文档库 最新最全的文档下载
当前位置:文档库 › MS中建立石墨烯模型

MS中建立石墨烯模型

MS中建立石墨烯模型
MS中建立石墨烯模型

为了在V ASP中弛豫石墨烯,在MS中建立石墨烯模型

1、打开material studio,新建一个工程,import石墨graphite.msi,在structure/ceramic 中

2、build->make p1(目的是消除对称性,这样才能够删除一层原子)。

3、删除一层原子(选中原子->delete),并移动剩下的原子到中间。

4、构建supercell(方便掺杂,也为了好看):build->symetry->supercell,构建一个6*6*1的超原胞,这样建立的超胞模型是扶手型。

要建立锯齿状的,在建立supercell之前,build>symmetry>find symmetry,然后impose symmetry,此时只显示两个原子,然后建立supercell,6*6*1

(如果需要supercell是斜六面体,这样就可以了,如果需要矩形,继续下一步)5、修改晶格参数:build->crystal->rebuild crystal,设置方位角和length。由斜六面体改为矩形首先改方位角,如果只改方位角,会发现周期性边界变化,

所以还要修改length,修改以后变成

6、下面就是需要导出到V ASP中

点击castep计算energy,保存file,到相应文件夹下找到graphite (66-cub).cell 文件,此文件为隐含文件,打开,把相应的lattice parameter和坐标拷到POSCAR,就搞定了。

项目名称生物基石墨烯宏量制备及石墨烯在功能纤维中的产

项目名称:生物基石墨烯宏量制备及石墨烯在功能纤维中的产业化应用 提名意见: 石墨烯具有高导电性、高强度、高韧度等特点。将石墨烯与纺织纤维进行复合将赋予材料诸多优异性能。现有制备石墨烯方法面临着成本高,产量低,对环境产生严重污染等问题,亟待发展简单、安全无毒、低成本、厚度均一、高产率的工业化生产石墨烯材料的方法。 该项目发明了以玉米芯纤维素为原料,采用“基团配位组装”法制备石墨烯材料的新方法,突破了生物基石墨烯配位组装析炭、催化热裂解、精制分散关键技术;研发了石墨烯表面改性及在聚合物中的分散技术,解决了石墨烯在再生纤维素纤维、涤纶短纤维与锦纶 6 纺丝过程中易团聚、品质控制困难等问题;开发了专用组件过滤技术,制备了石墨烯改性再生纤维素纤维、涤纶短纤维与锦纶6 长丝,开发了石墨烯改性纤维高效纺纱系列加工技术、织物与染整技术,建立了石墨烯功能纺织品成型加工技术体系。项目授权国家发明专利26项,具有完整的知识产权体系,整体技术达到国际先进水平。 该项目建立了年产200 吨生物基石墨烯材料的生产线,年产2000 吨的石墨烯功能聚合物母粒生产线。在服饰、家纺、轻工等领域得到了广泛的应用。经济效益和社会效益显著。 提名该项目为国家技术发明二等奖。 项目简介: 石墨烯是一种技术含量非常高、应用潜力非常广泛的碳纳米材料,具有高导电性、高强度、高韧度等多种特点,在军工、航天、锂离子电池、新能源、新材料等新兴领域和传统领域,都将带来革命性的技术进步。将石墨烯与纺织纤维进行复合将赋予材料诸多优异性能。石墨烯包括了单层石墨烯、双层石墨烯、少层石墨烯,不同层数的石墨烯应用领域大相径庭。现有制备石墨烯包括了微机械剥离、SiC 高温热解、CVD 外延、化学还原等方法,这些方法面临着成本高,产量低,对环境产生严重污染等问题,亟待发展简单、安全无毒、低成本、厚度均一、高产率的工业化生产石墨烯材料的方法。 本项目发明了以玉米芯纤维素为原料,采用“基团配位组装”法制备石墨烯材

石墨烯在环氧树脂中的应用

石墨烯在环氧树脂中的应用 石墨烯的简介 石墨是碳单质的同素异形体,碳元素的神奇的六号元素,碳单质同素异形体从最硬到极软,从全吸收到全透光,绝缘体到半导体到导体,绝热到良导热,而石墨烯就是单原子层的石墨。 石墨烯增强树脂机理 石墨烯具有很大的表比面积,加上石墨烯的分子级的分散,可与聚合物之间形成很强的界面作用,羟基等官能团和制作过程均会使石墨烯变成褶皱的状态,这些纳米级的不平整可增强石墨烯与聚合物链之间的相互作用。官能团化石墨烯表面含有羟基,羧基等化学基团,可与极性高分子如聚甲基丙烯酸甲酯形成较强的氢键。 石墨烯在环氧树脂中的应用——导电性 改性的石墨烯于环氧树脂复合,加入2%的改性石墨烯,环氧复合材料的储能模量增大113%,加入4%是,强度增大38%。纯EP树脂的电阻为10^17欧姆.厘米,添加氧化石墨烯后电阻下降6.5个数量级。 石墨烯在环氧树脂中的应用——导热性 将碳纳米管、石墨烯加到环氧树脂中,当加入20 vol% CNTs 20 vol%

GNPs, 复合材料的导热系数可达7.3W/mK. 石墨烯在环氧树脂中的应用——阻燃性 当加入5wt%有机功能化氧化石墨烯时阻燃值提高23.7%,加入5wt%的石墨烯时阻燃性能提高43.9%。 石墨烯导热塑料的优势 石墨烯导热塑料容易加工、成型耗费能源少、密度适中做出产品轻巧、可降解对环境污染小、加工可自动化高效、颜色丰富任意调整、仓库运输成本大量降低、不易碰撞变形、可绝缘不易造成安全隐患,散热均匀。 环氧树脂的种类 1. 缩水甘油醚型树脂缩水 2.缩水甘油脂型树脂 3.缩水甘油胺型树脂

4.脂环族环氧化合物 5.线状脂肪族环氧化合物。 环氧树脂的用途 环氧树脂一般和添加物同时使用,以获得应用价值。添加物可按不同用途加以选择,常用添加物有以下几类:(1)固化剂;(2)改性剂;(3)填料;(4)稀释剂;(5)其它。 其中固化剂是必不可少的添加物,无论是作粘接剂、涂料、浇注料都需添加固化剂,否则环氧树脂不能固化。 由于用途性能要求各不相同,对环氧树脂及固化剂、改性剂、填料、稀释剂等添加物也有不同的要求。

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

石墨烯的应用领域

第二章石墨烯应用领域 石墨烯因其独特的电学性能、力学性能、热性能、光学性能和高比表面积,近年来受到化学、物理、材料、能源、环境等领域的极大重视,应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。具体在五个应用领域:一是储能领域。石墨烯可用于制造超级电容器、超级锂电池等。二是光电器件领域。石墨烯可用于制造太阳能电池、晶体管、电脑芯片、触摸屏、电子纸等。三是材料领域。石墨烯可作为新的添加剂,用于制造新型涂料以及制作防静电材料。四是生物医药领域。石墨烯良好的阻隔性能和生物相容性,可用于药物载体、生物诊断、荧光成像、生物监测等。五是散热领域。石墨烯散热薄膜可广泛应用于超薄大功耗电子产品,比如当前全球热销的智能手机、IPAD 电脑、半导体照明和液晶电视等。 中国科学院预计,到2024年前后,石墨烯器件有望替代互补金属氧化物半导体(CMOS)器件,在纳米电子器件、光电化学电池、超轻型飞机材料等研究领域得到应用。目前,全球范围内仅电子行业每年需消耗大约2500吨半导体晶硅,纯石墨烯的市场价格约为人民币1000元/g ,其若能替代晶硅市场份额的10%,就可以获得5000亿元以上的经济利益;全球每年对负极材料的需求量在2.5万吨以上,并保持了20%以上的增长,石墨烯若能作为负极材料获得锂离子电池市场份额的10%,就可以获得2500吨的市场规模。可见,石墨烯具有广阔的应用空间和巨大的经济效益。

正是在这一背景下,目前国内外对石墨烯技术的应用研究如火如荼,具体应用如下: 2.1 石墨烯锂离子电池 锂离子电池具有容量大、循环寿命长、无记忆性等优点,目前已成为全球消费类电子产品的首选电池以及新能源汽车的主流电池。高能量密度、快速充电是锂电池产品发展的必然趋势,在正极材料中添加导电剂是一种有效改善锂电性能的途径,可大大增加正负极的导电性能、提高电池体积能量密度、降低电阻,增加锂离子脱嵌及嵌入速度,显著提升电池的倍率充放电等性能,提高电动车的快充性能。 所谓石墨烯电池并非整个电池都用石墨烯材料制作,而是在电池的电

石墨烯塑料的制备方法及产业化方向

石墨烯塑料的制备方法及产业化方向 石墨烯塑料的制备方法 石墨烯塑料(石墨烯改性塑料复合材料)性能的优劣与其制备过程中的加工条件是分不开的。不同的制备方法导致石墨烯在基体中的分散性、界面作用和空间结构均有所不同,而这些因素则决定了复合材料的刚度、强度、韧性和延展性等。 就目前研究所知,对于石墨烯塑料,可以通过对剪切力、温度和极性溶剂的控制来控制石墨烯的分散程度以及石墨烯片层的剥离程度。 石墨烯塑料的物理制备方法包括溶液混合法和熔融共混法,化学方法方面应用较多的有原位聚合法、乳液混合法、层层自组装技术(LbL)等。 溶液混合法 溶液混合法是将石墨烯材料(GO、RGO)在溶剂中溶解制得悬浮的单层石墨烯,使其*程度地分散在聚合物基体中。如将改性氧化石墨烯GO分散在有机溶剂中,还原得到石墨烯RGO,然后与聚合物进行溶液共混制成复合材料。溶液混合法能将石墨烯较好地分散在聚合物基体中。这种方法因其分散效果好、制备速度快以及能够很好地控制各成分的状态而得到了广泛的应用;但该方法需要使用有机溶剂,会对环境造成不良影响。 熔融共混法 熔融共混法是一种无溶剂制备方法,利用挤出机产生的剪切力克服界面作用力将填料分散在聚合物熔体中。熔融共混中由于分别制备石墨烯和聚合物,因此石墨烯的尺寸与形态可控,但是石墨烯在聚合物基体中集聚而不易分散,并且与聚合物的界面作用较差。熔融共混法是制备石墨烯塑料比较实用的方法,其工艺较为简单,可实现大规模低成本制备,但是较高的温度和局部压力会影响复合材料各成分的稳定性。 原位聚合法 原位聚合法是将石墨烯与聚合物单体混合,然后加入催化剂引发反应,*制得复合材料。通过检测发现,这种方法没有破坏复合材料的热稳定性,不过原位聚合法的反应条件难以确定,加入导热添加剂后会对聚合物产生不确定影响。

石墨烯分散方法

石墨烯分散方法 石墨烯具有优良的性能,科研工作者考虑将其作为增强体加入到基体材料中以提高基体材料的性能。但是,由于其较大的比表面积,再加上片层与片层之间容易产生相互作用,极易出现团聚现象,而且团聚体难以再分开,不仅降低了自身的吸附能力而且阻碍石墨烯自身优异性能的发挥,从而影响了石墨烯增强复合材料性能的改进。为了得到性能优异的石墨烯增强复合材料,科研工作者在克服石墨烯团聚、使其分散方面做了诸多研究。分散方法简介如下: 1、机械分散发 利用剪切或撞击等方式改善石墨烯的分散效果。吴乐华等以纯净石墨粉为原料,无水乙醇为溶剂,采用湿法球磨配合超声、离心等方式得到石墨烯分散液,通过扫描电镜、透射电镜和拉曼光谱分析均证明石墨烯为几个片层分散。 2、超声分散发 利用超声的空化作用,以高能高振荡降低石墨烯的表面能,从而达到改善分散效果的目的。Umar等将石墨在N-甲基吡咯烷酮(NMP)中采用低功率超声处理,随着超声时间的延长,石墨烯分散液的浓度随之升高,当超声时间超过462h后,石墨烯分散液浓度能够达到1.2mg/mL,这

是由于超声所产生的溶剂与石墨烯之间的能量大于剥离石墨烯片层所需要的能量,进而实现了石墨烯的分散。3、微波辐射发 采用微波加热的方式产生高能高热用以克服石墨烯片层间的范德华力。Janowska等采用氨水作为溶剂,利用微波辐射处理在氨水中的膨胀石墨以制备石墨烯分散液,透射电镜观测结果表明制得的石墨烯主要为单、双和少层(少于十层)石墨烯,并且能够在氨水中稳定分散,研究证实微波辐射产生的高温能够使氨水部分气化,产生的气压对克服石墨烯片层间的范德华力具有显著的作用。 4、表面改性 通过离子液体对膨胀石墨进行表面改性来提高石墨烯的分散性。这种改性属于物理方法,它能降低改性过程对石墨烯结构和官能团的影响。经过改性的石墨烯片层粒径小,呈现出褶皱的状态;通过离子液体改性后的石墨烯可以长时间在丙酮溶液中保持均匀的分散状态,并且能够均匀分布在硅橡胶基体中,离子液体链长增加使得样品更加均匀地分散。 采用具有强还原能力的没食子酸作为稳定剂和还原剂,制得了具有高分散性的石墨烯。由于分子中苯环结构和石墨烯之间形成了π—π共轭相互作用,从而作为稳定剂吸附在石墨烯表面,这使得石墨烯片层具有较强的负电性,

氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能_叶国锐

复合材料学报第31卷 第6期 12月 2014年Acta Materiae Comp ositae SinicaVol.31 No.6 December 2 014文章编号:1000-3851(2014)06-1402-07 收稿日期:2013-09-27;录用日期:2013-11-07;网络出版时间:2014-01-2 0 09:42网络出版地址:www.cnki.net/kcms/detail/10.13801/j .cnki.fhclxb.20141202.001.html基金项目:深圳市战略性新兴产业发展专项(ZD SY20120619141411025)通讯作者:曹海琳,教授,研究方向为复合材料性能设计及开发。 E-mail:caohl@h it.edu.cn引用格式:叶国锐,晏义伍,曹海琳.氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能[J].复合材料学报,20 14,31(6):1402-1408.Ye Guorui,Yan Yiwu,Cao Hailin.Basalt fiber modified with graphene oxide and properties of its reinforced epoxy  compos-ites[J].Acta Materiae Comp ositae Sinica,2014,31(6):1402-1408.氧化石墨烯改性玄武岩纤维及其增强环氧树脂 复合材料性能 叶国锐1,晏义伍1,曹海琳*1,2 (1.深圳航天科技创新研究院深圳市复合材料重点实验室,深圳518057;2.哈尔滨工业大学化工学院,哈尔滨15 0001)摘 要: 为了改善玄武岩纤维/环氧树脂复合材料的界面性能,通过偶联剂对氧化石墨烯进行改性,并将改性后的氧化石墨烯引入到上浆剂中对玄武岩纤维进行表面涂覆改性,同时制备了氧化石墨烯-玄武岩纤维/环氧树脂复合材料。采用FTIR表征了氧化石墨烯的改性效果;运用SEM分析了改性上浆剂处理对玄武岩纤维表面及复合材料断口形貌的影响和作用机制。结果表明:偶联剂成功接枝到氧化石墨烯表面; 玄武岩纤维经氧化石墨烯改性的上浆剂处理后,表面粗糙度及活性官能团含量增加,氧化石墨烯-玄武岩纤维/环氧树脂界面处的机械齿合作用及化学键合作用增强,界面黏结强度得到改善,玄武岩纤维的断裂强力提高了30.8%,氧化石墨烯-玄武岩纤维/环氧树脂复合材料的层间剪切强度提高了10.6%。 关键词: 氧化石墨烯;表面改性;玄武岩纤维;力学性能;复合材料中图分类号: TB332 文献标志码: A Basalt fiber modified with graphene oxide and properties of its reinforced epoxy  compositesYE Guorui 1, YAN Yiwu1,CAO Hailin*1, 2(1.Shenzhen Key Laboratory of Composite Materials,Shenzhen Academic of Aerospace Technology,Shenzhen 518057,China;2.School of Chemical Engineering and Technology,Harbin Institute of Technology,Harbin 150001,China)Abstract: To improve the interfacial properties of basalt fiber/epoxy composites,the graphene oxide modified withcoupling agent was introduced into sizing agent,and the modified sizing agent was used to modify basalt fiber andthe graphene oxide-basalt fiber/epoxy composites were prepared.The modification effect of graphene oxide wascharacterized by FTIR.The effect of modified sizing modification on surface of basalt fiber and composites cross-sectional morphologies and reaction mechanism were investigated using SEM.The results show that coupling agentis successfully grafted onto the surface of graphene oxide.Surface roughness and reactive functional groups are in-creased after basalt fiber being infiltrated in sizing agent modified by graphene oxide,and the mechanical interlockingand chemical bonding of the graphene oxide-basalt fiber/epoxy interface are enhanced,the interface bonding strengthis improved,the fracture strength of basalt fibers is improved by 30.8%and the interlaminar shear strength of gra-phene oxide-basalt fiber/epoxy  composites is improved by 10.6%.Key words: graphene oxide;surface modification;basalt fiber;mechanical properties;composites 玄武岩纤维是以天然玄武岩矿石作为原料,经 高温熔融、拉丝、冷却而得到的一种新型无机纤 维[1] ,具有突出的力学性能、耐高温、高耐腐蚀与化 学稳定性、吸湿性低等优点。以其为增强相的复合材料制品被广泛应用于航空航天、汽车制造、建筑、化工和医学等领域,被认为是21世纪最具发展潜 力的新型材料之一[ 2- 4]。复合材料的性能很大程度上依赖于复合材料的界面性能,而界面性能除了取

石墨烯改性

综合实践论文 题目:石墨烯改性研究进展 班级:高分子112 姓名:陈阳建 指导老师:祖立武 日期:2014年6月20日

石墨烯改性研究进展 陈阳建 齐齐哈尔大学材料学院,黑龙江齐齐哈尔10221 摘要: 结合当前国内外石墨烯改性的研究进展,分别从表面改性和电子性能改性两个方面介绍了石墨烯的改性方法。其中,石墨烯表面改性包括共价键功能化和非共价键功能化;石墨烯电子性能改性包括掺杂和离子轰击。讨论了各种改性方法的优缺点,并在原有改性方法的基础上,展望了未来石墨烯改性的发展方向。关键词: 石墨烯;改性;综述;共价键功能化;非共价键功能化;掺杂;离子轰击 Research progress in the modification of graphene Chen yangjian Materials Science,Qiqihar University ,Qiqihar in Heilongjiang 10221 Abstract: Based on the research progress of modification of graphene material at hom e and abroad, the methods of modification of graphene are introduced from the surfac e modification and the electronic properties modification, respectively. The methods o f surface modification contain the covalent functionalization and non-covalent functio nalization; the methods of electronic properties modification contain dopin g and ion b ombardment. Finally, the advantages and disadvantages of various modification met h ods are discussed, and the further development of modification of graphene is pointed out on the basis of original modification methods. Key words: graphene; modification; review; covalent functionalization; non-covalent functionalization; doping; ion bombardment

石墨烯在涂料领域中的应用

石墨烯在涂料领域中的应用(1) 1 概述 1.1 石墨烯定义石墨烯(Graphene)是一种由碳原子构成的新型单层片状结构的二维(2D)材料,是由碳原子以sp2杂化轨道组成的六角型呈蜂巢状晶格的平面薄膜。碳原子核外层电子排布为1s22s22p2,sp2杂化是由1个s轨道和2个p轨道杂化形成的杂化轨道。维(dimension,简写为D)表示长、宽、高、厚等尺寸。对纳米材料,0D表示纳米粒子;1D表示纳米线,如碳纳米管等;2D表示纳米尺寸的薄膜;3D是表示纳米复合材料。 1.2 石墨烯结构特性石墨烯晶体材料具有“至薄、至坚”、优良的热导体和电子迁移率等特性。 1.2.1 “至薄”晶体材料石墨烯是世界上迄今发现的“至薄”晶体材料,石墨烯薄膜只有1个碳原子厚度。10万层石墨烯叠加起来的厚度约为1根头发丝的直径;300万层石墨烯薄膜叠起来只有1 mm厚。 1.2.2 “至坚”晶体材料石墨烯是迄今发现的世界上力学性能最好的材料之一。表征石墨烯在外应力作用下抵抗变形能力大小的模量可达1 T(1012)Pa;反映石墨烯受力时抵抗破坏能力大小的强度约为130 G(109)Pa。 1.2.3 优良的热导体和电子迁移率石墨烯的热导率达5 000 W/(m ·K),是良好的导热体。石墨烯独特的载流子特性,使其电子迁移率达到2×105 cm2/(V·s),超过硅100倍,且几乎不随温度变化而变化。 1.3 应用前景独特的结构特点加上“极端突出”性能,使它的用途引起人们超高的期望:制造高效太阳能电池;超轻型航天航空飞行器材料;超坚韧的防弹衣;甚至有近乎科幻色彩的展望——可能制超长“太空电梯”缆线。预测石墨烯正在或将要给社会带来革命性巨变;对石墨烯用途,描绘了一幅幅商机无限的图画,在全球研究热度持续升温!对石墨烯在导电、防腐、阻燃、导热和高强度等功能涂料中的应用也勾画了多彩的前景。1.3.1 提高涂料防腐性石墨烯提高涂料防腐性:有物理防腐和电化学防腐多重作用。

【CN209887696U】一种便于裁剪的石墨烯改性塑料【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920514632.8 (22)申请日 2019.04.16 (73)专利权人 郑州康晓科技有限公司 地址 450003 河南省郑州市金水区政六街 27号优加创客中心607号 (72)发明人 唐国文  (51)Int.Cl. B26D 7/28(2006.01) B26D 7/01(2006.01) (54)实用新型名称一种便于裁剪的石墨烯改性塑料(57)摘要本实用新型公开了一种便于裁剪的石墨烯改性塑料,包括外壳、活动机构和裁剪机构,所述活动机构安置于外壳的内部,所述裁剪机构安置于外壳的顶部。本实用新型中,通过第一滑槽、第一滑块的作用,能够将框架滑至镂空状内壳的凹槽中,使得装置便于对石墨烯塑料进行测量裁剪操作,通过转轴的作用,能够对框架插入凹槽中时带动滚轮,便捷框架插进凹槽中不易出现卡顿现象,当需要调节裁剪长度操作时,可通过活动块的作用,能够带动活动板在框架内部进行左右方向滑动操作,便捷对石墨烯塑料板进行调节长度操作,通过测量线的作用,能够在活动板滑动时通过测量线进行调节需要的长度功能,使得石墨烯塑料准确的裁剪需要的长度,使得装置的功 能性增强。权利要求书1页 说明书3页 附图1页CN 209887696 U 2020.01.03 C N 209887696 U

权 利 要 求 书1/1页CN 209887696 U 1.一种便于裁剪的石墨烯改性塑料,包括外壳(1)、活动机构(2)和裁剪机构(3),其特征在于,所述活动机构(2)安置于外壳(1)的内部,所述裁剪机构(3)安置于外壳(1)的顶部。 2.根据权利要求1所述的一种便于裁剪的石墨烯改性塑料,其特征在于,所述活动机构(2)的内部包括有内壳(201),且内壳(201)的内壁设置有第一滑槽(202),所述内壳(201)的内部开设有凹槽(203),且凹槽(203)的内部安装有转轴(205),所述转轴(205)的外侧连接有滚轮(204)。 3.根据权利要求1求所述的一种便于裁剪的石墨烯改性塑料,其特征在于,所述裁剪机构(3)的内部包括有框架(301),且框架(301)的底部安装有第一滑块(302),所述框架(301)的内侧连接有活动块(303),且活动块(303)的外侧安装有活动板(306),所述活动板(306)的内侧开设有第二滑槽(307),且活动板(306)的外侧连接有松紧环(304),所述松紧环(304)的外侧连接有第二滑块(305)。 4.根据权利要求 2所述的一种便于裁剪的石墨烯改性塑料,其特征在于,所述滚轮(204)通过转轴(205)与凹槽(203)构成旋转结构,且凹槽(203)的截面面积小于内壳(201)的截面面积。 5.根据权利要求3所述的一种便于裁剪的石墨烯改性塑料,其特征在于,所述活动板(306)通过活动块(303)与框架(301)构成滑动结构,且活动板(306)的中轴线与框架(301)的中轴线相对应。 6.根据权利要求3所述的一种便于裁剪的石墨烯改性塑料,其特征在于,所述松紧环(304)通过第二滑块(305)、第二滑槽(307)与活动板(306)构成滑动结构,且第二滑槽(307)的中轴线与活动板(306)的中轴线相对应。 2

石墨烯材料的介绍

石墨烯(Graph ene)是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖。 石墨烯是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光";导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率*超过15000 cm2/V·s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω·cm,比铜或银更低,为世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯的命名来自英文的graphite(石墨) + -ene(烯类结尾)。石墨烯被认为是平面多环芳香烃原子晶体。 石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42?。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。 石墨烯是构成下列碳同素异形体的基本单元:石墨,木炭,碳纳米管和富勒烯。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。 石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣。在2006年3月,佐治亚理工学院研究员宣布, 他们成功地制造了石墨烯平面场效应晶体管,并观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路.

鞣酸改性石墨烯

通过鞣酸改性石墨烯吸附和去除溶液中的罗丹明B 刘坤平、李慧敏、王一鸣、苟小军、段一祥四川大学以及一系列的赘述 关键字:石墨烯、鞣酸、罗丹明B、吸收动力学 摘要:一种用于纳米合成鞣酸改性石墨烯简便且绿色的方法会减少鞣酸的用量,也会减少哪些改变石墨烯表面物化性质以提高吸收效率的反应试剂。随后,那些制备好的TA-G将会用于研究罗丹明B的吸收行为。由于强烈的相互作用和静电吸引,TA-G在RB的吸收行为中有很好的表现,吸收等温线符合LANGMUIR模型,实验数据也大概符合LANGMUIR模型计算的最大理论溶解度201mg/g。溶解动力学与pseudo-second-order模型相一致并且化学吸附溶解的速率控制步骤。因而,纳米合成的TA-G将会是去除溶液中罗丹明B理想的吸附剂,也会打开石墨烯在环境应用的潜力之门。 1、简介 被用于各行各业,比如纺织、涂料、食物、橡胶、药用、化妆行业的着色。它在水中释放的有害物质会污染环境,有些物质甚至会致癌严重危害健康。RB是一种重要的水溶性有机染料,广泛用于纺织物、食物、和生物工程的着色剂。因其怀疑有致癌性质,因而被禁用多年。但是随着工业的发展和不合法产业的出现,RB仍有机会进入食物链中危害人类健康。由于环境影响,去除染料溶液中有害物质尤为重要。如今,物理和化学方法都被用于处理颜料污染问题,如吸附、氧化、电化学氧化以及光催化氧化。其中,吸附是成本最低、效率最高的方法。很多的吸附剂如活性炭,自然物质,生物吸附剂都被用于吸收过程。最近,由于纳米科技和纳米材料的发展,为了提高效率,纳米材料以其优越的比表面积会吸附大量颜料而被广泛应用,并且取得了良好的效果,然而由于大量的染料和技术花费问题,也存在着很大的难关。 石墨烯,一种拥挤的蜂窝状的单层二维碳源子结构,引起了人们的广泛兴趣。这是由于他有大量的自然优越性能;大量的特殊比表面积、优越的电导性能、电子移动性能而被用于纳米电子设备、传感器和纳米合成材料。由于大型的电子移位体系,石墨烯会与苯环化合物建立强烈的反应,也是本化合物一种很好的候选吸附试剂。但是石墨烯在水中更倾向于聚结成块,这是由于存在范德华力,限制了很多的优越性能,他的优越性能会在更少的层或单层结构展现。因而,经常用共价究石墨烯。鞣酸是一种高分子量聚酚化合物,它含有大量笨磷二酚和焦培酸,独特的减少EGO的能力。并且由于TA结构中有大量的苯环结构他还可以通过作为改良物质吸收单个石墨烯通过反应来获得纳米合成鞣酸石墨烯。石墨烯TA-G,会提高他们的物化性质来提高在水中稳定性。然而,在我们的知识层面内,还没有,报道过用TA-G来去除有机染料污染物。 在这项工作一种用于纳米合成鞣酸改性石墨烯简便且绿色的方法会减少鞣酸的 用量,也会减少哪些改变石墨烯表面物化性质以提高吸收效率的反应试剂。随后,那些制备好的TA-G将会用于研究罗丹明B的吸收行为。由于强烈的相互作用和静电吸

高分子石墨烯纳米复合材料的前沿与趋势

石墨烯聚合物纳米复合材料的前沿与趋势 聚合物与其他塑料结合形成混纺纤维,与滑石粉及云母混合形成填充系统,和与其他非均质加固物进行模型挤压生产复合材料和杂化材料。这种简单的“混合搭配”方法使得塑料工程师们能够利用聚合物团生产一系列能够控制极端条件的有用的材料。在这种方法中最后加入的事石墨烯------人们早就了解到它的存在但是知道2004年才被制备与鉴定出的碳单原子层。英国曼彻斯特大学的Andre K.Geim和Konstantin S.Novoselov因为分离出碳单原子层而被授予诺贝尔物理学奖。他们的成就导致了聚合物纳米材料的蓝图发生了变化。人们已经长期熟知碳基材料,像金刚石,六方碳和石墨烯。但是聚合物纳米材料研究团体重新燃起的热情主要由于石墨烯可与塑料结合的特性以及它来自于廉价的先驱体。石墨烯的性价比优势在纳米复合材料、镀膜加工、传感器和存储装置的应用上正挑战着碳纳米管。接着,这些只能被想象出来的应用将会出现。事实上,Andre Geim说过“石墨烯对于它的名字来说就是一种拥有最佳性能的非凡的物质。”这能够在目前大量发表的文献中可以看出。石墨烯为什么能够这样引起人们的兴趣呢?本篇综述尝试去处理在石墨烯纳米复合材料新兴潮流中所产生的这类问题。这个工作的范围被石墨烯聚合物纳米复合材料(GPNC)研究员提出期望的发展潜力进行了拓展。 神奇的石墨烯 石墨烯被频繁引用的性能是它的电子传输能力。这意味着一个电子可以在其中不被散射或无障碍地通行。石墨烯的电子迁移率可达到20000cm2/Vs,比硅晶体管高一个数量级。一片最近的综述表明,以改良样品制备的石墨烯,电子迁移率甚至可以超过25000cm2/Vs。石墨烯是否缺少禁带以及大量合成纯石墨烯是否可行只有将来的研究可以解释。目前,非凡的电子传导性能使得石墨烯居于各类物质之首。所以,利用石墨烯代替硅作为基质的可能性将指日可待。虽然石墨烯的电子传导能力要比铜高得多,但是其密度只有铜的1/5。文献中大量记载了石墨烯的电子传导性能极其影响方面的细节。 由于它固有的特性人们开始对它在纳米复合材料的应用产生了兴趣。据预测,一个单层无缺陷的石墨烯薄膜的抗拉强度要比其他任何物质都要大。事实上,James Hone’s小组已经用原子力显微镜研究了独立的单层石墨烯薄膜的断裂强度。他们测得的平均断裂力为1700nN。他们还发现石墨烯这种物质可以抵挡超高的应力(约25%)。这些测量值使得这个团队计算出无缺陷石墨烯薄片的内在强度为45Nm-1。这儿的内在强度被规定为无缺陷的纯物质在断裂之前所能承受的最大应力。石墨烯如此卓越的是由于它相当于1.0Tpa的杨氏模量。在其他的特性中Paul McEuen和同事们只有一个原子厚度的石墨烯薄膜即可隔绝气体,包括氦气。即石墨烯在实际应用中可作为密闭的微室。石墨烯所表现出的热传导性能要比铜高出很多倍。这就意味着石墨烯能够很容易地进行散热。最近对大块石墨烯薄膜的研究表明其热传导系数是600W/(m.K)。石墨烯另外的一个特性是其具有高的比表面积,计算值为2630m2g-1,而碳纳米管仅为1315m2g-1,这使得石墨烯在储能装置应用上成为一个候选材料。Rod Ruoff’s小组通过改性的石墨烯演示了其具有的超高电容性能。对石墨烯的新奇属性的详细描述随处可见石墨烯与碳纳米管相比有一个截然相反的属性是其不含杂质(不含金属),这对构建可靠的传感器和储能装置来说是一个重要的优势。,更进一步,由于它形状与结构,石墨烯或许有更低的毒性,这也成为目前研究的主题。 独立的纳米材料的这些性质使得物理学家,化学家,和材料学家,不论作为理论学家还是实验学家,都为石墨烯的潜力而感到振奋。然而,最重要的问题是去区分炒作还是现实。

石墨烯科普知识

石墨烯科普问答 一、概念、制备与结构篇 1、什么是石墨烯? 答:将石墨的层状结构无限剥离,直到原子级厚度,该薄层碳材料的性质与原来的石墨有极大的不同(电子运动性质发生重大变化),该薄层碳材料取名石墨烯。2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地从石墨中剥离出石墨烯,并表征了它的性质,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖。 2、石墨烯和石墨在结构上有什么区别? 答:石墨是由一层层蜂窝状有序排列的平面碳原子构成的。当把石墨片层剥成单层之后,这种只有一个单原子层的石墨薄片称为单碳层石墨烯。 3、石墨烯可以分为哪几类?(提示:以层数来划分) 答:单碳层石墨烯、双碳层石墨烯、多碳层石墨烯(3-10层)。 4、单层石墨烯的厚度是多少? 答:0.335 nm,大约是头发丝的二十万分之一。 5、石墨烯主要是由什么元素组成的? 答:碳元素。 6、石墨烯和石墨最本质的区别在哪里? 答:电子性质发生了改变,因此其许多性质都不同。 7、石墨烯、碳纳米管、炭黑在结构上有什么区别?

答:微观上石墨烯为二维薄片状,碳纳米管为一维线状,炭黑为零维粒子状。 8、石墨烯与石墨的关系是什么? 答:石墨由很多层石墨烯构成;石墨一层一层剥离就变成石墨烯。 9、石墨烯最早是如何被制备、发现的? 答:利用胶带剥离法从高定向裂解石墨块中剥离得到的。 10、铅笔在纸上轻轻划过留下痕迹是否有可能含有单原子层石墨烯? 答:可能。铅笔芯材料为石墨材料,在纸上划过,将发生碳层的剥离。 11、石墨烯制备方法目前主要有哪些? 答:机械剥离法、CVD法、化学氧化还原法、插层剥离法等。 12、氧化石墨烯用Hummer法制备需要哪些化学物质? 答:浓硫酸、高锰酸钾、蒸馏水、双氧水等。 13、石墨烯利用化学氧化还原法制备有哪些优缺点? 答:优点:可以大规模制备氧化石墨烯、还原氧化石墨烯、其中氧化石墨烯水溶性好、利用其可进行化学接枝改性;缺点:制备得到石墨烯缺陷大、破坏了石墨烯原有的结构、大量使用强酸和强氧化剂,易造成环境污染。 14、机械剥离法制备石墨烯有哪些优缺点? 答:优点: 易于量产、操作简单;缺点:一些参数尚不易控制。 15、CVD法制备石墨烯有哪些优缺点? 答:优点:可以制备高质量的石墨烯薄膜;缺点:量产转移等成本较高,工艺条件还需进一步完善。 16、石墨烯的表征方法目前主要有哪些?

石墨烯

2019 年春季学期研究生课程考核 (读书报告、研究报告) 考核科目:先进功能材料研究进展学生所在院(系):材料科学与工程学院 学生所在学科:材料物理与化学 学生姓名: 学号: 学生类别:工程硕士 考核结果阅卷人

石墨烯在锂离子电池材料中的应用研究 摘要:石墨烯是单原子层紧密堆积的一种特殊石墨材料,在电学、热学、力学等方面具有独特的构造和优良的功能,可以发挥其重要的作用。因为石墨烯具有较高的电导率、超大的比表面积、高的化学稳定性等优良的化学和物理特性,所以它在锂离子电池材料中的研究引起了人们的广泛关注。本文不仅综述了石墨烯的结构和制备工艺以及改性方法,而且介绍了石墨烯作为锂离子电池材料的最新研究进展,还分析了石墨烯各制备和改性方法对锂离子电池材料的影响,并对石墨烯在锂离子电池材料中应用的发展趋势进行了展望。 关键词:石墨烯;锂离子电池材料;电化学 1.引言 石墨烯因其独特的电学性能、力学性能、热性能、光学性能和高比表面积,近年来受到化学、物理、材料、能源、环境等领域的极大重视,应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。具体在五个应用领域:一是储能领域。石墨烯可用于制造超级电容器、超级锂电池等。二是光电器件领域。石墨烯可用于制造太阳能电池、晶体管、电脑芯片、触摸屏、电子纸等。三是材料领域。石墨烯可作为新的添加剂,用于制造新型涂料以及制作防静电材料。四是生物医药领域。石墨烯良好的阻隔性能和生物相容性,可用于药物载体、生物诊断、荧光成像、生物监测等。五是散热领域。石墨烯散热薄膜可广泛应用于超薄大功耗电子产品,比如当前全球热销的智能手机、IPAD 电脑、半导体照明和液晶电视等。 近几年来,为了进一步实现可持续发展,锂离子电池受到人们的普遍关注,世界各国开始对环保的可再生新能源的运用和开发投入了非常大的科技技术和资金,而新能源材料的开发一直是能源研究领域的热点。近几年来,电子产业的发展非常迅速,电子产品的功能越来越多,手机、电脑等对电池的电化学性能的要求越来越高。然则仅随着电动车、汽车等新能源产业的迅速发展,二次电池的开发迫在眉睫。未来锂离子电池也可能作为电动汽车的动力电源系统之一。因而,

史上最全石墨烯优势企业名录

史上最全石墨烯优势企业名录(国内篇) ?注:排名不分先后,只是序号。史上最牛石墨烯行业人物(国外篇)、史上最牛石墨烯行业人物(国内篇)后续将陆续在本平台推出,请持续关注。1、北京生美鸿业科技有限公司简介:北京生美鸿业科技有限公司是专业从事石墨烯制备技术研究与石墨烯研究成果产业化应用技术开发的高 科技民营企业。公司与国家纳米科学中心建立了长期战略合作关系,拥有一支年富力强、结构合理的研发队伍;与中科院“百人计划”入选者智林杰研究员领导的技术团队结成紧密型合作伙伴;应用已开发的石墨烯透明导电薄膜技术研制新一代智能调光膜已取得突破性进展。2、北京碳世纪科技简介:北京碳世纪科技有限公司是入驻北京雁栖经济开发区的高新技术企业,是专业从事石墨烯及其他新型材料的集研究、开发、生产、经营为一体的高科技企业,具备生产单层石墨烯的工业化方法,且在石墨烯改性活性炭、塑料、橡胶,催化剂载体等领域取得实质性进展,拥有着深厚的技术实力。3、长沙罗斯科技有限公司简介:长沙罗斯科技有限公司创立于2005年9月,主要从事石墨烯及其新型材料的研发,生产和经营的高科技企业,公司全力打造具有自主知识产权的石墨烯、有机钛、有机锡及有机硅系列产品的生产和应用的综合型企业。公司自主设计的石墨烯中试生产线,已

成功规模化生产出低成本石墨烯,在生产技术、工艺、设备等方面获得多项突破,可为下游企业及科研院所无偿提供高质量的石墨烯样品试用,可大量提供价美物廉的石墨石产品供下游企业规模化生产应用。4、重庆墨希科技有限公司简介:重庆墨希科技有限公司成立于2013年3月20日,是由重庆南江投资有限公司与中科院重庆绿色智能技术研究院共同投资成立的高科技企业,主要研发、生产和销售石墨烯薄膜及相关产品。目前研发团队已经成功研制出国内首片15英寸的单层石墨烯导电屏幕,将首先被应用在触摸屏上,采用石墨烯材料后手机和笔记本电脑的屏幕可以弯曲折叠。公司将以中科院重庆绿色智能技术研究院作为技术依托,以重庆墨希科技有限公司作为平台,推进大面积单层石墨烯的产业化应用和开发。随后将进一步在OLED、太阳能电池、超级电容等领用进行试用和推广,在军事方面也将得到广泛的应用。5、常州第六元素材料科技股份有限公司简介:常州第六元素材料科技股份有限公司是入驻省级科技孵化器——江苏武进西太湖国际智慧园的高新技术企业。公司成立于2011年11月,是专业从事石墨烯及其他新型碳材料的研究、开发、生产、销售的高科技企业。2013年实现了国内首条大规模宏量制备、全自动控制的粉体石墨烯生产线,目前石墨烯粉体产能100吨/年。预计2016年可年产1000吨粉体石墨烯,销售收入超过6亿元。公司在导电涂料、防腐涂

相关文档