率η1 =80% 单头蜗杆传动效率η2= 75%

V 带传送效率η3=85% 凸轮传动效率η4= 95% 移动副传动效率η5= 95%

电动机型号选为YD100L-6/4/2型三项异步电机,此电动机额定功率为1.8KW ,工作电压为380V ,额定电流为 4.8A ,额定转速为3000r/min,转子转动惯量为0.0014Kg*2

m 。计算可知,在一个工作周期T=0.5s 中, 阻力功w=(500*120+100*120)*0.001=0.072 J ; 阻力功率p1=w/T=0.144J/s ,

机构总效率η=η1*η2*η3*η4*η5=0.3826; 机构驱动力功率p2=p1/η=0. 3764 J/s=1.36kw

六、运动分析

1.位移分析

2

2

12/s h δδ

= 1(0,/2]δδ∈

22112()/s h h δδδ=-- 11(/2,]δδδ∈

21

[1cos(

)]/2

s h πδδδ=+- 12(,]δδδ∈

其中

1

δ=150°,

2

δ=270°

由曲线可知,在一个周期内推杆位移先增加(0°-150°)后减小(150°-270°)后不变(270°-360°),符合推杆先上升后下降再停顿。

2.速度分析

2

14/v h δδ

=

1(0,/2)δδ∈

2

114()/v h δδδ

=--

11(/2,)δδδ∈

21

21

sin(

)

v ππδδδδδ=-

-- 12(,)δδδ∈

其中

1

δ=150°,2

δ=270°

凸轮的推程(0°-150°)选择的是等加速等减速运动规律,由上图可知在150°之前,无速度突变即无刚性冲击,推杆速度先均匀增大后均匀较小至零。回程时(150°-270°)选择的是五次多项式运动规律,先增加后减小至零,曲线完全符合,无速度突变亦即无刚性冲击。近休时(270°-360°),速度为零,无刚性冲击。

3.加速度分析

2

14/a h δ= 1(0,/2)δδ∈

2

14/a h δ

=

11(/2,)δδδ∈

2

21

21

(

)cos(

)

a ππδδδδδ=--- 12(,)δδδ∈

其中1

δ=150°,2

δ=270°

凸轮的推程(0°-150°)选择的是等加速等减速运动规律,在开始时(0°)、(75°-80°)、(150°)加速度有突变,但是突变有限,因而引起的冲击较小,故只存在柔性冲击。回程时(150°-270°)选择的是五次多项式运动规律,由曲线可知加速度无突变,即无柔性冲击。

启动电机,通过带传动涡轮蜗杆传动减速并带动凸轮转动,凸轮推动推杆运动。最初150度,凸轮从最低点运动到最高点作推程运动时,推杆推送物品作上升运动,

同时压缩弹簧。

接下来120度,凸轮从最高点作回程运动时,推杆在自身重力和弹簧弹力的作用下作下降运动。最后的的90度推杆在最低位置静止不动。电动机不断地提供电能带动整个装置的传动,完成构件上下往复运动,把一个物品从一个位置推送到另一个位置。

七、飞轮设计

由五可得△Wmax=0.1162J

Wm=w=4*Π;

m;

Jf=△Wmax/([δ]*Wm*Wm)-Je=0.0232 Kg*2

八、个人总结

实际操作永远不会像想象的那样简单。在平常的学习中,尽管自己不承认,但多多少少还是存在眼高手低的情况。这次的课程设计就给了自己当头一棒,刚开始的时候完全不懂。通过在网上查找资料,到图书馆借书才逐渐理清头绪。这次课程设计对对机械原理的掌握要求非常高,而且不仅仅如此,它还需要我们学习CAD、C语言、ADAMS、MATLAB等软件,是一次对综合能力的考察。虽然这次的课程设计完成了,但是借鉴了不少前辈的经验,自己还有很多地方需要努力,而这也许才是这次课程设计最重要的收获。

最后要感谢我的队友的大力帮助以及老师的辛勤教导。

参考文献:

《机械原理》第七版高等教育出版社孙恒

《机械原理课程设计指导》北京航空航天大学出版社张晓玲《机械原理课程设计》高等教育出版社裘建新

《机械原理创新设计》华中科技大学出版社强建国《ADAMS 2005 机械设计高级应用实例》机械工业出版社郑凯凸轮部分代码:

#include

#include

#include

#define PI 3.141592653

double fact[72][2];

double theory[72][2];

int ang1=150,ang2=270,ang3=360;

double h=120, rb=60,b=2;

double A1=30*PI/180, A2=70*PI/180;

double P=13,e=0;

double So,r=18;

double S(int I)

{

double s;

double A;

double B;

if(I<=ang1/2)

{

A=I*PI/180;

B=ang1*PI/180;

s=2*h*pow(A/B,2);

}

else if((I>ang1/2)&&(I<=ang1))

{

A=I*PI/180;

B=ang1*PI/180;

s=h-2*h*pow((B-A)/B,2);

}

else if(I<=ang2)

{

A=(I-ang1)*PI/180;

B=(ang2-ang1)*PI/180;

s=h-(10*h*pow(A/B,3)-15*h*pow(A/B,4)+6*h*pow(A/B,5));

}

else s=0;

return(s);

}

double ds(int Q)

{

double A,B,C;

if(Q<=ang1/2)

{

A=Q*PI/180;

B=ang1*PI/180;

C=4*h*A/(B*B);

}

else if((Q>ang1/2)&&(Q<=ang1))

{

A=Q*PI/180;

B=ang1*PI/180;

C=4*h*(B-A)/(B*B);

}

else if(Q<=ang2)

{

A=(Q-ang1)*PI/180;

B=(ang2-ang1)*PI/180;

C=-30*h*A*A/pow(B,3)+60*h*pow(A,3)/pow(B,4)-30*h*pow(A,4)/pow(B,5);

}

else C=0;

return C;

}

double dss(int B3)

{

double A,B,C;

if(B3<=ang1/2)

{

A=B3*PI/180;

C=ang1*PI/180;

B=4*h/(C*C);

}

else if(B3>ang1/2&&B3<=ang1)

{

A=B3*PI/180;

C=ang1*PI/180;

B=-4*h/(C*C);

}

else if(B3<=ang2)

{

A=(B3-ang1)*PI/180;

C=(ang2-ang1)*PI/180;

B=-60*h* A/pow(C,3)+180*h*A*A/pow(C,4)-120*h*pow(A,3)/pow(C,5);

}

else B=0;

return(B);

}

void xy(int ang)

{

double A,B,C,E,F,dx,dy;

A=ang*PI/180;

B=S(ang);

C=ds(ang);

dx=(So+B)*cos(A)+sin(A)*C-e*sin(A);

dy=-sin(A)*(So+B)+C*cos(A)-e*cos(A);

E=r*dy/sqrt(dx*dx+dy*dy);

F=r*dx/sqrt(dx*dx+dy*dy);

theory[ang/5][0]=(So+B)*sin(A)+e*cos(A);

theory[ang/5][1]=(So+B)*cos(A)-e*sin(A);

fact[ang/5][0]=theory[ang/5][0]-E;

fact[ang/5][1]=theory[ang/5][1]+F;

}

double a(int B1)/*****求解压力角****/

{

double A,B;

A=sqrt((ds(B1)-e)*(ds(B1)-e));

B=S(B1);

return atan(A/(B+So));

}

double p(int B2)

{

double dx,dy,dxx,dyy;

double A,B,C,D,E;

A=B2*PI/180;

B=ds(B2);

C=S(B2);

D=dss(B2);

dx=(So+C)*cos(A)+sin(A)*B-e*sin(A);

dy=-sin(A)*(So+C)+B*cos(A)-e*cos(A);

dxx=-(C+So)*sin(A)+cos(A)*B+D*sin(A)-e*cos(A);

dyy=-cos(A)*(So+C)-B*sin(A)+D*cos(A)-sin(A)*B+e*sin(A);

E=sqrt(pow(dx*dx+dy*dy,3))/sqrt(pow((dx*dyy-dxx*dy),2));

return(E);

}

//计算数据并写入文件

void main()

{ FILE *fp;

int i;

int k,h,l;

double angle1max=0,angle2max=0,pmin=1000;

if((fp=fopen("f:\\sanying","w"))==NULL)

{

printf("Cann't open this file.\n");

exit(0);

}

fprintf(fp,"\n The Kinematic Parameters of Point 4\n");

fprintf(fp," x y x' y' ");

for(;i!=360;)

{

rb=rb+b;

So=sqrt(rb*rb-e*e);

for(i=0;i<=ang1;i=i+5)

{

if(a(i)>A1||p(i)

break;

}

if(ang1+5-i)continue;

for(i=ang1+5;i<=ang2;i=i+5)

{

if(a(i)>A2||p(i)

break;

}

if(ang2+5-i)continue;

for(i=ang2+5;i<360;i=i+5)

{

if(p(i)

break;

}

}

for(i=0;i<360;i=i+5)

{

xy(i);

}

for(i=0;i<=ang1;i=i+5)

{

if(angle1max

{

angle1max=a(i);

k=i;

}

if(pmin>p(i))

{

pmin=p(i);

h=i;

}

}

for(i=ang1;i<=ang2;i=i+5)

{

if(angle2max

{

angle2max=a(i);

l=i;

}

if(pmin>p(i))

{

pmin=p(i);

h=i;

}

}

for(i=0;i<72;i++)

{

fprintf(fp,"\n");

{

fprintf(fp,"%12.3f\t%12.3f\t%12.3f\t%12.3f\t ",theory[i][0],theory[i][1],fact[i][0],fact[i][1]);

}

}

fclose(fp);

printf(" 理论坐标(x,y) ");printf("实际坐标(x,y)");printf("\n");

for(i=0;i<72;i++)

{

printf("%f ",theory[i][0]);

printf(" ");

printf("%f ",theory[i][1]);

printf(" ");

printf("%f ",fact[i][0]);

printf(" ");

printf("%f ",fact[i][1]);

printf("\n");

}

printf("基圆半径是:%f\n",rb);

printf("推程最大压力角是:%f\n",angle1max*180/PI);

printf("此时角度是是:%d\n",k);

printf("回程最大压力角是:%f\n",angle2max*180/PI);

printf("此时角度是是:%d\n",l);

printf("最小曲率半径是:%f\n",pmin);

printf("此时角度是:%d\n",h);

推杆运动学分析部分代码:

#include

#include

#include

#define PI 3.141592653

void main()

{

double h=120;

int ang1=150,ang2=270,ang3=360;

double s[72],v[72],a[72];

double A ,B; int i;

for(i=0;i

{

if(i<=ang1/2)

{A=i*PI/180;

B=ang1*PI/180;

s[i/5]=2*h*pow(A/B,2);

v[i/5]=4*h*A/(B*B);

a[i/5]=4*h/(B*B);

}

else {

A=i*PI/180;

B=ang1*PI/180;

s[i/5]=h-2*h*pow((B-A)/B,2);

v[i/5]=4*h*(B-A)/(B*B);

a[i/5]=-4*h/(B*B);

}

}

for(i=ang1;i

{

A=(i-ang1)*PI/180;

B=(ang2-ang1)*PI/180;

s[i/5]=h-(10*h*pow(A/B,3)-15*h*pow(A/B,4)+6*h*pow(A/B,5)); v[i/5]=-30*h*A*A/(B*B*B)+60*h*A*A*A/(B*B*B*B)-30*h*A*A*A*A/(B*B*B*B*B); a[i/5]=-60*h*A/(B*B*B)+180*h*A*A/(B*B*B*B)-120*h*A*A*A/(B*B*B*B*B);

}

for(i=ang2;i

{

s[i/5]=0;

v[i/5]=0;

a[i/5]=0;

}for(i=0;i<72;i++)

printf("%f %f %f\n",s[i],v[i]*4*PI,a[i]*4*PI);

}

机械原理课程设计,详细

目录 一、设计题目 (2) 1、牛头刨床的机构运动简图 (2) 2、工作原理 (2) 二、原始数据 (3) 三、机构的设计与分析 (4) 1、齿轮机构的设计 (4) 2、凸轮机构的设计 (10) 3、导杆机构的设计 (16) 四、设计过程中用到的方法和原理 (26) 1、设计过程中用到的方法 (26) 2、设计过程中用到的原理 (26) 五、参考文献 (27) 六、小结 (28)

一、设计题目 ——牛头刨床传动机构 1、牛头刨床的机构运动简图 2、工作原理 牛头刨床是对工件进行平面切削加工的一种通用机床,其传动部分由电动机经 带传动和齿轮传动z 0—z 1 、z 1 、—z 2 ,带动曲柄2作等角速回转。刨床工作时,由导 杆机构2、3、4、5、6带动刨刀作往复运动,刨头右行时,刨刀进行切削,称为工 作行程;刨头左行时,刨刀不进行切削,称为空回行程,刨刀每切削完一次,利用 空回行程的时间,固结在曲柄O 2 轴上的凸轮7通过四杆机构8、9、10与棘轮11和棘爪12带动螺旋机构(图中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。

二、原始数据 设计数据分别见表1、表2、表3. 表1 齿轮机构设计数据 设计内容齿轮机构设计 符号n01d01 d02 z0 z1 z1’m01 m1’2n2 单位r/min mm mm mm mm r/min 方案Ⅰ1440 100 300 20 40 10 3.5 8 60 方案Ⅱ1440 100 300 16 40 13 4 10 64 方案Ⅲ1440 100 300 19 50 15 3.5 8 72 表2 凸轮机构设计数据 设计内容凸轮机构设计 符号L O2O4 L O4D φ[α]δ02 δ0 δ01δ0/ r0 r r 摆杆运动规 律单位mm mm °°°°°°mm mm 方案Ⅰ150 130 18 45 205 75 10 70 85 15 等加速等减 速 方案Ⅱ165 150 15 45 210 70 10 70 95 20 余弦加速度方案Ⅲ160 140 18 45 215 75 0 70 90 18 正弦加速度方案Ⅳ155 135 20 45 205 70 10 75 90 20 五次多项式 表3 导杆机构设计数据 设计内容导杆机构尺度综合和运动分析 符号K n2L O2A H L BC 单位r/min mm 方案Ⅰ 1.46 60 110 320 0.25L O3B 方案Ⅱ 1.39 64 90 290 0.3L O3B 方案Ⅲ 1.42 72 115 410 0.36L O3B 表4 机构位置分配表 位置号位置 组 号 学生号 A B C D 1 1 3 6 8/ 10 2 5 8 10 7/ 1/ 4 7 8 10 1 5 7/ 9 12 2 1/ 4 7 8 11 1 3 6 8/ 11 2 5 7/ 9 11 1/ 3 6 8/ 11 3 2 5 7/ 9 12 1/ 4 7 9 12 1 3 6 8/ 12 2 4 7 8 10

块状物品推送机机械原理课程设计

机械原理课程设计说明书设计题目:块状物品推送机的机构综合与结构设计 班级: 姓名: 学号: 同组成员: 组长: 指导教师: 时间: 一、设计题目 (2) 二、设计数据与要求 (2) 三、设计任务 (3) 四、方案设计 (4) 1.凸轮连杆组合机构 (4) 2.凸轮机构 (5) 3.连杆机构 (6)

4.凸轮齿轮组合机构 (7) 五、方案尺寸数据及发动机参数 (7) 六、运动分析 (8) 1.位移分析 (8) 2.速度分析 (9) 3.加速度分析 (10) 七、飞轮设计 (11) 八、个人总结 (12) 一、设计题目 在自动包裹机的包装作业过程中,经常需要将物品从前一工序转送到下一工序。现要求设计一用于糖果、香皂等包裹机中的物品推送机,将块状物品从一位置向上推送到所需的另一位置,如图所示。 二、设计数据与要求 1.向上推送距离H=120mm,生产率为每分钟推送 物品120件。 2.推送机的原动机为同步转速为3000转/分的三

相交流电动机,通过减速装置带动执行机构主动件等速转动。 3.由物品处于最低位置时开始,当执行机构主动件转过1500时,推杆从最 低位置运动到最高位置;当主动件再转过1200时,推杆从最高位置又回 到最低位置;最后当主动件再转过900时,推杆在最低位置停留不动。 4.设推杆在上升运动过程中,推杆所受的物品重力和摩擦力为常数,其值 为500N;设推杆在下降运动过程中,推杆所受的摩擦力为常数,其值 为100N。 5.使用寿命10年,每年300工作日,每日工作16小时。 6.在满足行程的条件下,要求推送机的效率高(推程最大压力角小于350), 结构紧凑,振动噪声小。 三、设计任务 1.至少提出三种运动方案,然后进行方案分析评比,选出一种运动方案进 行机构综合。 2.确定电动机的功率与满载转速。 3.设计传动系统中各机构的运动尺寸,绘制推送机的机构运动简图。 4.在假设电动机等速运动的条件下,绘制推杆在一个运动周期中位移、速 度和加速度变化曲线。 5.如果希望执行机构主动件的速度波动系数小于3%,求应在执行机构主动 件轴上加多大转动惯量的飞轮。 6.进行推送机减速系统的结构设计,绘制其装配图和两张零件图。 7.编写课程设计说明书。

机械设计机械原理课程设计题目

机械设计机械原理课程设计题目 1 2020年4月19日

2 2020年4月19日 设计题目1:手动圆柱螺旋弹簧缠绕机设计 机构简图: 技术要求:弹簧螺距经过调整挂轮传动比可变,钢丝应拉紧,弹簧直径可变,最大长度Lmax 为300mm 。 主要参数: 弹黄中径D 2 : mm 钢丝直径d : mm 弹簧螺距p : mm 设计要求: 1)拟定机构系统总体运动方案,画出系统运动方案简图,完成论证报告。 2)完成传动系统或执行系统的结构设计,画出传动系统或执行系统的装配图。 钢丝 导轨 挂轮

3 2020年4月19日 3)设计主要构件和零件,完成1张构件图和3张零件工作图。 4)编写设计说明书。 完成日期: 年 月 日 指导教师 设计题目2:稳速器的设计 工作简图: 技术要求:输出轴转速稳定,主轴速度波动由辅轴调节。 主要参数: 3 4 1-输出轴 2-机体 3-主输入轴 4-辅输入轴

输出轴转速n2 r/min 主轴转速范围n1±r/min 输出轴功率P kw 设计要求: 1)拟定机构系统总体运动方案,画出系统运动方案简图,完成论证报告。 2)完成传动系统或执行系统的结构设计,画出传动系统或 执行系统的装配图。 3)设计主要构件和零件,完成1张构件图和3张零件工作 图。 4)编写设计说明书。 完成日期:年月日指导教师 设计题目3:自动钢板卷花机设计 工作简图: 4 2020年4月19日

5 2020年4月19日 技术要求:卷花轴转φ1角后,内限位板与卷花轴共同转φ 2角,外限位板可限位和退出,并有退料装置。限位板直径D :400mm , 主要参数: 卷花轴转角φ1:3600 内限位板转角φ2:1800 钢板宽和厚:30×3 生产率: 电机功率P :1.1kw 设计要求: 1)拟定机构系统总体运动方案,画出系统运动方案简图, 1 2 3 1-卷花轴 2-模板 3-钢板花 4-内限位板

(完整word版)摆动式固定凸轮与连杆机构的设计

摆动式固定凸轮与连杆机构的设计 姓名:xxx 学校:湖南工业大学 专业:机械设计制造及其自动化 班级:机设1002班 学号:xxxxxxxxxx 指导老师:贺兵 时间:2013年12月20日

目录 一、课程设计的目的 (3) 二、设计内容与步骤 (3) 1、设计内容 (3) 2、设计步骤 (3) 三、设计要求 (3) 四、设计指导 (4) 1、概述 (4) 2、基本参数 (5) 3、设计步聚 (6) 1)确定驱动方案 (6) 2)确定e (7) 3)确定h (7) 4)确定α (7) 5)确定δ (7) 6)求算b1、b2 (7) 7)设计凸轮廊线 (9) 8)检验压力角 (12) 五、结论 (14) 六、参考文献 (14) 七、附图 (14)

摘要 包装设计课程设计是在完成机械设计课程学习后,一次重要的实践性教学环节。是高等工科院校大多数专业学生第一次较全面的设计能力训练,也是对机械设计课程的全面复习和实践。其目的是培养理论联系实际的设计思想,训练综合运用机械设计和有关选修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关机械设计方面的知识。 本次设计的题目是直动式固定凸轮与连杆机构的设计。根据题目要求和机械设计的特点作者做了以下几个方面的工作:①根据有关参数进行计算或编写有关设计计算程序;②利用程序设计的方法输出结果并自动生成图形;③画出装配图及其主要零件图;④完成设计计算说明书。

一、课程设计的目的 《包装机械设计》课程设计是本课程各教学环节中重要的一环,它让学习者联系实际进一步深入理解、掌握所学的理论知识。其基本目的是: (1)培养理论联系实际的设计思想,训练综合运用包装机械和有关先修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关包装机械设计方面的知识。 (2)通过制订设计方案,合理选择裹包机中块状物品推送机构和零件类型,正确计算零件工作能力、确定尺寸和选择材料,以及较全面地考虑制造工艺、使用和维护等要求,之后进行结构设计,达到了解和掌握机械零件、包装机械经常采用的机构的设计过程和方法。 (3)进行设计基本技能的训练。例如计算、绘图、熟悉和运用设计资料(手册、图册、标准和规范等)以及使用经验数据、进行经验估算和处理数据的能力。 二、设计内容与步骤 (一)设计内容 以裹包机中块状物品推送机构的典型机构——固定凸轮与连杆组合机构为题。课程设计通常包括如下内容:读懂块状物品推送机构典型机构——固定凸轮与连杆组合机构,了解设计题目要求;分析该块状物品推送机构设计的可能方案;具体计算和设计该方案中机构的基本参数;进行机体结构及其附件的设计;绘制装配图及零件工作图;编写计算说明书以及进行设计答辩。 (二)设计步骤: (1)设计准备 认真研究设计任务书,明确设计要求、条件、内容和步骤;通过阅读有关资料、图纸、参观实物或模型、观看电视教学片、挂图以及推送机构进行拆装实验等,了解设计对象;复习有关课程内容,熟悉零部件的设计方法和步骤;准备好设计需要的图书、资料和用具;拟定设计计划等。 (2)推送机构装置的总体设计 决定推送机构装置的方案;选择机构的类型,计算机构装置的运动参数。 (3)装配图设计 计算和选择机构的参数;确定机体结构和有关尺寸;绘制装配图草图;选择计算轴承和进行支承结构设计;进行机体结构及其附件的设计;完成装配图的其他要求;审核图纸。 (4)零件工作图设计 (5)整理和编写计算说明书 (6)设计总结和答辩 (三)、设计要求 在课程设计之前,准备好必要的设计手册或参考资料,以便在设计过程中逐步去学习查阅资料。确定设计题目后,至少应复习在课程中学过的相关内容。完成本课程设计的具体要求如下:

机械原理课程设计---切菜机教学文案

机械原理课程设计-- -切菜机

本科生课程设计任务书 2007 —2008 学年夏季学期 工学院模具与塑性成形专业 姓名学号 课程设计名称:机械原理课程设计 设计题目:多功能切菜机切刀传动系统 完成期限:自 2008 年 6 月 30 日至 2008 年 7 月 10 日共 1.5 周 小组其他成员: 一、设计参数 设切刀工作阻力P=100N 切片厚度约4mm,切丝厚度约3mm 旋转式切刀转速300r/min或采用直动式切刀,工作频率300次/分 行程速比系数K=1.05 机器运转速度不均匀系数许用值[δ]=0.05 主传动机构许用压力角 [α主 ]=40 ,辅助传动机构许用压力角[α辅]=70 生产能力300—2000kg/h 电动机转速n=1400r/m 电动机功率储备系数η =1.5 二、设计任务 1、绘制整机工作的运动循环图 2、设计减速系统 ①设计减速传动系统。电机转速n=1400r/min,要减到工作频率(切刀转速),确 定传动方案,及各级减速传动比的大小,绘制传动简图。说明 过载保护装置。 ②设计齿轮传动。若采用了齿轮传动,按等强度或等寿命条件设计齿轮传动,绘 制齿轮啮合图。编写程序计算基本几何尺寸,验算重合度,小 齿轮顶厚度,不根切条件及过渡曲线不干涉条件。 3、设计执行机构(切刀传动系统) ①设计运动方案,绘制机构示意图。 ②设计机构尺寸,绘制机构运动简图。 ③机构运动分析,打印结果数表,绘制输出构件的位移、速度、加速度图。

④机构受力分析,打印结果数表,绘制等效驱动力矩、阻力矩图。 ⑤设计飞轮转动惯量,确定电动机功率。 ⑥诺要改变切片厚度或生产效率,应如何调节切刀速度和输送带、夹持带速度?请提出你的设想。试就变化的参数对机构进行运动分析和受力分析,输出必要的图表,得出对比结论。 三、要求 1、设计报告正文中必须包含 必要的图示说明、解析式推导过程 编制程序的流程框图 解析式与程序中的符号对照表 源程序清单 打印结果(含量纲的数表、图形) 2、设计报告格式要求 word文档打印设计报告(用语规范,标点符号正确,无错别字) C语言程序(或其它)进行运动分析与受力分析 excel(或其它)打印数表与曲线 cad、flash/PPT(或其它)绘制机构运动简图 Inventor(或其它)表现三维效果——选做 3、课程设计报告装订顺序 统一格式封皮 统一格式任务书 统一格式目录 统一格式正文 设计总结(心得体会、建议等——言简意赅) 统一格式参考文献 四、参考文献 参阅《机械原理辅助教材》中所列参考文献 五、设计进度建议 第1周: 周一:讲课,布置设计题目,课程设计实习 周五~周日:查阅资料,绘制运动循环图,拟定运动方案,绘制机构运动简图 机构设计和分析,推导解析式,编制程序 第2周: 周一~周三:编制程序,上机调试,设计报告定稿

机械原理课程设计+例题实例

《机械原理》课程设计 计算说明书 设计题目:健身球检验分类机 院校:武汉大学东湖分校工学院 专业:机械设计制造及其自动化 班级:2005级(1)班 设计者:方旭东 学号:2 指导老师:张荣 日期:2009年1月6日 目录 设计任务书············································ 设计方案说明·········································· 一、设计要求·········································· 二、方案确定·········································· 三、功能分解·········································· 四、选用机构·········································· 五、机构组合设计······································ 六、运动协调设计······································ 七、圆柱直齿轮设计····································

八、方案评价·········································· 参考文献··············································· 设计小结··············································· 方案设计说明 一.设计要求 设计健身球自动检验分类机,将不同直径尺寸的健身球按直径分类。检测后送入各自指定位置,整个工作过程(包括进料、送料、检测、接料)自动完成。 健身球直径范围为ф40~ф46mm,要求分类机将健身球按直径的大小分为三类。 1. ф40≤第一类≤ф42 2. ф42<第二类≤ф44 3. ф44<第三类≤ф46 电机转速:720r/min,生产率(检球速度)20个/min。 二.方案确定 初选了三种设计方案,如下: 方案一:

块状物品推送机的机构综合与机构设计

机械原理课程设计 设计说明书 设计题目:块状物品推送机的机构综合与机构设计 班级:11机械本2 姓名: 学号: 指导教师: 完成时间:2013年07月03日

一 .设计题目: 块状物品推送机的机构综合与机构设计 在自动包裹机的包装作业过程中,经常需要将物品从前一工序转送到下一工序。现要求设计一用于糖果、香皂等包裹机中的物品推送机,将块状物品从一位置向上推送到所需的另一位置。 1.1设计数据和要求: 1.推送的距离H=120mm,生产率为每分钟推送物品120件。 2.推送机的原动件为同步转速为3000r/min的三相交流电动机,通过减速装置带动执行机构主动件等速转动。 3.由物品处于最高位置是开始,当执行机构主动件转过150°时,推杆从最低位置运动到最高位置,当主动件再转过120°时,推杆从最高位置又回到最低位置,最后当主动件再转过90°时,推杆在最低位置保持静止。 4.设推杆在上升过程中所受到的物品中立和摩擦力为常数,其大小为500N,推杆在下降过程中所受到的摩擦力为常数,大小为100N。 5.使用寿命为10年,每年工作300个工作日,每个工作日工作16小时。 6.在满足行程的条件下,要求推送机的效率较高(推诚的最大压力角应小于35°),结构紧凑,震动噪音小。 二 .实现推送机推送要求的执行机构方案选定 2.1实现推送机推送要求的执行机构设计方案 方案一

凸轮-连杆组合机构如上图所示的凸轮-连杆组合机构也可以实现行程放大功能,在水平面得推送任务中,优势较明显,但在垂直面中就会与机架产生摩擦,加上凸轮与摆杆和摆杆与齿条的摩擦,积累起来,摩擦会很大,然后就是其结构较为复杂,非标准件较多,加工难度比较大,从而生产成本也比较大,连杆机构上端加工难度大,而且选材时,难以找到合适的材料,使其既能满足强度刚度条件又廉价,因此不宜选择该机构来实现我们的设计目的。 方案二 如上图所示的凸轮机构,凸轮以等角速度回转,它的轮廓驱使从动件,可使推杆实现任意的运动规律,但是使用凸轮机构磨损较为严重,滚子不能很好的紧贴凸轮,容易振动,运行时稳定性能差,由于摩擦较大,动力使用效率不高,造成能源浪费,不能到达环保节能的目的,不能满足设计要求。

机械原理课程设计凸轮设计

机械原理课程设计 编程说明书 设计题目:牛头刨床凸轮机构指导教师:王琦王春华设计者:雷选龙 学号:0807100309 班级:机械08-3 2010年7月15日 辽宁工程技术大学

机械原理课程设计任务书(二) 姓名雷选龙专业机械工程及自动化班级机械08-3班学号 五、要求: 1)计算从动件位移、速度、加速度并绘制线图。 2)确定凸轮机构的基本尺寸,选取滚子半径,画出凸轮实际廓线,并按比例绘出机构运动简图。以上内容作在A2或A3图纸上。 3)编写出计算说明书。 指导教师: 开始日期:2010年07月10日完成日期:2010年07月16日

目录 一设计任务及要求-----------------------------------------------2 二数学模型的建立-----------------------------------------------2 三程序框图--------------------------------------------------------5 四程序清单及运行结果-----------------------------------------6 五设计总结-------------------------------------------------------14 六参考文献-----------------------------------------------------15

一 设计任务与要求 已知摆杆9为等加速等减速运动规律,其推程运动角φ=70,远休止角φs =10,回程运动角φ?=70,摆杆长度l 09D =125,最大摆角φ max =15,许用压力角[α]=40,凸轮与曲线共轴。 (1) 要求:计算从动件位移、速度、加速度并绘制线图(用方格纸 绘制),也可做动态显示。 (2) 确定凸轮的基本尺寸,选取滚子半径,画出凸轮的实际廓线, 并按比例绘出机构运动简图。 (3) 编写计算说明书。 二 机构的数学模型 1 推程等加速区 当2/0?δ≤≤时 角位移 22max /21?δ?=m 角速度 2max /4?δ?ω= 角加速度 2max /4??ε= 2 推程等减速区 当?δ?≤<2/时 角位移 22max max /)(21?δ???--=m 角速度 2max /)(4?δ??ω-= 角加速度 2max /4??ε-= 3 远休止区 当s ??δ?+≤<时 角位移 max 1?=m 角速度 0=ω 角加速度 0=ε

【精品毕设】机械原理课程设计实例详解(包括源程序)

机械原理课程设计说明书课题名称:新型窗户启闭装置 学院:机电工程学院 专业:机械电子工程 班级:09级01班 小组成员: 指导老师: 课题工作时间:2011.9.1至2011.9.10

前言 机械原理课程设计是使学生较全面、系统巩固和加深机械原理课程的基本原理和方法的重要环节,是培养学生“初步具有确定机械运动方案,分析和设计机械的能力”及“开发创新能力”的一种手段。其目的是: 1) 以机械系统运动方案设计与拟定为结合点,把机械原理课程中分散于各章的理论和方法融会贯通起来,进一步巩固和加深学生所学的理论知识。 2) 使学生能受到拟定机械运动方案的训练,具有初步的机构选型与组合和确定运动方案的能力。 3) 使学生在了解机械运动的变换与传递及力传递的过程中,对机械的运动、动力分析与设计有一个较完整的概念。 4) 进一步提高学生运算、运用流行软件编写应用程序和技术资料的能力。 5) 通过编写说明书,培养学生表达、归纳、总结和独立思考与分析的能力。 要达到课程设计的目的,必须配以课程设计的具体任务:按照选定的机械总功能要求,分解成分功能,进行机构的选型与组合;设计该机械系统的几种运动方案,对各运动方案进行对比和选择;对选定方案中的机构——连杆机构、凸轮机构、齿轮机构,其他常用机构,组合机构等进行运动分析与参数设计;通过计算机编程,将机构运动循环图在计算机屏幕上动态地显示出来,并给出相应的运动参数值。 机械原理课程设计的主要方法,是采用解析法建立求解问题的数学模型,在此基础上应用目前流行的可视化编程语言(如:VB)编写求解程序,显示所设计机构的运动图形、运动参数值及机构仿真。 摘要:本次课程设计运用解析法建立了所设计的六杆机构的运动特性数学模型,利用Matlab运动仿真求出各铰接点和杆件的运动变化情况。然后基于Visual Basic程序设计运动仿真,绘出相应铰接点运动特性曲线,并将用解析法基于Matlab环境下运行的结果与Visual Basic程序设计仿真运动值进行比较。进

块状物品推送机的机构综合与结构设计

机电工程学院 《块状物品推送机课程设计》 说明书 课题名称:块状物品推送机的机构综合与结构设计学生姓名:学号: 专业:机械设计班级:11机设3 成绩:指导教师签字: 2013年12月21日

目录 1 设计题目及其要求 (2) 2 题目分析 (2) 3 设计 (4) 3.1*******................................................................................................ 错误!未定义书签。 3.2******.................................................................................................. 错误!未定义书签。 4 负载图和速度图............................................................................................ 错误!未定义书签。。。。。。。。。。。...................................................................................................... 错误!未定义书签。 6 总结 (13)

设计内容计算说明结论 1 设计题目及其要求 一、设计题目 在自动包裹机的包装作业过程中,经常需 要将物品从前一工序转送到下一工序。现要求设 计一用于糖果、香皂等包裹机中的物品推送机, 将块状物品从一位置向上推送到所需的另一位 置,如图6-2所示。 二、设计数据与要求 1.向上推送距离H=80mm,生产率为每 分钟推送物品100件; 2.推送机的原动机为同步转速为3000 转/分的三相交流电动机,通过减速装 置带动执行机构主动件等速转动; 3.由物品处于最低位置时开始,当执行机构主动件转过1500时,推杆从 最低位置运动到最高位置;当主动件再转过1200时,推杆从最高位置 又回到最低位置;最后当主动件再转过900时,推杆在最低位置停留不 动;图2 4.设推杆在上升运动过程中,推杆所受的物品重力和摩擦力为常数,其 值为500N;设推杆在下降运动过程中,推杆所受的摩擦力为常数,其 值为100N;图6-2 推送机工作要求 5.使用寿命10年,每年300工作日,每日工作16小时; 6.在满足行程的条件下,要求推送机的效率高(推程最大压力角小于 350),结构紧凑,振动噪声小 三、设计任务 1.至少提出三种运动方案,然后进行方案分析评比,选出一种运动方案进 行机构综合; 2.确定电动机的功率与满载转速; 3.设计传动系统中各机构的运动尺寸,绘制推送机的机构运动简图; 4.在假设电动机等速运动的条件下,绘制推杆在一个运动周期中位移、速 度和加速度变化曲线; 5.如果希望执行机构主动件的速度波动系数小于3%,求应在执行机构主 动件轴上加多大转动惯量的飞轮; 6.进行推送机减速系统的结构设计,绘制其装配图和两张零件图; 7.编写课程设计说明书 2 题目分析 方案一:连杆机构图1所示的连杆机构由曲柄摇杆机构ABCD 与曲柄滑块机构GHK通过连杆EF相联组合而成。连杆BC上E点的

第二部分 机械原理课程设计题目

第二部分机械原理课程设计题目 1.半自动平压模切机机构设计 1.1简介 图2.1 图2.2 半自动平压模切机是印刷、包装行业压制纸盒、纸箱等纸制品的专用设备。该机可对各种规格的白纸纸板、厚度在4mm以下的楞瓦纸板,以及各种高级精细的印刷品进行压痕、切线、压凹凸。经过压痕、切线的纸板,用手工或机械沿切线处去边料后,沿着压出的压痕可折叠成各种纸盒、纸箱,或制成凹凸的商标。 压制纸板的工艺过程分为“走纸”和“模切”两部分。如图2.1所示,4为工作台面,工作台上方的1为双列链传动,2为主动链轮,3为走纸模块(共五个),其两端分别固定在前后两根链条上,横块上有若干个加紧片。主动链轮由间歇机构带动,使双列链条作同步的间歇运动。每次停歇时,链上的一个走纸横块刚好运行到主动链轮下方的位置上。这时,工作台面下方的控制机构控制其执行构件7作往复运动,推动横块上的夹紧装置,使夹紧片张开,操作者可将纸板8喂入,待夹紧后,主动链轮又开始转动,将纸板送到具有上模5(装调以后是固定不动的)和下模6的位置,链轮再次停歇。这时,在工作台面下部的主传动系统中的执行构件——滑块6和下模为一体向上移动,实现纸板的压痕、切线,称为模压或压切。压切完成以后,链条再次运行,当夹有纸板的横块走到某一位置时,受另一机构(图上未表示)作用,使夹紧

片张开,纸板落到收纸台上,完成一个工作循环。与此同时,后一个横块进入第二个工作循环,将已夹紧的纸板输入压切处,如此实现连续循环工作。 1.2 原始数据和设计要求 1)每小时压制纸板3000张。 2)传动机构所用电动机转速n=1450r/min ,滑块推动下模块向上运动时所受生产阻力 如图2.2所示,图中N P C 6 102?=, 回程时不受力,回程的平均速度为工作行程平均速度的1.2倍,下模移动的行程长度mm H 5.050±=。下模和滑块质量约为120kg ,各杆件质量按18kg/m 计算。 3) 机器运转不均匀系数0.1 4) 工作台面离地面的距离约为1200mm 。 5) 所设计机构的性能要良好,结构简单紧凑,节省动力,寿命长,便于制造。 1.3 设计步骤及应完成的工作量 1) 拟定运动系统方案,并进行方案的分析比较,拟定运动循环图。 2) 机构设计 a. 用解析法和图解法相结合设计连杆机构(即下压模传动机构)。 b. 用图解法或解析法设计凸轮机构 3) 对执行压模传动机构进行运动分析和动态静力分析。提供如下结果:机构尺寸, 电机型号;位移、速度和加速度曲线,原动件平衡力矩曲线,机架总反力曲线,等效驱动力矩和阻力矩曲线,等效转动惯量和飞轮转动惯量。 4) 正确绘制机构运动简图 a. 拟定自电动机至曲柄轴的传动链方案,并进行传动比分配。 b. 进行传动机构的最终布置,画出机构的运动循环图。 c. 按比例绘制运动简图,每人完成2号图纸一张(图纸内容包括:设计的机构 简图,机构传动系统图,运动循环图)。 5) 编写设计计算说明书。

包装机械设计课程设计指导书(1) (1)

包装机械设计课程设计指导书(1) 机械工程学院 2011年八月

一、课程设计的目的 《包装机械设计》课程设计是本课程各教学环节中重要的一环,它让学习者联系实际进一步深入理解、掌握所学的理论知识。其基本目的是: (1)培养理论联系实际的设计思想,训练综合运用包装机械和有关先修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关包装机械设计方面的知识。 (2)通过制订设计方案,合理选择裹包机中块状物品推送机构和零件类型,正确计算零件工作能力、确定尺寸和选择材料,以及较全面地考虑制造工艺、使用和维护等要求,之后进行结构设计,达到了解和掌握机械零件、包装机械经常采用的机构的设计过程和方法。 (3)进行设计基本技能的训练。例如计算、绘图、熟悉和运用设计资料(手册、图册、标准和规范等)以及使用经验数据、进行经验估算和处理数据的能力。 二、设计内容与步骤 (一)设计内容 以裹包机中块状物品推送机构的典型机构——固定凸轮与连杆组合机构为题。课程设计通常包括如下内容:读懂块状物品推送机构典型机构——固定凸轮与连杆组合机构,了解设计题目要求;分析该块状物品推送机构设计的可能方案;具体计算和设计该方案中机构的基本参数;进行机体结构及其附件的设计;绘制装配图及零件工作图;编写计算说明书以及进行设计答辩。 (二)设计步骤: (1)设计准备 认真研究设计任务书,明确设计要求、条件、内容和步骤;通过阅读有关资料、图纸、参观实物或模型、观看电视教学片、挂图以及推送机构进行拆装实验等,了解设计对象;复习有关课程内容,熟悉零部件的设计方法和步骤;准备好设计需要的图书、资料和用具;拟定设计计划等。 (2)推送机构装置的总体设计 决定推送机构装置的方案;选择机构的类型,计算机构装置的运动参数。 (3)装配图设计 计算和选择机构的参数;确定机体结构和有关尺寸;绘制装配图草图;选择计算轴承和进行支承结构设计;进行机体结构及其附件的设计;完成装配图的其他要求;审核图纸。 (4)零件工作图设计 (5)整理和编写计算说明书 (6)设计总结和答辩 三、设计要求 在课程设计之前,准备好必要的设计手册或参考资料,以便在设计过程中逐步去学习查阅资料。确定设计题目后,至少应复习在课程中学过的相关内容。完成本课程设计的具体要求如下: 1、设计说明书要全面反映设计思想、设计过程和结论性认识。其工艺设计要有文字、计算、公式来源、参数选取的资料名称或代号、图表(草图)。说明书用A4纸打印,约20页左右,并装订成册。 2、设计图样按“机械制图”、“公差与配合”等国家标准完成。 3、零件图按生产图样要求完成,零件的有关精度和技术要求要有合理的标注或说明。

机械原理课程设计题目(最新版)

一、设计任务 实现在产品表面自动打制印章的要 求。产品由运送带运送到推头1的前端(如 图1所示),然后由推送机构将产品3推送 到打印头2的下部,此后打印头2向下运 动,与产品上表面接触,完成打印操作。 在打印头退回原位时,推送机构再推送另 一产品,并把打印好的产品推走。 二、原始数据及设计要求 产品尺寸为:长*宽*高=200mm*200mm*100mm ,生产率为10件/min,要求打印机头在与产品接触时,有一秒的停歇时间以保证在产品上形成清晰的印字。设打印机头在打印过程中对产品的压力为500吨。 三、参与人数 5人,每人设计一个方案。 四、结题要求 1、设计能能满足上述一、二两项要求的机构方案,交绘制机构运动简图一张(1号图纸); 2、进行运动、力及动力学分析,交设计说明书一份。 第2题 糕点切片机 一、设计任务 如图2所示,试设计一机构实现糕点的切片。切片厚度可调整。 二、原始数据及设计要求 机构的一些尺寸: 糕点规格: 长 20~80mm; 宽 <300mm; 高 10~20mm; 切刀工作节拍:40次/分 主要设计要求是:(1)通过调整进给的距离,达 到切出不不同厚度糕点的需要。(2)要确保进给机构 与切片机构协调工协调工作,全部送进运动应在切刀 返回过程中完成,输送运动必须在切刀完全脱离切口后方能开始进行。 三、参与人数 5~7人,每人设计一个方案。 四、结题要求 1、设计能能满足上述一、二两项要求的机构方案,交绘制机构运动简图一张(1号图纸); 2、进行运动、力及动力学分析,交设计说明书一份。 图2 糕点切片

一、设计任务 如图3所示,试设计一实现用于徽章打印机构。可快速进行徽章生产.适合学校及公司等团体的徽章批量生产。 二、原始数据及设计要求 图3所示,在冲制薄片徽章时上模1先 以较大的速度接近坯料2,同时下模3也以 较大速度接近坯料。此时进料推杆6将薄牌推入压制腔中,然后上下模将坯料压制成 型。并随下模向下运动,被弹片7弹出入筐4中,完成一次冲压工作循环。 运动要求:(1)从动件(执行机构)为上模 1,作上下往复运动。(2)上模1到达工作段前送料机构已将坯料送至待加工位置(下模 3上方)。(4)生产率为每分钟70件。(5) 执行构件(上模)的工作段长度为100mm 。(7)送料距离为50mm 。 三、参与人数 2~3人,每人设计一个方案。 四、结题要求 1、设计能能满足上述一、二两项要求 的机构方案,交绘制机构运动简图一张(1号图纸); 2、进行传动计算,交设计说明书一份。 第4题 洗瓶机的设计 一、设计任务 试设计一洗瓶机,能实现清洗瓶子内外表面的功能。 二、原始数据及设计要求 如图5所示: 瓶子尺寸:大端直径 D=80mm ,长度 L=200mm ,口径d=20mm 。 推进距离S=600mm , 推瓶机构应使推移接近均 匀的速度推瓶,平稳地接 触和脱离瓶子,然后推头 快速返回原位,准备进入 第二个工作循环。 按生产率的要求,推 程的平均速度v=45mm/s , 返回时的平均速度为工作 图3 徽章打印机 15672 34 瓶子推头外表面刷子导辊图5 洗瓶机原理图

机械原理课程设计完整版

《机械原理课程设计》 学院: 行知学院专业: 机械设计制造及其自动 化 姓名:陈宇学号: 10556109 授课教师:王笑提交时间: 2012 年 7 月1日 成绩:

目录 1.设计工作原理-----------------------------------------------------2 2.方案的分析--------------------------------------------------------4 3. 机构的参数设计几计算-----------------------------------------7 4. 机构运动总体方案图及循环图-------------------------------11 5.机构总体分析----------------------------------------------------13 6. 参考资料----------------------------------------------------------13

半自动钻床机构 一、设计工作原理 1.1、工作原理及工艺动作过程 该系统由电机驱动,通过变速传动将电机的1080r/min降到主轴的5r/min,与传动轴相连的各机构控制送料,定位,和进刀等工艺动作,最后由凸轮机通过齿轮传动带动齿条上下平稳地运动,这样动力头也就能带动刀具平稳地上下移动从而保证了较高的加工质量。 设计加工图(一)所示工件ф12mm孔的半自动钻床。进刀机构负责动力头的升降,送料机构将被加工工件推入加工位置,并由定位机构使被加工工件可靠固定。 1.2、设计原始数据及设计要求 半自动钻床设计数据参看表(一) 表(一)半自动钻床凸轮设计数据

块状物品推送机的机构综合

机械原理 课程设计说明书 设计题目:块状物品推送机的机械结构学院:工程机械 专业:机械设计制造及其自动化 班级:25040909 学号:2504080931 设计者:李伟 指导教师:夏纯达 2012.1.5

目录 1设计任务书 (1) 1.1设计题目:块状物品推送机的机构综合与结构设计 (1) 1.2设计数据与要求 (1) 1.3 设计任务 (1) 2 实现推送机推送要求的执行机构方案选定 (2) 2.1实现推送机推送要求的执行机构设计方案 (2) 2.2设计方案选定 (5) 3凸轮机构的参数设计 (7) 3.1减速系统设计 (7) 3.2绘制推杆位移曲线 (7) 3.3确定基圆半径,确定凸轮理论廓线 (7) 3.4 确定基圆半径,确定凸轮理论廓线 (7) 3.5 选择合适的推杆尺寸 (7) 4 电动机等速运动的条件下,绘制推杆在一个运动周期中位移、速度和 加速度变化曲线 (8) 5 传动装置运动和动力参数计算 (9) 5.1 减速系统设计 (9) 5.2 动力参数计算 (9) 6 运动分析 (10) 总结 (11) 参考文献 (12)

1设计任务 1.1设计题目:块状物品推送机的机构综合与结构设计 在自动包裹机的包装作业过程中,经常需要将物品从前一工序转送到下一工序。现要求设计一用于糖果、香皂等包裹机中的物品推送机,将块状物品从一位置向上推送到所需的另一位置。 1.2设计数据与要求 (1) 向上推送距离S=120mm,生产率为每分钟推送物品120件; (2) 推送机的原动机为同步转速为3000r/min的三相交流电动机,通过减速装置带动执行机构主动件等速转动; (3) 由物品处于最低位置时开始,当执行机构主动件转过1500时,推杆从最低位置运动到最高位置;当主动件再转过1200时,推杆从最高位置又回到最低位置;最后当主动件再转过900时,推杆在最低位置停留不动; (4) 设推杆在上升运动过程中,推杆所受的物品重力和摩擦力为常数,其值为500N;设推杆在下降运动过程中,推杆所受的摩擦力为常数,其值为100N; (5) 在满足行程的条件下,要求推送机的效率高(推程最大压力角小于350),结构紧凑,振动噪声小; 1.3 设计任务 (1) 至少提出三种运动方案,然后进行方案分析评比,选出一种运动方案进行机构综合; (2)确定电动机的功率与满载转速; (3) 设计传动系统中各机构的运动尺寸,绘制推送机的机构运动简图; (4) 在假设电动机等速运动的条件下,绘制推杆在一个运动周期中位移、速度和加速度变化曲线; (5) 编写课程设计说明书。

机械设计机械原理课程设计题目

设计题目1:手动圆柱螺旋弹簧缠绕机设计 机构简图: 导轨 技术要求:弹簧螺距通过调整挂轮传动比可变,钢丝应拉紧,弹簧直径可变,最大长度Lmax为300mm。 主要参数: 弹黄中径D2:mm 钢丝直径d:mm 弹簧螺距p :mm 设计要求: 1)拟定机构系统总体运动方案,画出系统运动方案简图,完成论证报告。 2)完成传动系统或执行系统的结构设计,画出传动系统或执行系统的装配图。 3)设计主要构件和零件,完成1张构件图和3张零件工作图。 4)编写设计说明书。 完成日期:年月日指导教师

设计题目2:稳速器的设计 工作简图: 4 1-输出轴2-机体3-主输入轴4-辅输入轴 技术要求:输出轴转速稳定,主轴速度波动由辅轴调节。 主要参数: 输出轴转速n2 r/min 主轴转速范围n1±r/min 输出轴功率P kw 设计要求: 1)拟定机构系统总体运动方案,画出系统运动方案简图,完成论证报告。 2)完成传动系统或执行系统的结构设计,画出传动系统或执行系统的装配图。 3)设计主要构件和零件,完成1张构件图和3张零件工作图。 4)编写设计说明书。 完成日期:年月日指导教师

设计题目3:自动钢板卷花机设计 工作简图: 技术要求:卷花轴转φ1角后,内限位板与卷花轴共同转φ2角,外限位板可限位和 退出,并有退料装置。限位板直径D :400mm , 主要参数: 卷花轴转角φ1:3600 内限位板转角φ2:1800 钢板宽和厚:30×3 生产率: 电机功率P :1.1kw 设计要求: 1)拟定机构系统总体运动方案,画出系统运动方案简图,完成论证报告。 2)完成传动系统或执行系统的结构设计,画出传动系统或执行系统的装配图。 3)设计主要构件和零件,完成1张构件图和3张零件工作图。 4)编写设计说明书。 完成日期: 年 月 日 指导教师 1 2 3 4 1-卷花轴 2-模板 3-钢板花 4-内限位板

直动式固定凸轮及连杆机构设计

直动式固定凸轮与连杆机构的设计 设计者 所在院(系):湖南工业大学 专业:机械设计制造及其自动化 班级 学号: 指导老师: 时间:2015年12月27日

目录 一、课程设计的目的 (3) 二、设计内容与步骤 (4) 1、设计内容 (4) 2.设计步骤 (4) 三、设计要求 (6) 四、设计指导 (7) 1、概述 (7) 2、基本参数 (9) 3、设计步聚 (11) 1)确定驱动方案 (11) 2)确定e (11) 3)确定h (12) 4)确定α ...................................................................................... 错误!未定义书签。 5)确定δ ...................................................................................... 错误!未定义书签。 6)求算b1、b2 (12) 7)设计凸轮廊线 (14) 8)检验压力角 (16) 五、参数优化 (18) 六、结论 (19) 七、参考文献 (20) 八、附图 (21)

摘要 包装设计课程设计是在完成机械设计课程学习后,一次重要的实践性教学环节。是高等工科院校大多数专业学生第一次较全面的设计能力训练,也是对机械设计课程的全面复习和实践。其目的是培养理论联系实际的设计思想,训练综合运用机械设计和有关选修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关机械设计方面的知识。 本次设计的题目是直动式固定凸轮与连杆机构的设计。根据题目要求和机械设计的特点作者做了以下几个方面的工作:①根据有关参数进行计算或编写有关设计计算程序; ②利用程序设计的方法输出结果并自动生成图形;③画出装配图及其主要零件图;④完成设计计算说明书。

相关文档
相关文档 最新文档