文档库 最新最全的文档下载
当前位置:文档库 › 自适应控制的简单理解

自适应控制的简单理解

自适应控制的简单理解
自适应控制的简单理解

自适应控制的简单理解

在日常生活中,所谓自适应是指生物能改变自己的习性以适应新的环境的一种特征。因此,直观地讲,自适应控制器应当是这样一种控制器,它能修正自己的特性以适应对象和扰动的动态特性的变化。

自适应控制的研究对象是具有一定程度不确定性的系统,这里所谓的“不确定性”是指描述被控对象及其环境的数学模型不是完全确定的,其中包含一些未知因素和随机因素。

任何一个实际系统都具有不同程度的不确定性,这些不确定性有时表现在系统内部,有时表现在系统的外部。从系统内部来讲,描述被控对象的数学模型的结构和参数,设计者事先并不一定能准确知道。作为外部环境对系统的影响,可以等效地用许多扰动来表示。这些扰动通常是不可预测的。此外,还有一些测量时产生的不确定因素进入系统。面对这些客观存在的各式各样的不确定性,如何设计适当的控制作用,使得某一指定的性能指标达到并保持最优或者近似最优,这就是自适应控制所要研究解决的问题。

自适应控制和常规的反馈控制和最优控制一样,也是一种基于数学模型的控制方法,所不同的只是自适应控制所依据的关于模型和扰动的先验知识比较少,需要在系统的运行过程中去不断提取有关模型的信息,使模型逐步完善。具体地说,可以依据对象的输入输出数据,不断地辨识模型参数,这个过程称为系统的在线辩识。随着生产过程的不断进行,通过在线辩识,模型会变得越来越准确,越来越接近于实际。既然模型在不断的改进,显然,基于这种模型综合出来的控制作用也将随之不断的改进。在这个意义下,控制系统具有一定的适应能力。比如说,当系统在设计阶段,由于对象特性的初始信息比较缺乏,系统在刚开始投入运行时可能性能不理想,但是只要经过一段时间的运行,通过在线辩识和控制以后,控制系统逐渐适应,最终将自身调整到一个满意的工作状态。再比如某些控制对象,其特性可能在运行过程中要发生较大的变化,但通过在线辩识和改变控制器参数,系统也能逐渐适应。

常规的反馈控制系统对于系统内部特性的变化和外部扰动的影响都具有一定的抑制能力,但是由于控制器参数是固定的,所以当系统内部特性变化或者外部扰动的变化幅度很大时,系统的性能常常会大幅度下降,甚至是不稳定。所以对那些对象特性或扰动特性变化范围很大,同时又要求经常保持高性能指标的一类系统,采取自适应控制是合适的。但是同时也应当指出,自适应控制比常规反馈控制要复杂的多,成本也高的多,因此只是在用常规反馈达不到所期望的性能时,才会考虑采用。

自适应控制综述

自适应控制文献综述 卢宏伟 (华中科技大学控制科学与工程系信息与技术研究所 M200971940) 摘要:文中对自适应控制系统的发展、系统类型、控制器类型以及国内外自适应控制在工业和非工业领域的应用研究现状进行了较系统的总结。自适应控制成为一个专门的研究课题已超过50年了,至今,自适应控制已在很多领域获得成功应用,证明了其有效性。但也有其局限性和缺点,导致其推广应用至今仍受到限制,结合神经网络、模糊控制是自适应控制今后发展的方向。 关键字:自适应控制鲁棒性自适应控制器 1.自适应控制的发展概况 自适应控制系统首先由Draper和Li 在1951年提出,他们介绍了一种能使性能特性不确定的内燃机达到最优性能的控制系统。而自适应这一专门名词是1954年由Tsien在《工程控制论》一书中提出的,其后,1955年Benner 和Drenick也提出一个控制系统具有“自适应”的概念。 自适应控制发展的重要标志是在1958午Whitaker“及共同事设计了一种自适应飞机飞行控制系统。该系统利用参考模型期望特性和实际飞行特性之间的偏差去修改控制器的参数,使飞行达到最理想的特性,这种系统称为模型参考自适应控制系统(MRAC系统)。此后,此类系统因英国皇家军事科学院的Parks利用李稚普诺夫(Lyapunov)稳定性理论和法国Landau利用Popov 的超稳定性理论等设计方法而得到很大的发展,使之成为—种最基本的自适应控制系统。1974年,为了避免出现输出量的微分信号,美国的Monopli 提出了一种增广误差信号法,因而使输入输出信号设汁的自适应控制系统更加可靠地应用与实际工程中。 1960年Li和Wan Der Velde提出的自适应控制系统,他的控制回路中用一个极限环使参数不确定性得到自动补偿,这样的系统成为自振荡的自适应控制系统。 Petrov等人在1963年介绍了一种自适应控制系统,它的控制数如有一个开关函数或继电器产生,并以与参数值有关的系统轨线不变性原理为基础来设计系统,这种系统称为变结构系统。 1960到1961年Bellman和Fel`dbaum分别在美国和苏联应用动态规划原理设计具有随机不确定性的控制系统时,发现作为辨识信号和实际信号的控制输入之间存在对偶特性,因而提出对偶控制。 Astrom和Wittenmark对发展另一类重要的自适应控制系统,即自校正调节器(STR)作出了重要的贡献。这种调节器用微处理机很容易实现。这一有创见的工作得到各国学者普遍的重视,并且把发展各种新型的STR和探索新的应用工作推向新的高潮,使得以STR方法设计的自适应控制系统在数量上迢迢领先。在这些发展中以英国的Clarker和Gawthrop在1976年提出的广义最小方差自校正控制器最受重视。它克服了自校正调节器不能用于非最小相位系统等缺点。为了既保持自校正调节器实现简单的优点,又有拜较好的

(完整版)控制图的基本原理

控制图的基本原理 质量特性数据具有波动性,在没有进行观察或测量时,一般是未知的,但其又具有规律性,它是在一定的范围内波动的,所以它是随机变量。 一、正态分布 如果随机变量受大量独立的偶然因素影响,而每一种因素的作用又均匀而微小,即没有一项因素起特别突出的影响,则随机变量将服从正态分布。 正态分布是连续型随机变量最常见的一种分布。它是由高斯从误差研究中得出的一种分布,所以也称高斯分布。随机变量服从正态分布的例子很多。一般来说,在生产条件不变的前提下,产品的许多量度,如零件的尺寸、材料的抗拉强度、疲劳强度、邮件的内部处理时长、随机测量误差等等都是如此。 定义若随机变量的概率密度函数为: 则称的分布为正态分布,记为。 正态分布的概率密度函数如图5—1所示。

图5-l正态分布概率密度曲线 从图中我们叫以看出正态分布有如下性质: (1)曲线是对称的,对称轴是x=μ; (2)曲线是单峰函数,当x=μ时取得最大值; (3)当曲时,曲线以x轴为渐近线; (4)在处,为正态分布曲线的拐点; (5)曲线与x轴围成的面积为1。 另外,正态分布的数字特征值为: 平均值 标准偏差 数字特征值的意义:平均值μ规定了图形所在的位置。根据正态分布的性质,在x=μ处,曲线左右对称且为其峰值点。 标准偏差,规定了图形的形状。图5-2给出了3个不同的值时正态分布密度曲线。当小时,各数据较多地集中于μ值附近,曲线就较“高”和“瘦”;当大时,数据向μ值附近集中的程度就差,曲线的形状就比较“矮”和“胖”。这说明正态分布的形状由的大小来决

定。在质量管理中,反映了质量的好坏,越小,质量的一致性越好。 图5-2大小不同时的正态分布 在正态分布概率密度函数曲线下,介于坐标 ,,,间的面积,分别占总面积的58.26%,95.45%,99.73%和99.99%。它们相应的几何意义如图5-3听示。 图5-3各种概率分布的几何意义 二、控制图的轮廓线

关于模糊控制理论的综述

物理与电子工程学院 《人工智能》 课程设计报告 课题名称关于模糊控制理论的综述 专业自动化 班级 11级3班 学生姓名郑艳伟 学号 指导教师崔明月 成绩 2014年6月18日

关于模糊控制理论的综述 摘要:模糊控制方法是智能控制的重要组成部分,本文简要回顾了模糊控 制理论的发展,详细介绍了模糊控制理论的原理和模糊控制器的设计步骤, 分析了模糊控制理论的优缺点以及模糊控制需要完善或继续研究的内容,根 据各种模糊控制器的不同特点,对模糊控制在电力系统中的应用进行了分 类,并分析了各类模糊控制器的应用效能.最后,展望了模糊控制的发展趋 势与动态. 关键词:模糊控制;模糊控制理论;模糊控制系统;模糊控制理论的发展模糊控制是以模糊集理论、模糊语言变量和模糊控制逻辑推理为基础的一种智能控制方法,从行为上模拟人的思维方式,对难建模的对象实施模糊推理和决策的一种控制方法.模糊控制作为智能领域中最具有实际意义的一种控制方法,已经在工业控制领域、电力系统、家用电器自动化等领域中解决了很多的问题,引起了越来越多的工程技术人员的兴趣. 模糊控制系统简介 模糊控制系统是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术.1965年美国的扎德[1]创立了模糊集合论, 1973 年, 他给出了模糊逻辑控制的定义和相关的定理.1974 年英国的Mamdani 首先用模糊控制语句组成模糊控制器,并把它用于锅炉和蒸汽机的控制, 在实验室获得成功, 这一开拓性的工作标志着模糊控制论的诞生. 模糊控制系统主要是模拟人的思维、推理和判断的一种控制方法, 它将人的经验、常识等用自然语言的形式表达出来, 建立一种适用于计算机处理的输入输出过程模型, 是智能控制的一个重要研究领域.从信息技术的观点来看, 模糊控制是一种基于规则的专家系统.从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器. 相对传统控制, 包括经典控制理论与现代控制理论.模糊控制能避开对象的数学模型(如状态方程或传递函数等) , 它力图对人们关于某个控制问题的成功与失败和经验进行加工, 总结出知识, 从中提炼出控制规则, 用一系列多维模糊条件语句构造系统的模糊语言变量模型, 应用CRI 等各类模糊推理方法,

自适应控制原理及应用-陈明

中国矿业大学2015 级硕士研究生课程考试 题目自适应控制原理及应用 学生姓名陈明 学号TS15060128A3 所在院系信息与电气工程学院 任课教师郭西进 中国矿业大学研究生院培养管理处印制

目录 1 自适应控制概述 (1) 1.1 自适应控制系统的功能及特点 (1) 1.2自适应控制系统的分类 (1) 1.2.1前馈自适应控制 (1) 1.2.2反馈自适应控制 (1) 1.2.3 模型参考自适应控制(MRAC) (2) 1.2.4自校正控制 (2) 1.3 自适应控制系统的原理 (3) 1.4 自适应控制系统的主要理论问题 (3) 2 模型参考自适应控制 (4) 2.1 模型参考自适应控制的数学描述 (4) 2.2 采用Lyapunov稳定性理论的设计方法 (4) 3 自校正控制 (7) 4 自适应控制在电梯门机系统中的应用 (7) 4.1电梯门机控制系统的关键技术 (7) 4.1.1 加减速过程的S曲线 (8) 4.1.2 系统的自适应控制 (8) 4.3 系统的控制策略 (8) 4.3.1 加减速过程的S曲线 (8) 4.3.2 控制系统模型 (9) 4.4 门机开关的运行曲线 (10) 4.5 系统的实现 (11) 5 结论与展望 (12)

1 自适应控制概述 1.1 自适应控制系统的功能及特点 在日常生活中,所谓自适应是指生物能改变自己的习性以适应新的环境的一种特征。因此,直观地说,自适应控制器应当是这样一种控制器,它能修正自己的特性以适应对象和扰动的动态特性的变化。 自适应控制的特点:研究具有不确定性的对象或难以确知的对象;能消除系统结构扰动引起的系统误差;对数学模型的依赖很小,仅需要较少的验前知识;自适应控制是较为复杂的反馈控制。 1.2自适应控制系统的分类 1.2.1前馈自适应控制 借助于过程扰动信号的测量,通过自适应机构来改变控制器的状态,从而达到改变系统特性的目的。前馈自适应结构图如图1.1所示。 图1.1前馈自适应结构图 由图1.1可知,当扰动不可测时,前馈自适应控制系统的应用就会受到严重的限制。 1.2.2反馈自适应控制 除原有的反馈回路之外,反馈自适应控制系统中新增加的自适应机构形成了另一个

神经网络自适应控制

神经网络自适应控制 学院:电气工程与自动化学院 专业:控制科学与工程 姓名:兰利亚 学号: 1430041009 日期: 2015年6月25日

神经网络间接自适应控制 摘要:自适应模糊控制系统对参数变化和环境变化不敏感,能用于非线性和多变 量复杂对象,不仅收敛速度快,鲁棒性好,而且可以在运行中不断修正自己的控制 规则来改善控制性能,因而受到广泛重视。间接自适应控制是通过在线辨识的到 控制对象的模型。神经网络作为自适应控制器,具有逼近任意函数的能力。 关键词:神经网络间接自适应控制系统辨识 一、引言 自适应控制系统必须完成测量性能函数、辨识对象的动态模型、决定控制 器如何修改以及如何改变控制器的可调参数等功能。自适应控制有两种形式: 一种是直接自适应控制,另一种是间接自适应控制。直接自适应控制是根据实 际系统性能与理想性能之间的偏差,通过一定的方法来直接调整控制器的参 数。 二、间接自适应系统分析与建模 2.1系统的分析 系统过程动态方程:y(k+1)= -0.8y(k)/(1+y2(k))+u(k),参考系统模型 由三阶差分方程描述: ym(k+1)=0.8ym(k)+1.2ym(k-1)+0.2ym(k-2)+r(k) 式中,r(k)是一个有界的参考输入。如果输出误差ec(k)定义为 ec(k)=y(k)-ym(k),则控制的目的就是确定一个有界的控制输入u(k),当k趋于 正无穷时,ec(k)=0.那么在k阶段,u(k)可以从y(k)和它的过去值中计算得 到: u(k)=0.8y(k)/(1+y2(k))+0.8y(k)+1.2y(k-1)+0.2y(k-2)+r(k) (1) 于是所造成的误差方程为: ec(k+1)=0.8ec(k)+1.2ec(k-1)+0.2ec(k-2) (2) 因为参考模型是渐进稳定的,所以对任意的初始条件,它服从当k趋于无穷, ec(k)=0。在任何时刻k,用神经元网络N2计算过程的输入控制,即 u(k)=-N[y(k)]+0.8y(k)+1.2y(k-1)+0.2y(k-2)+r(k) (3) 由此产生非线性差分方程:y(k+1)=-0.8y(k)/(1+y2(k))+N[y(k)] +0.8y(k)+ 1.2y(k-1)+0.2y(k-2)+r(k) (4) 故设计的要点是设计一个神经网络来逼近0.8y(k)/(1+y2(k))。 2.2系统的建模设计过程 第一步,用BP神经网络逼近,神经网络的结构包含三层:输入层、隐含层 和输出层。BP网络的训练过程如下:正向传播是输入信号从输入层经隐层传向 输出层,若输出层得到了期望的输出,则学习算法结束;否则,转至反向传 播。 第二步,输入测试样本,对神经网络的逼近程度进行测试,将测试后的期

模糊控制算法的研究

模糊控制算法的研究 0842812128夏中宇 模糊控制概述 “模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。 在日常生活中,人们的思维中有许多模糊的概念,如大、小、冷、热等,都没有明确的内涵和外延,只能用模糊集合来描述。人们常用的经验规则都是用模糊条件语句表达,例如,当我们拧开水阀往水桶里注水时,有这样的经验:桶里没水或水较少时,应开大水阀;桶里水较多时,应将水阀关小些;当水桶里水快满时,则应把阀门关得很小;而水桶里水满时应迅速关掉水阀。其中,“较少”、“较多”、“小一些”、“很小”等,这些表示水位和控制阀门动作的概念都具有模糊性。即有经验的操作人员的控制规则具有相当的模糊性。模糊控制就是利用计算机模拟人的思维方式,按照人的操作规则进行控制,实现人的控制经验。 模糊控制理论是由美国著名的学者加利福尼亚大学教授Zadeh·L·A于1965年首先提出,它以模糊数学为基础,用语言规则表示方法和先进的计算机技术,由模糊推理进行决策的一种高级控制策略。 1974年,英国伦敦大学教授Mamdani·E·H研制成功第一个模糊控制器,充分展示了模糊技术的应用前景。 模糊控制概况 模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。1965年,美国的L.A.Zadeh 创立了模糊集合论;1973年他给出了模糊逻辑控制的定义和相关的定理。1974年,英国的E.H.Mamdani首先用模糊控制语句组成模糊控制器,并把它应用于锅炉和蒸汽机的控制,在实验室获得成功。这一开拓性的工作标志着模糊控制论的诞生。 模糊控制实质上是一种非线性控制,从属于智能控制的范畴。模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。模糊控制的发展最初在西方遇到了较大的阻力;然而在东方尤其是在日本,却得到了迅速而广泛的推广应用。近20多年来,模糊控制不论从理论上还是技术上都有了长足的进步,成为自动控制领域中一个非常活跃而又硕果累累的分支。其典型应用的例子涉及生产和生活的许多方面,例如在家用电器设备中有模糊洗衣机、空调、微波炉、吸尘器、照相机和摄录机等;在工业控制领域中有水净化处理、发酵过程、化学反应釜、水泥窑炉等的模糊控制;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯、蒸汽引擎以及机器人的模糊控制等。 模糊控制的基本理论 所谓模糊控制,就是在控制方法上应用模糊集理论、模糊语言变量及模糊逻辑推理的知识来模拟人的模糊思维方法,用计算机实现与操作者相同的控制。该理论以模糊集合、模糊语言变量和模糊逻辑为基础,用比较简单的数学形式直接将人的判断、思维过程表达出来,从而逐渐得到了广泛应用。应用领域包括图像识别、自动机理论、语言研究、控制论以及信号处理等方面。在自动控制领域,以模糊集理论为基础发展起来的模糊控制为将人的控制经验及推理过程纳入自动控制提供了一条便捷途径。 1.知识库

PID控制的基本原理

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 PID 控制的基本原理 1.PID 控制概述 当今的自动控制技术绝大部分是基于反馈概念的。反馈理论包括三个基本要素:测量、比较和执行。测量关心的是变量,并与期望值相比较,以此误差来纠正和控制系统的响应。反馈理论及其在自动控制中应用的关键是:做出正确测量与比较后,如何用于系统的纠正与调节。 在过去的几十年里,PID 控制,也就是比例积分微分控制在工业控制中得到了广泛应用。在控制理论和技术飞速发展的今天,在工业过程控制中95%以上的控制回路都具有PID 结构,而且许多高级控制都是以PID 控制为基础的。 PID 控制器由比例单元(P)、积分单元(I)和微分单元(D)组成,它的基本原理比较简单,基本的PID 控制规律可描述为: G(S ) = K P + K1 + K D S (1-1) PID 控制用途广泛,使用灵活,已有系列化控制器产品,使用中只需设定三个参数(K P ,K I和K D )即可。在很多情况下,并不一定需要三个单元,可以取其中的一到两个单元,不过比例控制单元是必不可少的。 PID 控制具有以下优点: (1)原理简单,使用方便,PID 参数K P、K I和K D 可以根据过程动态特性变化,PID 参数就可以重新进行调整与设定。 (2)适应性强,按PID 控制规律进行工作的控制器早已商品化,即使目前最新式的过程控制计算机,其基本控制功能也仍然是PID 控制。PID 应用范围广,虽然很多工业过程是非线性或时变的,但通过适当简化,也可以将其变成基本线性和动态特性不随时间变化的系统,就可以进行PID 控制了。 (3)鲁棒性强,即其控制品质对被控对象特性的变化不太敏感。但不可否认PID 也有其固有的缺点。PID 在控制非线性、时变、偶合及参数和结构不缺点的复杂过程时,效果不是太好; 最主要的是:如果PID 控制器不能控制复杂过程,无论怎么调参数作用都不大。 在科学技术尤其是计算机技术迅速发展的今天,虽然涌现出了许多新的控制方法,但PID 仍因其自身的优点而得到了最广泛的应用,PID 控制规律仍是最普遍的控制规律。PID 控制器是最简单且许多时候最好的控制器。 在过程控制中,PID 控制也是应用最广泛的,一个大型现代化控制系统的控制回路可能达二三百个甚至更多,其中绝大部分都采用PID 控制。由此可见,在过程控制中,PID 控制的重要性是显然的,下面将结合实例讲述PID 控制。 1.1.1 比例(P)控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳定误差。比例控制器的传递函数为: G C (S ) = K P (1- 2) 式中,K P 称为比例系数或增益(视情况可设置为正或负),一些传统的控制器又常用比例带(Proportional Band,PB),来取代比例系数K P ,比例带是比例系数的倒数,比例带也称为比例度。 对于单位反馈系统,0 型系统响应实际阶跃信号R0 1(t)的稳态误差与其开环增益K 近视成反比,即: t→∞

预测PID 控制算法的基本原理及研究现状

预测PID 控制算法的基本原理及研究现状 预测PID 控制算法的基本原理及研究现状 关键词:模型预测控制预测PID 控制算法 在现今全球竞争日益激烈的市场环境下,通过先进控制获取经济效益来提高企业竞争力,已成为一种趋势。据有关文献报道(薛美盛等, 2002),各种不同石 油化工装置实施先进控制后,其每年净增效益如表1 所示。虽然各公司所报出的 年效益有所不同,但其数据出入不大,而实施先进控制所需成本只占其产生效益 的很小一部分比例。 国外发达国家经验表明(孙德敏等, 2003):采用先进控制理论和过程优化将 增加30%的投资,但可提高产品层次和质量,降低能源和原材料消耗,从而增加 85%的效益,如图1 所示。投资70%的资金购置DCS,换来的是15%的经济效益; 再增加30%的投资,可以换来85%的经济效益。其中增加的8%用于传统的先进 控制(TAC),得到的经济效益是8%;增加的13%用于预测控制(DMC),得到的经 济效益为37%;增加的9%用于在线闭环优化(CLRTO),换来的经济效益是40%! 因此,实施先进控制与优化是不用投资的技术改造。 然而,控制理论本身也面临着一些问题和困难,需要不断改进和提高。尽管 大量新的控制算法不断涌现,但常规的PID 及改进的PID 控制算法仍广泛应用于 工业控制领域。一些先进控制算法专用性强、适应性差、鲁棒性能差、算法复杂、 实施和维护成本高,这些都限制了它们的推广和发展。据日本控制技术委员会 (SICE)对110 家企业和150 位控制工程师调查显示(Huruo, 1998),近20 年来,工 业界迫切需要解决的控制难题分别是:大滞后、强耦合、时变、严重干扰以及非 线性对象的控制,这些问题始终都没有得到切实有效的解决。部分先进控制理论 理论性太强,实际应用需做大量的改进和简化,使先进控制具备鲁棒性是当前重 要的发展方向。 在先进控制技术中,最有应用前途的是模型预测控制,该技术经历了4 代发 展,已非常完善和成熟了。第一代模型预测技术以DMC(Cutler, 1979) 和 IDCOM(Richalet, 1978)两种商业产品为标志;QDMC(Garcia, 1986)标志着第二代 模型预测技术;IDCOM-M(Froisy, 1990)、SMCA 和SMOC(Yous, 1991)代表着第 三代模型预测技术的产生;第四代模型预测技术就是人们熟悉的DMC-plus 和 RMPCT,分别是Aspen 和Honeywell 公司的最新商业化软件。现今模型预测控制 技术不仅能处理硬、软约束、病态排除、多目标优化,而且能通过Kalman 滤波 器消除不可测干扰和噪声的影响(Lundstr?m, 1995),同时采用鲁棒控制技术和先 进的辨识技术处理模型的不确定性,大大增强了模型预测技术的适应能力。 正因为模型预测控制的强大功能,它是一些具有非最小相位、积分、不稳定、 多变量强耦合(包括方系统、胖系统、瘦系统)等特殊动态特性过程的理想控制工 具。 据统计,2002 年全世界共成功实施4600 例模型预测控制算法(Qina, 2003), 是1997 年的两倍多,短短5 年时间比过去近20 年应用的还多,可见其发展速度 之快。因此,它被誉为20 世纪80 年代“最有前途的先进控制算法”,一点也不过 分。 像所有先进控制算法一样,模型预测控制也有着自身的缺点: (1)预测控制算法比较复杂,计算量比较大。正因为复杂,在算法实现上要考 虑多方面因素,既要保证算法简洁,又要使算法具有足够的可靠性和稳定性,同

控制图的原理

控制图的原理 一、定义: 控制图:对过程质量特性值进行测定、记录、评估,以监察过程是否处于控制状态的一种用统计方法设计的图。(也称休哈特控制图) 二、控制图的形成 μ:平均值,表分布中心σ:标准差,表分散程度

三、控制图的基本结构 1、以随时间推移而变动着的样品号为横坐标,以质量特性值或其统计量为纵坐标; 2、三条具有统计意义的控制线:上控制线UCL 、中心线CL 、下控制线LCL ; 3、一条质量特性值或其统计量的波动曲线。 四、控制图原理的解释 第一种解释:“点出界就判异” 小概率事件原理:小概率事件实际上不发生,若发生即判异常。控制图就是统计假设检验的图上作业法。 第二种解释:“抓异因,弃偶因” 控制限就是区分偶然波动与异常波动的科学界限。 休哈特控制图的实质就是区分偶然因素与异常因素的。 五、常规控制图分类 UCL CL LCL 样本统计量数值x 12

六、按用途分类 1、分析用控制图——用于质量和过程分析,研究工序或设备状态;或者确定某一“未知的”工序是否处于控制状态; 2、控制用控制图——用于实际的生产质量控制,可及时的发现生产异常情况;或者确定某一“已知的”工序是 否处于控制状态。 七、控制图的应用 八、X-R控制图的绘制 1、确定控制对象(统计量) 一般应选择技术上最重要的、能以数字表示的、容易测定并对过程易采取措施的、大家理解并同意的关键质量特性进行控制。 2、选择控制图 控制图 缺陷数控制图 控制图 单位缺陷数控制图 泊松分布 计点型 控制图 不合格品数控制图 控制图 不合格品率控制图 二项分布 计件型 计数型 控制图 单值-移动极差控制图 控制图 中位数-极差控制图 控制图 均值-标准差控制图 控制图 均值-极差控制图 正态分布 计量型 简记 控制图 分布 数据类型 R X -S X -R X -~S R X -p np u c

市场预测基本原理

第8章市场预测基本原理 本章主要阐述市场预测的意义与分类、基本原理、基本步骤、预测内容、预测方法等基本理论和基本知识。为市场预测提供一些理论性的基础知识。 [教学目的和要求] 1、掌握市场预测的基本理论和方法。 2、了解市场预测的原理和程序。 3、掌握不同预测误差的计算方法。 4、掌握市场预测的基本理论和方法。 5、了解市场预测的原理和程序。 6、掌握不同预测误差的计算方 [教学重点和难点] 本章教学重点是阐述市场预测的基本理论和方法。 [课时分配] 本章2课时。 [教学内容] 8.1 市场预测概述 8.1.1 市场预测的特点与作用 1 市场预测的特点与分类 市场预测是指对未知的市场和市场未来的变化进行预计和推测。 市场预测具有如下特点: (1) 预测对象具有不确定性。

(2) 市场预测具有目的性。 (3) 市场预测具有科学性。 (4) 市场预测具有综合性。 (5) 预测误差具有不可避免性。 2 市场预测的作用 (1) 有利于提高决策的科学性。 (2) 有利于提高企业的竞争力。 (3) 有利于提高企业的经济效益。 8.1.2 市场预测的分类 市场预测按照不同标准可以有不同的分类。常用的有以下几种分类。 1 按预测期长短不同,可分为长期预测、中期预测和短期预测。 (1) 长期预测。指五年以上市场发展前景的预测。它是制定中长期计划和经济发展规划的依据。 (2) 中期预测. 指对一年以上五年以下的市场发展前景的预测。它是制定中期计划和规定经济五年发展任务的依据。 (3) 短期预测。短期预测是指对一年以下的市场发展变化的预测。是经营决策的依据。 2 按预测的范围不同,可分为宏观市场预测和微观市场预测 (1) 宏观市场预测。是指以整个国民经济、部门、地区的市场活动为范围进行的各种预测,主要目标是预测市场供求关系的变化和总体市场的运行态势。 (2) 微观市场预测。是指从事生产、流通、服务等不同产业领域的企业,对其经营的各种产品或劳务市场的发展趋势作出估计和判断,为生产经营决策提供支持。 3 按预测的性质不同,可分为定性预测和定量预测 (1) 定性预测。是指预测者通过对市场的调查研究,了解实际情况,凭自己的实践经验和理论水平、业务水平,对市场发展前景的性质、方向和程度作出判断预测。 (2) 定量预测。是指根据历史和现实的统计数据和市场信息,运用统计方法和数学模型,对市场未来发展的规模、水平、速度和比例关系进行分析测定。 4 按预测结果有无附加条件分类,可分为有条件预测和无条件预测 (1) 有条件预测。有条件预测是指市场预测的结果要以其他事件的实现为条件。 (2) 无条件预测。无条件预测是指预测的结果不附加任何条件。 8.1.3 市场预测的要求 1.对预测人员的要求 预测人员必须具有较高的综合性知识,具有预算、综合、分析、推断等各种能力,并具有一定的市场调研和预测经验;有良好的职业道德和敬业精神。 2.对预测资料的要求 应重视数据和有关资料的收集整理和分析,完善数据系统,以确保市场预测所需要的各类数据和资料,使预测建立在充分的信息基础之上。

加工过程的复合自适应模糊控制

加工过程的复合自适应模糊控制 3 姚锡凡 副教授 姚锡凡 彭永红 陈统坚 彭 观 李春雄 摘要 设计了一种自适应模糊控制器,采用了模糊规则在线自调整和 输出比例因子在线自适应估计相结合的策略,应用于铣削加工过程的仿真结果表明,该控制器可适用于非最小相位系统,为加工过程的约束型控制提供一条有效途径。 关键词 加工过程 模糊控制 自适应 参数估计 中国图书资料分类法分类号 T P 273 3国家自然科学基金资助项目(59585006)收稿日期:1997—12—22 始于60年代初的加工过程自适应控制,可分为优化型自适应控制(A CO )和约束型自适应控制(A CC )两大类。但由于加工过程的不确定性、时变性和非线性,以及对加工性能要求越来越高,建立于对象的数学模型基础上的自适应控制难以获得满意的控制效果,甚至无能为力,加工过程的 控制至今仍未获得突破性的进展[1],为此发展不依赖或少依赖于数学模型的智能加工控制系统是必要的。但常规的模糊控制不具有自适应性,而且会出现零点极限环振荡现象,为此本文提出了一种复合的自适应模糊控制,对铣削加工过程进行控制。 1 自适应模糊控制 一般常规模糊控制涉及论域有3个,它们是误差E

K U = F r c s K P (4) 式中,c s 为常数(取0.5);F r 为力的设定值;K P 为被控对象的增益。 K P 可由下式估算得到E r (i )=F (i )-K P (i - 1)u (i -1) K P (i )=K P (i -1)+cE r (i ) (5) 式中,E r 为切削力的估计误差;F 为力的测量值;c 为常数(在下面仿真中取0.035);u (i )为进给速度(电压值)。 u (i )=K U (i )[U (i ) 12+0.5] (6) 2 仿真实验 本文以铣削加工为对象,在主轴转速恒定、铣削深度作阶跃变化下,通过检测切削力,自动调节铣削进给速度,使加工过程的切削力恒定。对于铣 削加工过程(包括伺服环节),其二阶模型可以表示为[5] F β+2ΝΞn F α+Ξ2n F =K (2ΝΞn u α+Ξ2n u )(7)式中,F 为实测的切削力;u 为进给速度(电压值)(见图1);Ν为阻尼系数;Ξn 为自然频率。 采用零阶保持器,当Ν<1时,式(7)的离散可表示为 G (z )= F (z ) u (z )=b 0z +b 1z 2 +a 1z +a 2 (8) 式中,a 1、a 2、b 0、b 1可由式(7)求得。 当采样周期T =0.05s,切削深度a p 分别为2.54mm 、1.91mm 、3.81mm 时,传递函数分别 为[6] G 1(z )=F (z )u (z )=1.3907z + 1.3257 z 2 -1.8218z +0.8409G 2(z )=F (z )u (z )=0.8346z + 0.8363z 2 -1.9642z +0.9773G 3(z )=F (z )u (z )=3.0861z + 2.8242z 2 -1.7461z + 0.7655 可以看出,传递函数随切削深度而变化,当切 削深度为1.91mm 时,已变为一个非最小相位系 统,有一个过程零点位于单位圆外(z =-b 1 b 0=-1.0021),此时常规的模型参考自适应控制(M odel R eference A dap tive Con tro l,M RA C )已 不能适用上述的非最小相位系统,要用修正的M RA C 进行控制,但修正算法较为复杂。一些研 究结果表明,模糊控制能较好地适用于非最小相位加工系统,本文采用复合自适应模糊控制(图1)实现铣削加工过程控制。 仿真实验时,取K E =0.4,K C =0.8,K U (0)=5.6338,F r =400N ,T =0.05s,结果见图2。仿 真时,首先取切削深度为2.54mm ,此时采用的加工模型为G 1(z ),在t =200T 时,让加工模型变为G 2 (z ),而在t =400T 时,让加工模型变为G 3(z )。同时对进给速度进行了限制,即0

矢量控制系统(FOC)基本原理

矢量控制(FOC)基本原理 2014.05.15 duquqiubai1234163. 一、基本概念 1.1模型等效原则 交流电机三相对称的静止绕组 A 、B 、C ,通以三相平衡的正弦电流时,所产生的合成磁动势是旋转磁动势F ,它在空间呈正弦分布,以同步转速ω1(即电流的角频率)顺着 A-B-C 的相序旋转。这样的物理模型如图1-1a 所示。然而,旋转磁动势并不一定非要三相不可,单相除外,二相、三相、四相…… 等任意对称的多相绕组,通以平衡的多相电流,都能产生旋转磁动势,当然以两相最为简单。 图1 图1-1b 中绘出了两相静止绕组α 和 β ,它们在空间互差90°,通以时间上互差90°的两相平衡交流电流,也产生旋转磁动势F 。再看图1-1c 中的两个互相垂直的绕组M 和 T ,通以直流电流M i 和T i ,产生合成磁动势F ,如果让包含两个绕组在的整个铁心以同步转速旋转,则磁动势F 自然也随之旋转起来,成为旋转磁动势。把这个旋转磁动势的大小和转速也控制成与图 1-1a 一样,那么这三套绕组就等效了。

三相--两相变换(3S/2S 变换) 在三相静止绕组A 、B 、C 和两相静止绕组α、β之间的变换,简称3S/2S 变换。其电流关系为 111221022A B C i i i i i αβ????-- ???????=?????????-????? () 两相—两相旋转变换(2S/2R 变换) 同步旋转坐标系中(M 、T 坐标系中)轴向电流分量与α、β坐标系中轴向电流分量的转换关系为 cos sin 2sin cos M T i i i i αβ??????????=??????-???? ?? () 1.2矢量控制简介 矢量控制是指“定子三相电流矢量控制”。 矢量控制理论最早为解决三相异步电机的调速问题而提出。交流矢量的直流标量化可以使三相异步电机获得和直流电机一样优越的调速性能。将交流矢量变换为两相直流标量的过程见图2。

模型参考自适应控制

10.自适应控制 严格地说,实际过程中的控制对象自身及能所处的环境都是十分复杂的,其参数会由于种种外部与内部的原因而发生变化。如,化学反应过程中的参数随环境温度和湿度的变化而变化(外部原因),化学反应速度随催化剂活性的衰减而变慢(内部原因),等等。如果实际控制对象客观存在着较强的不确定,那么,前面所述的一些基于确定性模型参数来设计控制系统的方法是不适用的。 所谓自适应控制是对于系统无法预知的变化,能自动地不断使系统保持所希望的状态。因此,一个自适应控制系统,应能在其运行过程中,通过不断地测取系统的输入、状态、输出或性能参数,逐渐地了解和掌握对象,然后根据所获得的过程信息,按一定的设计方法,作出控制决策去修正控制器的结构,参数或控制作用,以便在某种意义下,使控制效果达到最优或近似更优。目前比较成熟的自适应控制可分为两大类:模型参考自适应控制(Model Reference Adaptive Control)和自校正控制(Self-Turning)。 10.1模型参考自适应控制 10.1.1模型参考自适应控制原理 模型参考自适应控制系统的基本结构与图10.1所示: 10.1模型参考自适应控制系统 它由两个环路组成,由控制器和受控对象组成内环,这一部分称之为可调系统,由参考模型和自适应机构组成外环。实际上,该系统是在常规的反馈控制回路上再附加一个参考模型和控制器参数的自动调节回路而形成。

在该系统中,参考模型的输出或状态相当于给定一个动态性能指标,(通常,参考模型是一个响应比较好的模型),目标信号同时加在可调系统与参考模型上,通过比较受控对象与参考模型的输出或状态来得到两者之间的误差信息,按照一定的规律(自适应律)来修正控制器的参数(参数自适应)或产生一个辅助输入信号(信号综合自适应),从而使受控制对象的输出尽可能地跟随参考模型的输出。 在这个系统,当受控制对象由于外界或自身的原因系统的特性发生变化时,将导致受控对象输出与参考模型输出间误差的增大。于是,系统的自适应机构再次发生作用调整控制器的参数,使得受控对象的输出再一次趋近于参考模型的输出(即与理想的希望输出相一致)。这就是参考模型自适应控制的基本工作原理。 模型参考自适应控制设计的核心问题是怎样决定和综合自适应律,有两类方法,一类为参数最优化方法,即利用优化方法寻找一组控制器的最优参数,使与系统有关的某个评价目标,如:J=? t o e 2(t)dt ,达到最小。另一类方法是基于稳 定性理论的方法,其基本思想是保证控制器参数自适应调节过程是稳定的。如基于Lyapunov 稳定性理论的设计方法和基于Popov 超稳定理论的方法。 系统设计举例 以下通过一个设计举例说明参数最优化设计方法的具体应用。 例10.1设一受控系统的开环传递函数为W a (s)=) 1(+s s k ,其中K 可变,要求 用一参考模型自适应控制使系统得到较好的输出。 解:对于该系统,我们选其控制器为PID 控制器,而PID 控制器的参数由自适应机构来调节,参考模型选性能综合指标良好的一个二阶系统: W m (d)= 1 414.11 2 ++s s 自适应津决定的评价函数取 minJ =?t e 2 (t)dt ,e(t)为参考模型输出与对象输出的误差。 由于评价函数不能写成PID 参数的解析函数形式,因此选用单纯形法做为寻优方法。(参见有关优化设计参考文献)。 在上述分析及考虑下,可将系统表示具体结构表示如下图10.2所示。

PID控制的基本原理

S lim e (t ) = 1 +RK t →∞ PID 控制的基本原理 1.PID 控制概述 当今的自动控制技术绝大部分是基于反馈概念的。反馈理论包括三个基本要素:测量、比较和执行。测量关 心的是变量,并与期望值相比较,以此误差来纠正和控制系统的响应。反馈理论及其在自动控制中应用的关键是: 做出正确测量与比较后,如何用于系统的纠正与调节。 在过去的几十年里,PID 控制,也就是比例积分微分控制在工业控制中得到了广泛应用。在控制理论和技术 飞速发展的今天,在工业过程控制中 95%以上的控制回路都具有 PID 结构,而且许多高级控制都是以 PID 控制为 基础的。 PID 控制器由比例单元(P )、积分单元(I )和微分单元(D )组成,它的基本原理比较简单,基本的 PID 控 制规律可描述为: G (S ) = K P + K 1 + K D S (1-1) PID 控制用途广泛,使用灵活,已有系列化控制器产品,使用中只需设定三个参数( K P , K I 和 K D ) 即可。在很多情况下,并不一定需要三个单元,可以取其中的一到两个单元,不过比例控制单元是必不可少的。 PID 控制具有以下优点: (1) 原理简单,使用方便,PID 参数 K P 、K I 和 K D 可以根据过程动态特性变化,PID 参数就可以重 新进行调整与设定。 (2) 适应性强,按 PID 控制规律进行工作的控制器早已商品化,即使目前最新式的过程控制计算机,其 基本控制功能也仍然是 PID 控制。PID 应用范围广,虽然很多工业过程是非线性或时变的,但通过适当简化,也 可以将其变成基本线性和动态特性不随时间变化的系统,就可以进行 PID 控制了。 (3) 鲁棒性强,即其控制品质对被控对象特性的变化不太敏感。 但不可否 认 PID 也有其固有的缺点。PID 在控制非线性、时变、偶合及参数和结构不缺点的复杂过程时,效果不是太好; 最主要的是:如果 PID 控制器不能控制复杂过程,无论怎么调参数作用都不大。 在科学技术尤其是计算机技术迅速发展的今天,虽然涌现出了许多新的控制方法,但 PID 仍因其自身的优 点而得到了最广泛的应用,PID 控制规律仍是最普遍的控制规律。PID 控制器是最简单且许多时候最好的控制器。 在过程控制中,PID 控制也是应用最广泛的,一个大型现代化控制系统的控制回路可能达二三百个甚至更多, 其中绝大部分都采用 PID 控制。由此可见,在过程控制中,PID 控制的重要性是显然的,下面将结合实例讲述 PID 控制。 1.1.1 比例(P )控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输 出存在稳定误差。比例控制器的传递函数为: G C (S ) = K P (1- 2) 式中, K P 称为比例系数或增益(视情况可设置为正或负),一些传统的控制器又常用比例带(Proportional Band , PB ),来取代比例系数 K P ,比例带是比例系数的倒数,比例带也称为比例度。 对于单位反馈系统,0 型系统响应实际阶跃信号 R 0 1(t)的稳态误差与其开环增益 K 近视成反比,即: t →∞ 对于单位反馈系统,I 型系统响应匀速信号 (1- 3) R 1 (t)的稳态误差与其开环增益 K v 近视成反比, 即: lim e (t ) = R 1 K V (1- 4)

控制图的原理

控制图的原理 一.控制图的原理-波动分布 控制图观点认为: (1)当过程仅受随机因素影响时,过程处于统计控制状态(简称受控状态);由于过程波动具有统计规律性,当过程受控时,过程特性一般服从稳定的随机分布; (2)当过程中存在系统因素的影响时,过程处于统计失控状态(简称失控状态)。而失控时,过程分布将发生改变。 SPC正是利用过程波动的统计规律性对过程进行分析控制的。因而,它强调过程在受控和有能力的状态下运行,从而使产品和服务稳定地满足顾客的要求。 二.控制图的原理-统计 受控状态是生产过程追求的目标,此时,对产品的质量是有把握的。控制图即是用来监测生产过程状态的一种有效工具。 控制图的统计学原理,令W为度量某个质量特性的统计样本。假定W的均值为μ,而W 的标准差为σ。于是,中心线、上控制限和下控制限分别为 UCL=μ+Kσ CL=μ LCL=μ-Kσ 式中,K为中心线与控制界限之间的标准差倍数,Kσ表示间隔宽度。 正常情况下点子分布是正态的,落在控制界限之内的概率远大于落在控制界限之外的概率。反之,若点子落在控制界限之外,可能是属于正常情况下的小概率事件发生,也可能是过程异常发生,相对来讲,后者发生的概率要大得多。因此,我们宁可以为后者情况发生,这正是控制图的统计学原理。 点子落在控制界限之内是否一定处于稳态?点子落在控制界线之外是否一定出现异常?这两个问题的回答都是否定的。 更为科学的判断应根据概率统计方法对过程进行定量分析,精确计处出状态的概率值之后再进行过程状态判断。 三.控制图的原理-分类1 各控制图用途:

均值-极差控制图:是最常用、最基本的控制图,它用于控制对象为长度、重量、强度、纯度、时间和生产量等计量值的场合。 均值-标准差控制图:次图与上图类似,极差计算简便,故R图得到广泛应用,但当样本大小或0>10或12时,应用极差估计总体标准差的效率减低,最好应用S图代替R图。 中位数-极差控制图:由于中位数的计算比均值简单,所以多用于现场需要把测定数据直接记入控制图进行管理的场合。 均值-移动极差控制图:多用于下列场合,(1)采用自动化检查和测量对每一个产品都进行检验的场合;(2)取样费时、昂贵的场合;(3)如化工等过程,样品均匀,多抽样也无太大意义的场合。由于它不像前三种控制图那样能取得较多的信息,所以它判断过程变化的灵敏度也要差一些。 P控制图:用于控制对象为不合格品率等计数值质量指标的场合。这里需要注意的是,在根据多种检查项目总起来确定不合格品率的场合,当控制图显示异常后难于找出异常的原因。因此,使用P图时应选择重要的检查项目作为判断不合格品的依据。 (1)连续25个点都在控制限内(显著性水平为:0.0654)。 (2)连续35个点至多一个点落在控制限外(显著性水平为:0.0041)。 (3)连续100个点至多两个点落在控制限外(显著性水平为:0.0026)。 Pn控制图:用于控制对象为不合格品数的场合。设n为样本大小,P为不合格品率,则Pn为不合格品个数。由于计算不合格品率需要进行除法,比较麻烦。所以在样本大小相同的情况下,用此图比较方便。 C控制图:用于控制一部机器、一个部件、一定的长度、一定的面积或任何一定的单位中所出现的缺陷数目。例如,铸件上的砂眼数,机器设备的故障数等等。 U控制图:当样品的大小变化时应换算成每单位的缺陷数并用U控制图。 通用控制图: 四.控制图的原理-判稳准则 (1)连续25个点都在控制限内(显著性水平为:0.0654)。 (2)连续35个点至多一个点落在控制限外(显著性水平为:0.0041)。 (3)连续100个点至多两个点落在控制限外(显著性水平为:0.0026)。 五.控制图的原理-计量型稳定 六.控制图的原理-计数型不稳定

相关文档