文档库 最新最全的文档下载
当前位置:文档库 › 真核基因转录水平的调控1-3

真核基因转录水平的调控1-3

真核基因转录水平的调控1-3
真核基因转录水平的调控1-3

真核基因转录水平的调控

一、真核生物的RNA聚合酶

有三种RNA聚合酶:RNA聚合酶Ⅰ;RNA聚合酶Ⅱ;RNA聚合酶Ⅲ。

二、真核基因顺式作用元件

(一)、顺式作用元件概念

指DNA上对基因表达在调节活性的某些特定的调控序列,其活性仅影响其自身处于同一DNA分子上的基因。

(二)、种类

启动子、增强子、静止子

1、启动子的结构和功能

启动子与原核启动子的含义相同,是指RNA聚合酶结合并起动转录的DNA序列。

但真核同启动子间不像原核那样有明显共同一致的序列。而且单靠RNA聚合酶难以结合DNA而起动转录,而是需要多种蛋白质因子的相互协调作用。

RNA聚合酶Ⅱ启动子结构

1)TATA框(TATA frame):其一致顺序为TATAA(T)AA(T)。TATA框中心在-30附近,相当于原核的-10序列(pribnow box)。

对大多数真核生物来说,RNA聚合酶与TATA框牢固结合之后才能开始转录。TATA框的左右富含G┇C 序列,这就有利于该框与RNA聚合酶形成开放性启动子复合物。

2)CAAT框(CAAT frame):位置在-75附近,一致序列为GG C(T)CAATCT。CAAT框可能控制着转录起始的频率。

(3)GC框

在-90bp左右的GGGCGG序列称为GC框。

一个在-30—+15即核心启动子(core promoter element),另一为上游启动子区(upstream promoter element)在-150—-50,不同物种的启动子因子有显著差异,启动子区没有和mRNA的TATA和CAAT盒顺序,故物种间大前体-rRNA基因的转录起始是不同的。基因间间隔含一个或几个终止信号可终止其之前的基因的转录而其本身不转录,间隔区含多种反向顺序可作为增强子结合转录因子

2、增强子的结构和功能

增强子(enhancer):又称为远上游序列(far upstream sequence) 。它是远距离调节启动子以增加转录速率的DNA序列,其增强作用与序列的方向无关,与它在基因的上下游位置无关。增强子有强烈的细胞类型选择,即不同细胞类型,增强作用不同。

1)它能通过启动子大幅度地增加同一条DNA链上靶基因转录的频率,一般能增加10~200倍,有的甚至可达千倍。

(2)增强子的作用对同源或异源的基因同样有效,如把SV40 的增强子连接到兔β-珠蛋白的基因上,可使转录强度增大100倍;

(3)增强子的位置可在基因5′上游、基因内或其3′下游的序列中,而其作用与所在基因旁侧部位的方向似无关系,因为无论正向还是反向,它都具有增强效应;

(4)增强子所含核苷酸序列大多为重复序列,其内部含有的核心序列,对于它进入到另一宿主之后重新产生增强子效应至关重要;

(5)增强子一般都具有组织和细胞特异性;

(6)增强子在DNA双链中没有5′与3′固定的方向性;

(7)增强子可远离转录起始点,通常在1~4 kb(个别情况可达30 kb)外起作用;

(8)增强子的活性与其在DNA双螺旋结构中的空间方向性有关。另外,许多增强子还受到外部信号的调控,如金属硫蛋白基因的增强子就可对环境中的锌、镉浓度作出反应。

3、静止子

类似增强子但起负调控作用的顺式元件。静止子与反式作用因子(蛋白质)结合后,使正调控系统失去作用。

三、转录的起始调节

(一)转录起始因子与起始复合物的装置

RNA聚合酶需要先分别同SL1、TFⅡD、TFⅢB等一些转录起始因子结合,形成转录起始复合物(initiation complex)才能开始其转录活动。

转录因子都属于多蛋白复合物,是由TATA结合蛋白和各自独有的一套TBP

相关因子组成。

类型II基因的转录因子普遍性转录因子: 作用于基本核心启动子如TATA box、INR(转录起始区),每种细胞类型都必需的,如TFIID/A/B/E/F/G/H/I 等。

特异性转录因子: 作用于转录起始复合物形成过程的靶分子和控制位点,含DNA特异性序列结合结构域普遍性转录因子的结构与功能 TFIID的TBP(TATA binding protein)结构域结合启动子的TATA box,促进其它转录因子的结合。TFII I 结合INR。许多普遍性转录因子含有与RNA聚合酶 因子相似的结构域,识别特异启动子起始转录。

和激活结构域(有的两者都有)。

RNA pol.II的结构与功能:CTD结构域含YSPTSPS的重复单位, 不同物种重复数不同,CTD对转录活性是必需的,其Ser/Thr可以被不同程度磷酸化在转录起始与延伸中具有重要作用。

例:RNA聚合酶Ⅱ转录起始复合物的组装

第一步是转录因子TFⅡD与TATA框特异性结合,形成TFⅡD-启动子复合体,后者进而指导聚合酶Ⅱ和其他基本转录因子与启动子进行有序装配,最后形成一个稳定的起始复合物。

四、调控转录的反式作用因子

能识别或结合在顺式作用元件核心序列上参与调控靶基因转录效率的结合蛋白,称为反式作用因子。

(一)反式作用因子的结构特征

1、DNA识别或DNA结合结构域

2、激活基因转录的功能结构域

3、结合其他蛋白或调控蛋白的调节结构域

(二)序列特异性DNA结合蛋白的几种结构域

1.螺旋-转角-螺旋结构螺旋-转角-螺旋(helix-turn-helix)

2.锌指结构锌指(zinc finger)是由一小群氨基酸与一个锌原子结合,在蛋白质中形成相对独立的一个结构域,故而得名.

3、亮氨酸拉链结构亮氨酸拉链(leucine zipper,ZIP)结构也是转录因子

DNA结合区的一种结构模式

4.螺旋-环-螺旋结构螺旋-环-螺旋(helix-loop-helix,HLH)是新近发现的一种DNA结合区的结构模式

多细胞真核生物的一些基因表达常受体内外激素(hormone)的控制,

五、真核基因表达的激素调节

1、激素(hormone)的调控基因转录

(1)种类:甾类激素:

多肽激系

(2)甾体激素作用机制

甾体激素与受体蛋白结合,与靶基因DNA上激素应答成分结合,再和其他因子协同作用来调控该基因的转录(如下图)。

六、Britten-Davidson模型

(一)Britten-Davidson调节模型

在个体发育期,许多基因可被协同调控,且重复序列在调控中具有重要的作用。

(二)参与调控的遗传因子:

1、受体位点,位于结构基因5′端,可被激活因子激活因子激活。

2、整合基因,产生激活因子的基因。

3、感受位点,接受生物体对基因表达调控的信号。

通过特定的激活因子可以同时控制不连锁但含用相应受体位点的多个结构基因协同表达。

含有相同受体位点的基因组成一组基因,类似原核生物的一个操纵子。

而整合基因类似于调节基因,但其转录受感受位点控制。

受体位点类似操纵基因,如果一个结构基因附近具有几个不同的受体位点,各个受体位点可以被特异的激活因子所识别,结构基因能在不同的情况下表达,也就是说一个结构基因可以属于几个不同的组(图10-12B)

。如果一个感受位点可控制几个整合基因,则可同时产生几种激活因子,使不同组的基因也能同时被激活而进行协同表达。

(二)重复序列在协同调控中的作用

真核生物基因表达的协同调控是多级别,也是经济的调控方式,一种信号可以使不同的基因得到协同表达,其基础是整合基因、受体位点上具有重复序列

真核生物的基因转录及调控

8 真核生物的基因转录及调控 一选择题(单选或多选) 1锌指蛋白与锌的结合 ( ) (a)是共价的 (b)必须有DNA的存在 (c)通过保守的恍氨酸和组氨酸残基间协调进行 (d)位于蛋白质的妒螺旋区域 2锌指蛋白与DNA的结合( ) (a)位于DNA大沟 (b) 通过"锌指"的C端进行 (c)利用蛋白的α-螺旋区域 (d)每个"指"通过形成两个序列特异的DNA接触位点 (e)通过"指"中保守的氨基酸同DNA结合 3 甾醇类受体转录因子( ) (a)结合的激素都是相同的 (b) 与DNA的结合不具序列特异性 (c)与锌结合的保守序列不同于锌指蛋白" (d)通过第二"指"C端的氨基酸形成二聚体 (e)参与转录激活,与DNA和激素结合分别由不同的结构域完成 4糖皮质激素类的甾醇受体( ) (b)所结合的DNA回文序列都不相同 (c)结合的回文序列相同,但组成回文序列两段DNA间的序列不同 (d)RXR受体通过形成异源二聚体后与同向重复序列结合 (e)这类受体存在于细胞核中 5 同源异型域蛋白( ) (a)形成具有三个α-螺旋的结构 (b) 主要通过α-螺旋3和N端的臂与DNA接触 (c)与原核生物螺旋-转角-螺旋蛋白(如λ阻遏物)的结构很相似 (d)通常存在于细胞核中 (e)在果蝇早期发育调控中起重要作用 6 HLH蛋白( ) (a)在序列组成上与原核生物螺旋-转角-螺旋蛋白具有相关性 (b)向通过环区与DNA结合 (c)形成两个α-螺旋与DNA的大沟结合 (d)形成两性螺旋,其中疏水残基位于螺旋的一侧 (e)以上都不是 7 bHLH蛋白( ) (a)在环中含有保守的碱性氨基酸 (b) 不能形成同源二聚体 (c)非诱导表达 (d)通过它们碱性区与HLH相互作用

真核生物基因表达的调控

真核生物基因表达的调控 一、生物基因表达的调控的共性 首先,我们来看看在生物基因表达调控这一过程中体现的共性和一些基本模式。 1、作用范围。生物体内的基因分为管家基因和奢侈基因。管家基因始终表达,奢侈基因只在需要的时候表达,但二者的表达都受到调控。可见,调控是普遍存在的现象。 2、调控方式。基因表达有两种调控方式,即正调控与负调控,原核生物和真核生物都离不开这两种模式。 3、调控水平。一种基因表达的调控可以在多种层面上展开,包括DNA水平、转录水平、转录后加工水平、翻译后加工水平等。然为节省能量起见,转录的起始阶段往往作为最佳调控位点。 二、真核生物基因表达调控的特点 真核生物与原核细胞在结构上就有着诸多不同,这决定了二者在运行方面的迥异途径。真核生物比原核生物复杂,转录与翻译不同时也不同地,基因组与染色体结构复杂,因而有着更为复杂的调控机制。 1、 2、 3、 4、多层次。真核生物的基因表达可发生在染色质水平、转录起始水平、无操纵子和衰减子。 大多数原核生物以负调控为主,而真核生物启动子以正调控为主。 个体发育复杂,而受环境影响较小。真核生物多为多细胞生物,在转录后水平、翻译水平以及翻译后水平。

生长发育过程中,不仅要随细胞内外环境的变化调节基因表达,还要随发育的不同阶段表达不同基因。前者为短期调控,后者属长期调控。 从整体上看,不可逆的长期调控影响更深远。 三、真核生物基因表达调控的机制 介于真核生物表达以多层次性为最主要特点,我们可以分别从它的几个水平着眼,剖析它的调控机制。 1、染色质水平。真核生物基因组DNA以致密的染色质形式存在,发生在染色质水平的调控也称作转录前水平的调控,产生永久性DNA序列和染色质结构的变化,往往伴随细胞分化。染色质水平的调控包括染色质丢失、基因扩增、基因重排、染色体DNA的修饰,等等。a.基因丢失:丢失一段DNA或整条染色体的现象。在细胞分化过程中,可以通过丢失掉某些基因而去除这些基因的活性。某些原生动物、线虫、昆虫和甲壳类动物在个体发育中,许多体细胞常常丢失掉整条或部分的染色体,只有将来分化产生生殖细胞的那些细胞一直保留着整套的染色体。如马蛔虫2n=2,但染色体上有多个着丝粒。第一次卵裂是横裂,产生上下2个子细胞。第二次卵裂时,一个子细胞仍进行横裂,保持完整的基因组,而另一个子细胞却进行纵向分裂,丢失部分染色体。目前,在高等真核生物(包括动物、植物)中尚未发现类似的基因丢失现象。 b.基因扩增:基因扩增是指某些基因的拷贝数专一性增大的现象,它使得细胞在短期内产生大量的基因产物以满足生长发育的需要,是基因活性调控的一种方式。如非洲爪蟾卵母细胞中rDNA的基因扩增是因发育需要而出现的基因扩增现象;基因组拷贝数增加,即多倍性,在植物中是非常普遍的现象。基因组拷贝数增加使可供遗传重组的物质增多,这可能构成了加速基因进化、基因组重组和最终物种形成的一种方式。 c.基因重排:将一个基因从远离启动子的地方移到距它很近的位点从而启动转录,这种方式被称为基因重排。通过基因重排调节基因活性的典型例子是免疫球蛋白结构基因的表达。在人类基因组中,所有抗体的重链和轻链都不是由固定的完整基因编码的,而是由不同基因片段经重排后形成的完整基因编码的。

真核生物的基因表达调控机制

一、真核基因组的复杂性 与原核生物比较,真核生物的基因组更为复杂,可列举如下。 1. 真核基因组比原核基因组大得多,大肠杆菌基因组约4×106bp,哺乳类基因组在 109bp数量级,比细菌大千倍;大肠杆菌约有4000个基因,人则约有10万个基因。 2. 真核生物主要的遗传物质与组蛋白等构成染色质,被包裹在核膜内,核外还有遗传 成分(如线粒体DNA等),这就增加了基因表达调控的层次和复杂性。 3. 原核生物的基因组基本上是单倍体,而真核基因组是二倍体。 4. 如前所述,细菌多数基因按功能相关成串排列,组成操纵元的基因表达调控的单元, 共同开启或关闭,转录出多顺反子(polycistron)的mRNA;真核生物则是一个结构基因转录生成一条mRNA,即mRNA是单顺反子(monocistron),基本上没有操纵元的结构,而真核细胞的许多活性蛋白是由相同和不同的多肽形成的亚基构成的,这就涉及到多个基因协调表达的问题,真核生物基因协调表达要比原核生物复杂得多。 5. 原核基因组的大部分序列都为基因编码,而核酸杂交等实验表明:哺乳类基因组中 仅约10%的序列为蛋白质、rRNA、tRNA等编码,其余约90%的序列功能至今还不清楚。 6. 原核生物的基因为蛋白质编码的序列绝大多数是连续的,而真核生物为蛋白质编码 的基因绝大多数是不连续的,即有外显子(exon)和内含子(intron),转录后需经剪接(splicing)去除内含子,才能翻译获得完整的蛋白质,这就增加了基因表达调控的环节。 7. 原核基因组中除rRNA、tRNA基因有多个拷贝外,重复序列不多。哺乳动物基因组 中则存在大量重复序列(repetitive sequences)。用复性动力学等实验表明有三类重复序列:1)高度重复序列(highly repetitive sequences),这类序列一般较短,长10-300bp,在哺乳类基因组中重复106次左右,占基因组DNA序列总量的10-60%,人的基因组中这类序列约占20%,功能还不明了。2)中度重复序列(moderately repetitive sequences),这类序列多数长100-500bp,重复101-105次,占基因组10-40%。例如哺乳类中含量最多的一种称为Alu的序列,长约300bp,在哺乳类不同种属间相似,在基因组中重复3×105次,在人的基因组中约占7%,功能也还不很清楚。在人的基因组中18S/28SrRNA基因重复280次,5SrRNA基因重复2000次,tRNA基因重复1300次,5种组蛋白的基因串连成簇重复30-40次,这些基因都可归入中度重复序列范围。3)单拷贝序列(single copy sequences)。这类序列基本上不重复,占哺乳类基因组的50-80%,在人基因组中约占65%。绝大多数真核生物为蛋白质编码的基因在单倍体基因组中都不重复,是单拷贝的基因。 从上述可见真核基因组比原核基因组复杂得多,至今人类对真核基因组的认识还很有限,使现在国际上制订的人基因组研究计划(human gene project)完成,绘出人全部基因的染色体定位图,测出人基因组109bp全部DNA序列后,要搞清楚人全部基因的功能及其相互关系,特别是要明了基因表达调控的全部规律,还需要经历很长期艰巨的研究过程。 二、真核基因表达调控的特点 尽管我们现在对真核基因表达调控知道还不多,但与原核生物比较它具有一些明显的特点。

原核生物的转录及调控 习题

原核生物的转录及转录调控习题 一填空题 1 能够诱导操纵子但不是代谢底物的化合物称为诱导物。能够诱导乳糖操纵子的化合物就是其中一例。这种化合物同蛋白质结合,并使之与分离。乳糖操纵子的体内功能性诱导物是。 2色氨酸是一种调节分子,被视为。它与一种蛋白质结合形成乳糖操纵子和色氨酸操纵子是两个控制的例子。cAMP-CAP蛋白通过控制起作用。色氨酸操纵子受另一种系统一一的调控,它涉及到第一个结构基因被转录前的转录。 二、选择题(单选或多选) 1 标出以下所有正确表述:( ) (a)转录是以半保留方式获得序列相同的两条DNA链的过程 (b)依赖DNA的DNA聚合酶是多亚基酶,它负责DNA的转录 (c)细菌的转录物(mRNA)是多基因的 (d)σ因子指导真核生物hnRNA的转录后加工,最后形成mRNA (e)促旋酶在模板链产生缺口,决定转录的起始和终止 2·下面哪些真正是乳糖操纵子的诱导物?( ) (a)乳糖 (b)蜜二糖 (c)O-硝基苯酚-β-半乳糖苷(ONPG) (d)异丙基-卜半乳糖甘 (e)异乳糖 3·σ因子的结合依靠( ) (a)对启动子共有序列的长度和间隔的识别 (b)与核心酶的相互作用 (c)弥补启动子与共有序列部分偏差的反式作用因子的存在 (d)转录单位的长度 (e)翻译起始密码子的距离 4·下面哪一项是对三元转录复合物的正确描述:( ) (a)σ因子、核心酶和双链DNA在启动子形成的复合物 (b)全酶、TFⅠ和解链DNA双链形成的复合物 (c)全酶、模板DNA和新生RNA形成的复合物 (d)三个全酶在转录起始位点(tsp)形成的复合物 (e)σ因子、核心酶和促旋酶形成的复合物 5 σ因子和DNA之间相互作用的最佳描述是:( ) (a)游离和与DNA结合的σ因子的数量是一样的,而且σ因子合成得越多,转录起始的机会越大 (b) σ因子通常与DNA结合,且沿着DNA搜寻,直到在启动子碰到核心酶。它与DNA的结合不需依靠核心酶

真核生物基因表达调控

第十章作业 1. 简述真核生物基因表达调控的7个层次。 ①染色体和染色质水平上的结构变化与基因活化 ②转录水平上的调控,包括基因的开与关,转录效率的高与低 ③RNA加工水平的调控,包括对出事转录产物的特异性剪接、修饰、编辑等。 ④转录后加工产物在从细胞核向细胞质转运过程中所受到的调控 ⑤在翻译水平上的控制,即对哪一种mRNA结合核糖体进行翻译的选择以及蛋白质成量的控制 ⑥对蛋白质合成后选择性地被激活的控制,蛋白质和酶分子水平上的剪接等的控制 ⑦对mRNA选择性降解的调控 2. 真核基因表达调控与原核生物相比有何异同? 相同点:①与原核基因的调控一样,真核基因表达调控也有转录水平调控和转录后水平的调控,并且也以转录水平调控为最重要; ②在真核结构基因的上游和下游(甚至内部)也存在着许多特异的调控成分,并依靠特异蛋白因子与这些调控成分的结合与否调控基因的转录。 不同点:①原核细胞的染色质是裸露的DNA,而真核细胞染色质则是由DNA与组蛋白紧密结合形成的核小体。 ②在原核基因转录的调控中,既有激活物参与的正调控,也有阻遏物参与的负调控,二者同等重要。 ③原核基因的转录和翻译通常是相互偶联的,即在转录尚未完成之前翻译便已开始。 ④真核生物大都为多细胞生物,在个体发育过程中发生细胞分化后,不同细胞的功能不同,基因表达的情况也就不一样,某些基因仅特异地在某种细胞中表达,称为细胞特异性或组织特异性表达,因而具有调控这种特异性表达的机制。 3. DNA 甲基化对基因表达的调控机制。 甲基化抑制基因转录的机制:DNA甲基化会导致某些区域DNA构象改变,包括甲基化后染色质对于核酸酶或限制性内切酶的敏感度下降,更容易与组蛋白H1相结合,DNaseⅠ超敏感位点丢失,使染色质高度螺旋化, 凝缩成团, 直接影响了转录因子与启动区DNA的结合效率的结合活性,不能启始基因转录。DNA的甲基化不利于模板与RNA聚合酶的结合,降低了转录活性。 4. 转录因子结合DNA的结构基序(结构域)有哪几类? ①螺旋-转折-螺旋 ②锌指结构 ③碱性-亮氨酸拉链 ④碱性-螺旋-环-螺旋 5. 真核基因转调控中有几种方式能够置换核小体? ①占先模式:可以解释转录时染色质结构的变化。该模型认为基因能否转录取决于特定位置上组蛋白和转录因子之间的不可逆竞争性结合。 ②动态模式该模型认为转录因子与组蛋白处于动态竞争之中,基因转录前染色质必须经历结构上的改变,即转换核小体中的全部或部分成分并重新组装,这个耗能的基因活化过程称为染色质重构 6. 简述真核生物转录水平调控过程。 真核生物在转录水平的调控主要是通过反式作用因子、顺式作用元件和RNA聚合酶的相互作用来完成的,主要是反式作用因子结合顺式作用元件后影响转录起始复合物的形成过程:①转录起始复合物的形成:真核生物RNA聚合酶识别的是由通用转录因子与DNA形成的

真核生物基因表达调控

真核生物基因表达的调控远比原核生物复杂,可以发生在DNA水平、转录水平、转录后的修饰、翻译水平和翻译后的修饰等多种不同层次。但是,最经济、最主要的调控环节仍然是在转录水平上。 DNA水平的调控 DNA水平上的调控主要指通过染色体DNA的断裂,删除,扩增,重排,修饰(如甲基化与去甲基化,乙酰化与去乙酰化等)和染色质结构变化等改变基因的数量、结构顺序和活性而控制基因的表达。 转录水平的调控 转录水平的调控包括染色质的活化和基因的活化。通过染色质改型,组蛋白乙酰化,染色质变得疏松化及DNA去甲基化以便被酶和调节蛋白作用,基因的表达受顺式作用元件包括启动子及应答元件,转座元件,增强子,抑制子的调控,同时受反式作用因子包括基本转录因子,上游转录因子和转录调节因子等的调控。 转录后调控 转录后调控包括hnRNA的选择性加工运输和RNA编辑 在真核生物中,蛋白质基因的转录产物统称为hn RNA,必须经过加工才能成为成熟的mRNA分子。加工过程包括三个方面:加帽、加尾和去掉内含子。同一初级转录产物在不同细胞中可以用不同方式剪接加工,形成不同的成熟mRNA分子,使翻译成的蛋白质都可能不同。转录后的RNA在编码区发生碱基插入,缺失或转换的现象。

翻译水平的调控 阻遏蛋白与mRNA结合,可以阻止蛋白质的翻译并使成熟的mRNA变为失活状态贮存起来。一些调控作用的micRNAh和siRNA 还可以与mRNA作用降解mRNA,阻止其翻译 此外,还可以控制mRNA的稳定性和有选择的进行翻译。 翻译后调控 直接来自核糖体的线状多肽链是没有功能的,必须经过加工才具有活性。在蛋白质翻译后的加工过程中,还有一系列的调控机制。 1.蛋白质折叠 线性多肽链必须折叠成一定的空间结构,才具有生物学功能。在细胞中,蛋白质的折叠必须有分子伴侣的作用下才能完成折叠。 2.蛋白酶切割 末端切割 有些膜蛋白、分泌蛋白,在氨基端具有一段疏水性强的氨基酸序列,称为信号肽,用于前体蛋白质在细胞中的定位。信号肽必须切除多肽链才具有功能。 多聚蛋白质的切割 有些新合成的多肽链含有几个蛋白质分子的序列,切割以后产生具有不同功能的蛋白质分子。

第十三章-基因表达的调控讲课教案

第十三章基因表达的调控 一、基因表达调控基本概念与原理: 1.基因表达的概念:基因表达(gene expression)就是指在一定调节因素的作用下,DNA分子上特定的基因被激活并转录生成特定的RNA,或由此引起特异性蛋白质合成的过程。 2.基因表达的时间性及空间性: ⑴时间特异性:基因表达的时间特异性(temporal specificity)是指特定基因的表达严格按照特定的时间顺序发生,以适应细胞或个体特定分化、发育阶段的需要。故又称为阶段特异性。 ⑵空间特异性:基因表达的空间特异性(spatial specificity)是指多细胞生物个体在某一特定生长发育阶段,同一基因的表达在不同的细胞或组织器官不同,从而导致特异性的蛋白质分布于不同的细胞或组织器官。故又称为细胞特异性或组织特异性。 3.基因表达的方式: ⑴组成性表达:组成性基因表达(constitutive gene expression)是指在个体发育的任一阶段都能在大多数细胞中持续进行的基因表达。其基因表达产物通常是对生命过程必需的或必不可少的,且较少受环境因素的影响。这类基因通常被称为管家基因(housekeeping gene)。 ⑵诱导和阻遏表达:诱导表达(induction)是指在特定环境因素刺激下,基因被激活,从而使基因的表达产物增加。这类基因称为可诱导基因。阻遏表达(repression)是指在特定环境因素刺激下,基因被抑制,从而使基因的表达产物减少。这类基因称为可阻遏基因。 4.基因表达的生物学意义:①适应环境、维持生长和增殖。②维持个体发育与分化。 5.基因表达调控的基本原理: ⑴基因表达的多级调控:基因表达调控可见于从基因激活到蛋白质生物合成的各个阶段,因此基因表达的调控可分为转录水平(基因激活及转录起始),转录后水平(加工及转运),翻译水平及翻译后水平,但以转录水平的基因表达调控最重要。 ⑵基因转录激活调节基本要素:①顺式作用元件:顺式作用元件(cis-acting element)又称分子内作用元件,指存在于DNA分子上的一些与基因转录调控有关的特殊顺序。②反式作用因子:反式作用因子(trans-acting factor)又称为分子间作用因子,指一些与基因表达调控有关的蛋白质因子。反式作用因子与顺式作用元件之间的共同作用,才能够达到对特定基因进行调控的目的。③顺式作用元件与反式作用因子之间的相互作用:大多数调节蛋白在与DNA结合之前,需先通过蛋白质-蛋白质相互作用,形成二聚体或多聚体,然后再通过识别特定的顺式作用元件,而与DNA分子结合。这种结合通常是非共价键结合。 二、操纵子的结构与功能: 在原核生物中,若干结构基因可串联在一起,其表达受到同一调控系统的调控,这种基因的组

真核生物基因表达调控

真核生物基因表达的调控 河南大学民生学院王磊生物技术 一、生物基因表达的调控的共性 首先,我们来看看在生物基因表达调控这一过程中体现的共性和一些基本模式。 1、作用范围。生物体内的基因分为管家基因和奢侈基因。管家基因始终表达,奢侈基因只在需要的时候表达,但二者的表达都受到调控。可见,调控是普遍存在的现象。 2、调控方式。基因表达有两种调控方式,即正调控与负调控,原核生物和真核生物都离不开这两种模式。 3、调控水平。一种基因表达的调控可以在多种层面上展开,包括DNA水平、转录水平、转录后加工水平、翻译后加工水平等。然为节省能量起见,转录的起始阶段往往作为最佳调控位点。 二、真核生物基因表达调控的特点 真核生物与原核细胞在结构上就有着诸多不同,这决定了二者在运行方面的迥异途径。真核生物比原核生物复杂,转录与翻译不同时也不同地,基因组与染色体结构复杂,因而有着更为复杂的调控机制。 1、多层次。真核生物的基因表达可发生在染色质水平、转录起始水平、转录后水平、翻译水平以及翻译后水平。 2、无操纵子和衰减子。 3、大多数原核生物以负调控为主,而真核生物启动子以正调控为主。 4、个体发育复杂,而受环境影响较小。真核生物多为多细胞生物,在生长发育过程中,不仅要随细胞内外环境的变化调节基因表达,还要随发育的不同阶段表达不同基因。前者为短期调控,后者属长期调控。从整体上看,不可逆的长期调控影响更深远。 三、真核生物基因表达调控的机制 介于真核生物表达以多层次性为最主要特点,我们可以分别从它的几个水平着眼,剖析它的调控机制。 1、染色质水平。真核生物基因组DNA以致密的染色质形式存在,发生在染色质水平的调控也称作转录前水平的调控,产生永久性DNA序列和染色质结构的变化,往往伴随细胞分化。染色质水平的调控包括染色质丢失、基因扩增、基因重排、染色体DNA的修饰,等等。 a.基因丢失:丢失一段DNA或整条染色体的现象。在细胞分化过程中,可以通过丢失掉某些基因而去除这些基因的活性。某些原生动物、线虫、昆虫和甲壳类动物在个体发育中,许多体细胞常常丢失掉整条或部分的染色体,只有将来分化产生生殖细胞的那些细胞一直保留着整套的染色体。如马蛔虫2n=2,但染色体上有多个着丝粒。第一次卵裂是横裂,产生上下2个子细胞。第二次卵裂时,一个子细胞仍进行横裂,保持完整的基因组,而另一个子细胞却进行纵向分裂,丢失部分染色体。目前,在高等真核生物(包括动物、植物)中尚未发现类似的基因丢失现象。 b.基因扩增:基因扩增是指某些基因的拷贝数专一性增大的现象,它使得细胞在短期内产生大量的基因产物以满足生长发育的需要,是基因活性调控的一种方式。如非洲爪蟾卵母细胞中rDNA的基因扩增是因发育需要而出现的基因扩增现象;基因组拷贝数增加,即多

原核生物和真核生物基因表达调控复制、转录、翻译特点的比较

原核生物和真核生物基因表达调控、复制、转录、翻译特点的比较 1.相同点:转录起始是基因表达调控的关键环节 ①结构基因均有调控序列; ②表达过程都具有复杂性,表现为多环节; ③表达的时空性,表现为不同发育阶段和不同组织器官上的表达的复杂性; 2.不同点: ①原核基因的表达调控主要包括转录和翻译水平。真核基因的表达调控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次。 ②原核基因表达调控主要为负调控,真核主要为正调控。 ③原核转录不需要转录因子,RNA聚合酶直接结合启动子,由sita因子决定基因表的的特异性,真核基因转录起始需要基础特异两类转录因子,依赖DNA-蛋白质、蛋白质-蛋白质相互作用调控转录激活。 ④原核基因表达调控主要采用操纵子模型,转录出多顺反子RNA,实现协调调节;真核基因转录产物为单顺反子RNA,功能相关蛋白的协调表达机制更为复杂。 ⑤真核生物基因表达调控的环节主要在转录水平,其次是翻译水平。原核生物基因以操纵子的形式存在。转录水平调控涉及到启动子、sita因子与RNA聚合酶结合、阻遏蛋白、负调控、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。翻译水平的调控涉及SD序列、mRNA的稳定性不稳定(5’端和3’端的发夹结构可保护不被酶水解mRNA的5’端与核糖体结合可明显提高稳定性)、翻译产物及小分子RNA的调控作用。 真核生物基因表达的调控环节较多: 在DNA水平上可以通过染色体丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。 在转录水平主要通过反式作用因子调控转录因子与TA TA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。 在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。 在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA的稳定性调节及小分子RNA。 真核基因调控中最重要的环节是基因转录,真核生物基因表达需要转录因子、启动子、沉默子和增强子。 真核生物和原核生物复制的不同点: ①真核生物DNA的合成只是在细胞周期的S期进行,而原核生物则在整个细胞生长过程中都可进行DNA合成 ②原核生物DNA的复制是单起点的,而真核生物染色体的复制则为多起点的。真核生物中前导链的合成并不像原核生物那样是连续的,而是以半连续的方式,由一个复制起点控制一个复制子的合成,最后由连接酶将其连接成一条完整的新链。 ③真核生物DNA的合成所需的RNA引物及后随链上合成的冈崎片段的长度比原

转录的调节控制

(四)转录的调节控制 转录的调节是基因表达调节的重要环节,包括时序调节和适应调解。遗传信息的表达可按一定时间程序发生变化,而且随着细胞内外环境条件的改变而加以调整。 原核生物的操纵子:它既是表达单位,也是协同调节的单位。 操纵子是细菌基因表达和调控的单位,它包括结构基因、调节基因和由调节基因产物所识别的控制序列。 操纵子模型,见P561。 由于经济原则,细菌通常并不合成那些在代谢上无用的酶,因此一些分解代谢的酶类只在有关的底物或底物类似物存在时才被诱导合成。如E. coli利用外界乳糖时会需要三种有关的酶,一般情况下极少产生,只有当乳糖存在时,按乳糖操纵子模型这三种利用乳糖所必需的酶才大量产生。 一些合成代谢的酶类在产物或产物类似物足够量存在时,其合成则被阻遏。 P562 图39-21 说明酶诱导和阻遏的操纵子模型。 酶的诱导和阻遏是在调节基因产物—阻遏蛋白的作用下,通过操纵基因控制结构基因或基因组的转录而发生的。 A.酶的诱导:阻遏蛋白结合在操纵基因上,结构基因不表达;但当诱导物与阻遏蛋 白结合使阻遏蛋白不能结合在操纵基因上,结构基因可以表达。 B.酶的阻遏:阻遏蛋白不能与操纵基因结合,结构基因可表达;当代谢产物与阻遏 蛋白结合使阻遏蛋白能够结合在操纵基因上,结构基因不表达。 P563 图39-22 为E. coli中乳糖操纵子模型。 调节有正调节和负调节,原核生物以负调节为主。 阻遏蛋白的作用属于负调节,阻遏蛋白称为负调节因子。 正调节:调节蛋白(激活子)与DNA结合时,使转录发生。 真核生物的调节更为复杂,基因不组成操纵子,以正调节为主,并可在染色质结构水平上进行调节。 (五) RNA生物合成抑制剂 (1)碱基类似物:可作为核苷酸代谢拮抗物而抑制核酸前体的合成,直接抑制核苷酸生物合成有关的酶,或通过掺入到核酸分子中形成异常的DNA或RNA影响核 酸的功能并导致突变: 如6-巯基嘌呤,6-巯基鸟嘌呤,5-氟尿嘧啶等,结构式见P469。 (2)DNA模板功能抑制物:通过与DNA结合,使DNA失去模板功能从而抑制其复制和转录: 如临床上应用的氮芥类似物。(结构见P470)。 环磷酰胺:体外无活性,进入肿瘤细胞后受磷酰胺酶作用水解成活性氮芥,可治疗多种癌症。 苯丁酸氮芥:因含有酸性基团不易进入正常细胞,而癌细胞酵解作用旺盛,大量积累乳酸,pH较低,故容易进入癌细胞。 10-2 RNA的转录后加工 细胞中由RNA聚合酶合成的原初转录物往往需经过一系列变化,包括链的裂解,5‘端与3‘端的切除和特殊结构的形成,核苷的修饰和糖苷键的改变以及拼接和编辑,才能转变为成熟的RNA分子,此过程为转录后加工或称RNA的成熟。 (一)原核生物中RNA的加工 mRNA一般不进行转录后加工,一经转录通常立即进行翻译。

真核生物与原核生物基因表达调控的区别复习课程

真核生物与原核生物基因表达调控的区别

精品文档 原核生物和真核生物基因表达调控特点的比较1.相同点:转录起始是基因表达调控的关键环节2.不同点:A.原核基因的表达调控主要包括转录和翻译水平真核基因的表达调控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次B.原核基因表达调控主要为负调控,真核主要为正调控C.原核转录不需要转录因子,RNA聚合酶直接结合启动子,由sita因子决定基因表的的特异性真核基因转录起始需要基础特异两类转录因子依赖DNA-蛋白质、蛋白质-蛋白质相互作用调控转录激活D.原核基因表达调控主要采用操纵子模型转录出多顺反子RNA 实现协调调节真核基因转录产物为单顺反子RNA 功能相关蛋白的协调表达机制更为复杂。真核生物基因表达调控的环节主要在转录水平其次是翻译水平。原核生物基因以操纵子的形式存在。转录水平调控涉及到启动子、sita因子与RNA聚合酶结合、阻遏蛋白负调控、正调控蛋白、倒位蛋白、RNA 聚合酶抑制物、衰减子等。翻译水平的调控涉及SD序列、mRNA的稳定性不稳定(5’端和3’端的发夹结构可保护不被酶水解mRNA的5’端与核糖体结合可明显提高稳定性)、翻译产物及小分子RNA 的调控作用。真核生物基因表达的调控环节较多在DNA水平上可以通过染色体丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。在转录水平主要通过反式作用因子调控转录因子与TATA盒的结合、RNA聚合酶与转录因子-DNA 复合物的结合及转录起始复合物的形成。在转录后水平主要通过RNA修饰、剪接及mRNA 运输的控制来影响基因表达。在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA的稳定性调节及小分子RNA。真核基因调控中最重要的环节是基因转录真核生物基因表达需要转录因子、启动子、沉默子和增强子。葡萄糖存在乳糖不存在此时无诱导剂 收集于网络,如有侵权请联系管理员删除

真核生物基因表达的调控

第10章真核生物基因表达的调控 本章教学要求 1.熟悉真核基因组的结构特点、真核生物在DNA水平、转录水平和翻译水平上基因表达调控的特点。 2.掌握以下概念:顺式作用元件、反式作用因子、启动子、增强子,熟悉沉默子、基本转录因子、特异转录因子。 3.了解转录因子的结构特点。 本章教学重点和难点 1、真核生物在DNA水平和转录水平基因表达调控的特点。 2、转录因子的结构特点。 教学方法与手段 讲授与交流互动相结合,采用多媒体教学。 授课内容 10.1 真核生物基因表达调控的特点和种类 一、真核生物基因表达调控的特点 原核生物的调控系统就是要在一个特定的环境中为细胞创造高速生长的条件,或使细胞在受到损伤时,尽快得到修复,所以,原核生物基因表达的开关经常是通过控制转录的起始来调节的。 真核基因表达调控的最显著特征是能在特定时间和特定的细胞中激活特定的基因,从而实现"预定"的、有序的、不可逆转的分化、发育过程,并使生物的组织和器官在一定的环境条件范围内保持正常功能。 真核生物基因表达调控与原核的共同点: ?基因表达都有转录水平和转录后的调控,且以转录水平调控为最重要; ?在结构基因上游和下游、甚至内部存在多种调控成分,并依靠特异蛋白因子与这些调控成分的结合与否调控基因的转录。 真核生物基因表达调控与原核的不同点: 1、真核基因表达调控的环节更多:转录与翻译间隔进行,具有多种原核生物没有的调控机制;个体发育复杂,具有调控基因特异性表达的机制。 2、真核生物活性染色体结构的变化对基因表达具有调控作用:DNA拓扑结构变化、DNA 碱基修饰变化、组蛋白变化; 3、正性调节占主导,且一个真核基因通常有多个调控序列,需要有多个激活物。

真核生物的基因表达调控概述

真核生物的基因表达调控概述 真核生物基因在染色质活性、DNA水平、转录水平和翻译水平的表达调控特点。答:真核基因组结构具有基因组结构庞大、单顺反子、含有大量重复序列、基因不连续性、非编码区较多等特点。 (1)染色质结构水平对基因表达调控:①常染色质或异染色质;②染色质的状态(活性或阻遏),紧密结构会抑制基因表达,解凝集结构利于基因表达;③可以通过对组蛋白结构的修饰来实现,有组蛋白翻译后的乙酰化、甲基化、磷酸化、泛素化等;④DNA水平的调控包括基因丢失、扩增、重排和移位等方式。 (2)转录水平的调控:①RNA聚合酶、转录因子等反式作用因子和顺式作用元件(启动子强弱、增强子、沉默子)相互作用对基因转录的调控;②同一基因转录起始位点的不同,导致在不同组织细胞中的基因表达差异。 (3)转录后的加工:转录后加工的多样性,包括①加尾和剪接;②多个5′端转录起始位点或剪接位点;③多个加多聚(A)位点和不同的剪接方式;④虽无剪接,但有多个转录起始位点或加多聚(A)位点等多种方式调控基因的表达。(4)翻译水平的调控:①翻译起始因子eIF-4F 的磷酸化激活蛋白质的合成,eIF-2α 的磷酸化引起翻译起始受阻,降低蛋白质的生物合成水平;② mRNA 结构与翻译控制:mRNA5′端m7G 帽有增强翻译水平的作用,上游AUG 密码子的存在往往抑制下游开放读框的翻译效率;③起始AUG 上游序列对翻译效率的影响,如Kozak序列;④poly(A)尾增加翻译效率;⑤poly(A)尾中富含UA 序列抑制翻译。 (5)翻译后加工水平的调控:翻译的蛋白质还需要加工、修饰、折叠和分选后才具有功能。综上所述,真核生物基因表达调控是一个十分复杂的过程。

(完整版)基因的转录与翻译真题练习

基因的表达真题演练遗传信息的转录和翻译 命 题 剖 析 考 向 扫 描 1 以示意图等形式考查DNA的结构、特点、转录过程及与DNA分子复制的区别, 考查学生对DNA分子复制与转录过程的理解能力及对二者区别的分析能力。 选择题是常见题型 2 以选择题或非选择题等形式考查转录、翻译过程及其调控机制,考查学生的 识图能力及理解、推理分析等综合思维能力 3 以选择题的形式考查中心法则相关内容及基因对性状的控制,考查学生获取 信息、分析问题的能力 命 题 动 向 遗传信息的转录和翻译部分是高考的重点,内容侧重转录与翻译的具体过程、条 件、特点及碱基数目的计算等,题型多样化,选择题、非选择题均有。对中心法 则和基因与性状的关系的考查以选择题为主,可能会结合具体实例分析基因控 制性状的模式或遗传信息传递的过程 1.(2012年课标全国卷,1,6分)同一物种的两类细胞各产生一种分泌蛋白,组成这两种蛋白质的各种氨基酸含量相同,但排列顺序不同。其原因是参与这两种蛋白质合成的( ) A.tRNA种类不同 B mRNA碱基序列不同 C.核糖体成分不同 D.同一密码子所决定的氨基酸不同 2.(2012年安徽理综卷,5,6分)图示细胞内某些重要物质的合成过程。该过程发生在( ) A.真核细胞内,一个mRNA分子上结合多个核糖体同时合成多条肽链 B.原核细胞内,转录促使mRNA在核糖体上移动以便合成肽链 C 原核细胞内,转录还未结束便启动遗传信息的翻译 D.真核细胞内,转录的同时核糖体进入细胞核启动遗传信息的翻译 3.(2011年海南卷)野生型大肠杆菌能在基本培养基上生长,用射线照射野生型大肠杆菌得到一突变株,该突变株在基本培养基上培养时必须添加氨基酸甲后才能生长。对这一实验结果的解释,不合理的是( ) A.野生型大肠杆菌可以合成氨基酸甲 B 野生型大肠杆菌代谢可能不需要氨基酸甲 C.该突变株可能无法产生氨基酸甲合成所需的酶 D.该突变株中合成氨基酸甲所需酶的功能可能丧失 4.(2011年海南卷)关于RNA的叙述,错误的是( ) A.少数RNA具有生物催化作用 B 真核细胞内mRNA和tRNA都是在细胞质中合成的 C.mRNA上决定1个氨基酸的3个相邻碱基称为密码子 D.细胞中有多种tRNA,一种tRNA只能转运一种氨基酸 5.(2011年安徽理综卷)甲、乙图示真核细胞内两种物质的合成过程,下列叙述正确的是( )

真核生物基因表达调控

第十章真核生物基因表达调控 第一节染色质结构与基因表达 染色质是细胞核中基因组DNA与蛋白质构成的复合体。染色质的基本结构单位是核小体。10 nm粗的纤维可以进一步盘绕成30 nm粗的纤维。在分裂期,30 nm粗纤维再折叠成具有一定形态结构的染色体。分裂期结束后,染色体又转化为染色质。按照功能不同,可将染色质划分为活性染色质和非活性染色质。前者是指那些具有转录活性的染色质,而后者则用于表示缺乏转录活性的染色质。在结构上,活性染色质和非活性染色质也有很大的差异。具有转录活性的染色质区域为一种开放、松散的结构。而非活性染色质呈现一种高度浓缩的形态,转录机器不能与其中的启动子结合,因而没有转录活性。异染色质就是一种典型的非活性染色质。 一、位置效应 位置效应(position effect)是指一个基因由于在基因组的位置发生改变,而发生的表达上的变化。 二、活性染色质的特征 与非表达区域中核小体结构紧密、间隔规则相比,其核小体组装较为伸展或不规则。这样的一种结构有利于转录因子的结合,以及RNA聚合酶沿模板的滑动。在转录起始区以及某些特殊的区域,核小体的构象变化更为明显,DNase I和微球菌核酸酶等非特异性内切酶可用于检测这种变化。 三、染色质结构的调节 在原核细胞中,RNA聚合酶和调节蛋白可以自由地接近DNA。由组蛋白和基因组DNA两部分组成的染色质结构限制了转录因子对DNA的接近与结合,实际上起着阻遏转录的作用。基因转录需要染色质发生一系列重要的变化,如染色质去凝集,核小体变成开放式的疏松结构,使转录因子等更容易接近并结合核小体DNA。有两种方式可以显著改变DNA的易接近性:组蛋白的乙酰化和核小体重塑。组蛋白的去乙酰化,则可以使染色质凝集,引起基因沉默。 1.组蛋白N端尾的修饰对染色质结构及基因转录的影响 每种核心组蛋白包括一个~80个氨基酸残基构成的保守的区域称为组蛋白

转录调控

分子机制研究套路(五) 转录调控 课题:转录因子A对B基因的转录调控 1.概念介绍: 转录水平的调控是真核生物基因表达调控中重要环节。真核细胞RNA 聚合酶自身对启动子并无特殊亲和力,单独不能进行转录,也就是说基因是无活性的。因此,转录需要众多的转录因子和辅助转录因子形成复杂的转录装置。在基因转录起始阶段,通用转录因子协助RNA 聚合酶与启动子结合,但其作用很弱,不能高效率地启动转录。只有在反式作用因子(基因特异性转录因子)的协助下,RNA 聚合酶Ⅱ和TFⅡ才能有效地形成转录起始复合物。反式作用因子(trans acting factor)在转录调节中具有特殊的重要性。它是能直接或间接地识别或结合在顺式作用元件8~12bp 核心序列上,参与调控靶基因转录效率的一组蛋白质。这类DNA 结合蛋白有多种,能特异性识别这类蛋白的序列也有多种,正是不同的DNA 结合蛋白与不同的识别序列之间的空间结构上的相互作用,以及蛋白质与蛋白质之间的相互作用构成了复杂的基因转录调控机制的基础。 在真核生物中转录因子的调控是最重要,也是研究得最多的。蛋白质相互作用在转录因子活性的调控方面具有重要的意义。细胞内的反式作用因子都是处于有活性和无活性两种状态,这两种状态是可以转换的。反式作用因子处于无活性状态时,与之相应的基因就不能表达;反式作用因子处于有活性状态、并与相应的顺式作用元件结合时,就可以促进RNA 聚合酶和通用转录因子与相应的启动子结合,形成转录起始复合物。所以,真核基因的表达调控主要是调节反式作用因子的活性,随后反式作用因子调控基因的转录起始。 转录因子被激活后,即可识别并结合上游启动子元件和增强子,对基因转录发挥调控作用。大部分转录因子在激活以后与顺式作用元件结合,但也可能有一些转录因子是先结合DNA,

基因的转录、转录后调控

基因的转录、转录后 加工及逆转录 转录 (transcription)是以DNA单链为模板,NTP为原料,在DNA依赖的RNA聚合酶催化下合成RNA链的过程。与DNA的复制相比,有很多相同或相似之处,亦有其特点,它们之间的异同可简要示于表13-1 转录的模板是单链DNA,与复制的模板有较多的不同特点,引出了下列相关概念。转录过程只以基因组DNA中编码RNA(mRNA、tRNA、rRNA及小RNA)的区段为模板。把DNA分子中能转录出RNA的区段,称为结构基因(structure gene)。结构基因的双链中,仅有一股链作为模板转录成RNA,称为模板链(template strand),也称作Watson(W)链(Watson strand)、负(-)链(minus strand)或反意义链(antisense strand)。与模板链相对应的互补链,其编码区的碱基序列与mRNA的密码序列相同(仅T、U互换),称为编码链(coding strand),也称作Crick(C)链(Crick strand)、正(+)链(plus strand),或有意义链(sense strand)。不同基因的模板链与编码链,在DNA分子上并不是固定在某一股链,这种现象称为不对称转录(asymmetric transcription)。模板链在相同双链的不同单股时,由于转录方向都从5’→3’,表观上转录方向相反,如图13-1。 与DNA复制类似,转录过程在原核生物和真核生物中所需的酶和相关因子有所不同,转录过程及转录后的加工修饰亦有差异。下面的讨论中将分别叙述。 参与转录的酶 转录酶(transcriptase)是依赖DNA的RNA聚合酶(DNA dependent RNA polymerase,DDRP),亦称为DNA指导的RNA聚合酶(DNA directed RNA polymerase),简称为RNA聚合酶(RNA pol)。它以DNA为模板催化RNA的合成。 原核生物和真核生物的转录酶,均能在模板链的转录起始部位,催化2个游离的

真核基因和原核基因表达调控的异同

真核基因和原核基因表达调控的异同? 真核基因表达调控的基本原理与原核基因相同,主要表现在: 1、与原核基因的调控一样,真核基因表达调控也以转录水平调控为最重要; 2、在结构基因均有调控序列,并依靠特异蛋白因子与这些调控序列的结合与否调控基因的表达。 3、都要经历转录、翻译的过程。 4、表达过程都有复杂性,多环节 不同 1、真核基因表达调控过程更复杂。 2、在染色质结构上。原核细胞的DNA是裸露的,而真核细胞DNA包装在染色体中。DNA与组蛋白组成核小体形成为染色体基本单位。在原核细胞中染色质结构对基因的表达没有明显的调控作用,而在真核细胞中染色质的变化调控基因表达,并且基因分布在不同的染色体上,存在染色体间基因的调控问题; 3、真核生物中编码蛋白质的基因通常是断裂基因,含有有非编码序列即内含子,因而转录产生的mRNA前体必须剪切加工才能成为有功能的成熟的mRNA,而不同拼接方式的可产生不同的mRNA。而原核生物的基因由于不含有外显子和内含子,因此,转录产生的信使RNA不需要剪切、拼接等加工过程。 4、在原核基因转录的调控中,既有正调控,也有负调控,二者同等重要,而真核细胞中虽然也有正调控成分和负调控成分,但目前已知的主要是正调控,且一个真核基因通常都有多个调控序列,必须有多个激活物同时特异地结合上去才能调节基因的转录; 5、原核基因的转录和翻译通常是相互偶联的,而真核基因的转录与翻译在时空上是分开的,从而使真核基因的表达有多种调控机制。 6、真核生物细胞中存在mRNA的稳定性调控

7、真核生物大都为多细胞生物,基因的表达随细胞内外环境条件的改变和时间程序在不同的表达水平上进行着精确调控,而原核生物主要受环境因素和营养状况影响基因调控。 8、真核生物由三种RNA聚合酶分别负责三种RNA的转录,而原核生物只有一种。

第六章 原核基因表达调控模式思考题答案

第七章原核生物的基因调控思考题答案 一、填空题 1. 能够诱导操纵子但不是代谢底物的化合物称为安慰诱导物。能够诱导乳糖操纵子的化合物IPTG 就是其中一例。这种化合物同阻遏蛋白质结合。并使之与操纵基因分离。乳糖操纵子的体内功能性诱导物是异乳糖。 2. 色氨酸是一种调节分子,被视为辅阻遏物。它与一种蛋白质结合形成全阻遏物;乳糖操纵子和色氨酸操纵子是两个负控制的例子。cAMP—cAP蛋白通过正控制起作用。色氨酸操纵子受另一种系统弱化作用的调控,它涉及到第一个结构基因被转录前的转录终止作用。 二、选择题(单选或多选) 1. 标出以下所有正确表述:( C ) (a)转录是以半保留方式获得序列相同的两条DNA链的过程 (b)依赖DNA的DNA聚合酶是多亚基酶,它负责DNA的转录 (c) 细菌的转录物(mBNA)是多基因的 (d)σ因子指导真核生物hnRNA的转录后加工,最后形成mRNA (e)促旋酶在模板链产生缺口,决定转录的起始和终止 2.下面哪些真正是乳糖操纵子的诱导物?( (c) (d) ) (a) 乳糖 (b) O—硝基苯酚—β—半乳糖苷(ONPG) (c) 异丙基巯基—β—半乳糖苷 (d) 异乳糖 3.氨酸操纵子的调控作用是受两个相互独立的系统控制的,其中一个需要前导肽的翻译,下面哪一个调控这个系统?( (b) ) (a) 色氨酸 (b) 色氨酰-tRNA Trp (c) 色氨酰—tRNA (d) cAMP (e)以上都不是 三、判断题 1. 下面哪些说法是正确的? (a) LacA的突变体是半乳糖苷透性酶的缺陷 (b) 在非诱导的情况下,每个细胞大约有4分子的p—半乳糖苷酶 (c) 乳糖是一种安慰诱导物 (d) RNA聚合酶同操纵因子结合 (e) 多顺反子mRNA是协同调节的原因 (f) Lac阻遏物是一种由4个相同的亚基组成的四聚体 (g) 腺苷酸环化酶将cAMP降解成AMP (h) CAP和CRP蛋白是相同的 (i) —35和—10序列对于RNA聚合酶识别启动子都是很重要的 (j) 色氨酸的合成受基因表达、阻遏、弱化作用和反馈抑制的控制 (k) Trp的引导mRNA能够同时形成三个“茎—环”结构 (l) 在转录终止子柄部的A—T碱基对可以增强结构的稳定性 (m) 真核生物和原核生物的转录和翻译都是偶联的

相关文档
相关文档 最新文档