文档库 最新最全的文档下载
当前位置:文档库 › Matlab二元函数 三维图绘制

Matlab二元函数 三维图绘制

Matlab二元函数 三维图绘制
Matlab二元函数 三维图绘制

实验五二元函数的图形

【实验目的】

1.了解二元函数图形的绘制。

2.了解空间曲面等高线的绘制。

3.了解多元函数插值的方法。

4.学习、掌握MATLAB软件有关的命令。

【实验内容】

画出函数2

2y

=的图形,并画出其等高线。

z+

x

【实验准备】

1.曲线绘图的MATLAB命令

MATLAB中主要用mesh,surf命令绘制二元函数图形。主要命令mesh(x,y,z)画网格曲面,这里x,y,z是数据矩阵,分别表示数据点的横坐标,纵坐标和函数值,该命令将数据点在空间中描出,并连成网格。

surf(x,y,z)画完整曲面,这里x,y,z是数据矩阵,分别表示数据点的横坐标,纵坐标和函数值,该命令将数据点所表示曲面画出。

【实验重点】

1. 二元函数图形的描点法

2. 曲面交线的计算

3. 地形图的生成

【实验难点】

1. 二元函数图形的描点法

2. 曲面交线的计算

【实验方法与步骤】

练习1画出函数2

2y

=的图形,其中]3,3

z+

x

?

-

y

x。

(-

[

]3,3

[

,

)

用MATLAB作图的程序代码为

>>clear;

>>x=-3:0.1:3; %x的范围为[-3,3]

>>y=-3:0.1:3; %y的范围为[-3,3]

>>[X,Y]=meshgrid(x,y); %将向量x,y指定的区域转化为矩阵X,Y >>Z=sqrt(X.^2+Y.^2); %产生函数值Z

>>mesh(X,Y,Z)

运行结果为

图5.3

如果画等高线,用contour,contour3命令。

contour画二维等高线。

contour3画三维等高线。画图5.3所示的三维等高线的MATLAB 代码为

>>clear;

>>x=-3:0.1:3;

>>y=-3:0.1:3;

>>[X,Y]=meshgrid(x,y);

>>Z=sqrt(X.^2+Y.^2);

>>contour3(X,Y,Z,10); %画10条等高线

>>xlabel('X-axis'),ylabel('Y-axis'),zlabel('Z-axis'); %三个坐标轴的标记

>>title('Contour3 of Surface') %标题

>>grid on %画网格线

运行结果为

图5.4

如果画图5.4所示的二维等高线,相应的MATLAB代码为>>clear;x=-3:0.1:3;y=-3:0.1:3;

>>[X,Y]=meshgrid(x,y);Z=sqrt(X.^2+Y.^2);

>>contour (X,Y,Z,10);

>>xlabel('X-axis'),ylabel('Y-axis');

>>title('Contour3 of Surface')

>>grid on

运行结果为

如果要画z=1的等高线,相应的MATLAB代码为>>clear;x=-3:0.1:3;y=-3:0.1:3;

>>[X,Y]=meshgrid(x,y);Z=sqrt(X.^2+Y.^2);

>>contour(X,Y,Z,[1 1])

运行结果为

练习2 二次曲面的方程如下

222

222x y z d a b c

++= 讨论参数a ,b ,c 对其形状的影响。 相应的MATLAB 代码为

>>a=input('a='); b=input('b='); c=input('c=');

>>d=input('d='); N=input('N='); %输入参数,N 为网格线数目 >>xgrid=linspace(-abs(a),abs(a),N); %建立x 网格坐标 >>ygrid=linspace(-abs(b),abs(b),N); %建立y 网格坐标

>>[x,y]=meshgrid(xgrid,ygrid); %确定N ×N 个点的x,y 网格坐标 >>z=c*sqrt(d-y.*y/b^2-x.*x/a^2);u=1; %u=1,表示z 要取正值 >>z1=real(z); %取z 的实部z1

>>for k=2:N-1; %以下7行程序的作用是取消z中含虚数的点>>for j=2:N-1

>>if imag(z(k,j))~=0 z1(k,j)=0;end

>>if all(imag(z([k-1:k+1],[j-1:j+1])))~=0 z1(k,j)=NaN;end

>>end

>>end

>>surf(x,y,z1),hold on %画空间曲面

>>if u==1 z2=-z1;surf (x,y,z2);%u=1时加画负半面

>>axis([-abs(a),abs(a),-abs(b),abs(b),-abs(c),abs(c)]);

>>end

>>xlabel('x'),ylabel('y'),zlabel('z')

>>hold off

运行程序,当a=5,b=4,c=3,d=1,N=50时结果为

当a=5i,b=4,c=3,d=1,N=15时结果为

当a=5i,b=4i,c=3,d=0.1,N=10时结果为

【练习与思考】 1. 画出空间曲面2

2

2

21sin 10y

x y x z +++=在30,30<<-y x 范围内的图形,并画

出相应的等高线。 解:

clear;close; u=-30:0.5:30; v=-30:0.5:30;

[x,y]=meshgrid(u,v);

z=10*sin(sqrt(x.^2+y.^2))./sqrt(1+x.^2+y.^2); subplot(1,2,1);

mesh(x,y,z) subplot(1,2,2); contour(x,y,z,10)

2. 根据给定的参数方程,绘制下列曲面的图形。 a) 椭球面v u x sin cos 3=,v u y cos cos 2=,u z sin =; 解:

clear;close; u=-4:0.1:4; v=-4:0.1:4;

[U,V]=meshgrid(u,v); X=3.*cos(U).*sin(V); Y=2.*cos(U).*cos(V);

Z=sin(U); surf(X,Y,Z); axis equal

b) 椭圆抛物面v u x sin 3=,v u y cos 2=,24u z =; 解:

clear;close; u=-4:0.1:4; v=-4:0.1:4;

[U,V]=meshgrid(u,v); X=3.*U.*sin(V); Y=2.*U.*cos(V); Z=4.*U.^2;

surf(X,Y,Z);

shading interp;

colormap(hot);

axis equal

c) 单叶双曲面v

sec

2,u

z tan

4

=;

u cos

u

x sin

sec

3

=,v

解:

clear;close;

u=-2:0.1:2;

v=-2:0.1:2;

[U,V]=meshgrid(u,v);

X=3*sec(U).*sin(V);

Y=2*sec(U).*cos(V);

Z=4*tan(U); mesh(X,Y,Z); shading interp; colormap(jet); axis equal

d) 双叶抛物面u x =,v y =,3

2

2v u z -=;

解:

clear;close; u=-4:0.1:4; v=-4:0.1:4;

[U,V]=meshgrid(u,v);

X=U;

Y=V;

Z=(U.^2-V.^2)/3;

mesh(X,Y,Z);

shading interp;

colormap(jet);

axis equal

e) 旋转面v

z=;

=,v

x sin

ln

u

ln

=,u

u

y cos

解:

clear;close;

u=-4:0.1:4;

v=-4:0.1:4;

[U,V]=meshgrid(u,v);

X=log(U).*sin(V);

Y=log(U).*cos(V);

Z=U;

mesh(X,Y,Z);

shading interp;

colormap(jet);

axis equal

f) 圆锥面v

z=;

u

=,v

x sin

=,u

y cos

u

解:

clear;close;

u=-4:0.1:4;

[U,V]=meshgrid(u,v); X=U.*sin(V); Y=U.*cos(V); Z=U;

mesh(X,Y,Z); shading interp; colormap(jet); axis equal

g) 环面v u x cos )cos 4.03(+=,v u y sin )cos 4.03(+=,v z sin 4.0=; 解:

clear;close;

v=-4:0.1:4;

[U,V]=meshgrid(u,v); X=(3+0.4*cos(U)).*cos(V); Y=(3+0.4*cos(U)).*sin(V); Z=0.4*sin(V); mesh(X,Y,Z); shading interp; colormap(jet); axis equal

h) 正螺面v u x sin =,v u y cos =,v z 4=。 解:

clear;close;

u=-4:0.1:4;

v=-4:0.1:4;

[U,V]=meshgrid(u,v);

X=U.*sin(V);

Y=U.*cos(V);

Z=4*V;

mesh(X,Y,Z);

shading interp;

colormap(jet);

axis equal

3. 在一丘陵地带测量高程,x和y方向每隔100米测一个点,得高程

见表5-2,试拟合一曲面,确定合适的模型,并由此找出最高点和该点的高程。

表5-2 高程数据

解:

clear;close;

x=[100 100 100 100 200 200 200 200 300 300 300 300 400 400 400 400];

y=[100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400];

z=[636 697 624 478 698 712 630 478 680 674 598 412 662 626 552 334];

xi=100:5:400;

yi=100:5:400;

[X,Y]=meshgrid(xi,yi);

H=griddata(x,y,z,X,Y,'cubic');

surf(X,Y,H);

view(-112,26);

hold on;

maxh=vpa(max(max(H)),6)

[r,c]=find(H>=single(maxh)); stem3(X(r,c),Y(r,c),maxh,'fill')

matlab 三维图形绘制实例

三维图形 一. 三维曲线 plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…,xn,yn,zn,选项n) 其中每一组x,y,z 组成一组曲线的坐标参数,选项的定义和plot 函数相同。当x,y ,z 是同维向量时,则x,y,z 对应元素构成一条三维曲线。当x,y ,z 是同维矩阵时,则以x,y,z 对应列元素绘制三维曲线,曲线条数等于矩阵列数。 Example1.绘制三维曲线。 程序如下: clf, t=0:pi/100:20*pi; x=sin(t); y=cos(t); z=t.*sin(t).*cos(t); %向量的乘除幂运算前面要加点 plot3(x,y,z); title('Line in 3-D Space'); xlabel('X');ylabel('Y');zlabel('Z'); grid on; 所的图形如下: -1 1 X Line in 3-D Space Y Z 二. 三维曲面 1. 产生三维数据 在MATLAB 中,利用meshgrid 函数产生平面区域内的网格坐标矩阵。

语句执行后,矩阵X 的每一行都是向量x ,行数等于向量y 的元素的个数,矩阵Y 的每一列都是向量y ,列数等于向量x 的元素的个数。 2. 绘制三维曲面的函数 surf 函数和mesh 函数 example2. 绘制三维曲面图z=sin(x+sin(y))-x/10。 程序如下: clf, [x,y]=meshgrid(0:0.25:4*pi); %产生平面坐标区域内的网格坐标矩阵 z=sin(x+sin(y))-x./10; surf(x,y,z); axis([0 4*pi 0 4*pi -2.5 1]); title('surf 函数所产生的曲面'); figure; mesh(x,y ,z); axis([0 4*pi 0 4*pi -2.5 1]); title('mesh 函数所产生的曲面'); -2.5 -2-1.5-1-0.500.51surf 函数所产生的曲面

2011全国大学生数模竞赛A题三维立体绘图MATLAB代码

2011全国大学生数模竞赛A题 三维立体绘图MATLAB代码及图像 下载两个数据文件保存到MATLAB工作目录中,同时将下面的程序拷贝到一个M文件里面运行即可。 MATLAB代码和数据文件请到这里下载:https://www.wendangku.net/doc/f96694010.html,/thread-19793-1-1.html A题城市表层土壤重金属污染分析 随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。 按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。 现对某城市城区土壤地质环境进行调查。为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。 附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。 现要求你们通过数学建模来完成以下任务: (1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。 (2) 通过数据分析,说明重金属污染的主要原因。 (3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。 (4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?

利用MATLAB绘制二维函数图形

《MATLAB语言》课程论文 利用MATLAB绘制二维函数图形 姓名:海燕 学号:12010245375 专业:通信工程 班级:通信一班 指导老师:汤全武 学院:物理电气信息学院 成日期:2011年12月5 利用MATLAB绘制二维函数图形 (海燕 12010245375 2010级通信1班) [摘要]大学高等数学中涉及许多复杂的函数求导绘图极值及其应用的问题,例如二维绘图,对其手工

绘图因为根据函数的表达式的难易程度而不易绘制,而MATLAB语言正是处理这类的很好工具,既能简易的写出表达式,又能绘制有关曲线,非常方便实用。另外,利用其可减少工作量,节约时间,加深理解,同样可以培养应用能力。本文将探讨利用matlab来解决高等数学中的二维图形问题,并对其中的初等函数、极坐标、进行实例分析,对于这些很难用手工绘制的图形,利用matlab则很轻易地解决。[关键词]高等数学一元函数二元函数 MATLAB语言图形绘制 一、问题的提出 MATLAB 语言是当今国际上科学界 (尤其是自动控制领域) 最具影响力、也是最有活力的软件。它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、便捷的与其他程序和语言接口的功能。中学数学中常见到的是二维平面图形,由于概念抽象,学生不好理解,致使学生对学习失去信心,导致学习兴趣转移。在传统的教学中,教师在黑板上应用教具做图,不能保证所做图形的准确性,曲线的光滑度不理想,教学过程显得枯燥无味,教学质量难以保证。Matlab是集数值计算、符号计算和图形可视化三大基本功能于一体的大型软件,广泛应用于科学研究、工程计算、动态仿真等领域。Matlab是一种集成了计算功能、符号运算、数据可视化等强大功能的数学工具软件。其代码的编写过程与数学推导过程的格式很接近,所以使编程更为直观和方便,应用于教学就更加容实现Matlab软件尤 其在简单的绘图中有较强的编辑图形界面功能,在中学的数学教学中的抽象函数变得直观 形象、容易实现,同时也激发学生的学习兴趣,学生通过数形结合,更好地理解题意高等数学是一门十分抽象的学科,对于一些抽象的函数,我们可以借助于几何图形来理解,但这类图形的绘制往往很复杂,仅凭手工绘制也难以达到精确的效果,这时如果使用Matlab来解决所遇到的图形问题,则能达到事半功倍的效果。在高等数学领域中有关图形方面的应用,无论是初等函数图形、还是极坐标图形、统计图,对于Matlab而言都是完全可以胜任的。 下面结合实例从几个方面来阐述matlab在高等数学二维图形中的应用。 二、用matlab绘制一元函数图像 1.平面曲线的表示形式 对于平面曲线,常见的有三种表示形式,即以直角坐标方程 ] , [ ), (b a x x f y∈ =,以参数方程 ] , [ ), ( ), (b a t t y y t x x∈ = =,和以极坐标] , [ ), (b a r r∈ =? ?表示等三种形式。 2.曲线绘图的MATLAB命令 MATLAB中主要用plot,fplot二种命令绘制不同的曲线。 可以用help plot, help fplot查阅有关这些命令的详细信息 问题1 作出函数 x y x y cos , sin= =的图形,并观测它们的周期性。先作函数x y sin =在

matlab三维二维离散曲面画图教程

傅里叶变换 img=imread('RADU}4W~M9]09V7Q)ZQ5%~7.png'); %img=double(img); f=fft2(img); %傅里叶变换 f=fftshift(f); %使图像对称 r=real(f); %图像频域实部 i=imag(f); %图像频域虚部 margin=log(abs(f)); %图像幅度谱,加log便于显示 phase=log(angle(f)*180/pi); %图像相位谱 l=log(f); subplot(2,2,1),imshow(img),title('源图像'); subplot(2,2,2),imshow(l,[]),title('图像频谱'); subplot(2,2,3),imshow(margin,[]),title('图像幅度谱'); subplot(2,2,4),imshow(phase,[]),title('图像相位谱'); https://www.wendangku.net/doc/f96694010.html,/s/blog_1667198560102wmzu.html 傅里叶变换 I = imread('RADU}4W~M9]09V7Q)ZQ5%~7.png'); %读入数字图像 I = rgb2gray(I);%将图像进行灰度处理 J = fft2(I);%将图像实行傅里叶变换 figure,imshow(I);%这里能得到频谱图 J = fftshift(J); figure,imshow(log(abs(J)),[]); %将频谱平移 J(abs(J)<5)=0;%不必要的过滤掉 figure,imshow(log(abs(J)+eps),[]); J = ifftshift(J);K = ifft2(J);figure,imshow(K,[0 255]);%傅里叶逆变换 自己所写的代码 I = imread('RADU}4W~M9]09V7Q)ZQ5%~7.png'); %读入数字图像 J = fft2(I); %将图像实行傅里叶变换figure,imshow(I); %这里能得到频谱图 J = fftshift(J); figure,imshow(log(abs(J)),[]); %将频谱平移 J(abs(J)<5)=0; %不必要的过滤掉figure,imshow(log(abs(J)+eps),[]); J = ifftshift(J);K = ifft2(J); ss=real(ifft2(J));sss=uint8(ss);subplot(1,2,2); imshow(sss) figure,imshow(K,[0 255]); %傅里叶逆变换

用MATLAB算多元函数积分

用MATLAB 计算多元函数的积分 三重积分的计算最终是化成累次积分来完成的,因此只要能正确的得出各累次积分的积分限,便可在MA TLAB 中通过多次使用int 命令来求得计算结果。但三重积分的积分域Ω是一个三维空间区域,当其形状较复杂时,要确定各累次积分的积分限会遇到一定困难,此时,可以借助MATLAB 的三维绘图命令,先在屏幕上绘出Ω的三维立体图,然后执行命令 rotate3d on ↙ 便可拖动鼠标使Ω的图形在屏幕上作任意的三维旋转,并且可用下述命令将Ω的图形向三个坐标平面进行投影: view(0,0),向XOZ 平面投影; view(90,0),向YOZ 平面投影; view(0,90),向XOY 平面投影. 综合运用上述方法,一般应能正确得出各累次积分的积分限。 例11.6.1计算zdv Ω ???,其中Ω是由圆锥曲面222z x y =+与平面z=1围成的闭区域 解 首先用MA TLAB 来绘制Ω的三维图形,画圆锥曲面的命令可以是: syms x y z ↙ z=sqrt(x^2+y^2); ↙ ezsurf(z,[-1.5,1.5]) ↙ 画第二个曲面之前,为保持先画的图形不会被清除,需要执行命令 hold on ↙ 然后用下述命令就可以将平面z=1与圆锥面的图形画在一个图形窗口内: [x1,y1]=meshgrid(-1.5:1/4:1.5); ↙ z1=ones(size(x1)); ↙ surf(x1,y1,z1) ↙ 于是得到Ω的三维图形如图:

由该图很容易将原三重积分化成累次积分: 111zdv dy -Ω=???? 于是可用下述命令求解此三重积分: clear all ↙ syms x y z ↙ f=z; ↙ f1=int(f,z.,sqrt(x^2+ y^2),1); ↙ f2=int(f1,x,-sqrt(1- y^2), sqrt(1- y^2)); ↙ int(f2,y,-1,1) ↙ ans= 1/4*pi 计算结果为4 π 对于第一类曲线积分和第一类曲面积分,其计算都归结为求解特定形式的定积分和二重积分,因此可完全类似的使用int 命令进行计算,并可用diff 命令求解中间所需的各偏导数。 例11.6.2用MATLAB 求解教材例11.3.1 解 求解过程如下 syms a b t ↙ x=a*cos(t); ↙ y=a*sin(t); ↙ z=b*t; ↙ f=x^2 +y^2+z^2; ↙ xt=diff(x,t); ↙ yt=diff(y,t); ↙ zt=diff(z,t); ↙ int(f*sqrt(xt^2 +yt^2+zt^2),t,0,2*pi) ↙ ans= 2/3*( a^2 +b^2)^1/2*a^2*pi+8/3*( a^2 +b^2)^1/2*b^2*pi^3 对此结果可用factor 命令进行合并化简: factor (ans ) ans= 2/3*( a^2 +b^2)^1/2*pi*(3* a^2 +4*b^2*pi^2) 例11.6.3用MATLAB 求解教材例11.4.1 解 求解过程如下 syms x y z1 z2↙ f= x^2 +y^2; ↙ z1=sqrt(x^2 +y^2); ↙ z2=1; ↙ z1x=diff(z1,x); ↙ z1y=diff(z1,y); ↙ z2x=diff(z2,x); ↙ z2y=diff(z2,y); ↙

实验五MATLAB的基本绘图方法

实验三MATLAB的基本绘图方法 一、实验目的 1.二维平面图形的绘制 2.三维立体图形的绘制 3.隐函数作图 二、实验地点:A404 三、实验日期: 四、实验内容 (一)二维平面图形的绘制 1、Plot的使用方法介绍 plot 是绘制二维图形的最基本函数,它是针对向量或矩阵的列来绘制曲线的。也就是说,使用plot 函数之前,必须首先定义好曲线上每一点的x 及y 坐标,常用格式为:(1)plot(x) 当x 为一向量时,以x 元素的值为纵坐标,x 的序号为横坐标值绘制 曲线。当x 为一实矩阵时,则以其序号为横坐标,按列绘制每列元素值相对于其序号的曲线,当x 为m×n 矩阵时,就由n 条曲线。 (2)plot(x,y) 以x 元素为横坐标值,y 元素为纵坐标值绘制曲线。 (3)plot(x,y1,x,y2,…) 以公共的x 元素为横坐标值,以y1,y2,…元素为纵坐标值绘制多条曲线。 例1:画出一条正弦曲线和一条余弦曲线。 >> x=0:pi/10:2*pi; >> y1=sin(x); >> y2=cos(x); >> plot(x,y1,x,y2) 注:在绘制曲线图形时,常常采用多种颜色或线型来区分不同的数据组,MA TLAB 软件专门提供了这方面的参数选项,我们只要在每个坐标后加上相关字符串,就可实现它们的功能。具体参见教材。 2、图形修饰 MATLAB 软件为用户提供了一些特殊的图形函数,用于修饰已经绘制好的图形。 图形修饰函数表如下: 函数含义 grid on (/off) 给当前图形标记添加(取消)网络 xlable(‘string’) 标记横坐标 ylabel(‘string’) 标记纵坐标 title(‘string’) 给图形添加标题 text(x,y,’string’) 在图形的任意位置增加说明性文本信息 gtext(‘string’) 利用鼠标添加说明性文本信息 axis([xmin xmax ymin ymax]) 设置坐标轴的最小最大值 例2、给例1的图形中加入网络和标记。 >> x=0:pi/10:2*pi; >> y1=sin(x); >> y2=cos(x); >> plot(x,y1,x,y2)

MATLAB中bode图绘制技巧(精)

Matlab中Bode图的绘制技巧学术收藏2010-06-04 21:21:48 阅读54 评论0 字号:大中小订阅我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。譬如我们要画出下面这个传递函数的伯德图: 1.576e010 s^2 H(s= ------------------------------------------------------------------------------------------ s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014 (这是一个用butter函数产生的2阶的,频率范围为[20 20K]HZ的带通滤波器。我们可以用下面的语句:num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den; bode(H 这样,我们就可以得到以下的伯德图: 可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。下面,我们来看看如何定制我们自己的伯德图风格:在命令窗口中输入:bodeoptions 我们可以看到以下

内容:ans = Title: [1x1 struct] XLabel: [1x1 struct] YLabel: [1x1 struct]TickLabel: [1x1 struct]Grid: 'off' XLim: {[1 10]}XLimMode: {'auto'}YLim: {[1 10]} YLimMode: {'auto'}IOGrouping: 'none'InputLabels: [1x1 struct]OutputLabels: [1x1 struct]InputVisible: {'on'} OutputVisible: {'on'}FreqUnits: 'rad/sec'FreqScale: 'log' MagUnits: 'dB' MagScale: 'linear'MagVisible: 'on' MagLowerLimMode: 'auto'MagLowerLim: 0PhaseUnits: 'deg'PhaseVisible: 'on'PhaseWrapping: 'off' PhaseMatching: 'off'PhaseMatchingFreq: 0 PhaseMatchingValue: 0我们可以通过修改上面的每一 项修改伯德图的风格,比如我们使用下面的语句画我 们的伯德图:P=bodeoptions;P.Grid='on'; P.XLim={[10 40000]};P.XLimMode={'manual'};P.FreqUnits='HZ'; num=[1.576e010 0 0];den=[1 1.775e005 1.579e010 2.804e012 2.494e014];H=tf(num,den; bode(H,P 这时,我们将会看到以下的伯德图: 上面这张图相对就比较好了,它的横坐标单位 是HZ,范围是[10 40K]HZ,而且打开了网格,便于我 们观察-3DB处的频率值。当然,你也可以改变bodeoptions中的其它参数,做出符合你的风格的伯

matble课程论文(MATLAB在三维作图中的应用)

《MATLAB》课程论文 MATLAB在三维作图中的应用 姓名: 学号: 专业: 班级: 指导老师: 学院: 完成日期:

MATLAB在三维作图中的应用 [摘要]MATLAB提供了一系列的绘图函数,用户不仅不许考虑绘图细节,只需给出一些基本的参数就能得到所需要的图形,这一类函数称为高层绘图函数。除此之外,MATLAB还提供了直接对句柄进行操作的一系列的低层的绘图操作。这类操作将图形的每个元素看做是一个独立的对象,系统给每个对象独立的分配一个句柄,以后可以通过该句柄对改图元素进行操作,而不影响图形的其他部分。高层绘图操作简单明了,方便高效,使用户最常使用的绘图方法,而低层绘图操作控制和表现图形的能力更强,为用户自主绘图创造了条件。其实MATLAB的高层绘图函数都是利用低层绘图函数建立起来的。所以MATLAB的计算准确、效率高、使用快捷等优点常被广泛应用于科学和工程领域. [关键字]MATLAB语言三维图形图像处理绘制 一,问题的提出 MATLAB语言是当前国际学科界应用很广泛的一种软件,强大的绘图功能是MATLAB的特点之一。MATLAB提供了一系列的绘图函数,利用它强大的图像处理来绘制三维图形既简单而且也很方便。在绘制三维图形的过程中也用到了MATLAB语言的其他功能,绘制三维图形时用到了它提供的一些函数,利用这些函数可以方便的生成一些特殊矩阵,因此可生成一个坐标平面。MATLAB语言强大的功能也在二维三维绘图中的得到了很广泛的应用,利用它所提供的精细的图像处理功能,如MATLAB还提 供了直接对句柄进行操作的一系列的低层的绘图操作。这类操作将图形的每个元素看做是一个独立的对象,系统给每个对象独立的分配一个句柄,以后可以通过该句柄对改图元素进行操作,而不影响图形的其他部分。高层绘图操作简单明了,使用户最常使用的绘图方法,而低层绘图操作控制和表现图形的能力更强,为用户自主绘图创造了条件,还可以对所绘制的三维图形作一个修饰的处理。MATLAB语言具有强大的以图形化显示矩阵和数组的能力,同时它给这些图形增加注释并且可以对图形进行标注和打印。MATLAB的图形技术包括三维的可视化、图形处理、动画等高层次的专业图形的高级绘图,例如图形的光照处理、色度处理以及四维数据的表现等。那么,如何把它强大的功能应用于实际应用中,下面我们将用实例说明MATBLE在三维作图中的应用。 二,MATLAB的主要功能及特点 MATLAB近几年广泛用于图像处理和识别, 使用MATLAB设计模式识别应用软件将使设

实验二用matlab绘制一元函数与二元函数的图象-6页word资料

实验二 用matlab 绘制一元函数与二元函数的图象 1.平面曲线的表示形式 对于平面曲线,常见的有三种表示形式,即以直角坐标方程 ],[),(b a x x f y ∈=,以参数方程],[),(),(b a t t y y t x x ∈==,和以极坐标],[),(b a r r ∈=??表示等三种形式。 2.曲线绘图的MATLAB 命令 可以用help plot, help fplot 查阅有关这些命令的详细信息 例16.2.1 作出函数x y x y cos ,sin ==的图形,并观测它们的周期性。先作函数x y sin =在]4,4[ππ-上的图形,用MATLAB 作图的程序代码为: >>x=linspace(-4*pi,4*pi,300); %产生300维向量x >>y=sin(x); >>plot(x,y) %二维图形绘图命令 结果如图1.1,上述语句中%后面如“%产生300维向量x ”是说明性语句,无需键入。 图1.1 x y sin =的图形 此图也可用fplot 命令,相应的MATLAB 程序代码为: >>clear; close; %clear 清理内存;close 关闭已有窗口。 >>fplot('sin(x)',[-4*pi,4*pi]) 结果如图1.2. 图1.2 x y sin =的图形

如果在同一坐标系下作出两条曲线x y sin =和x y cos =在]2,2[ππ-上的图形,相应的MATLAB 程序代码为: >>x=-2*pi:2*pi/30:2*pi; %产生向量x >>y1=sin(x); y2=cos(x); >>plot(x,y1,x,y2,’:’) %’:’表示绘出的图形是点线 结果如图1.3其中实线是x y sin =的图形,点线是x y cos =的图形。 图1.3 x y x y cos ,sin ==的图形 3.线型、标记和颜色的控制 例16.2.2将例1得到的图形用不同的线型及颜色加以绘制。

实验Matlab三维作图的绘制

实验9 三维绘图 一、实验目的 学会MATLAB软件中三维绘图的方法。 二、实验内容与要求 1.三维曲线图 格式一:plot3(X,Y,Z,S). 说明:当X,Y,Z均为同维向量时,则plot3描出点X(i),Y(i),Z(i)依次相连的空间曲线.若X,Y均为同维矩阵,X,Y,Z每一组相应列向量为坐标画出一条曲线,S为‘color﹣linestyle﹣marker’控制字符表1.6~表1.10. 【例1.79】绘制螺旋线. >>t=0:pi/60:10*pi; >>x=sin(t); >>y=cos(t); >>plot3(x,y,t,’*-b’) >>grid on 图形的结果如图1.16所示. 格式二:comet3(x,y,z). 说明:显示一个彗星通过数据x,y,z确定的三维曲线. 【例1.80】 >>t=-20*pi:pi/50:20*pi; >>comet3(sin(t),cos(t),t) 可见到彗星头(一个小圆圈)沿着数据指定的轨道前进的动画图象,彗星轨道为整个函数所画的螺旋线. 格式三:fill3(X,Y,Z,C) ℅填充由参数X,Y,Z确定的多边形,参数C指定颜色. 图1.16 例1.79图形结果图1.17 例1.81图形结果 【例1.81】

>>X=[2,1,2;9,7,1;6,7,0]; >>Y=[1,7,0;4,7,9;0,4,3]; >>Z=[1,8,6;7,9,6;1,6,1]; >>C=[1,0,0;0,1,0;0,0,1] >>fill3(X,Y,Z,C) >>grid on 图形的结果如图1.17所示. 问题1.30:图1.17中每个三角形按什么规律画出的?(用X,Y,Z的对应列元素值为坐标画三角形)每个三角形内填充的颜色又有何规律?(用C 第i列元素值对应的颜色,从第i个三角形对应顶点向中心过渡)若C=[1,5,10;1,5,10;1,5,10],结果如何? 2.三维网格图 格式:mesh(X,Y,Z,C) ℅画出颜色由C指定的三维网格图. meshc(X,Y,Z,C) ℅画出带有等高线的三维网格图. meshz(X,Y,Z,C) ℅画出带有底座的三维网格图. 说明:若X与Y均为向量,n=length(X),m=length(Y), Z必须满足[m,n]=size(Z),则空间中的点(X(j),Y(i),Z(i,j))为所画曲面网线的交点,X 对应于Z的列,Y对应于Z的行;若X,Y,Z均为同维矩阵,则空间中的点(X(i,j),Y(i,j),Z(i,j))为所画曲面的网线的交点;矩阵C指定网线的颜色,MATLAB对矩阵C中的数据进行线性处理,以便从当前色图中获得有用的颜色,若C缺省,网线颜色和曲面的高度Z相匹配. 在三维作图常用到命令meshgrid,其功能是生成二元函数z=f(x,y)中x-y平面上的矩形定义域中数据点矩阵X和Y. 格式:[X,Y]= meshgrid(x,y). 说明:输入向量x为x-y平面上x轴的值,向量y为x-y平面上y轴的值.输出矩阵X为x-y平面上数据点的横坐标值,输出矩阵Y为x-y平面上数据点的纵坐标值. 【例1.82】 >> x=1:4; >> y=1:5; >> [x,y]=meshgrid(x,y) x = 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 y = 1 1 1 1

教你如何用matlab绘图(全面)

强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数。此外,Matlab还提供了直接对图形句柄进行操作的低层绘图操作。这类操作将图形的每个图形元素(如坐标轴、曲线、文字等)看做一个独立的对象,系统给每个对象分配一个句柄,可以通过句柄对该图形元素进行操作,而不影响其他部分。 本章介绍绘制二维和三维图形的高层绘图函数以及其他图形控制函数的使用方法,在此基础上,再介绍可以操作和控制各种图形对象的低层绘图操作。 一.二维绘图 二维图形是将平面坐标上的数据点连接起来的平面图形。可以采用不同的坐标系,如直角坐标、对数坐标、极坐标等。二维图形的绘制是其他绘图操作的基础。 一.绘制二维曲线的基本函数 在Matlab中,最基本而且应用最为广泛的绘图函数为plot,利用它可以在二维平面上绘制出不同的曲线。 1.plot函数的基本用法 plot函数用于绘制二维平面上的线性坐标曲线图,要提供一组x坐标和对应的y坐标,可以绘制分别以x和y为横、纵坐标的二维曲线。plot函数的应用格式 plot(x,y) 其中x,y为长度相同的向量,存储x坐标和y坐标。 例51 在[0 , 2pi]区间,绘制曲线 程序如下:在命令窗口中输入以下命令 >> x=0:pi/100:2*pi; >> y=2*exp(-0.5*x).*sin(2*pi*x); >> plot(x,y) 程序执行后,打开一个图形窗口,在其中绘制出如下曲线 注意:指数函数和正弦函数之间要用点乘运算,因为二者是向量。 例52 绘制曲线 这是以参数形式给出的曲线方程,只要给定参数向量,再分别求出x,y向量即可输出曲线:

matlab绘制动态三维心形代码(蛋疼的情人节奉献)

Matlab绘制三维动态心形 It’s OK to send a pic to your girlfriend on Valentine's Day 情人节蛋疼玩意 效果图: 原始代码: %仅供参考,自助修改,原则上自己动手,要是非常强烈的要帮忙 %可以联系我的QQ 865802870 ,但愿我还在上面. Source code: %构造体积方程和坐标轴,画出图形;linspace(a,b,c)均匀生成介于a到b的c个值,c 的默认为100。Meshgrid生成矩阵网格。 [X,Y,Z] = meshgrid(linspace(-3,3,101)); %3D心型图方程如下; F = -X.^2.*Z.^3-(9/80).*Y.^2.*Z.^3+(X.^2+(9/4).*Y.^2+Z.^2-1).^3; hFigure = figure; sz = get(hFigure, 'Position'); set(hFigure, 'Position', [sz(1)-0.15*sz(3) sz(2) 1.3*sz(3) sz(4)]); set(hFigure,'color','w', 'menu','none') hAxes = axes('Parent',hFigure,'NextPlot','add',... 'DataAspectRatio',[1 1 1],... 'XLim',[30 120],'YLim',[35 65],'ZLim',[30 75]); view([-39 30]); axis off % 制作出动态的隐形效果; hidden on

% 画出网格,制作网格动态效果; % 快渲染心得背面: p = patch(isosurface(F,-0.001)); set(p,'FaceColor','w','EdgeColor','w'); % 构造Y-Z平面,,描完函数在该平面的点: for iX = [35 38 41 45 48 51 54 57 61 64 67] plane = reshape(F(:,iX,:),101,101); cData = contourc(plane,[0 0]); xData = iX.*ones(1,cData(2,1)); plot3(hAxes,xData,cData(2,2:end),cData(1,2:end),'r'); pause(.1), drawnow end % 构造X-Z平面,描完函数在该平面的点: for iY = [41 44 47 51 55 58 61] plane = reshape(F(iY,:,:),101,101); cData = contourc(plane,[0 0]); yData = iY.*ones(1,cData(2,1)); plot3(hAxes,cData(2,2:end),yData,cData(1,2:end),'r'); pause(.1), drawnow end % 构造X-Y平面,描完函数在该平面的点: for iZ = [36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 69 71] plane = F(:,:,iZ); cData = contourc(plane,[0 0]); startIndex = 1; if size(cData,2) > (cData(2,1)+1) startIndex = cData(2,1)+2; zData = iZ.*ones(1,cData(2,1)); plot3(hAxes,cData(1,2:(startIndex-1)),... cData(2,2:(startIndex-1)),zData,'r'); end zData = iZ.*ones(1,cData(2,startIndex)); plot3(hAxes,cData(1,(startIndex+1):end),... cData(2,(startIndex+1):end),zData,'r'); pause(.1), drawnow end %给三维心着色

matlab绘制元函数图形

MATL AB绘制二元函数的图形 【实验目的】 1.了解二元函数图形的绘制。 2.了解空间曲面等高线的绘制。 3.了解多元函数插值的方法。 4.学习、掌握MATLAB软件有关的命令。 【实验内容】 画出函数2 2y z+ =的图形,并画出其等高线。 x 【实验准备】 1.曲线绘图的MATLAB命令 MATLAB中主要用mesh,surf命令绘制二元函数图形。主要命令mesh(x,y,z)画网格曲面,这里x,y,z是数据矩阵,分别表示数据点的横坐标,纵坐标和函数值,该命令将数据点在空间中描出,并连成网格。 surf(x,y,z)画完整曲面,这里x,y,z是数据矩阵,分别表示数据点的横坐标,纵坐标和函数值,该命令将数据点所表示曲面画出。 【实验重点】 1. 二元函数图形的描点法 2. 曲面交线的计算 3. 地形图的生成

【实验难点】 1. 二元函数图形的描点法 2. 曲面交线的计算 【实验方法与步骤】 练习1画出函数2 2y =的图形,其中]3,3 x z+ ? - y x。 ∈ , [ ]3,3 [ (- ) 用MATLAB作图的程序代码为 >>clear; >>x=-3:0.1:3; %x的范围为[-3,3] >>y=-3:0.1:3; %y的范围为[-3,3] >>[X,Y]=meshgrid(x,y); %将向量x,y指定的区域转化为矩阵X,Y >>Z=sqrt(X.^2+Y.^2); %产生函数值Z >>mesh(X,Y,Z) 运行结果为

图5.3 如果画等高线,用contour,contour3命令。 contour画二维等高线。 contour3画三维等高线。画图5.3所示的三维等高线的MA TLAB 代码为 >>clear; >>x=-3:0.1:3; >>y=-3:0.1:3; >>[X,Y]=meshgrid(x,y); >>Z=sqrt(X.^2+Y.^2); >>contour3(X,Y,Z,10); %画10条等高线 >>xlabel('X-axis'),ylabel('Y-axis'),zlabel('Z-axis'); %三个坐标轴的

matlab画三维曲面图

Matlab画三维曲面图 对于如下的数据,如何才能在matlab中画出三维图形. 620 0.03 110 620 0.07 112 630 0.07 119 645 0.02 210 650 0.02 200 650 0.03 230 650 0.06 145 650 0.08 155 655 0.01 180 655 0.06 145 660 0.05 150 680 0.02 175 680 0.04 170 680 0.06 145 680 0.08 155 x y z Matabl程序如下: %%定义数据 x=[620 620 630 645 650 650 650 650 655 655 660 680 680 680 680]; y=[0.03 0.07 0.07 0.02 0.02 0.03 0.06 0.08 0.01 0.06 0.05 0.02 0.04 0.06 0.08]; z=[110 112 119 210 200 230 145 155 180 145 150 175 170 145 155]; %%画图函数部分,参考https://www.wendangku.net/doc/f96694010.html,/thread-128595-1-1.html cbboy编写的函数%% function PlotGriddata(x,y,z) mx=min(x); %求x的最小值 Mx=max(x); %求x的最大值 my=min(y); My=max(y); Nx=20; %定义x轴插值数据点数,根据实际情况确定 Ny=20; %定义y轴插值数据点数,根据实际情况确定 cx=linspace(mx,Mx,Nx);%在原始x数据的最大值最小值之间等间隔生成Nx个插值点 cy=linspace(my,My,Ny);%在原始数据y的最大值最小值之间等间隔生成Ny个插值点 cz=griddata(x,y,z,cx,cy','cubic');%调用matlab函数进行立方插值,插值方式还有'v4'、'linear' surf(cx,cy,cz); %meshz(cx,cy,cz) %绘制曲面

用MATLAB绘制一元函数和二元函数的图象

《MATLAB语言》课程论文 用MATLAB绘制一元函数和二元函数的 图象 姓名:马军 学号:12010245245 专业:通信工程 班级:2010级通信1班 指导老师:汤全武 学院:物理电气信息学院 完成日期:2011.12.20

用MATLAB 绘制一元函数和二元函数的图像 (马军 12010245245 2010级通信工程1班) 【摘要】大学物理力学中涉及许多复杂的数值计算问题,例如非线性问题,对其手工求解较为复杂,而MATLAB 语言正是处理非线性问题的很好工具,既能进行数值求解,又能绘制有关曲线,非常方便实用。另外,利用其可减少工作量,节约时间,加深理解,同样可以培养应用能力。 【关键词】一元函数 二元函数 MATLAB 图像的绘制 一、问题的提出 MATLAB 语言是当今国际上科学界(尤其是自动控制领域)最具影响力、也是最有活 力的软件。它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、便捷的与其他程序和语言接口的功能。MATLAB 语言在各国高校与研究单位起着重大的作用.它是一种集数值计算、符号运算、可视化建模、仿真和图形处理等多种功能… 二、实验内容 1.平面曲线的表示形式 对于平面曲线,常见的有三种表示形式,即以直角坐标方程],[),(b a x x f y ∈=,以参数方程],[),(),(b a t t y y t x x ∈==,和以极坐标],[),(b a r r ∈=??表示等三种形式。 2.曲线绘图的MATLAB 命令 MATLAB 中主要用plot,fplot 二种命令绘制不同的曲线。 plot(x,y) 作出以数据(x(i),y(i))为节点的折线图,其中x,y 为同维数的向量。 plot(x1,y1,x2,y2,…) 作出多组数据折线图 fplot(‘fun’,[a,b]) 作出函数fun 在区间[a,b]上的函数图。 可以用help plot, help fplot 查阅有关这些命令的详细信息 问题1:作出函数x y x y cos ,sin ==的图形,并观测它们的周期性。先作函数 x y sin =在]4,4[ππ-上的图形,用MATLAB 作图的程序代码为: >>x=linspace(-4*pi,4*pi,300); %产生300维向量x >>y=sin(x); %定义函数y >>plot(x,y) %二维图形绘图命令 结果如图1

matlab各种三维绘图及实例

Matlab绘制三维图形 三维曲线 plot3函数与plot函数用法十分相似,其调用格式为: plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…,xn,yn,zn,选项n) 其中每一组x,y,z组成一组曲线的坐标参数,选项的定义和plot函数相同。当x,y,z是同维向量时,则x,y,z 对应元素构成一条三维曲线。当x,y,z是同维矩阵时,则以x,y,z对应列元素绘制三维曲线,曲线条数等于矩阵列数。 例绘制三维曲线。 程序如下: t=0:pi/100:20*pi; x=sin(t); y=cos(t); z=t.*sin(t).*cos(t); plot3(x,y,z); title('Line in 3-D Space'); xlabel('X');ylabel('Y');zlabel('Z'); 三维曲面 1.产生三维数据 在MATLAB中,利用meshgrid函数产生平面区域内的网格坐标矩阵。其格式为: x=a:d1:b; y=c:d2:d; [X,Y]=meshgrid(x,y); 语句执行后,矩阵X的每一行都是向量x,行数等于向量y的元素的个数,矩阵Y的每一列都是向量y,列数等于向量x的元素的个数。 2.绘制三维曲面的函数 surf函数和mesh函数的调用格式为: mesh(x,y,z,c):画网格曲面,将数据点在空间中描出,并连成网格。 surf(x,y,z,c):画完整曲面,将数据点所表示曲面画出。 一般情况下,x,y,z是维数相同的矩阵。x,y是网格坐标矩阵,z是网格点上的高度矩阵,c 用于指定在不同高度下的颜色范围。 例绘制三维曲面图z=sin(x+sin(y))-x/10。 程序如下: [x,y]=meshgrid(0:0.25:4*pi); %在[0,4pi]×[0,4pi]区域生成网格坐标 z=sin(x+sin(y))-x/10; mesh(x,y,z); axis([0 4*pi 0 4*pi -2.5 1]); 此外,还有带等高线的三维网格曲面函数meshc和带底座的三维网格曲面函数meshz。其用法与mesh类似,不同的是meshc还在xy平面上绘制曲面在z轴方向的等高线,meshz还在xy平面上绘制曲面的底座。 例在xy平面内选择区域[-8,8]×[-8,8],绘制4种三维曲面图。 程序如下: [x,y]=meshgrid(-8:0.5:8); z=sin(sqrt(x.^2+y.^2))./sqrt(x.^2+y.^2+eps); subplot(2,2,1);

使用matlab绘制三维图形的方法

使用matlab 绘制三维图形的方法 三维曲线 plot3函数与plot 函数用法十分相似,其调用格式为: plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…,xn,yn,zn,选项n),其中每一组x,y,z 组成一组曲线的坐标参数,选项的定义和plot 函数相同。当x,y,z 是同维向量时,则x,y,z 对应元素构成一条三维曲线。当x,y,z 是同维矩阵时,则以x,y,z 对应列元素绘制三维曲线,曲线条数等于矩阵列数。 例 绘制三维曲线。 程序如下: t=0:pi/100:20*pi; x=sin(t); y=cos(t); z=t.*sin(t).*cos(t); plot3(x,y,z);grid title('Line in 3-D Space'); xlabel('X');ylabel('Y');zlabel('Z'); 如下图: -1 1 X Line in 3-D Space Y Z

三维曲面 1.产生三维数据 在MATLAB 中,利用meshgrid 函数产生平面区域内的网格坐标矩阵。其格式为: x=a:d1:b; y=c:d2:d; [X,Y]=meshgrid(x,y); 语句执行后,矩阵X 的每一行都是向量x ,行数等于向量y 的元素的个数,矩阵Y 的每一列都是向量y ,列数等于向量x 的元素的个数。 2.绘制三维曲面的函数 surf 函数和mesh 函数的调用格式为: mesh(x,y,z,c):画网格曲面,将数据点在空间中描出,并连成网格。 surf(x,y,z,c):画完整曲面,将数据点所表示曲面画出。 一般情况下,x,y,z 是维数相同的矩阵。x,y 是网格坐标矩阵,z 是网格点上的高度矩阵,c 用于指定在不同高度下的颜色范围。 例 绘制三维曲面图z=sin(x+sin(y))-x/10。 程序如下: [x,y]=meshgrid(0:0.25:4*pi); %在[0,4pi]×[0,4pi]区域生成网格坐标 z=sin(x+sin(y))-x/10; mesh(x,y,z); axis([0 4*pi 0 4*pi -2.5 1]); 如下图: -2.5 -2-1.5-1-0.500.51 此外,还有带等高线的三维网格曲面函数meshc 和带底座的三维网格曲面函数meshz 。其用法与mesh 类似,不同的是meshc 还在xy 平面上绘制曲面在z 轴方

相关文档