文档库 最新最全的文档下载
当前位置:文档库 › 电缆电压损失

电缆电压损失

电缆电压损失
电缆电压损失

660V铜芯铠装电缆每kW-kmd的电压损失

COSq

mm20.60 0.650.700.750.80 0.850.900.95 1.00 2.5 1.996 1.992 1.989 1.986 1.983 1.979 1.976 1.973 1.965 4 1.257 1.253 1.250 1.247 1.244 1.241 1.238 1.235 1.228 6 0.846 0.8430.8400.8370.8340.8310.9290.8260.819 10 0.513 0.5110.5080.5060.5040.5010.4990.4960.491 16 0.328 0.3250.3230.3210.3190.3170.3150.3120.307 25 0.217 0.2140.2120.2100.2080.2060.2040.2020.197 35 0.160 0.1570.1550.1530.1510.1490.1470.1450.140 50 0.117 0.1150.1130.1110.1090.1070.1050.1030.098 70 0.089 0.0860.0840.0820.0800.0790.0770.0740.070 95 0.070 0.0680.0660.0640.0620.0600.0580.0560.052 120 0.060 0.0580.0560.0540.0520.0500.0480.0460.042 150 0.052 0.0490.0470.0450.0440.0420.0400.0380.033 185 0.045 0.0430.0410.0390.0370.0350.0340.0310.027 240 0.039 0.0370.0350.0330.0310.0290.0270.0250.021 注:电压损失(u%)根据电缆芯线允许温度65o C计算。

1140V铜芯铠装电缆每kW-kmd的电压损失

COSq

mm20.60 0.650.700.750.80 0.850.900.95 1.00 2.5 0.669 0.6680.6670.6660.6650.6630.6620.6610.659 4 0.421 0.4200.4190.4180.4170.4160.4150.4140.412 6 0.284 0.2820.2810.2800.2800.2790.2780.2770.274 10 0.172 0.1710.1700.1700.1690.1680.1670.1660.165 16 0.110 0.1090.1080.1070.1060.1050.1050.1050.103 25 0.073 0.0720.0710.0700.0700.0690.0680.0680.066 35 0.053 0.0530.0520.0510.0510.0500.0490.0490.047 50 0.038 0.0390.0380.0370.0370.0360.0350.0350.033 70 0.030 0.0290.0280.0280.0270.0260.0260.0250.023 95 0.023 0.0230.0220.0210.0210.0200.0200.0190.017 120 0.020 0.0190.0190.0180.0170.0170.0160.0150.014 150 0.017 0.0170.0160.0150.0150.0140.0130.0130.011 185 0.015 0.0140.0140.0130.0120.0120.0110.0110.009 240 0.013 0.0120.0120.0110.0100.0100.0090.0080.007 注:电压损失(u%)根据电缆芯线允许温度65o C计算。

660V U UP UPQ电缆每kW-kmd的电压损失

COSq

mm20.60 0.650.700.750.80 0.850.900.95 1.00 4 1.293 1.289 1.286 1.283 1.280 1.277 1.274 1.270 1.251 6 0.877 0.8730.8700.8670.8640.8610.8580.8550.848 10 0.524 0.5200.5170.5140.5110.5090.5060.5030.496 16 0.342 0.3880.3550.3320.3300.3270.3240.3210.314 25 0.225 0.2220.2190.2160.2130.2110.2080.2050.198 35 0.167 0.1640.1610.1580.1560.1530.1510.1480.141 50 0.128 0.1250.1220.1190.1170.1140.1120.1090.103 注:电压损失(u%)根据电缆芯线允许温度65o C计算。

1140V U UP UPQ电缆每kW-kmd的电压损失

COSq

mm20.60 0.650.700.750.80 0.850.900.95 1.00 4 0.434 0.4320.4310.4300.4290.4280.4270.4260.419 6 0.294 0.2930.2920.2910.2900.2890.2880.2870.284 10 0.176 0.1740.1730.1720.1710.1710.1700.1680.166 16 0.115 0.1130.1120.1110.1110.1100.1090.1080.105 25 0.075 0.0740.0730.0720.0720.0710.0700.0690.066 35 0.056 0.0550.0540.0530.0520.0510.0510.0500.047 50 0.043 0.0420.0410.0400.0390.0380.0370.0350.034 注:电压损失(u%)根据电缆芯线允许温度65o C计算。

660V UC UCP UCPQ UCPJQ电缆

每kW-kmd的电压损失

COSq

mm20.60 0.650.700.750.80 0.850.900.95 1.00 10 0.529 0.5260.5230.5200.5170.5140.5110.5080.501 16 0.366 0.3630.3600.3570.3540.3520.3490.3460.339 25 0.242 0.2390.2360.2330.2300.2280.2250.2220.215 35 0.183 0.1790.1770.1740.1710.1690.1660.1630.157 50 0.138 0.1350.1320.1290.1270.1240.1220.1190.113 注:电压损失(u%)根据电缆芯线允许温度65o C计算。

1140V UC UCP UCPQ UCPJQ电缆

每kW-kmd的电压损失

COSq

mm20.60 0.650.700.750.80 0.850.900.95 1.00 10 0.177 0.1760.1750.1740.1730.1720.1710.1700.168 16 0.123 0.1220.1210.1200.1190.1180.1170.1160.113 25 0.081 0.0800.0790.0780.0770.0760.0750.0740.072 35 0.061 0.0600.0590.0580.0570.0570.0560.0550.053 50 0.046 0.0450.0440.0430.0420.0420.0410.0400.038

电压降计算方法80181

电缆电压降 对于动力装置,例如发电机、变压器等配置的电力电缆,当传输距离较远时,例如900m,就应考虑电缆电压的“压降”问题,否则电缆采购、安装以后,方才发觉因未考虑压降,导致设备无法正常启动,而因此造成工程损失。 一.电力线路为何会产生“电压降”? 电力线路的电压降是因为导体存在电阻。正因为此,所以不管导体采用哪种材料(铜,铝)都会造成线路一定的电压损耗,而这种损耗(压降)不大于本身电压的10%时一般是不会对线路的电力驱动产生后果的。 二.在哪些场合需要考虑电压降? 一般来说,线路长度不很长的场合,由于电压降非常有限,往往可以忽略“压降”的问题,例如线路只有几十米。但是,在一些较长的电力线路上如果忽略了电缆压降,电缆敷设后在启动设备可能会因电压太低,根本启动不了设备;或设备虽能启动,但处于低电压运行状态,时间长了损坏设备。 较长电力线路需要考虑压降的问题。所谓“长线路”一般是指电缆线路大于500米。 对电压精度要求较高的场合也要考虑压降。 三.如何计算电力线路的压降? 一般来说,计算线路的压降并不复杂,可按以下步骤: 1.计算线路电流I 公式:I= P/1.732×U×cosθ 其中: P—功率,用“千瓦”U—电压,单位kV cosθ—功率因素,用0.8~0.85 2 .计算线路电阻R 公式:R=ρ×L/S 其中:ρ—导体电阻率,铜芯电缆用0.01740代入,铝导体用0.0283代入

L—线路长度,用“米”代入 S—电缆的标称截面 3.计算线路压降 公式:ΔU=I×R 举例说明: 某电力线路长度为600m,电机功率90kW,工作电压380v,电缆是70mm2铜芯电缆,试求电压降。 解:先求线路电流I I=P/1.732×U×cosθ=90÷(1.732×0.380×0.85)=161(A) 再求线路电阻R R=ρ×L/S=0.01740×600÷70=0.149(Ω) 现在可以求线路压降了: ΔU=I×R =161×0.149=23.99(V) 由于ΔU=23.99V,已经超出电压380V的5%(23.99÷380=6.3%),因此无法满足电压的要求。 解决方案:增大电缆截面或缩短线路长度。读者可以自行计算验正。 例:在800米外有30KW负荷,用70㎜2电缆看是否符合要求? I=P/1.732*U*COS?=30/1.732*0.38*0.8=56.98A R=ρL/S=0.018*800/70=0.206欧 △U=IR=56.98*0.206=11.72<19V (5%U=0.05*380=19) 符合要求。 电压降的估算 1.用途

电缆电压降的计算

电流通过导体(或用电器)的时候,会受到一定的阻力, 但在电压的作用下,电流能够克服这种阻力顺利通过导体(或用电器), 但遗憾的是,流过导体(或用电器)后,电压再也没有以前那么高了,它下降了。而且电阻越大,电压下降的程度越大。 所以这种流过导体(或用电器)上(或两端)产生的电压大小的差别,就叫“电压降。 解决电压降的方法:增大导体的截面积。 如何计算电缆压降 问题1:电缆降压怎么算50kw300米采用vv电缆??? 25铜芯去线阻为R=0.0172(300/25)=0.2、其压降为U=0.2*100=20 也就是说单线压降为20V,2相为40V。 变压器低压端电压为400V400-40=360V,铝线R=0.0283(300/35)=0.25 其压降为U=0.25*100=25,末端为350V ,长时间运行对电机有影响 建议使用35铜芯或者50铝线25铜芯其压降为U=0.0172(300/35)=0.147(≈15V)15*2=30末端为370V 铝线U=0.0283(300/50)=0.1717*2=34末端为366V 可以正常使用(变压器电压段电压为400V) 50KW负荷额定电流I=P/1.732UcosΦ=50/1.732/0.38/0.8=50/0.53=94A 按安全载流量可以采用25平方毫米的铜电缆,算电压损失: R=ρ(L/S)=0.017X300/25=0.2欧、电压损失U=IR=94X0.2=18V 如果用35平方毫米的铜电缆,算电压损失: R=ρ(L/S)=0.017X300/35=0.15欧 电压损失U=IR=94X1.15=14V 选择导线的原则: 1)近距离按发热条件限制导线截面(安全载流量); 2)远距离在安全载流量的基础上,按电压损失条件选择导线截面,要保证 负荷点的工作电压在合格范围; 3)大负荷按经济电流密度选择。 为了保证导线长时间连续运行所允许的电流密度称安全载流量。 一般规定是:铜线选5~8A/mm2;铝线选3~5A/mm2。 安全载流量还要根据导线的芯线使用环境的极限温度、冷却条件、敷设

10KV电缆的线路损耗及电阻计算公式

10KV电缆的线路损耗及电阻计算公式 线损理论计算是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=0.004。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑:1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB 配电变压器分为铁损(空载损耗)和铜损(负载损耗)两部分。铁损对某一型号变压器来说是固定的,与负载电流无关。铜损与变压器负载率的平方成正比。 配电网电能损失理论计算方法 配电网的电能损失,包括配电线路和配电变压器损失。由于配电网点多面广,结构复杂,客户用电性质不

电机功率算电缆的例子电压损失百分数计算公式

电机功率算电缆的例子电压损失百分数计算公式 185千瓦的电动机,距电源200米,请问需要多大的铜芯电缆?具体的公式计算?用什么样的启动方式为好? 1--------简化公式:每个kw两个电流 185*2大约等于370A的电流 2---------查电工手册中的电缆载流量表选择240平方毫米的铜芯电缆3---------也可用以下选线口诀选择电缆截面。 铝芯绝缘线载流量与截面的倍数关系 10下五100上二, 25、35,四、三界, 70、95,两倍半, 穿管、温度,八、九折。 裸线加一半, 铜线升级算。 4----------启动方式看要求定,要求高的话就采用变频启动,要求低的话可采用星三角启动。 5---------- 低压供电范围是400m以内,应该不用考虑压降问题,压降范围400v以下+5% ,-7%。 6-----------如果电压低可以考虑电压补偿

电压损失百分数计算公式 己知P=185KW L=200m △U=5 求S=? △U=PL/CS S=PL/C△U=185X200/77X5=37000/385=96.1mm2 分析,如果供应这台电动机的变压器容量足够大,800KVA及以上,高低压配电系统线路的质量好,任何时候电压都不低于额定电压,可以用95mm2铜芯电缆。 如果供应这台电动机的变压器容量不大,800KVA以下,高低压配电系统线路的质量不怎么好,电压有可能低于额定电压,应该选用120mm2铜芯电缆。 功率185kw的额定电流 I=P/1.732UcosΦ=185/1.732/0.38/0.8=185/0.53=350安 电压损失百分数△U=5 的意思,就是100V电压通过导线下降5V,380V电压通过导线下降19V. 国家标准规定:380V动力用户电压损失不能超过额定电压的±7%,考虑其它电压损失,电动机的电缆取△U=5 较为合适。 电压损失百分数计算公式 △U=PL/CS △U——电压损失百分数 P——输送的有功功率(Kw) L——输送的距离(m)

线路电压损失计算实例word精品

电压损失计算实例 例一、负荷为80KW大约离变压器距离为900米,我想用3X70+2X35 铜芯电缆是否可行?压降能否承受? 最佳答案 80负荷,电流约160A, 70平方铜电缆,载流量没问题 电压降的线损耗需要校核: 电压降=1.75/70*1.08*160*1.732*900/100 =67V 线损=1.75/70*1.08*160*160*3*900/100000=18.6KW 未端电压只有380-67 = 313V 线损率=18.6/80 = 24% 313V的电压根本不能用,24%勺损耗也实在是太高 假如将电缆加粗到3*240+120,未端电压360V,损耗5.4KW 勉强能用。但3*240+120的铜电缆,延伸900米,造价实在太高。5.4KW的损耗也不低,每天工作8小时,一年就得损耗你1.5万度电。不如另买个100KVA 变压器,要经济实惠的多 例二、电机功率45KW电压380V,距离1500米,应该选择多大线径的铝电缆。 最佳答案 电机功率45KV y查表,额定电流约85A,功率因数约0.88。其安公里 数为85X 1.5=127.5Akm

铝芯电缆,如果按允许的电压损失为7%则每安公里的电压损失为 7%/127.5Akm=0.055%/Akm查表,应选150mm^2勺电缆两条并列敷设(并联)。 由于传输的功率较大,距离又比较远,故需要很大截面的电缆。高压供电比较合适。 如果采用钢芯铝绞线,会需要更大的截面积,因为架空线路,导线之间的距离大,导线的感抗增大,使得线路的电压降增大。 试取LGJ-150,按公式△ U=\/3IL(RI ' cos ? +XI' sin ? )/Ue*100%="3X85X 1.5(0.21 x0.88+0.2 9X0.475)/380 x 100%=71.2/380X 100%=18.8% 上式中,Rl'为导线的电阻Q/km, Xl'为感抗Q/km。 如果选LGJ-185, Rl' =0.17 Q/km, Xl' =0.282 Q/km,得:△ U=62.6/380 x 100%=16.5% 显然,用两条LGJ-185并列,还难以满足电压损失V 7% 由于传输的功率大、距离远,如能采用高压供电会好。 其他回答共3条 1、1500米的距离,根本不能用380V低压供电。 如果一定要用,需250平方以上的铝电缆 核算一下电压降:2.9/250*1.08*15*90*1.732 = 30V 未端电压只有350V 线路损耗:2.9/250*1.08*15*90*90*3/1000 = 4.5KW 损耗率10%

住宅小区照明线路电压损失的计算

住宅小区照明线路电压损失的计算 电压损失是指线路始端电压与末端电压的代数差。它的大小,与线路导线截面、各负荷功率、配电线路等因素有关。为了使末端的灯具电压偏移符合要求,就要控制电压损失。但在住宅小区中,因为以往小区面积较小,供配电半径较小,仅是单一的道路照明,一般就不计算线路电压损失,而是根据经验保证线路电压的损失在合理范围内。然而这些年来随着住宅小区规模的逐步扩大以及人民生活水平的不断提高,除了要增加小区道路照明设施外,还要增加景观照明。面对这一新情况,计算小区照明线路电压损失非但重要,而且十分迫切。以下是本人结合实践,查阅了相关书籍资料所谈的个人体会。不当处请同行指正。 一、计算城市照明线路电压损失的基本公式 1、在380/200低压网络中,整条线路导线截面、材料相同(不计线路阻抗),且cosφ≈1时,电压损失按下式计算: △u%=R0ΣPL/10VL2=ΣM/CS (式-1) ΣM=ΣPL—总负荷矩; R0——三相线路单位长度的电阻(?km); VL——线路额定电压(kV); P——各负荷的有功功率(kw); L——各负荷到电源的线路长度(km); S——导线截面(mm2); C——线路系数,根据电压和导线材料定。在工具书中可查。一般,三相四线220/380时,铜导线工作温度50度时,C值为75;铜导线工作温度65度时,C值为71.10。

2、对于不对称线路,我们在三相四线制中,虽然设计中尽量做到各相负荷均匀分配,但实际运行时仍有一些差异。在导线截面、材料相同(不计线路阻抗),且cos俊?时,电压损失可以简化为相线上的电压损失和零线上的电压损失之和。公式如 △u%=Ma-0.5(Mb-Mc)/2CSo+Ma/2CSo (式-2) Ma——计算相a的负荷矩(kw.m); Mb、Mc——其他2相的负荷矩(kw.m); Sn——计算相导线截面(mm2); So——计算零线导线截面(mm2); C——线路系数 △u%——计算相的线路电压损失百分数。 3、由于大量气体放电灯的使用,实际照明负载cosφ≠1,照明网络每一段线路的全部电压损失可用下式计算: △uf%=△u%Rc (式-3) △u%——由有功负荷及电阻引起的电压损失按照式-1、式-2计算 Rc——计入“由无功负荷及电抗引起的电压损失”的修正系数。可在工具书中查。 4、对于均匀布灯的线路,SM的计算公式可转换为: ΣM均匀=lg×Le=nie×1/2×(1-1/n)L (式-4) ΣM均匀——均匀布灯线路的总负荷矩(kWm) lg——最大单相工作电流(A) Le——计算负荷矩时,始端到末端的有效距离(km)

如何计算电缆压降

如何计算电缆压降 问题1:电缆降压怎么算 50kw 300米采用vv电缆??? 25铜芯去线阻为 R=0.0172(300/25)=0.2 其压降为U=0.2*100=20 也就是说单线压降为20V 2相为40V 变压器低压端电压为400V 400-40=360V 铝线R=0.0283(300/35)=0.25 其压降为U=0.25*100=25 末端为350V 长时间运行对电机有影响建议使用 35铜芯或者50铝线 25铜芯其压降为 U=0.0172(300/35)=0.147(≈15V)15*2=30 末端为370V 铝线 U=0.0283(300/50)=0.17 17*2=34 末端为366V 可以正常使用(变压器电压段电压为400V) 50KW负荷额定电流I=P/1.732UcosΦ=50/1.732/0.38/0.8=50/0.53=94A 按安全载流量可以采用25平方毫米的铜电缆,算电压损失: R=ρ(L/S)=0.017X300/25=0.2欧 电压损失U=IR=94X0.2=18V 如果用35平方毫米的铜电缆,算电压损失: R=ρ(L/S)=0.017X300/35=0.15欧 电压损失U=IR=94X1.15=14V 选择导线的原则: 1)近距离按发热条件限制导线截面(安全载流量); 2)远距离在安全载流量的基础上,按电压损失条件选择导线截面,要保证 负荷点的工作电压在合格范围; 3)大负荷按经济电流密度选择。 为了保证导线长时间连续运行所允许的电流密度称安全载流量。 一般规定是:铜线选5~8A/mm2;铝线选3~5A/mm2。 安全载流量还要根据导线的芯线使用环境的极限温度、冷却条件、敷设条件 等综合因素决定。 一般情况下,距离短、截面积小、散热好、气温低等,导线的导电能力强些, 安全载流选上限; 距离长、截面积大、散热不好、气温高、自然环境差等,导线的导电能力弱 些,安全载流选下限; 如导电能力,裸导线强于绝缘线,架空线强于电缆,埋于地下的电缆强于敷 设在地面的电缆等等。 问题2:55变压器,低压柜在距离变压器230米处。问变压器到低压柜需多粗电 缆 55KVA变压器额定输出电流(端电压400V):I=P/1.732/U=55/1.732/0.4≈80(A) 距离:L=230米,230米处允许电压为380V时,线与线电压降为20V,单根导线电压降:U=10V,铜芯电线阻率:ρ=0.0172 求单根线阻:R=U/I=10/80=0.125(Ω) 求单根导线截面:S=ρ×L/R=0.0172×230/0.125≈32(平方) 取35 平方铜芯电线。 55KVA的变压器,最大工作电流约80A,输出电压400V。

电缆电压降计算方法

一、先估算负荷电流 1.用途 这是根据用电设备的功率(千瓦或千伏安)算出电流(安)的口诀。电流的大小直接与功率有关,也与电压、相别、力率(又称功率因数)等有关。一般有公式可供计算。由于工厂常用的都是380/220伏三相四线系统,因此,可以根据功率的大小直接算出电流。 2.口诀 低压380/220伏系统每千瓦的电流,安。 千瓦、电流,如何计算? 电力加倍,电热加半。① 单相千瓦,4.5安。② 单相380,电流两安半。③ 3.说明 口诀是以380/220伏三相四线系统中的三相设备为准,计算每千瓦的安数。对于某些单相或电压不同的单相设备,其每千瓦的安数,口诀另外作了说明。 ①这两句口诀中,电力专指电动机。在380伏三相时(力率0.8左右),电动机每千瓦的电流约为2安.即将”千瓦数加一倍”(乘2)就是电流,安。这电流也称电动机的额定电流。 【例1】 5.5千瓦电动机按“电力加倍”算得电流为11安。 【例2】 40千瓦水泵电动机按“电力加倍”算得电流为80安。 电热是指用电阻加热的电阻炉等。三相380伏的电热设备,每千瓦的电流为1.5安。即将“千瓦数加一半”(乘1.5)就是电流,安。 【例1】 3千瓦电加热器按“电热加半”算得电流为4.5安。 【例2】 15千瓦电阻炉按“电热加半”算得电流为23安。 这句口诀不专指电热,对于照明也适用。虽然照明的灯泡是单相而不是三相,但对照明供电的三相四线干线仍属三相。只要三相大体平衡也可这样计算。此外,以千伏安为单位的电器(如变压器或整流器)和以千乏为单位的移相电容器(提

高力率用)也都适用。即时说,这后半句虽然说的是电热,但包括所有以千伏安、千乏为单位的用电设备,以及以千瓦为单位的电热和照明设备。 【例1】 12千瓦的三相(平衡时)照明干线按“电热加半”算得电流为18安。【例2】 30千伏安的整流器按“电热加半”算得电流为45安(指380伏三相交流侧)。 【例3】 320千伏安的配电变压器按“电热加半”算得电流为480安(指380/220伏低压侧)。 【例4】 100千乏的移相电容器(380伏三相)按“电热加半”算得电流为150安。 ②在380/220伏三相四线系统中,单相设备的两条线,一条接相线而另一条接零线的(如照明设备)为单相220伏用电设备。这种设备的力率大多为1,因此,口诀便直接说明“单相(每)千瓦4.5安”。计算时,只要“将千瓦数乘4.5”就是电流,安。 同上面一样,它适用于所有以千伏安为单位的单相220伏用电设备,以及以千瓦为单位的电热及照明设备,而且也适用于220伏的直流。 【例1】 500伏安(0.5千伏安)的行灯变压器(220伏电源侧)按“单相千瓦、4.5 安”算得电流为2.3安。 【例2】 1000瓦投光灯按“单相千瓦、4.5安”算得电流为4.5安。 对于电压更低的单相,口诀中没有提到。可以取220伏为标准,看电压降低多少,电流就反过来增大多少。比如36伏电压,以220伏为标准来说,它降低到1/6,电流就应增大到6倍,即每千瓦的电流为6*4.5=27安。比如36伏、60瓦的行灯每只电流为0.06*27=1.6安,5只便共有8安。 ③在380/220伏三相四线系统中,单相设备的两条线都是接到相线上的,习惯上称为单相380伏用电设备(实际是接在两相上)。这种设备当以千瓦为单位时,力率大多为1,口诀也直接说明:“单相380,电流两安半”。它也包括以千伏安为单位的380伏单相设备。计算时,只要“将千瓦或千伏安数乘2.5”就是电流,安。

简单明了的告诉你—电缆线路的压降计算方法及案例

般来说,计算线路的压降并不复杂,可按以下步骤: 1.计算线路电流I 公式:1= P/ x UX cos 0 其中:P—功率,用“千瓦”U-电压,单位kV cos 0—功率因素,用?2?计算线路电阻R 公式:R=pX L/S 其中:p—导体电阻率,铜芯电缆用代入,铝导体用代入 L—线路长度,用“米”代入 S—电缆的标称截面 3.计算线路压降 公式:△ U=l X R 线路电压降最简单最实用计算方式线路压降计算公式:△ U=2*I*R I :线路电流L :线路长 度。 1、电阻率p 铜为欧*伽2/米 铝为欧*伽3/米 2、I=P/*U*COS? 3、电阻 R=p *l/s(电缆截面 mm2) 4、电压降△ U=IR v 5%U就达到要求了。 例:在800米外有30KW负荷,用70伽2电缆看是否符合要 求?I=P/*U*COS?=30/**=R=P 1/ 电缆截面=*800/70=欧 △ U=2*IR=2**=>19V (5%U=*380=19)不符合要求。 2、单相电源为零、火线(2根线)才能构成电压差,三相电源是以线电压为标的,所以也为 2 根线。电压降可以是单根电线导体的损耗,但以前端线电压380V(线与线电压为2根线)为例,末端的电压是以前端线与线电压减末端线与线(2根线)电压降,所以,不论单相或三相,电压降计算均为2根线的 就是欧姆定律:U= R*l 但必须要有负载电流数据、导线电阻值才能运算。铜线电阻率:p=,铝线电阻率:p = 例: 单相供电线路长度为 100米,采用铜芯10平方电线负载功率10KVy电流约46A,求末端电压降。求单根线阻: R=pX L/S = X 100/10 ?(Q)求单根线末端电压降:U = Rl = X 46~ (V)

线损的计算

线损的计算 根据公式R=(ρ*L)/S 其中R为导线电阻(单位?), ρ为电阻率(铜导线的电阻率为0.01851?·mm2/m), L为导线长度(单位m), S为导线截面积(单位mm2) 如何进行线损理论计算 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1) 单一线路 有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ù (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值随导线温度的变化而变化。 铜铝导线电阻温度系数为a=0.004。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑: 1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB 配电变压器分为铁损(空载损耗)和铜损(负载损耗)两部分。铁损对某一型号变压器来说是固定的,与负载电流无关。铜损与变压器负载率的平方成正比。

电缆线路电压损失的简便计算

第十三讲 电缆导线截面的计算(第七章 第四节) 电缆导线截面的选择是井下供电设计计算的关键内容。选择合适的电缆导线截面,可以使设备电压正常、高效运行,过流保护动作灵敏度校验容易满足要求。通常井下电缆线路的截面计算的步骤如下: (1)按长时允许电流初选导线截面; (2)给生产机械供电的支线电缆要校验机械强度允许最小截面;长电缆要校验允许电压损失。 1.按长时允许电流选择导线截面 为了使导线在正常运行时不超过其长时允许温度,导线的长时允许电流应不小于流过导线的最大长时工作电流。即 ca p I I (7-1) 式中 p I ——标准环境温度(一般为25℃)时,导线的长时允许电流(见表7-12); ca I ——导线的最大长时工作电流; 表7-12电线及电缆在空气中敷设时的载流量 A 导线截面 mm 2 聚氯乙烯绝缘铠装电缆 交联聚乙烯绝缘细钢丝铠装电缆 矿用橡套电 缆 1kV 四芯 6kV 三芯 6kV 10kV 1kV 6kV 铜芯 铝芯 铜芯 铝芯铜芯铝芯铜芯铝芯 铜芯 铜芯4 6 10 16 25 35 50 70 95 120 30 39 52 70 94 119 149 184 226 260 23 30 40 54 73 92 115 141 174 201 56 73 95 118 148 181 218 251 43 56 73 90 114 143 168 194 211 260 318 367 163 203 246 285 148 180 214 267 324 372 115 140 166 207 251 288 36 46 64 85 113 138 173 215 260 320 53 72 94 121 148 170 205 250 例7-1试为例2-2的采煤工作面选择电缆线路截面。 解:在例2-2中,计算出工作面负荷的长时最大电流Ica 为205A,查表7-12,选取70mm2矿用橡套电缆,其长时允许电流Ip 为215A。Ip >Ica 满足要求,初选合格。 2.按机械强度校验导线截面

电缆电压压降

电缆电压压降降计算公式为△U=(P*L)/(A*S) 其中:P为线路负荷;L为线路长度 A为导体材质系数(铜大概为77,铝大概为46) S为电缆截面 (一)电缆长度计算 电缆长度计算公式:L=(l+5.5G+a)×1.02 上式中, L-电缆计算长度(米);l-按直线距离统计的长度(横纵坐标的代数和); 5.5-穿越一个股道按5.5米长度计算,(当大于5.5米时,按实际距离计算); G-穿越股道的股道数;a-其它附加长度,具体规定如下: 1、信号楼内的电缆储备量按5米计算,楼内走行和电缆封头的长度,一般定为20米; 2、设备每端出、入土及做头为2米; 3、室外每端环状储备量为2米(20米以下为电缆为1米); 4、引向高出地面较大距离的设备,按实际长度计算。 1.02-电缆敷设时的自然弯曲度,以2%计算。 (二)电缆芯线分配原则 电缆芯线分配,采用双线直流回路,即一条去线ZQ,一条回线ZH。双线式回路最经济的分配比利为去线与回线等量,且均为总芯数的一半,即:ZQ=ZH=Z/2。如果电缆总芯数为奇数时,去线和回线芯数相差为一芯,这样可以使电路中芯线电阻最小。 (三)计算电缆最大控制长度 电缆最大控制长度计算公式:Lmax=△U/Ir×ZQZH/(nZQ+ZH) 式中:n-回线与去线内电流的倍数;△U-线路允许压降; I-回路中工作电流;r-每米芯线电阻。 上式表明,电缆芯线数可以通过电缆最大控制长度的计算来决定,其方法是根据线路允许压降、回路中工作电流,以及假定选用的回线和去线的电缆芯数,计算出Lmax. (四)电缆芯数计算公式 设电缆总芯数为Z=ZQ+ZH,由电缆分配原则可知ZQ+ZH,能使芯线电阻最小。所以电缆总芯线数的计算为:Z=4rL/R=4rLI/△U 上式表明:当线路允许压降△U,回路工作电流I及电缆计算长度确定之后,可以计算电缆总芯数。线路电压降计算公式为△U=(P*L)/(A*S) 其中:P为线路负荷;L为线路长度 A为导体材质系数(铜大概为77,铝大概为46);S为电缆截面 (五)电缆线路压降计算公式 计算公式为:△U=rLI×(ZQ+ZH)/(ZQ×ZH)

线路电压损失计算实例

线路电压损失计算实例 电压损失计算实例 例一、负荷为80KW大约离变压器距离为900米,我想用3X 70+2X 35 铜芯电缆就是否可行?压降能否承受? 最佳答案 80负荷,电流约160A,70平方铜电缆,载流量没问题电压降的线损耗需要校核:电压降=1、75/70*1、08*160*1、732*900/100 = 67V 线损=1、75/70*1、08*160*160*3*900/100000=18、6KW 未端电压只有 380-67 = 313V 线损率=18、6/80 = 24% 313V的电压根本不能用,24%的损耗也实在就是太高假如将电缆加粗到3*240+120,未端电压360V,损耗 5、4KW勉强能用。 但3*240+120的铜电缆,延伸900米造价实在太高。5、4KW的损耗也不低,每天工作8小时,一年就得损耗您1、5万度电。不如另买个100KVA变压器, 要经济实惠的多 例二、电机功率45KW电压380V,距离1500米,应该选择多大线径的铝 电缆。 最佳答案电机功率45KW查表,额定电流约85A,功率因数约0、88。其安公里数 为 85X 1、5=127、5Akm 铝芯电缆,如果按允许的电压损失为7%则每安公里的电压损失为 7%/127、5Akm=0055%/Akm查表,应选150mm八2的电缆两条并列敷设(并联)。 线路电压损失计算实例 由于传输的功率较大,距离又比较远,故需要很大截面的电缆。高压供 电比较合适。 如果采用钢芯铝绞线,会需要更大的截面积,因为架空线路,导线之间 的距离大,导线的感抗增大,使得线路的电压降增大。 试取LGJ-150,按公式△

电缆压降计算公式

电缆压降计算公式 线路电压降计算公式为△U=(P*L)/(A*S) 其中:P为线路负荷;L为线路长度 A为导体材质系数(铜大概为77,铝大概为46) S为电缆截面 (一)电缆长度计算 电缆长度计算公式:L=(l+5.5G+a)×1.02 上式中, L-电缆计算长度(米);l-按直线距离统计的长度(横纵坐标的代数和); 5.5-穿越一个股道按5.5米长度计算,(当大于5.5米时,按实际距离计算); G-穿越股道的股道数;a-其它附加长度,具体规定如下: 1、信号楼内的电缆储备量按5米计算,楼内走行和电缆封头的长度,一般定为20米; 2、设备每端出、入土及做头为2米; 3、室外每端环状储备量为2米(20米以下为电缆为1米); 4、引向高出地面较大距离的设备,按实际长度计算。 1.02-电缆敷设时的自然弯曲度,以2%计算。 (二)电缆芯线分配原则 电缆芯线分配,采用双线直流回路,即一条去线ZQ,一条回线ZH。双线式回路最经济的分配比利为去线与回线等量,且均为总芯数的一半,即:ZQ=ZH=Z/2。如果电缆总芯数为奇数时,去线和回线芯数相差为一芯,这样可以使电路中芯线电阻最小。 (三)计算电缆最大控制长度 电缆最大控制长度计算公式:Lmax=△U/Ir×ZQZH/(nZQ+ZH) 式中:n-回线与去线内电流的倍数;△U-线路允许压降; I-回路中工作电流;r-每米芯线电阻。 上式表明,电缆芯线数可以通过电缆最大控制长度的计算来决定,其方法是根据线路允许压降、回路中工作电流,以及假定选用的回线和去线的电缆芯数,计算出Lmax. (四)电缆芯数计算公式 设电缆总芯数为Z=ZQ+ZH,由电缆分配原则可知ZQ+ZH,能使芯线电阻最小。所以电缆总芯线数的计算为:Z=4rL/R=4rLI/△U 上式表明:当线路允许压降△U,回路工作电流I及电缆计算长度确定之后,可以计算电缆总芯数。线路电压降计算公式为△U=(P*L)/(A*S) 其中:P为线路负荷;L为线路长度 A为导体材质系数(铜大概为77,铝大概为46);S为电缆截面 (五)电缆线路压降计算公式 计算公式为:△U=rLI×(ZQ+ZH)/(ZQ×ZH)

电压损失计算

压损失是指线路始端电压与末端电压的代数差。它的大小,与线路导线截面、各负荷功率、配电线路等因素有关。为了使末端的灯具电压偏移符合要求,就要控制电压损失。但在住宅小区中,因为以往小区面积较小,供配电半径较小,仅是单一的道路照明,一般就不计算线路电压损失,而是根据经验保证线路电压的损失在合理范围内。然而这些年来随着住宅小区规模的逐步扩大以及人民生活水平的不断提高,除了要增加小区道路照明设施外,还要增加景观照明。面对这一新情况,计算小区照明线路电压损失非但重要,而且十分迫切。以下是本人结合实践,查阅了相关书籍资料所谈的个人体会。不当处请同行指正。 一、计算城市照明线路电压损失的基本公式 1、在380/200低压网络中,整条线路导线截面、材料相同(不计线路阻抗),且cosφ≈1时,电压损失按下式计算: △u%=R0ΣPL/10VL2=ΣM/CS (式-1) ΣM=ΣPL—总负荷矩; R0——三相线路单位长度的电阻(?km); VL——线路额定电压(kV); P——各负荷的有功功率(kw); L——各负荷到电源的线路长度(km); S——导线截面(mm2); C——线路系数,根据电压和导线材料定。在工具书中可查。一般,三相四线220/380时,铜导线工作温度50度时,C值为75;铜导线工作温度65度时,C值为71.10。 2、对于不对称线路,我们在三相四线制中,虽然设计中尽量做到各相负荷均匀分配,但实际运行时仍有一些差异。在导线截面、材料相同(不计线路阻抗),且cos俊?时,电压损失可以简化为相线上的电压损失和零线上的电压损失之和。公式如△u%=Ma-0.5(Mb-Mc)/2CSo+Ma/2CSo (式-2)

如何快速计算电缆压降

如何快速计算电缆压降 题1:电缆降压怎么算 50kw 300米采用25MM2线是否可行? 答:先选取导线在计算压降,选择导线的原则: 1)近距离按发热条件限制导线截面(安全载流量); 2)远距离在安全载流量的基础上,按电压损失条件选择导线截面,要保证负荷点的工作电压在合格范围; 3)大负荷按经济电流密度选择。 为了保证导线长时间连续运行所允许的电流密度称安全载流量。 一般规定是:铜线选5~8A/mm2;铝线选3~5A/mm2。 安全载流量还要根据导线的芯线使用环境的极限温度、冷却条件、敷设条件等综合因素决定。 一般情况下,距离短、截面积小、散热好、气温低等,导线的导电能力强些,安全载流选上限; 距离长、截面积大、散热不好、气温高、自然环境差等,导线的导电能力弱些,安全载流选下限; 如导电能力,裸导线强于绝缘线,架空线强于电缆,埋于地下的电缆强于敷设在地面的电缆等等。 电压降根据下列条件计算: 1、导线温度70~90℃; 2、环境温度40℃; 3、电缆排列(单芯); S=2D

4、功率因数: cosθ=0.8; 5、末端允许降压降百分数≤5% 6、 Vd代表电压降: Vd=K x I x L x V0(v) I:工作电流或计算电流(A) L:线路长度(m) V0:表内电压(V/A.m) K:三相四线K=√3 单相 K=1 单相时允许电压降:Vd=220V x 5%=11V 三相时允许电压降:Vd=380V x 5%=19V 采用vv电缆25铜芯去线阻为 R=0.01(300/25)=0.2 其压降为U=0.2*100=20 单线压降为20V 2相为40V 变压器低压端电压为400V 400-40=360V 铝线R=0.0283(300/35)=0.25 其压降为U=0.25*100=25 末端为350V 连续长时间运行对电机有影响建议使用 35铜芯或者50铝线 25铜芯其压降为 U=0.0172(300/35)=0.147(≈15V)15*2=30 末端为370V 铝线 U=0.0283(300/50)=0.17 17*2=34 末端为366V 可以正常使用(变压器电压段电压为400V)

电缆选型 电缆截面估算 电压降等计算

电缆选型 电缆的型号组成与顺序: 1:类别、用途2:导体3:绝缘4:内护层5:结构特征6:外护层或派生7:使用特征 1-5项和第7项用拼音字母表示,高分子材料用英文名的第位字母表示,每项可以是1-2个字母;第6项是1-3个数字。 型号中的省略原则:电线电缆产品中铜是主要使用的导体材料,故铜芯代号T省写,但裸电线及裸导体制品除外。裸电线及裸导体制品类、电力电缆类、电磁线类产品不表明大类代号,电气装备用电线电缆类和通信电缆类也不列明,但列明小类或系列代号等。 第7项是各种特殊使用场合或附加特殊使用要求的标记,在“-”后以拼音字母标记。有时为了突出该项,把此项写到最前面。如ZR-(阻燃)、NH-(耐火)、WDZ-(低烟无卤、企业标准)、-TH(湿热地区用)、FY-(防白蚁、企业标准)等。 数字标记铠装层外被层或外护套 0 无--- 1 联锁铠装纤维外被 2 双层钢带聚氯乙烯外套 3 细圆钢丝聚乙烯外套 4 粗圆钢丝 5 皱纹(轧纹)钢带 6 双铝(或铝合金)带 8 铜丝编织 9 钢丝编织 电缆的型号表示含义: 一、用途代码-不标为电力电缆,K为控制缆,P为信号缆; 二、绝缘代码-Z油浸纸,X橡胶,V聚氯乙烯,YJ交联聚乙烯 三、导体材料代码-不标为铜,L为铝; 四、内护层代码-Q铅包,L铝包,H橡套,V聚氯乙烯护套 五、派生代码-D不滴流,P干绝缘; 六、外护层代码 七、特殊产品代码-TH湿热带,TA干热带; 八、额定电压-单位KV 电缆型号选型注意事项 1、SYV:实心聚乙烯绝缘射频同轴电缆 2、SYWV(Y):物理发泡聚乙绝缘有线电视系统电缆,视频(射频)同轴电缆(SYV、SYWV、SYFV)适用于闭路监控及有线电视工程 SYWV(Y)、SYKV 有线电视、宽带网专用电缆结构:(同轴电缆)单根无氧圆铜线+物理发泡聚乙烯(绝缘)+(锡丝+铝)+聚氯乙烯(聚乙烯) 3、信号控制电缆(RVV护套线、RVVP屏蔽线)适用于楼宇对讲、防盗报警、消防、自动抄表等工程 RVVP:铜芯聚氯乙烯绝缘屏蔽聚氯乙烯护套软电缆电压300V/300V 2-24芯 用途:仪器、仪表、对讲、监控、控制安装 4、RG:物理发泡聚乙烯绝缘接入网电缆用于同轴光纤混合网(HFC)中传输数据模拟信号 5、KVVP:聚氯乙烯护套编织屏蔽电缆用途:电器、仪表、配电装置的信号传输、控制、测量 6、RVV(227IEC52/53)聚氯乙烯绝缘软电缆用途:家用电器、小型电动工具、仪表及动力照明

电缆电压损失计算书

石家庄苏宁电器广场 电力电缆电压损失计算 一、一般照明回路电压损失计算(供电距离最长的回路): 1)B2F变电所至SOHO办公强电井一般照明配电箱 【输入参数】: 线路工作电压U = 0.38 (kV) 线路密集型母线1600A 计算工作电流Ig = 850 (A) 线路长度L = 0.200 (km) 功率因数cosφ = 0.85 线路材质:铜 【中间参数】: 电阻r = 0.033 (Ω/km) 电抗x = 0.020 (Ω/km) 【计算公式及结果】: 0.38KV-通用线路电压损失为: ΔU1% = (173 / U ) * Ig * L * (r * cosφ + x * sinφ) = (173 / (0.38 * 1000)) * 850 * 0.2 * (0.033 * 0.85 + 0.020 * 0.53) = 2.99 2)一般照明配电箱至SOHO办公室配电箱: 【输入参数】: 线路工作电压U = 0.22 (kV) 线路型号:导线 线路截面S = 10 (mm2) 计算工作电流Ig = 16 (A) 线路长度L = 0.050 (km) 功率因数cosφ = 0.85 线路材质:铜 【中间参数】: 电阻r = 2.25 (Ω/km) 电抗x = 0.087 (Ω/km) 【计算公式及结果】: 0.38KV-通用线路电压损失为: ΔU2% = (173 / U) * Ig * L * (r * cosφ + x * sinφ) = (173 / (0.38 * 1000)) * 16 * 0.050 * (2.25 * 0.85 + 0.087* 0.53) = 0.72 3)SOHO办公室配电箱至最远灯具: 【输入参数】: 线路工作电压U = 0.22 (kV) 线路型号:导线

电压损失计算

巧用E X C E L电子表格功能 制作低压供电线路电压损失计算表 根据《煤矿供电设计规范》中低压供电线路电压损失的相关计算公式,分别将其进行演变、简化成新的实用计算公式,再利用E X C E L电子表格编制成一个电压损失计算表,只要在此表中填入与供电线路相关的计算参数,如变压器型号及容量、电缆截面及长度(长度截面一齐输入,如70m m2,100m,可输入7100即可),负荷则能快速、准确地自动计算出结果。其优点如下: 1、数据输入方便、直观。 2、计算结果快速、准确。 3、简化计算过程,提高工作效率。 一、电压损失相关实用计算公式: (一)、正常电压损失 规定:660V时,△U=△U b +△U g +△U z ≤63V, (1140V时,△U≤117V)。 1、变压器电压损失公式: △U b =K 1 ΣP, 其中:K 1=K b ×(U r+U x×t gψ)×U 20 /100/S b 2、干线电压损失公式: △U g =K 2 [L h1 *(P 1 +P )+L h2 *(P 2 +P 1 +P )+…+L h n *(P n +P n-1 …+P 1 +P )] 其中:K 2 =K g×1000/U e/42.5/50。 3、支线电压损失公式: △U z =K 3 *P *L h0 其中:K 3=K f ×η×1000/U e /42.5/50。 (二)、、起动电压损失 规定:660V时,△U s t =△U b s +△U g s +△U z s ≤195V, (1140V时,△U s t ≤345V) 1、变压器起动电压损失: △U b =K 1 ’√3I s t , 其中:K 1’=R b ×C O Sψ p +U b ×S i nψ p 起动时,平均功率因率C O Sψ p =(I×C O Sψ+I s t ×C O Sψ s t )/(I+ I s t ),起动功率因数C O Sψ s t (一般取0.52) 2、干线起动电压损失: △U g =K 2 [L h1 ×(P 1 +P )+L h2 *(P 2 +P 1 +P )+…+L h n *(P n +P n-1 …+P 1 +n× P 0/k x )](设P 为起动设备), K 2 —意义同上。 起动倍数n=S Q R T[(M q /M e )/(M q e /M e )]×(C O Sψ s t /C O Sψ)。 M q /M e -机械设备起动倍数,一般取 1.25,M q e /M e -电机过载倍数, 一般取 2.5。 3、支线起动电压损失: △U z=n×P 0×1000×L h0 ×(C O Sψ s t /C O Sψ) ×S Q R T(M q /M e )/U 20 /42.5/50, n—实际起动倍数,一般取6。

相关文档