文档库 最新最全的文档下载
当前位置:文档库 › 三文鱼脂肪酸的气相色谱_质谱分析(精)

三文鱼脂肪酸的气相色谱_质谱分析(精)

三文鱼脂肪酸的气相色谱_质谱分析(精)
三文鱼脂肪酸的气相色谱_质谱分析(精)

547

※分析检测食品科学

2008, Vol. 29, No.12三文鱼脂肪酸的气相色谱-质谱分析

刁全平1,侯冬岩1,回瑞华1,李铁纯1,李学成1,魏晓风2

(1.鞍山师范学院化学系,辽宁鞍山114005;2.海城同泽中学,辽宁海城114200

摘要:采用Bligh-Dyer 提取法对三文鱼鱼肉中的脂肪酸进行提取,利用气相色谱-质谱联用仪进行分析测定,共检测出25中脂肪酸。不饱和脂肪酸为16种,相对百分含量占检出所有脂肪酸的71.90%。其中,二十碳五烯酸(EPA为9.46%,二十二碳六烯酸(DHA为11.77%,同时检出了15-二十四碳烯酸(NA。关键词:三文鱼;脂肪酸;气相色谱-质谱

Analysis of Fatty Acids in Salmon Oil with Gas Chromatography-Mass Spectrometry

DIAO Quan-ping 1,HOU Dong-yan 1,HUI Rui-hua 1,LI Tie-chun 1,LI

Xue-cheng 1,WEI Xiao-feng 2

(1.Department of Chemistry,Anshan Normal University,Anshan 114005,China;2.Haicheng Tongze School,Haicheng114200, China

Abstract:Salmon oil was extracted via Bligh-Dyer method,and its fatty acid compositions were analyzed with gas chromatography-mass spectrometry(GC-MS.Results showed that25fatty acids are identified, inculding16unsaturated fatty acids,whose total relative content accounts for71.90%of the total fatty acid content.The percentages of eicosapentaenoic acid (EPA and docosahexaenoic acid(DHA are9.46%

and11.77%respectively,and15-tetracosenoic acid(NA exists in salmon oil.Key words :salmon;fatty acid ;gas chromatography-mass spectrometry

中图分类号:O657.63;Q949.783.5文献标识码:A 文章编号:1002-6630(200812-0547-02

收稿日期:2007-10-23

作者简介:刁全平(1980-,男,助教,研究方向为天然产物分析。E-

mail:qpdiao@https://www.wendangku.net/doc/f517193978.html,

三文鱼也叫大马哈鱼,学名鲑鱼,是一种生长在加拿大、挪威、日本和美国等高纬度地区的冷水海洋

鱼类,在我国黑龙江、乌苏里江以及松花江上游一带亦有分布。三文鱼不仅肉质细嫩、颜色鲜艳、口感爽滑,是食用上品,而且还具有很高的营养价值。三文鱼除了是高蛋白、低热量的健康食品外,还含有多种维生素以及钙、铁、锌、镁、磷等矿物质。海洋鱼类体内通常含有多种多不饱和脂肪酸[1-2],因此,对三文鱼脂肪酸的研究具有很高的医用价值。

目前国内对三文鱼鱼肉营养成分的研究较少,特别是对多不饱和脂肪酸的研究尚未见文献报道。本实验采用改进的Bligh-Dyer 提取方法对三文鱼鱼肉中的脂肪酸进行提取[3],尽量避免脂肪酸在提取过程中的损失和多不饱和脂肪酸的氧化变性,再利用气相色谱-质谱联用仪对其进行分析测定[4],分离鉴定其中的脂肪酸成分。1材料与方法

1.1

材料与试剂

三文鱼购于鞍山市水产品市场;甲醇、氯仿、氢氧化钾、环己烷、硫酸钠均为分析纯。1.2

仪器与设备

HP6890GC /5973MS 型气相色谱-质谱联用仪美国惠普公司;RE-52C型旋转蒸发器上海亚荣生化仪器厂;85-1型恒温磁力搅拌器常州国华电器有限公司。1.3方法

1.3.1

脂肪油的提取及甲酯化

采用改进的Bligh-Dyer提取方法[3]对三文鱼鱼肉中的脂肪酸进行提取。取新鲜三文鱼一条,取其背部肌肉去皮除骨,用剪刀剪碎混匀,称取8.0g 于250ml 锥形瓶中,加入100ml 甲醇、50ml 氯仿和40ml 蒸馏水,电磁搅拌20h 后,加入50ml 氯仿和50ml 蒸馏水,过滤后分液取下层有机相,旋转蒸发回收溶剂,得三文鱼油。将鱼油用6ml 环己烷溶解,加入2ml0.5mol/L 的KOH-CH 3OH 溶液于70℃下回流20min,冷却后加入10ml 蒸馏水,超声震荡5min,然后3000r/min 离心10min,取上层有机相用无水硫酸钠干燥后,待G C -M S 分析备用。1.3.2

脂肪酸的分析鉴定

1.3.

2.1气象色谱条件

色谱柱:HP-5(30m ×0.25mm,0.25μm弹性石英毛细管柱;升温程序:初始温度100℃,以2℃/min 升至200℃,再以2.5℃/min 升至230℃,最后以10℃/min

2008, Vol. 29, No. 12

食品科学※分析检测

548升至270℃。汽化温度280℃;进样量0.2μl;载气(He流量1ml/min;分流比为100:1;溶剂延迟3min。1.3.2.2

质谱条件

电子轰击(EL离子源:离子源温度230℃,四极杆温度150℃,电子倍增器电压1345V,电子能量70eV,发射电流34.6μA ,接口温度230℃,质量扫描范围

20~500(m/z。1.3.2.3

定性分析

取经1.3.1项处理过的三文鱼油样品0.4μl,用GC-MS 进行分析鉴定。通过

G170LBA 化学工作站数据处理系统,检索NIST98谱图库,确定样品中各个化学成分。1.3.2.4定量分析

通过G170I BA 化学工作站数据处理系统,按峰面积归一化法进行定量分析,分别求得各化学成分的相对含量。2

结果与分析

样品经过G C -M S 分析鉴定,得到三文鱼脂肪酸甲酯的总离子流图,见图1。

图1三文鱼脂肪酸甲酯总离子流色谱图

Fig.1 Total ion current chromatogram of fatty acids methyl ester

from salmon oil

2420161284

丰度(×106

时间(min4.008.0012.0016.0020.0024.0028.00

三文鱼脂肪酸甲酯G C -M S 分析结果列于表1。结果表明,在25种脂肪酸中,不饱和脂肪酸有16种,相对百分含量为71.90%,多不饱和脂肪酸有8种,相对百分含量为42.60%。其中13-十八碳烯酸的含量为14.17%,9,12-十八碳二烯酸的含量为16.97%,二十碳五烯酸(EPA的含量为9.46%,二十二碳六烯酸(DHA的含量为

11.77%。

表1三文鱼脂肪酸甲酯的组成及相对含量

Table 1 Compositions and percentages of fatty acids methylester

from salmon oil 序保留时间化合物分子式分子百分含相似号(min量量(%度(%110.36十二酸甲酯C 13H 26O 22140.1497213.22十四酸甲酯C 15H 28O 22425.6397314.01十五酸甲酯C 16H 32O 22560.9396415.38十六碳三烯酸甲酯C 17H 28O 22640.8299515.567-十六碳烯酸甲酯C 17H 32O 22687.5999615.639-十六碳烯酸甲酯C 17H 32O 22680.2999715.88十六烷酸甲酯C 17H 34O 227013.38

99816.52十七烷酸甲酯

C 18H 36O 2

2841.1594916.7015-甲基-11-十六碳烯酸甲酯C 18H 34O

22820.40931017.609,12,15-十八碳三烯酸甲酯C 19H 32O 2292

0.39

931117.929,12-十八碳二烯酸甲酯C 19H 34O 229416.97991218.0013-十八碳烯酸甲酯C 19H 36O 229614.17991318.20十八烷酸甲酯C 19H 38O

22985.80991418.645,8,11,14,17-二十碳五烯酸甲酯C 21H 32O 2316

9.46941518.9410-十九碳烯酸甲酯C 20H 38O 23100.27991619.23十九烷酸甲酯

C 20H 40O 2

3120.18991719.625,8,11,14-二十碳四烯酸甲酯C 21H 34O

23180.91941819.817,10,13-二十碳三烯酸甲酯C 21H 36O 23200.53941920.0011,14-二十碳二烯酸甲酯C 21H 38O 23221.74992020.0711-二十碳烯酸甲酯C 21H 40O 23243.709921

20.29二十烷酸甲酯C 21H 42O 2326

0.54

992221.714,7,10,13,16,19-二十二碳

C 23H 34O 234211.7795六烯酸甲酯2322.1013-二十二碳烯酸甲酯C 23H 44O 23522.12972422.42二十二烷酸甲酯C 23H 46O 23540.339925

25.00

15-二十四碳烯酸甲酯

C 25H 48O 2

380

0.77

99

3结论

三文鱼中的脂肪酸组成丰富,不饱和脂肪酸含量高,具有很高的营养价值和药用价值。本实验为三文鱼资源的进一步开发提供一定的依据。

参考文献:

[1]马亭,陈文锐,胡国昌,等.深海鱼油中脂肪酸的分析[J].分析化学,1999, 27(4:415-418.

[2]曾淑兰,关紫烽,蔡云萍.深海鱼油、海豹油脂肪酸组份的分析研究[J].质谱学报,1999,20(1:70-75.

[3]刘希光,于华华,赵增芹,等.海蜇不同部位脂肪酸的组成研究[J].分析化学,2004,32(12:1635-1638.

[4]

回瑞华,侯冬岩,李铁纯,等.棉籽油中脂肪酸不同的酯化方法与气相色谱-质谱分析[J].质谱学报,2005,26(2:90-92.

气相色谱仪原理(图文详解)

气相色谱仪原理(图文详解) 什么是气相色谱 本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。 气相色谱(GC)是一种把混合物分离成单个组分的实验技术。它被用来对样品组分进行鉴定和定量测定: 基子时间的差别进行分离 和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。 将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。这样,就是基于时间的差别对化合物进行分离。样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。 峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。 图1典型色谱图

系统 一个气相色谱系统包括 可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离 检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应 某种数据处理装置图2是对此作出的一个总结。 样品 载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」 图2色谱系统 气源 载气必须是纯净的。污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。见图

钢瓶阀 若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。 进样口 进样口就是将挥发后的样品引入载气流。最常用的进样装置是注射进样口和进样阀。注射进样口 用于气体和液体样品进样。常用来加热使液体样品蒸发。用气体或液体注射器穿透隔垫将样品注入载气流。其原理(非实际设计尺寸)如图4所示。

气相色谱-质谱联用 原理和应用介绍

气相色谱法质谱联用 气相色谱法–质谱法联用(英语:–,简称气质联用,英文缩写)是一种结合气相色谱和质谱地特性,在试样中鉴别不同物质地方法.地使用包括药物检测(主要用于监督药物地滥用)、火灾调查、环境分析、爆炸调查和未知样品地测定.也用于为保障机场安全测定行李和人体中地物质.另外,还可以用于识别物质中以前认为在未被识别前就已经蜕变了地痕量元素. 已经被广泛地誉为司法学物质鉴定地金标方法,因为它被用于进行“专一性测试”.所谓“专一性测试”就是能十分肯定地在一个给定地试样中识别出某个物质地实际存在.而非专一性测试则只能指出试样中有哪类物质存在.尽管非专一性测试能够用统计地方法提示该物质具体是那种物质,但存在识别上地正偏差. 目录 历史 仪器设备 吹扫和捕集 质谱检测器地类型 分析 全程扫描 选择地离子检测 离子化类型 电子离子化 化学离子化 串联 应用 环境检测和清洁 刑事鉴识 执法方面地应用 运动反兴奋剂分析 社会安全 食品、饮料和香水分析

天体化学 医药 参考文献 参考书目 外部链接 历史用质谱仪作为气相色谱地检测器是上个世纪年代期间由和首先开发地.当时所使用地敏感地质谱仪体积庞大、容易损坏只能作为固定地实验室装置使用. 价格适中且小型化地电脑地开发为这一仪器使用地简单化提供了帮助,并且,大大地改善了分析样品所花地时间.年,美国电子联合公司(, . 简称)美国模拟计算机供应商地先驱在开始开发电脑控制地四极杆质谱仪. 地指导下[]开始开发电脑控制地四极杆质谱仪.到了年,和地分部合作售出多台四极杆残留气体分析仪.年,仪器公司(,简称)组建就绪,年初就给斯坦福大学和普渡大学发送了第一台地最早雏型.最后重新命名为菲尼根公司()并且继续持世界系统研发、生产之牛耳. 年,当时最尖端地高速()单元在不到秒地时间里,完成了火灾助燃物地分析,然而,如果使用第一代至少需要分钟.到年使用四极杆技术地电脑化地仪器已经化学研究和有机物分析地必不可少地仪器.今天电脑化地仪器被广泛地用在水、空气、土壤等地环境检测中;同时也用于农业调控、食品安全、以及医药产品地发现和生产中. 气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分.气相色谱使用毛细管柱,其关键参数是柱地尺寸(长度、直径、液膜厚度)以及固定相性质(例如,%苯基聚硅氧烷).当试样流经柱子时,根据个组分分子地化学性质地差异而得到分离.分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子.流出柱子地分子被下游地质谱分析器做俘获,离子化、加速、偏向、最终分别测定离子化地分子.质谱仪是通过把每个分子断裂成离子化碎片并通过其质荷比来进行测定地. 把气相色谱和质谱这两部分放在一起使用要比单独使用那一部分对物质地识别都会精细很多很多倍.单用气相色谱或质谱是不可能精确地识别一种特定地分子地.通常,经质谱仪处理地需要是非常纯地样品,而使用传统地检测器地气相色谱(如,火焰离子化检测器)当有多种分子通过色谱柱地时间一样时(即具有相同地保留时间)不能予以区分,这样会导致两种或多种分子在同一时间流出柱子.在单独使用质谱检测器时,也会出现样式相似地离子化碎片.将这两种方法结合起来则能减少误差地可能性,因为两种分子同时具有相同地色谱行为和质谱行为实属非常罕见.因而,当一张分子识别质谱图出现在某一特定地分析地保留

怎样分析气相色谱图

在实际工作中,当我们拿到一个样品,我们该怎样定性和定量,建立一套完整的分析方法是关键,下面介绍一些常规的步骤: 1、样品的来源和预处理方法 GC能直接分析的样品通常是气体或液体,固体样品在分析前应当溶解在适当的溶剂中,而且还要保证样品中不含GC不能分析的组分(如无机盐),可能会损坏色谱柱的组分。这样,我们在接到一个未知样品时,就必须了解的来源,从而估计样品可能含有的组分,以及样品的沸点范围。如果样品体系简单,试样组分可汽化则可直接分析。如果样品中有不能用GC直接分析的组分,或样品浓度太低,就必须进行必要的预处理,如采用吸附、解析、萃取、浓缩、稀释、提纯、衍生化等方法处理样品。 2、确定仪器配置 所谓仪器配置就是用于分析样品的方法采用什么进样装置、什么载气、什么色谱柱以及什么检测器。 一般应首先确定检测器类型。碳氢化合物常选择FID检测器,含电负性基团(F、Cl等)较多且碳氢含量较少的物质易选择ECD检测器;对检测灵敏度要求不高,或含有非碳氢化合物组分时,可选择TCD检测器;对于含硫、磷的样品可选择FPD检测器。 对于液体样品可选择隔膜垫进样方式,气体样品可采用六通阀或吸附热解析进样方法,一般色谱仅配置隔膜垫进样方式,所以气体样品可采用吸附-溶剂解析-隔膜垫进样的方式进行分析。 根据待测组分性质选择适合的色谱柱,一般遵循相似相容规律。分离非极性物质时选择非极性色谱柱,分离极性物质时选择极性色谱柱。色谱柱确定后,根据样本中待测组分的分配系数的差值情况,确定色谱柱工作温度,简单体系采用等温方式,分配系数相差较大的复杂体系采用程序升温方式进行分析。 常用的载气有氢气、氮气、氦气等。氢气、氦气的分子量较小常作为填充柱色谱的载气;氮气的分子量较大,常作为毛细管气相色谱的载气;气相色谱质谱用氦气作为载气。 3、确定初始操作条件 当样品准备好,且仪器配置确定之后,就可开始进行尝试性分离。这时要确定初始分离条件,主要包括进样量、进样口温度、检测器温度、色谱柱温度和载气流速。进样量要根据样品浓度、色谱柱容量和检测器灵敏度来确定。样品浓度不超过10mg/mL时填充柱的进样量通常为1-5uL,而对于毛细管柱,若分流比为50:1时,进样量一般不超过2uL。进样口温度主要由样品的沸点范围决定,还要考虑色谱柱的使用温度。原则上讲,进样口温度高一些有利,一般要接近样品中沸点最高的组分的沸点,但要低于易分解温度。

裂解气相色谱

裂解气相色谱-质谱联用仪快速检测电路板中的阻燃剂 摘要:本文使用Frontier-Lab公司的多功能热分析系统对废旧电器中的多溴联苯醚类阻燃剂进行了快速的测定,具有样品前处理简单,定性、定量准确的特点。同时,准确定量可至PPM水平,相对标准偏差(RSD)在5%以下。 关键词: 多功能热分析系统, 多溴联苯醚,阻燃剂,相对标准偏差 多溴联苯醚(PBDEs),多溴联苯(PBB)作为阻燃剂被广泛应用于各种家用电器中,所加入的比例从0.1%到10%。但其残留毒性给人体和环境造成了严重影响,愈来愈引起了人们的注意。为此,欧盟官方于2003年2月13日公布了《WEEE 指令》(废旧电子电气设备指令)和《ROHS指令》(电子电气设备中限制使用有害物质指令),禁止或限制使用多溴联苯醚和多溴联苯。该两项指令于2006年7月1日起实施。为应对欧盟的这两项指令,各电子设备厂家必须对所使用的原材料进行质控,不得含有或不得超标含有PBB、PBDEs,因此,首先需要解决测定方法的问题。国外有关于PBDEs的GC(1)、GC-MS(2)的测定方法的报道,但是样品的制备方法非常繁杂,而且需要使用大量的有机溶剂,由于溶剂提取时的选择性较差,在用GC或GC-MS分析前还需用到各种样品净化技术,如SPE固相萃取净化技术等。这样就使得样品制备时间长,成本高而且不环保;本文使用多功能热分析系统与GC-MS联用,对直接测定多溴联苯醚,多溴联苯的定性定量方法进行了研究,并取得了突破性进展,建立PY-GC-MS测定PBDEs及PBB的标准程序,样品制备简单,仅需几分钟,方法检出限可低至PPM水平,完全满足欧盟法规要求,适用于塑料、橡胶原料、电气电子产品零件的PBDEs、PBB的测定,具有简便快速、准确可靠、环保等特点。 实验部分 仪器与试样:日本Frontier-Lab公司生产的PY-2020iD双击式的多功能热分析系统,美国安捷伦公司的5975(气一质联用仪) 样品为废旧电视的机壳,含有聚苯乙烯和阻燃剂,其中以十溴联苯 醚为主,本文以研究十溴联苯醚的分析方法为主,其他阻燃剂的检 测方法类似。 样品处理:以THF(四氢呋喃)为溶剂,取5ul THF溶液(10ug/ul),(电视机的机壳成份为聚苯乙烯,溶于THF,制成10ug/ul的样品溶液),注入去 活的不锈钢样品杯中,风干或用吹风机吹干即可。 标准样品:在聚苯乙烯的四氢呋喃溶剂中加入十溴联苯醚,配成浓度为0.1%至10%的标准溶液。 实验条件:进样口温度为320℃,质谱接口温度为320℃,质谱离子源为EI源,电子能量为70eV,色谱柱为Frontier-Lab公司生产的PBDE专用超 合金毛细管柱(Ultra Alloy-PBDE:0.25mm×15m×0.05um) EGA-MS分析(Frontier-Lab. PY-2020iD多功能分析系统功能之一) EGA:(Evolved Gas Analysis)释放气体分析 样品在裂解炉中程序升温,温度从100到550℃,升温速率为20℃/min 载气为He,总流速为50ml/min,柱流速为1ml/min,采用EGA分析专用超合金毛

气相色谱-质谱联用 原理和应用介绍

气相色谱法-质谱联用 气相色谱法–质谱法联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 GC-MS已经被广泛地誉为司法学物质鉴定的金标方法,因为它被用于进行“专一性测试”。所谓“专一性测试”就是能十分肯定地在一个给定的试样中识别出某个物质的实际存在。而非专一性测试则只能指出试样中有哪类物质存在。尽管非专一性测试能够用统计的方法提示该物质具体是那种物质,但存在识别上的正偏差。 目录 1 历史 2 仪器设备 2.1 GC-MS吹扫和捕集 2.2 质谱检测器的类型 3 分析 3.1 MS全程扫描 3.2 选择的离子检测 3.3 离子化类型 3.3.1 电子离子化 3.3.2 化学离子化 3.4 GC-串联MS 4 应用 4.1 环境检测和清洁 4.2 刑事鉴识 4.3 执法方面的应用

4.4 运动反兴奋剂分析 4.5 社会安全 4.6 食品、饮料和香水分析 4.7 天体化学 4.8 医药 5 参考文献 6 参考书目 7 外部链接 历史用质谱仪作为气相色谱的检测器是上个世纪50年代期间由Roland Gohlke和Fred McLafferty首先开发的。当时所使用的敏感的质谱仪体积庞大、容易损坏只能作为固定的实验室装置使用。 价格适中且小型化的电脑的开发为这一仪器使用的简单化提供了帮助,并且,大大地改善了分析样品所花的时间。1964年,美国电子联合公司(Electronic Associates, Inc. 简称EAI)-美国模拟计算机供应商的先驱在开始开发电脑控制的四极杆质谱仪Robert E. Finnigan的指导下[3]开始开发电脑控制的四极杆质谱仪。到了1966年,Finnigan和Mike Uthe的EAI分部合作售出500多台四极杆残留气体分析仪。1967年,Finnigan仪器公司the (Finnigan Instrument Corporation,简称FIC)组建就绪,1968年初就给斯坦福大学和普渡大学发送了第一台GC/MS的最早雏型。FIC最后重新命名为菲尼根公司(Finnigan Corporation)并且继续持世界GC/MS系统研发、生产之牛耳。 1966年,当时最尖端的高速GC-MS (the top-of-the-line high-speed GC-MS units)单元在不到90秒的时间里,完成了火灾助燃物的分析,然而,如果使用第一代GC-MS至少需要16分钟。到2000年使用四极杆技术的电脑化的GC/MS仪器已经化学研究和有机物分析的必不可少的仪器。今天电脑化的GC/MS仪器被广泛地用在水、空气、土壤等的环境检测中;同时也用于农业调控、食品安全、以及医药产品的发现和生产中。 气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基

气相色谱质谱联用原理和应用

气相色谱质谱联用原理 和应用 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

气相色谱-质谱联用测定农药多残留 摘要:本文研究了气相色谱-质谱联用(GS-MS)仪检测农药残留的方法,辅助以样品前处理技术,对蔬菜、水果、食用油、土壤中的农药多残留的检测方法进行了研究,取得了比较理想的效果。 关键词:气相色谱-质谱联用仪;农药多残留;检测 1引言 当前人类环境持续恶化,世界各国在工业、民用、科技、商业和军事防御等领域都面临着严重的环境污染问题。随着人们对环境污染、食品安全的关注,环境、食品中有机污染物检测方面的规范越来越严格,相应的检测技术也越来越先进。在各种有机物检测技术中,色谱仪器与质谱仪器联用作为一种比较成熟的检测手段,既可发挥色谱法的高分离能力,又兼具质谱准确鉴定化合物结构的优点,即可定性又可定量,尤其适用于环境样品中微量、痕量有机污染物的分析检测工作。1979 年美国环保局(EPA)将GC-MS(Gas Chromatography-Mass Spectrometry)联用技术列为检测饮用水、地表水中有机物的标准分析方法。随着仪器的不断完善与发展,检测技术的成熟与推广,GC-MS 法应用范围越来越广。除了在传统挥发油、脂肪油等的分析测定方面不断发展与普及外,在环境有机污染物检测、食品安全、农药残留、化妆品禁用成分研究等方面的应用也得到了广泛开展。 近年来,由于农药的大量使用引起的食品安全问题已被人们广泛的认识、关注和重视。人们食用了受到农药严重污染的蔬菜水果,而造成人体急性中毒或者慢性中毒的事件屡有发生。为保证食品的质量,世界卫生组织和世界各国制订了严格的限量标准,与此同时,许多国家也借此施行技术壁垒,使得农药残留问题不仅是影响人的身体健康,而且也严重影响到国家的对外贸易。 由于各类食品组成成分复杂,不同农药品种的理化性质存在较大差异,并且近年来高效、低毒、低残留农药品种不断涌现,给农药残留检测技术提出了更高的要求。发展快速、可靠、灵敏和实用的农药残留分析技术无疑是控制农药残留、保证食品安全和避免国际间有关贸易争端的基础。目前,我国农药残留限量标准制定工作滞后,残留监测体系不健全,残留检测能力有限、覆盖面窄。因此,我国应该根据自己的技术条件及农产品市场制定相应的多残留分析方法。 食品中的农药残留污染影响着人民生活质量的提高和食品贸易的顺利进行。日常食用的果蔬施用的农药种类繁多,常见的农药如有机磷类农药、氨基甲酸酯类农药、菊酯类农药和除草剂,抑菌剂等。由于果蔬中往往同时残留不同种类的农药,这对多残留同时检测条件提出很高要求。由于气相色谱-质谱联用( GC-MS) 具有灵敏度

热裂解气相色谱质谱联用仪主要技术指标及配置

一、热裂解气相色谱质谱联用仪主要技术指标及配置 一、作用与用途 热裂解-气相色谱-质谱联用仪适用于挥发性复杂基质成分的定性、定量分析研究。需要的样品量少,应用领域广泛,常用于未知毒物筛查,卷烟裂解产物的分析,能准确定性定量分析。主要应用于食品中农药残留定性定量分析,食品、化妆品中添加剂分析;饮用水地表水挥发、半挥发有机物含量分析,环境中污染物的分析;卷烟烟气痕量成分分析等方面的研究。能满足于食品、化工、环境、材料科学等相关领域的分析研究需要。 二、技术要求 2.1 工作条件 2.1.1 电源:230V±10%,50Hz电源 2.1.2 环境温度:10-30?C 2.1.3 环境湿度:10%~90%RH 2.2.主要用途:用于有机化合物的定性定量分析 2.3.仪器包括毛细管进样口、质谱接口、顶空自动进样器、自动液体进样器、热裂解器,固相微萃取自动进样器。 2.4 技术指标: 2.4.1柱箱 2.4.1.1温度范围:室温以上4?C~450?C 2.4.1.2温度设定:温度1?C;程序设定升温速率0.1?C 2.4.1.3升温速度:0.1?C/min~120?C/min 2.4.1.4温度稳定性;当环境温度变化1?C时,优于0.01?C *2.4.1.5程序升温:20阶21平台 2.4.1.6最大运行时间:999.99min 2.4.1.7降温速率:从450?C降至50?C<240秒(22℃室温下) 2.4.1.8保留时间重现性: <0.008% 或<0.0008min 2.4.1.9峰面积重现性: < 1.0% RSD 2.4.2分流/不分流毛细管柱进样口(带电子气路控制,简称EPC)(含前后两个进样口) 2.4.2.1可编程电子参数设定压力、流速、分流比 2.4.2.2最高使用温度400?C 2.4.2.3压力设定范围:0~150psi

气相色谱分析方法的建立

气相色谱分析方法的建立

内标法与外标法 一、内标法 什么叫内标法?怎样选择内标物? 内标法是一种间接或相对的校准方法。在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。 内标法在气相色谱定量分析中是一种重要的技术。使用内标法时,在样品中加入一定量的标准物质,它可被色谱拄所分离,又不受试样中其它组分峰的干扰,只要测定内标物和待测组分的峰面积与相对响应值,即可求出待测组分在样品中的百分含量。采用内标法定量时,内标物的选择是一项十分重要的工作。理想地说,内标物应当是一个能得到纯样的己知化合物,这样它能以准确、已知的量加到样品中去,它应当和被分析的样品组分有基本相同或尽可能一致的物理化学性质(如化学结构、极性、挥发度及在溶剂中的溶解度等)、色谱行为和响应特征,最好是被分析物质的一个同系物。当然,在色谱分析条什下,内标物必须能与样品中各组分充分分离。需要指出的是,在少数情况下,分析人员可能比较关心化台物在一个复杂过程中所得到的回收率,此时,他可以使用一种在这种过程中很容易被完全回收的化台物作内标,来测定感兴趣化合物的百分回收率,而不必遵循以上所说的选择原则。 在使用内标法定量时,有哪些因素会影响内标和被测组分的峰高或峰面积的比值? 影响内标和被测组分峰高或峰面积比值的因素主要有化学方面的、色谱方面的和仪器方面的三类。 由化学方面的原因产生的面积比的变化常常在分析重复样品时出现。 化学方面的因素包括: 1、内标物在样品里混合不好; 2、内标物和样品组分之间发生反应, 3、内标物纯度可变等。 对于一个比较成熟的方法来说,色谱方面的问题发生的可能性更大一些,色谱上常见的一些问题(如渗漏)对绝对面积的影响比较大,对面积比的影响则要小一些,但如果绝对面积的变化已大到足以使面积比发生显著变化的程度,那么一定有某个重要的色谱问题存在,比如进样量改变太大,样品组分浓度和内标浓度之间有很大的差别,检测器非线性等。进样量应足够小并保持不变,这样

气相色谱-质谱联用原理和应用

气相色谱-质谱联用测定农药多残留 摘要:本文研究了气相色谱-质谱联用(GS-MS)仪检测农药残留的方法,辅助以样品前处理技术,对蔬菜、水果、食用油、土壤中的农药多残留的检测方法进行了研究,取得了比较理想的效果。 关键词:气相色谱-质谱联用仪;农药多残留;检测 1引言 当前人类环境持续恶化,世界各国在工业、民用、科技、商业和军事防御等领域都面临着严重的环境污染问题。随着人们对环境污染、食品安全的关注,环境、食品中有机污染物检测方面的规范越来越严格,相应的检测技术也越来越先进。在各种有机物检测技术中,色谱仪器与质谱仪器联用作为一种比较成熟的检测手段,既可发挥色谱法的高分离能力,又兼具质谱准确鉴定化合物结构的优点,即可定性又可定量,尤其适用于环境样品中微量、痕量有机污染物的分析检测工作。1979 年美国环保局(EPA)将GC-MS(Gas Chromatography-Mass Spectrometry)联用技术列为检测饮用水、地表水中有机物的标准分析方法。随着仪器的不断完善与发展,检测技术的成熟与推广,GC-MS 法应用范围越来越广。除了在传统挥发油、脂肪油等的分析测定方面不断发展与普及外,在环境有机污染物检测、食品安全、农药残留、化妆品禁用成分研究等方面的应用也得到了广泛开展。 近年来,由于农药的大量使用引起的食品安全问题已被人们广泛的认识、关注和重视。人们食用了受到农药严重污染的蔬菜水果,而造成人体急性中毒或者慢性中毒的事件屡有发生。为保证食品的质量,世界卫生组织和世界各国制订了严格的限量标准,与此同时,许多国家也借此施行技术壁垒,使得农药残留问题不仅是影响人的身体健康,而且也严重影响到国家的对外贸易。 由于各类食品组成成分复杂,不同农药品种的理化性质存在较大差异,并且近年来高效、低毒、低残留农药品种不断涌现,给农药残留检测技术提出了更高的要求。发展快速、可靠、灵敏和实用的农药残留分析技术无疑是控制农药残留、保证食品安全和避免国际间有关贸易争端的基础。目前,我国农药残留限量标准制定工作滞后,残留监测体系不健全,残留检测能力有限、覆盖面窄。因此,我国应该根据自己的技术条件及农产品市场制定相应的多残留分析方法。 食品中的农药残留污染影响着人民生活质量的提高和食品贸易的顺利进行。日常食用的果蔬施用的农药种类繁多,常见的农药如有机磷类农药、氨基甲酸酯类农药、菊酯类农药和除草剂,抑菌剂等。由于果蔬中往往同时残留不同种类的农药,这对多残留同时检测条件提出很高要求。由于气相色谱-质谱联用( GC

色谱分析谱图

A5000气相色谱工作站分析报告 样品信息: 样品名称: 乙酸乙酯、甲苯盲样样品编号: 样品来源: 省职防院邮寄采样人: 稀释倍数: 0.0 样品量: 0.0 含量单位: 取样时间: 仪器条件: 仪器名称: 气相色谱仪柱子型号: FFAP 检测器: FID 积分参数: 最小值: 10.00 漂移: 0.02 mV/min 噪声: 0.05 mV 最小峰宽: 2.00 S 相对窗宽: 5% 计算方式: 峰面积 色谱条件: 柱箱温度: 50 (℃)程序升温载气流速: 30 (ml/min) 检测器温度: 130 (℃)空气流速: 300 (ml/min) 气化室温度: 200 (℃)氢气流速: 30 (ml/min) 谱图: 分析结果: 定量方法:外标法 序号组分名保留时间峰面积峰高含量峰型 1 二硫化碳 3.91 9726895 366254 9726895 BB 2 乙酸乙酯0.00 0 0 0.000000 BB

3 甲苯0.00 0 0 0.000000 BB 谱图: 分析结果: 定量方法:归一法 序号组分名保留时间峰面积峰高含量峰型 1 二硫化碳 3.87 9287219 363551 9287219 BB 2 乙酸乙酯 5.40 67436 4449 25.265 BB 3 甲苯8.2 4 63476 13403 8.777 B B 谱图:

分析结果: 定量方法:外标法 序号组分名保留时间峰面积峰高含量峰型 1 二硫化碳 3.88 9515607 362744 9515607 BB 2 乙酸乙酯 5.42 68086 4510 25.508 B B 3 甲苯8.25 58293 13600 8.061 BB 谱图: 分析结果: 定量方法:外标法 序号组分名保留时间峰面积峰高含量峰型 1 二硫化碳 3.88 9231735 354067 9231735 BB 2 乙酸乙酯 5.41 67415 4556 25.256 B B 3 甲苯8.25 59548 13601 8.235 BB 谱图:

气相色谱-质谱(GC-MS)联用技术及其应用(精)

气相色谱-质谱(GC-MS )联用技术及其应用 摘要:气相色谱法—质谱(GC-MS )联用技术是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。其在环境中的应用主要包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。本文主要列举了GC-MS 在职业卫生检测、医药、农药残留检测、食品、刑事鉴识和社会安全方面的应用。 关键词:GC-MS ,应用,药物检测,环境 1 气相色谱-质谱(GC-MS )联用 气相色谱法–质谱法联用(Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS )是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS 的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS 也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 气相色谱—质谱(GC —MS )联用技术是由两个主要部分组成:即气相色谱(GC )部分和质谱(MS )部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基聚硅氧烷)。GC 是用气体作为流动相的色谱法,当试样流经柱子时,根据混合物组分分子的化学性质的差异而得到分离。分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子。GC 可以将混合物分离为纯物质,但是GC 只依靠保留时间定性,很大程度上具有不可靠性。MS 是通过将每个分子断裂成离子化碎片并通过其质荷比来进行测定,可以确定待测物的分子量、分子式,但MS 只能对纯物质进行定性,对混合组分定性无能为力。 把气相色谱和质谱这两部分放在一起使用要比单独使用那一部分对物质的识别都会精细很多倍。单用气相色谱或质谱是不可能精确地识别一种特定的分子的。通

气相色谱分析中色谱峰的特征

气相色谱分析中色谱峰的特征 质检部油品分析小班的色谱岗的样品分析,都是使用气相色谱仪和液相色谱仪等等。在色谱分析中,色谱图中的色谱峰不仅是我们得出最终数据的主要依据,而且一定程度上还可以精准的反映出仪器的性能和平稳性。因此,作为分析人员必须深入和充分的理解色谱峰的特征,以进一步提高分析数据的准确性。 为理解色谱峰的特征,首先必须能清楚气相色谱分析、色谱图和色谱峰之间的关系。 气相色谱(GC) 是一种把混合物分离成单个组分的实验技术它被用来对样品组分进行鉴定和定量测定。和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC) 是基于时间差别的分离技术。气相色谱仪将分析的样品分离、鉴定后,由记录仪绘出样品中各个组分的流出曲线图,即色谱图。色谱图是以组分的流出时间(t)为横坐标,以检测器对各组分的电讯号响应值(mv)为纵坐标。色谱图上可得到一组色谱峰,每个峰代表样品中的一个组分(见下图)。 图1 色谱图 对于一个色谱峰,我们可以获得以下四个基本的测量数据特征: (1)进样后到色谱峰被检测到的时间——定性分析 色谱图中色谱峰的出峰时间反映了被分析的组分因与色谱柱中固定相发生相互作用,而在色谱柱中滞留的时间,从本质上更准确的表达了被分析组分的保留特性。色谱峰的峰位与气相色谱分离过程的热力学性质密切相关,是进行气相色谱定性分析的主要依据。 (2)色谱峰的大小——定量分析

色谱峰的大小指峰高或峰面积的大小,其和每个组分在样品中的含量相关。即若色谱峰的峰面积大,则该峰代表的组分在样品中的含量高;反之,则该峰代表的组分在样品中的含量低。色谱峰的峰高或峰面积是气相色谱进行定量分析的重要依据。 (3)色谱峰的宽窄——色谱柱柱效的高低 色谱峰的宽窄可用来说明色谱分离过程的动力学性质——色谱柱柱效率的高低,色谱峰形愈窄说明柱效愈高,色谱峰形愈宽表明柱效愈低,但是色谱峰的宽窄只能定性的表达柱效。 (4)色谱峰间的距离——色谱柱的选择性 在色谱图上,两个色谱峰之间的距离大,表明色谱柱对各组分的选择性好;两个色谱峰之间的距离小,表明色谱柱对各组分的选择性差。 深入和充分的理解色谱峰特征,是为了进一步获得色谱分析的重要信息,保证分析数据准确无误与及时。

气相色谱质谱连用的原理、应用和进展

气相色谱-质谱连用的原理、应用和进展

————————————————————————————————作者:————————————————————————————————日期:

气相色谱-质谱连用的原理、应用和进展 物理化学 2015111154 魏斌娟1、引言 气相色谱法是一种新的分离分析技术。其出现在二十世纪五十年代,经过多年的发展,气相色谱法已经广泛应用于国防,农业等领域。将气体作为流动相的色谱法成为气相色谱法,因为气相中样品的传递速度是最快的,所以将样品非别放在流动相和固定相之间可以迅速使其达到平衡状态。随着科技的发展,近年来,将高灵敏度选择性检测器与气相色谱法相结合,可以大大提高其分析灵敏度,扩大其应用范围。但是由于气相色谱的定性能力不强,所以只能依靠组分的保留特性来对样品进行定性,应用很不方便,随着计算机技术的发展,气相色谱质谱联用技术应运而生。气相色谱质谱联用技术涵盖了气相色谱法的优点,并且弥补了其定性不强的缺点。随着技术的日益成熟,其功能也日益完善,目前,气相色谱质谱联用技术在食品、药物、生命科学等领域都有着广泛的应用。[1] 2、气质联用技术的基本原理 质谱法(Mass Spectrometry , MS)的基本原理是有机物 样品在离子源中发生电离,生成不同质荷比(m/z)的带正电荷离子,经加速电场的作用形成离子束,进入质量分析器,在其中再利用电场和磁场使其发生色散、聚焦,获得质谱图。根

据质谱图提供的信息可进行有机物、无机物的定性、定量分析,复杂化合物的结构分析,同位素比的测定及固体表面的结构和组成的分析。 气相色谱法(Gas chromatography, GC)是近年来应用日趋广泛的分析技术。由于是以气体作为流动相,所以传质速度快,一般的样品分析可在20~30s完成,具有分离效能高,灵敏度高的特点。总体而言,色谱法对有机化合物是一种有效的分离和分析方法 ,特别适合进行有机化合物的定量分析 ,但定性分析则比较困难。 气-质联用(GC-MS)法利用了色谱的高分离能力和质谱的高鉴别特性,可对复杂的混合样品进行分离、定性、定量分析的一次完成,是一种完美的现代分析方法 ,因此两者的有效结合必将为化学家及生物化学家提供一个进行复杂化合物高效的定性定量分析的工具。色谱—质谱联用已经是一个比较成熟的技术,它结合了色谱对混合有机化合物较强的分离能力和质谱的极高的灵敏度和强大的鉴定能力,成为目前剖析有机混合物的强有力的武器[2]。 气-质联用(GC-MS)法在对样品进行分析检测时,混合物样品经过分离进入质谱仪离子源,经过电离过程转化成离子,然后离子再逐步经过质量分析器和检测器成为质谱信号录入到计算机中。在检测过程中,样品不断的流入离子源,只需将分析器的扫描的质量和扫描的时间设置在一定范围

实验-醇系物的气相色谱分析

实验10醇系物的气相色谱法定性、定量分析 【实验目的】 (1)理解用已知纯物质对照定性的方法。 (2)理解用气相色谱归一化法进行定量分析的方法和特点。 (3)了解CP-3800气相色谱仪的使用及软件的操作。 (4)掌握微量进样器进样技术。 (5)了解程序升温气相色谱法的原理及基本特点。 【实验原理】 气相色谱法是以气体作为流动相(简称载气)的色谱法。 气相色谱法具有如下的特点: 1.高效能、高选择性可分离性质相似的多组分混合物,如同系物、同分异构体等;分离制备高纯物质,纯度可达99.99%。 2.灵敏度高可检出10-13-10-11g的物质; 3.分析速度快通常一个样品的分析可在几分钟到几十分钟内完成; 4.应用范围广气体样品、低沸点、易挥发或可转化为易挥发的液体或固体样品,不仅可分析有机物,也可以分析部分无机物。 气相色谱仪一般由气路系统、进 样系统、分离系统、检测记录系 统和温度控制系统(图中未显示) 五部分组成(见图1-8-1)。 1.气路系统包括气源(高压气 图1-8-1 气相色谱过程示意图瓶)、气体净化、气体流量控制等 1.高压钢瓶 2.减压阀 3.净化管

部分组成,其作用是为仪器提供纯洁、稳定的载气。常用的载气有氮气和氢气,也可用氦气、氩气或空气。 2.进样系统包括进样装置和气化室。其作用是将样品在进入色谱柱前迅速气化,并定量转入到色谱柱中。要想获得良好的分离结果,进样速度应极快,且样品应在气化室瞬间气化。液体样品一般都采用微量进样器,可根据进样量的不同选用不同体积的进样器。对气化室的要求是热容量要大,温度要足够高且无催化效应。 3.分离系统该部分由色谱柱组成,是色谱仪的心脏,其作用是分离样品。色谱柱分为填充柱和毛细管柱两种: (1)填充柱:由不锈钢或玻璃作为柱管,内填固定相制成,一般内径为2~4mm,长1~3m。形状有U型和螺旋型两种。 (2)毛细管柱又叫空心柱。毛细管材料可以是不锈钢、玻璃或石英。内径有0.53mm、0.32mm、0.25mm等几种规格,长度一般为10~30m。它的固定相可以直接涂布或通过化学交联键合在预先经过处理的管壁上。按照所用的色谱柱不同又可分为:填充柱色谱和毛细管柱色谱。 4.温度控制系统在气相色谱法中,温度直接影响到色谱柱的分离选择、检测器的灵敏度和稳定性。因此在仪器中主要是对色谱柱箱、气化室、检测器三处的温度进行控制。 5.检测和放大记录系统当样品经色谱柱分离后,各组分按保留时间不同随载气进入检测器,检测器将有关各组分含量的信息转化为易于测量的信号(一般为电信号),经过必要的放大传递给记录仪,最后得到该样品的色谱流出曲线。

气相色谱-质谱联用技术定性鉴定混合溶剂的成分

实验七 气相色谱-质谱联用技术 定性鉴定混合溶剂的成分 I.实验目的 (1) 了解气相色谱-质谱联用技术的基本原理; (2) 学习气相色谱-质谱联用技术定性鉴定的方法; (3) 了解色谱工作站的基本功能。 II. 实验原理 质谱法是一种重要的定性鉴定和结构分析方法,但没有分离能力,不能直接分析混合物。色谱法则相反,它是一种有效的分离分析方法,特别适合于复杂混合物的分离,但对组分的定性鉴定有一定难度。如果把这两种方法结合起来,将色谱仪作为质谱仪的进样和分离系统,即混合试样进入色谱柱分离,得到的单个组分按保留时间的大小依次进入质谱仪测定质谱,这样就可以实现优势互补,解决复杂混合物的快速分离和定性鉴定。气相色谱-质谱联用(GC-MS )于1957年首次实现,并很快成为一种重要的分析手段广泛应用于化工、石油、食品、药物、法医鉴定及环境监测等领域。 气相色谱-质谱联用的主要困难是两者的工作气压不匹配。质谱仪器必须在10-3~10-4Pa 的高真空条件下工作,而气相色谱仪的流出物为常压(约100kPa ),因此需要一个硬件接口来协调两者的工作条件。当气相色谱仪使用毛细管柱时,因为每分钟几毫升的流量不足以破坏质谱仪的真空状态,所以可直接与质谱仪联用。 挥发性混合物从气相色谱仪进样,经色谱柱分离后,按组分的保留时间大小依次以纯物质形式进入质谱仪,质谱仪自动重复扫描,计算机记录和储存所有的质谱信息,然后将处理结果显示在屏幕上。质谱仪的每一次扫描都得到一张质谱图,色谱组分流入时得到的是组分的质谱图,没有色谱组分时得到的是背景的质谱图,计算机将质谱仪重复扫描得到的所有离子流信号(不分质荷比大小)的强度总和对扫描信号(即色谱保留时间)作图得到总离子流图,总离子流强度的变化正是流入质谱仪的色谱组分变化的反映,所以在GC-MS 中,总离子流图相当于色谱图,每一个谱峰代表了一个组分,谱峰的强度与组分的相对含量有关。下图是混合溶剂试样的总离子流图(a )和其中第4号峰的质谱图(b )。从总离子流图中出现的6个谱峰可以得知该混合溶剂中有6个组分;对质谱图(b )进行解析可知该组分的相对分子质量为100,图中有m/z29,43,57,71等一系列间隔14(相当于CH 2)的离子峰,说明该组分的结构中有长碳链,结合相对分子质量推测为庚烷,通过质谱标准谱库的检索验证,确定试样总离子流图的4号峰为正庚烷。 混合溶剂的总离子流图(a )和4号峰的质谱图(b ) III. 实验用品 仪器: 岛津公司GCMS-QP5050A 气相色谱-质谱联用仪,GCMS Solution 工作站,NIST 谱库。微量注射器(1μL ) 试剂: 混合试剂 异丙醇、乙酸乙酯、苯3种试剂(纯度≥99.5% )混合而成,甲

气相色谱质谱联用原理和应用

气相色谱-质谱联用原理和应用

————————————————————————————————作者:————————————————————————————————日期:

气相色谱-质谱联用测定农药多残留 摘要:本文研究了气相色谱-质谱联用(GS-MS)仪检测农药残留的方法,辅助以样品前处理技术,对蔬菜、水果、食用油、土壤中的农药多残留的检测方法进行了研究,取得了比较理想的效果。 关键词:气相色谱-质谱联用仪;农药多残留;检测 1引言 当前人类环境持续恶化,世界各国在工业、民用、科技、商业和军事防御等领域都面临着严重的环境污染问题。随着人们对环境污染、食品安全的关注,环境、食品中有机污染物检测方面的规范越来越严格,相应的检测技术也越来越先进。在各种有机物检测技术中,色谱仪器与质谱仪器联用作为一种比较成熟的检测手段,既可发挥色谱法的高分离能力,又兼具质谱准确鉴定化合物结构的优点,即可定性又可定量,尤其适用于环境样品中微量、痕量有机污染物的分析检测工作。1979 年美国环保局(EPA)将GC-MS(Gas Chromatography-MassS pectrometry)联用技术列为检测饮用水、地表水中有机物的标准分析方法。随着仪器的不断完善与发展,检测技术的成熟与推广,GC-MS 法应用范围越来越广。除了在传统挥发油、脂肪油等的分析测定方面不断发展与普及外,在环境有机污染物检测、食品安全、农药残留、化妆品禁用成分研究等方面的应用也得到了广泛开展。 近年来,由于农药的大量使用引起的食品安全问题已被人们广泛的认识、关注和重视。人们食用了受到农药严重污染的蔬菜水果,而造成人体急性中毒或者慢性中毒的事件屡有发生。为保证食品的质量,世界卫生组织和世界各国制订了严格的限量标准,与此同时,许多国家也借此施行技术壁垒,使得农药残留问题不仅是影响人的身体健康,而且也严重影响到国家的对外贸易。 由于各类食品组成成分复杂,不同农药品种的理化性质存在较大差异,并且近年来高效、低毒、低残留农药品种不断涌现,给农药残留检测技术提出了更高的要求。发展快速、可靠、灵敏和实用的农药残留分析技术无疑是控制农药残留、保证食品安全和避免国际间有关贸易争端的基础。目前,我国农药残留限量标准制定工作滞后,残留监测体系不健全,残留检测能力有限、覆盖面窄。因此,我国应该根据自己的技术条件及农产品市场制定相应的多残留分析方法。 食品中的农药残留污染影响着人民生活质量的提高和食品贸易的顺利进行。日常食用的果蔬施用的农药种类繁多,常见的农药如有机磷类农药、氨基甲酸酯类农药、菊酯类农药和除草剂,抑菌剂等。由于果蔬中往往同时残留不同种类的农药,这对多残留同时检测条件提出很高要求。由于气相色谱-质谱联用(GC

气相色谱-质谱联用技术教材

气相色谱-质谱联用技术 气相色谱-质谱联用技术,简称质谱联用,即将气相色谱仪与质谱仪通过接口组件进行连接,以气相色谱作为试样分离、制备的手段,将质谱作为气相色谱的在线检测手段进行定性、定量分析,辅以相应的数据收集与控制系统构建而成的一种色谱-质谱联用技术,在化工、石油、环境、农业、法医、生物医药等方面,已经成为一种获得广泛应用的成熟的常规分析技术。 1、产生背景 色谱法是一种很好的分离手段,可以将复杂混合物中的各种组分分离开,但它的定性、鉴定结构的能力较差,并且气相色谱需要多种检测器来解决不同化合物响应值的差别问题;质谱对未知化合物的结构有很强的鉴别能力,定性专属性高,可提供准确的结构信息,灵敏度高,检测快速,但质谱法的不同离子化方式和质量分析技术有其局限性,且对未知化合物进行鉴定,需要高纯度的样本,否则杂质形成的本底对样品的质谱图产生干扰,不利于质谱图的解析。气相色谱法对组分复杂的样品能进行有效的分离,可提供纯度高的样品,正好满足了质谱鉴定的要求。 气相色谱-质谱联用(gas chromatography-mass sepetrometry , GC-MS)技术综合了气相色谱和质谱的优点,具有GC的高分辨率和质谱的高灵敏度、强鉴别能力。GC-MS可同时完成待测组分的分离、鉴定和定量,被广泛应用于复杂组分的分离与鉴定。 2、技术原理与特点 气相色谱技术是利用一定温度下不同化合物在流动相(载气)和固定相中分配系数的差异,使不同化合物按时间先后在色谱柱中流出,从而达到分离分析的目的。保留时间是气象色谱进行定性的依据,而色谱峰高或峰面积是定量的手段,所以气相色谱对复杂的混合物可以进行有效地定性定量分析。其特点在于高效的分离能力和良好的灵敏度。由于一根色谱柱不能完全分离所有化合物,以保留时间作为定性指标的方法往往存在明显的局限性,特别是对于同分异构化合物或者同位素化合物的分离效果较差。 质谱技术是将汽化的样品分子在高真空的离子源内转化为带电离子,经电离、引出和聚焦后进入质量分析器,在磁场或电场作用下,按时间先后或空间位置进行质荷比(质量和电荷的比,m/z)分离,最后被离子检测器检测。其主要特点是迁建的结构鉴定能力,能给出化合物的分子量、分子式及结构信息。在一定条件下所得的MS碎片图及相应强度,犹如指纹图,易与辨识,方法专属灵敏。但质谱拘束最大的不足之处在与要求样品是单一组分,无法满足复杂物质的分析。

相关文档